Specification, estimation and validation of a pedestrian walking behavior model

Gianluca Antonini

Javier Cruz

Michel Bierlaire

Thomas Robin

13th december 2007

Objectives

- Model the pedestrian behavior at **operational** level
- Develop a specification with 'constrained' and 'unconstrained' parameters
- Estimate the model
- Validate the model

Outline

- Introduction
- Model specification : The space discretization
 - The choice set
 - Cross nested structure
 - Utility specification
- Model estimation : The Japanese data set
 - General diagnosis
 - Parameters values
- Model validation : Methodology
 - Validation of the specification
 - The Dutch data set
 - Validation of the model

• Conclusion

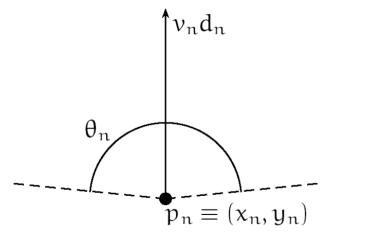
Introduction

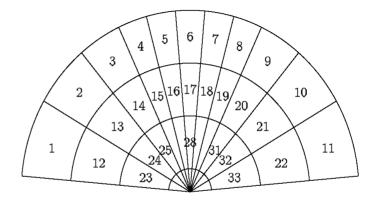
• Microscopic model : capture the behavior of each pedestrian

Operational level : short range behavior, instantaneous decisions
 Exogenous destination

• Concept of **personal space** : interactions with other pedestrians

Leader follower

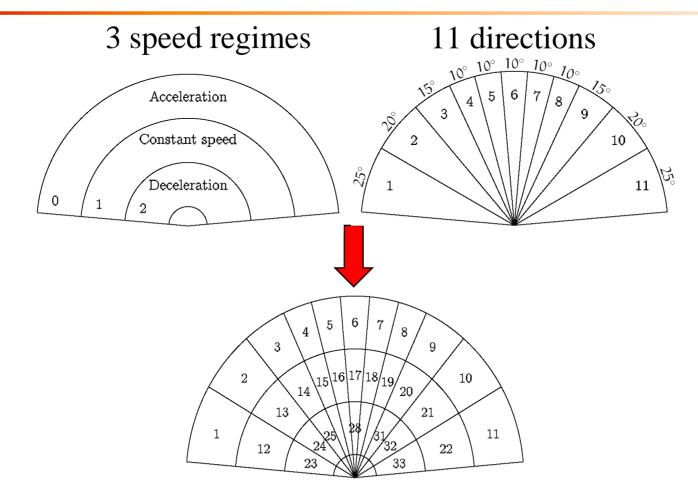




Model specification : the space discretization

• Discrete choice model : at each step, the pedestrian has to choose the next step in the choice set

Pedestrian visual space

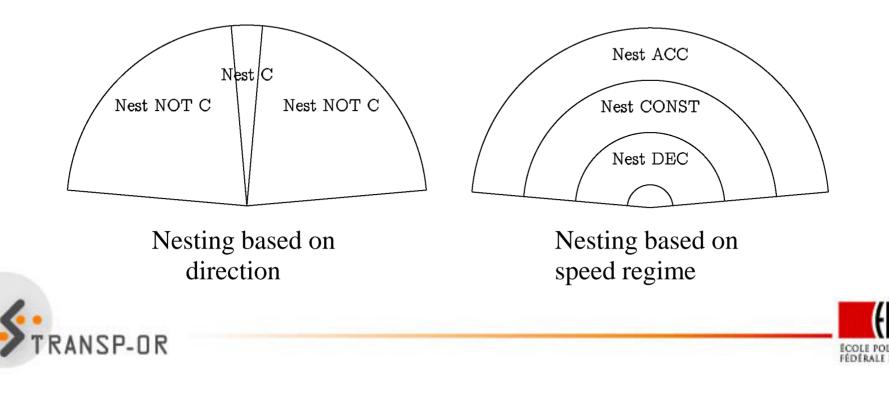


Choice set : discretization of the visual space

At each step the **choice set** depends on the pedestrian **speed** and **direction**

Model specification : the choice set

33 alternatives



Model specification : cross nested structure

• Hypothesis : alternatives correlated along speed regimes and directions

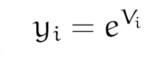
Cross Nested Logit model

• Cross Nested structure : each alternative belongs to 2 nests

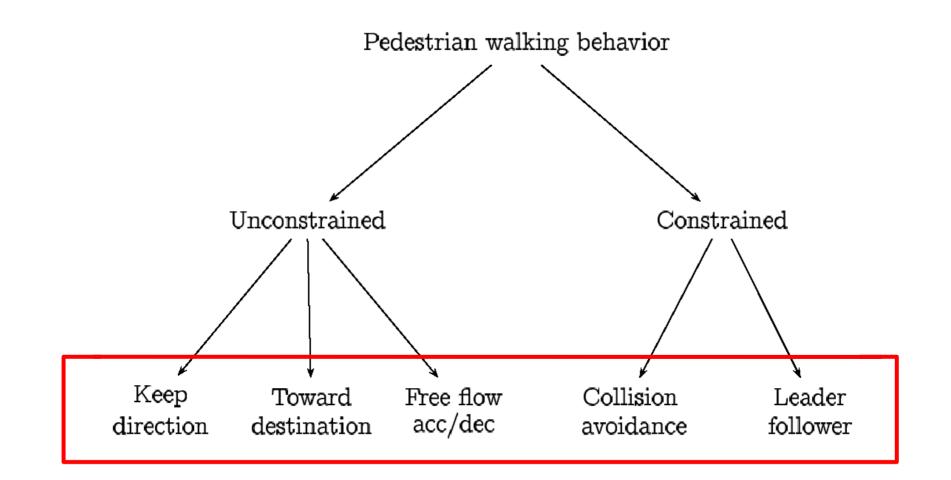
Model specification : cross nested structure

• Probability of choosing the alternative i :

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}\right)^{\frac{\mu}{\mu_{m}}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_{n}/\mu} y_{j}^{\mu_{n}}\right)^{\frac{\mu}{\mu_{n}}}} \frac{\alpha_{im}^{\mu_{m}/\mu} y_{i}^{\mu_{m}}}{\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}}$$


C : choice set

M: number of nests


 V_i : utility of alternative i

 α_{jm} : membership degree of alternative j in the nest n

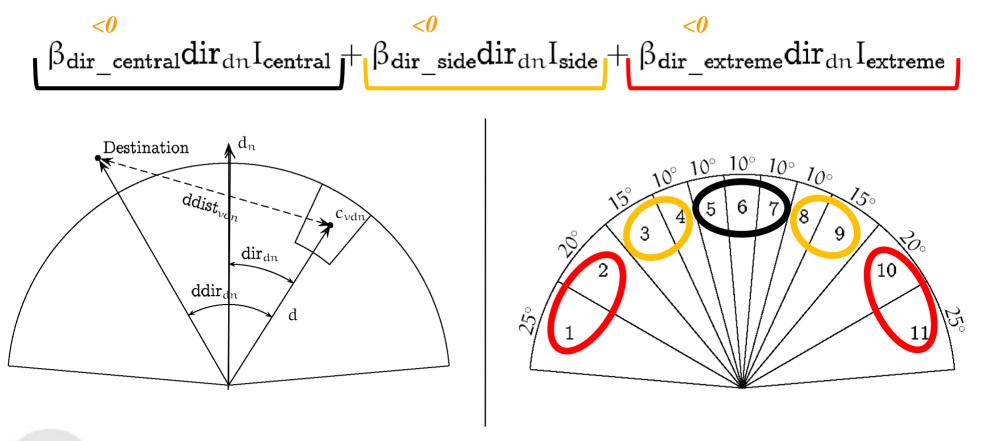
 μ_m : parameter of the nest m

 $V_{vdn} = \beta_{dir central} dir_{dn} I_{central}$ $\beta_{dir side} dir_{dn} I_{side}$ $\beta_{dir} extreme dir_{dn} I_{extreme}$ $\beta_{ddist}ddist_{vdn}$ $\beta_{ddir}ddir_{dn}$ $\beta_{\text{dec}} I_{v,\text{dec}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{dec}}}$ $\beta_{\text{accLS}} I_{\text{LS}} I_{v,\text{acc}} (\nu_n / \nu_{\text{maxLS}})^{\lambda_{\text{accLS}}} +$ $\beta_{\text{accHS}} I_{\text{HS}} I_{\text{v.acc}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{accHS}}}$ $I_{v,acc}I_{acc}^{L}\alpha_{acc}^{L}D_{L}^{\rho_{acc}^{L}}\Delta\nu_{L}^{\gamma_{acc}^{L}}\Delta\theta_{L}^{\delta_{acc}^{L}} + \right)$ $I_{v,dec}I_{dec}^{L}\alpha_{dec}^{L}D_{I}^{\rho_{dec}^{L}}\Delta\nu_{I}^{\gamma_{dec}^{L}}\Delta\theta_{I}^{\delta_{dec}^{L}} +$ $I_{d,d_n}I_C\alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

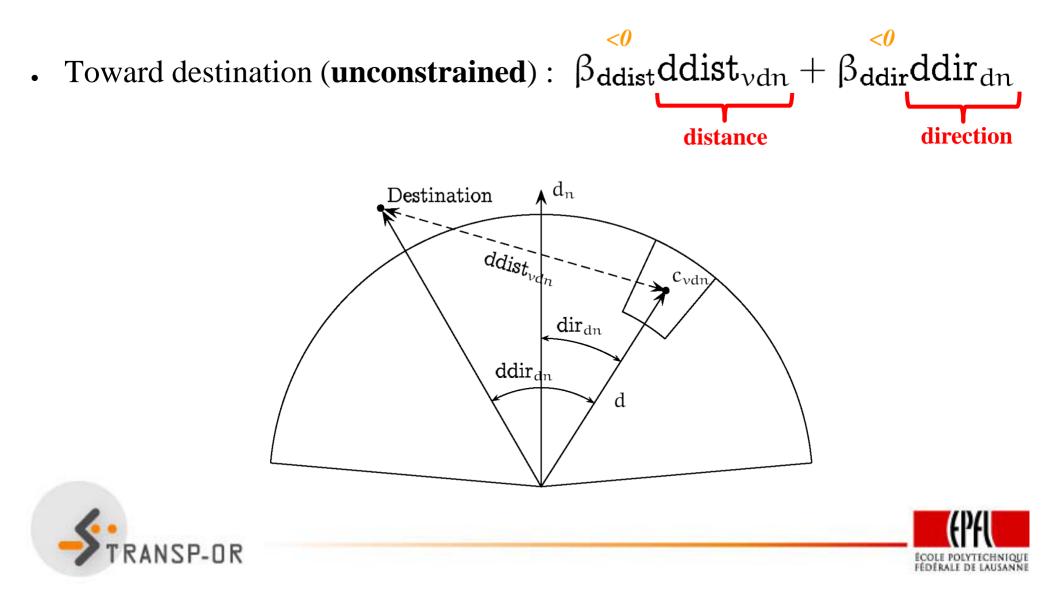
keep direction

toward destination

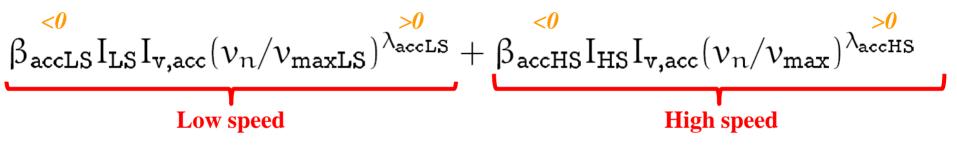
free flow acceleration

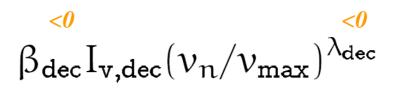

leader-follower

collision avoidance

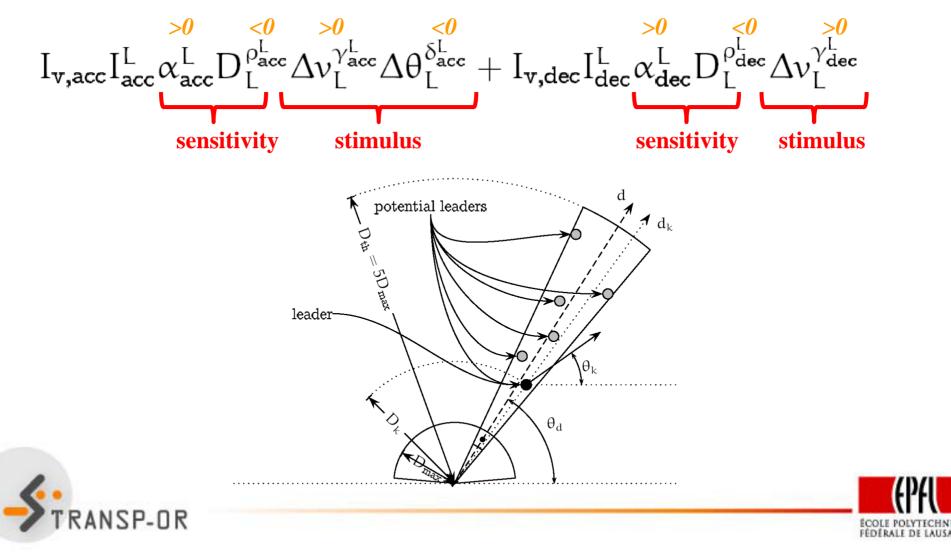


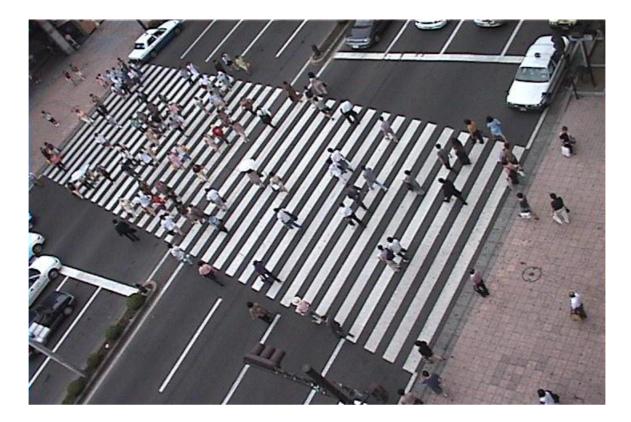
• Keep direction (unconstrained) :





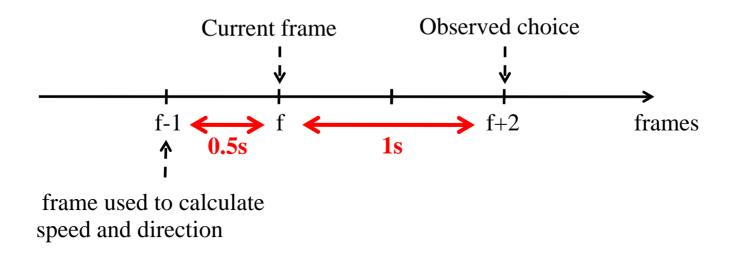
- Free flow acceleration (**unconstrained**) :
 - Acceleration :


- Deceleration :

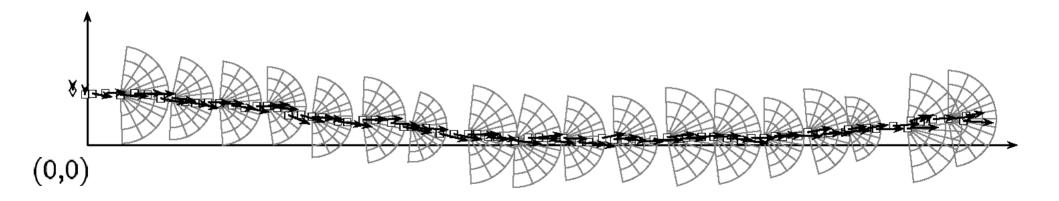

• Leader follower (constrained) :

The Japanese data set : video sequence

• Collected in Sendaï, Japan, on August 2000, large pedestrian crossing road



The Japanese data set : data processing


- Tracking from video sequence: 2 observations per second
- Pedestrians trajectories extracted using 3D-calibration (DLT algorithm)
- For each pedestrian trajectory :

The Japanese data set : pedestrian trajectory

• 4 alternatives are never chosen: 1, 12, 23, 33

Model estimation : general diagnosis

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Estimation results :

```
Number of estimated parameters : 24
Null log-likelihood : -32451
Final log-likelihood : -13997.27
Likelihood ratio test : 36907
\overline{\rho}^2 = 0.568
```

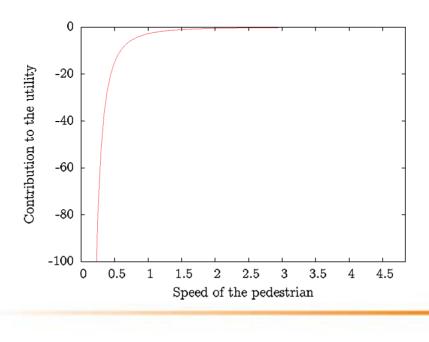
• Parameters values consistent with hypothesis

Variable	Coefficient	t test 0	t test 1
name	estimate		
B _{ddir}	-0.0790	-21.91	
β_{ddist}	-1.55	-11.16	
βdir_1_2	-0.0326	-9.44	
β _{dir_3_4}	-0.0521	-19.74	
βdir_5_6	-0.0252	-9.75	
Bacc_LOW_speed	-4.97	-24.28	
β_{acc} HIGH speed	-7.47	-4.94	
β _{dec}	-0.0630	-3.17	
$\lambda_{acc_LOW_speed}$	4.16	18.07	
$\lambda_{acc_HIGH_speed}$	0.358	1.98	
λ_{dec}	-2.41	-11.99	
α_{acc}^{L}	0.942	1.89	
ρ_{acc}^{L}	-0.489	-1.63	
$\gamma^{\rm L}_{\rm acc}$	0.625	2.49	
α_{dec}^{L}	3.69	6.62	
ρ_{dec}^{L}	-0.663	-6.44	
$\gamma_{ m dec}^{ m L}$	0.652	6.12	
δ^{L}_{acc}	-0. 171	-1.97	
α _C	-0.00639	-10.04	
ρς	-0.239	-8.82	
μ_{acc}	1.66	10.10	4.03
μ_{const}	1.50	12.20	4.06
μ _{central}	2.35	3.29	1.89
µnot_central	1.75	11.41	4.87

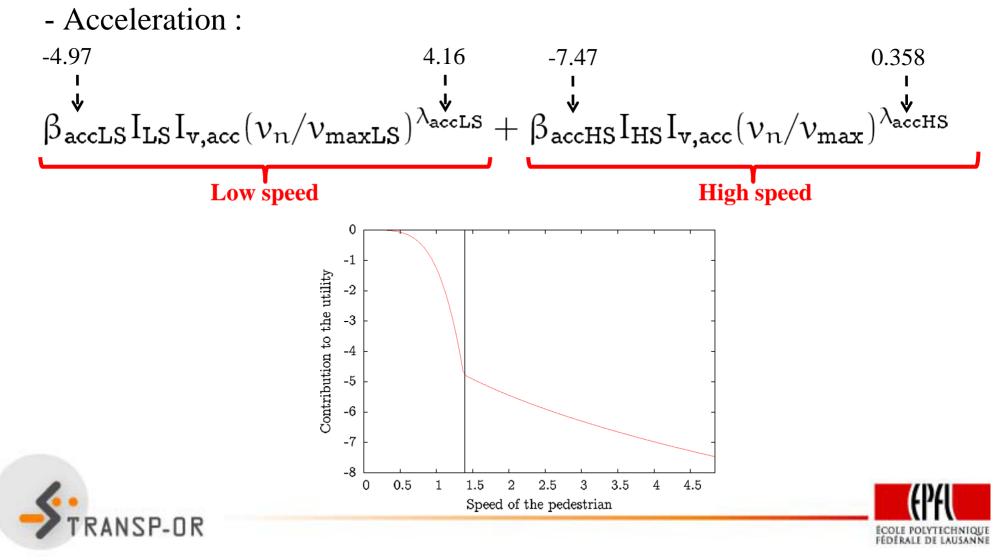
• Keep direction (unconstrained) :

$$\begin{array}{cccc} -0.0252 & -0.0521 & -0.0326 \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

• Toward destination (unconstrained) :


 $\begin{array}{ccc} -1.55 & -0.0790 \\ \downarrow & \downarrow \\ \beta_{ddist} ddist_{vdn} + \beta_{ddir} ddir_{dn} \end{array}$

• Free flow acceleration (unconstrained) :


- Deceleration : -0.0630 \downarrow $\beta_{dec} I_{v,dec} (\nu_n / \nu_{max})^{\lambda_{dec}}$

• Free flow acceleration (unconstrained) :

• Leader-Follower (constrained) :

• Collision avoidance (constrained) :

-0.00639 0.239 non significative \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow $I_{d,d_n} I_C \alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

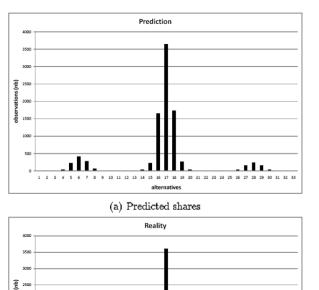
Model validation : methodology

- Validation of the specification :
 - Developpment of a model with constants only (ASC model)
 - Simulation on the Japanese data set
 - Cross validation on the Japanese data set
- Validation of the model :
 - Simulation on an experimental Dutch data set, not used for model estimation
 - Comparison of the proposed model with the ASC model

Model validation : model constants-only

- The simplest model : utility of each alternative represented only by an alternative specific constant (ASC)
- This model with only constants (ASC model) estimated on the Japanese data set.

28 parameters (33, minus 4 never chosen, minus 1 for normalization)

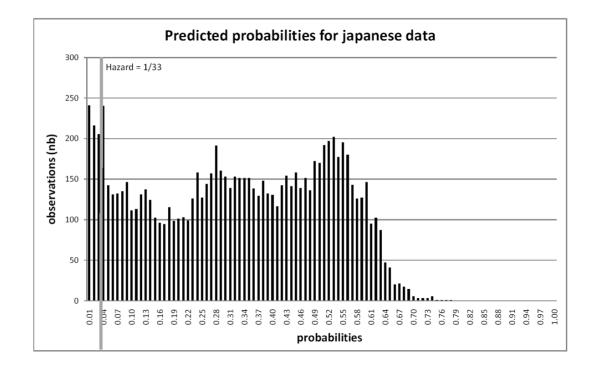

- It reproduces the aggregated observations proportions of the japanese data set
- The ASC model **used for comparison** (for example the number of outliers)

Model validation : simulation on the Japanese data set (Aggregate level)

• The proposed model is applied to the Japanese data set (used for estimation)

alternatives (b) Observed shares

Cone	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5-7,16-18,27-29	8489.27	8481	0.10%
Left	3, 4, 14, 15, 25, 26	349.67	367	-4.72%
Right	8, 9, 19, 20, 30, 31	415.41.	407	2.08%
Extreme left	1, 2, 12, 13, 23, 24	12.29	10	22.96%
Extreme right	10, 11, 21, 22, 32, 33	14.30	16	-10.59%


Area	Г	\mathcal{M}_{Γ}	RΓ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	1041.50	1065	-2.21%
constant speed	12 - 22	7606.49	7565	0.55%
deceleration	23 - 33	633.02	651	-2.76%

Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **7.13%** for proposed model **19.90%** for ASC model

Model validation : Cross-validation on the Japanese data set

Japanese data splited into 5 subsets, each containing 20% of the observations

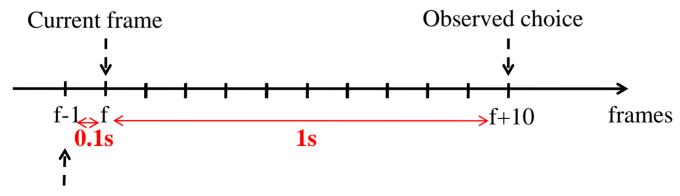
5 experiments : **1** subset saved for **validation estimation** of the model on the 4 remaining

Number of **outliers** (compared with the ASC model cross validation)

Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.78%	6.36%	7.60%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%

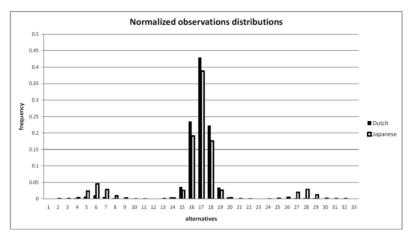
The Dutch data set : video sequence

• Collected at Delft university, in 2000-2001, 2 pedestrians crossing flows



The Dutch data set : general information

- Experimental data set
- Video sequence recorded at 10 frames per second
- Pedestrians trajectories extracted from the video sequence
- For each pedestrian trajectory :



frame used to calculate speed and direction

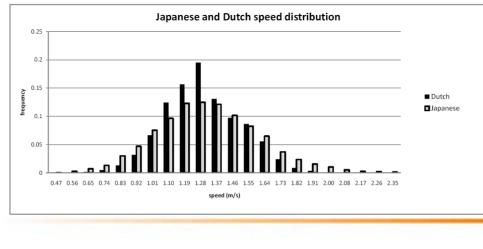
The dutch data set : comparison with the Japanese data set

• Normalized observations distribution among alternatives

• Observations repartitions inside the nest (Japanese / Dutch)

Nest	# steps	% of total
acceleration	1065	11.48%
constant speed	7565	81.51%
deceleration	651	7.01%
central	4297	46.30%
not central	4984	53.70%

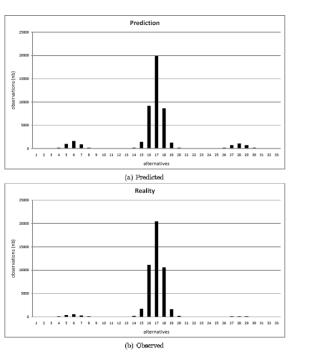
Nest	# steps	% of total
acceleration	1273	2.68%
constant speed	45869	96.61%
deceleration	339	0.71%
central	20950	44.12%
not central	26531	55.88%



The dutch data set : comparison with the Japanese data set

• Quite similar observations proportions in the **direction's cones** (not for speed regime)

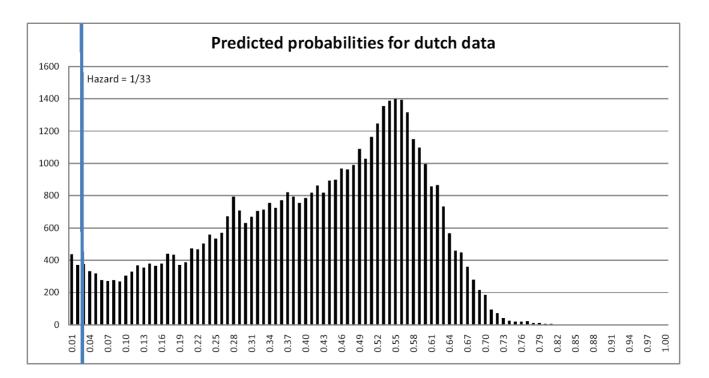
Dataset	extremeleft	left	front	right	extremeright
Japanese	0.11%	3.95%	91.38%	4.39%	0.17%
Dutch	0.06%	4.40%	91.35%	4.15%	0.04%


• Speed distribution have different shapes (experimental design of Dutch data set)

Model validation : simulation on the Dutch data set (Aggregate level)

• The proposed model is applied to the **Dutch** data set (**NOT** used for estimation)

Cone	Г	\mathcal{M}_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43619.98	43374	0.57%
Left	3, 4, 14, 15, 25, 26	1968.79	2089	-5.75%
Right	8, 9, 19, 20, 30, 31	1764.39	1972	-10.53%
Extreme left	1, 2, 12, 13, 23, 24	45.86	27	69.85%
Extreme right	10, 11, 21, 22, 32, 33	81.97	19	331.44%
	,,,,,,		• /	2011170


Area	Г	\mathcal{M}_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	3892.35	1273	205.76%
constant speed	12 - 22	40733.53	45869	-11.20%
deceleration	23 - 33	2855.12	339	742.22%

• Overprediction of acceleration and deceleration

Model validation : simulation on the Dutch data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: 2.48%

Model validation : Comparison with the ASC model on the Dutch data set (Aggregate level)

• The ASC model is applied to the Dutch data set and compared to the proposed model)

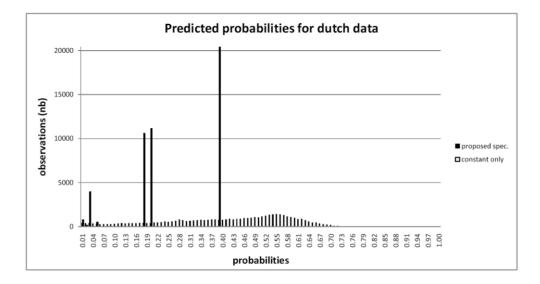
Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43386.42	43374	0.03%
Left	3, 4, 14, 15, 25, 26	1877.47	2089	-10.13%
Right	8, 9, 19, 20, 30, 31	2082.10	1972	5.58%
Extreme left	1, 2, 12, 13, 23, 24	51.16	27	89.47%
Extreme right	10, 11, 21, 22, 32, 33	81.85	19	330.80%

ASC	<u>model</u>

Area	Г	\mathcal{M}_{Γ}	RΓ	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	5448.24	1273	327.98%
constant speed	12 - 22	38700.42	45869	-15.63%
deceleration	23 - 33	3330.34	339	882.40%

Proposed model

Cone	Г	M_{Γ}	RΓ	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43619.98	43374	0.57%
Left	3, 4, 14, 15, 25, 26	1968.79	2089	-5.75%
Right	8, 9, 19, 20, 30, 31	1764.39	1972	-10.53%
Extreme left	1, 2, 12, 13, 23, 24	45.86	27	69.85%
Extreme right	10, 11, 21, 22, 32, 33	81.97	19	331.44%


Area	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	3892.35	1273	205.76%
constant speed	12 - 22	40733.53	45869	-11.20%
deceleration	23 - 33	2855.12	339	742.22%

• Equivalent for direction (logical, due to proportions)_

Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **2.48%** for proposed model **10.31%** for ASC model

Superiority of the proposed model

Conclusions and Perspectives

• <u>Conclusions</u> :

- Discrete choice model for pedestrian walking behavior with 'unconstrained' and 'constrained' parameters
- Model **estimated** on a real data set, parameters values consistent with hypotheses
- Model validated on a real data set, **not used for estimation**

• <u>Perspectives</u> :

- Improve the **acceleration** and **deceleration** patterns
- Incorporate **physical characteristics** of the pedestrians

Thanks for your attention

http://transp-or2.epfl.ch/publications.php#techrep

