Specification, estimation and validation of a pedestrian walking behavior model

Gianluca Antonini

Javier Cruz

Michel Bierlaire

Thomas Robin

22th january 2008

Objectives

- Model the pedestrian behavior at **operational** level
- Develop a specification with 'constrained' and 'unconstrained' parameters
- Estimate the model
- Validate the model
- Implement the model in a simulator

Outline

- . Introduction
- Model specification : The space discretization
 - The choice set
 - Cross nested structure
 - Utility specification
- Model estimation: The Japanese data set
 - General diagnosis
 - Parameters values
- Model validation : Methodology
 - Validation of the specification
 - The Dutch data set
 - Validation of the model
- . Model simulator
- . Conclusion

Introduction

- Microscopic model: capture the behavior of each pedestrian
- Different behavioral levels :

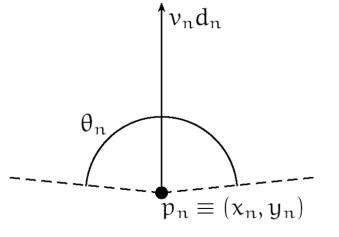
Strategical: destination

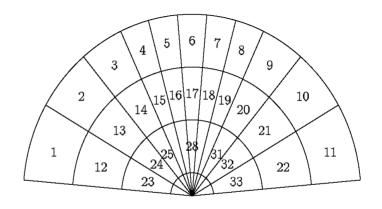
Tactical: route choice

Operational level: short range behavior instantaneous decisions

• Concept of **personal space**: interactions with other pedestrians

Leader follower

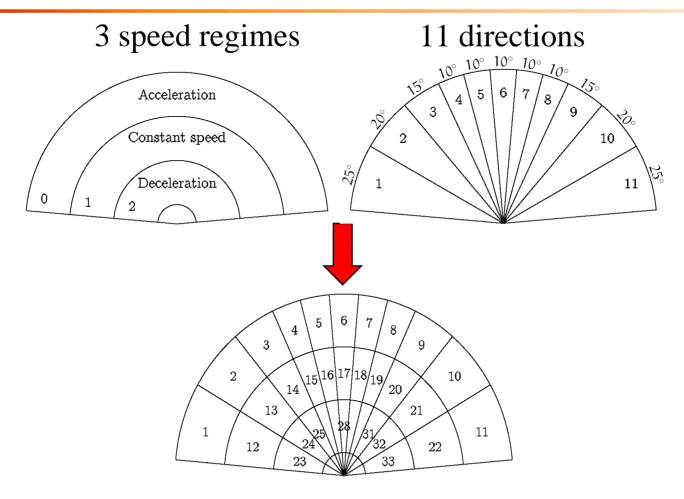

Collision avoidance



Model specification: the space discretization

• **Discrete choice model:** at each step, the pedestrian has to choose the next step in the choice set

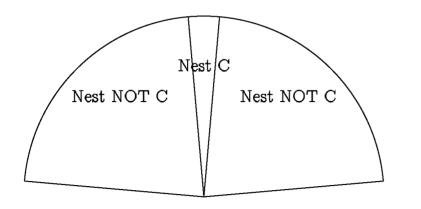
Pedestrian visual space



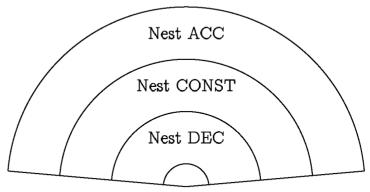
Choice set: discretization of the visual space

At each step the **choice set** depends on the pedestrian **speed** and **direction**

Model specification: the choice set



Model specification: cross nested structure


• Hypothesis: alternatives correlated along speed regimes and directions

• Cross Nested structure : each alternative belongs to 2 nests

Nesting based on direction

Nesting based on speed regime

Model specification: cross nested structure

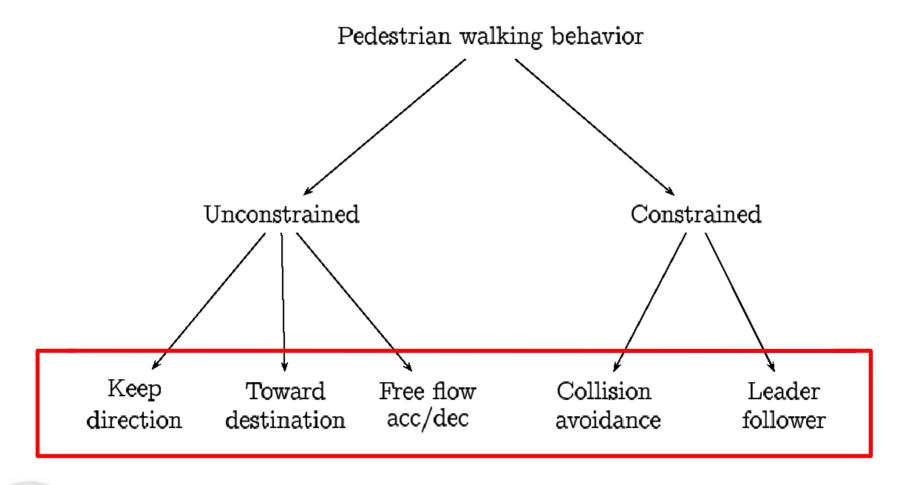
• Probability of choosing the alternative i:

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}\right)^{\frac{\mu}{\mu_{m}}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_{n}/\mu} y_{j}^{\mu_{n}}\right)^{\frac{\mu}{\mu_{n}}}} \frac{\alpha_{im}^{\mu_{m}/\mu} y_{i}^{\mu_{m}}}{\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}}$$

C: choice set

M: number of nests

 V_i : utility of alternative i


 α_{jm} : membership degree of alternative j in the nest n

 μ_m : parameter of the nest m

$$y_i = e^{V_i}$$

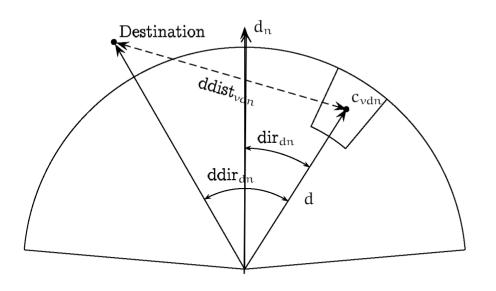
$$\begin{split} V_{\nu dn} = & \beta_{\text{dir_central}} \text{dir}_{\text{dn}} I_{\text{central}} & + \\ & \beta_{\text{dir_side}} \text{dir}_{\text{dn}} I_{\text{side}} & + \\ & \beta_{\text{dir_side}} \text{dir}_{\text{dn}} I_{\text{extreme}} & + \\ & \beta_{\text{ddir}} \text{ddist}_{\text{vdn}} I_{\text{extreme}} & + \\ & \beta_{\text{ddir}} \text{ddist}_{\text{vdn}} & + \\ & \beta_{\text{ddir}} \text{ddir}_{\text{dn}} & + \\ & \beta_{\text{dec}} I_{\text{v,dec}} (\nu_{\text{n}} / \nu_{\text{max}})^{\lambda_{\text{dec}}} & + \\ & \beta_{\text{accLS}} I_{\text{LS}} I_{\text{v,acc}} (\nu_{\text{n}} / \nu_{\text{max}} L_{\text{S}})^{\lambda_{\text{accLS}}} & + \\ & \beta_{\text{accHS}} I_{\text{HS}} I_{\text{v,acc}} (\nu_{\text{n}} / \nu_{\text{max}})^{\lambda_{\text{accHS}}} & + \\ & I_{\text{v,acc}} I_{\text{acc}}^{L} \alpha_{\text{acc}}^{L} D_{\text{L}}^{\rho_{\text{acc}}^{L}} \Delta \nu_{\text{L}}^{\gamma_{\text{acc}}^{L}} \Delta \theta_{\text{L}}^{\delta_{\text{acc}}} & + \\ & I_{\text{v,dec}} I_{\text{dec}}^{L} \alpha_{\text{dec}}^{L} D_{\text{L}}^{\rho_{\text{dec}}^{L}} \Delta \nu_{\text{L}}^{\gamma_{\text{dec}}^{L}} \Delta \theta_{\text{L}}^{\delta_{\text{dec}}} & + \\ & I_{\text{d,d_{n}}} I_{\text{C}} \alpha_{\text{C}} e^{-\rho_{\text{C}} D_{\text{C}}} \Delta \nu_{\text{C}}^{\gamma_{\text{C}}} \Delta \theta_{\text{C}}^{\delta_{\text{C}}} & \\ & \\ & I_{\text{d,d_{n}}} I_{\text{C}} \alpha_{\text{C}} e^{-\rho_{\text{C}} D_{\text{C}}} \Delta \nu_{\text{C}}^{\gamma_{\text{C}}} \Delta \theta_{\text{C}}^{\delta_{\text{C}}} & \\ \end{pmatrix}$$

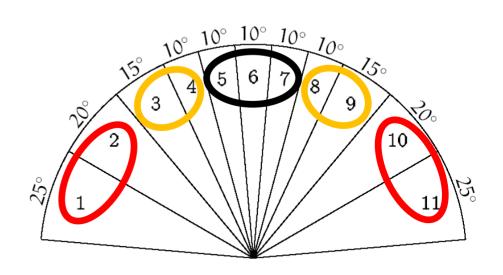
keep direction

toward destination

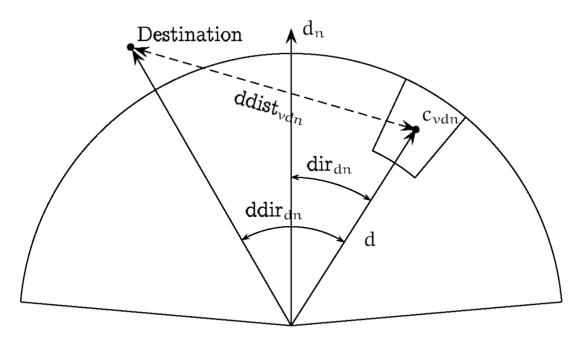
free flow acceleration

 $leader ext{-}follower$


collision avoidance



• Keep direction (unconstrained):

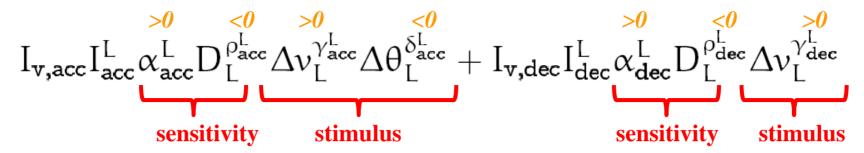


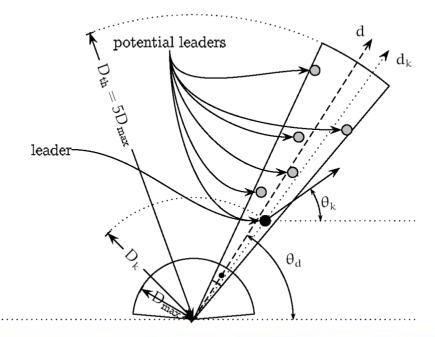
• Toward destination (unconstrained): $\beta_{\text{ddist}} \text{ddist}_{\text{vdn}} + \beta_{\text{ddir}} \text{ddir}_{\text{dn}}$

- Free flow acceleration (unconstrained):
 - Acceleration :

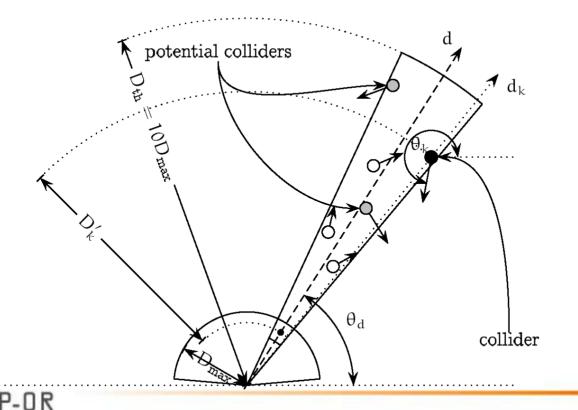
$$\beta_{\text{accLS}} I_{\text{LS}} I_{\text{v,acc}} (\nu_n / \nu_{\text{maxLS}})^{\lambda_{\text{accLS}}} + \beta_{\text{accHS}} I_{\text{HS}} I_{\text{v,acc}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{accHS}}}$$

$$\text{Low speed} \qquad \qquad \text{High speed}$$


- Deceleration:


$$\beta_{\text{dec}} I_{\text{v,dec}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{dec}}}$$

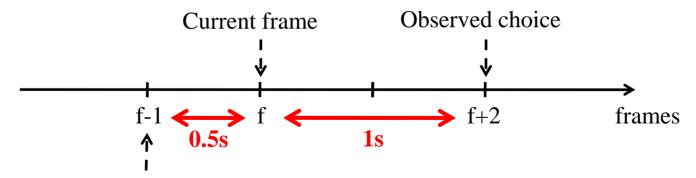
• Leader follower (constrained):



• Collision avoidance (constrained): $I_{d,d_n} I_C \alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

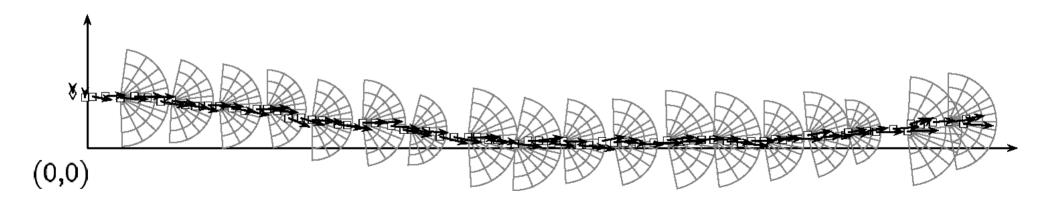
The Japanese data set: video sequence

• Collected in Sendaï, Japan, on August 2000, large pedestrian crossing road



The Japanese data set: data processing

- Tracking from video sequence: 2 observations per second
- Pedestrians trajectories extracted using 3D-calibration (DLT algorithm)
- For each pedestrian trajectory:


frame used to calculate speed and direction

The Japanese data set: pedestrian trajectory

• 4 alternatives are never chosen: 1, 12, 23, 33

Model estimation: general diagnosis

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Estimation results:

Number of estimated parameters: 24

Init log-likelihood: -32451

Final log-likelihood: -13997.27

Likelihood ratio test: 36907

$$\bar{\rho}^2 = 0.568$$

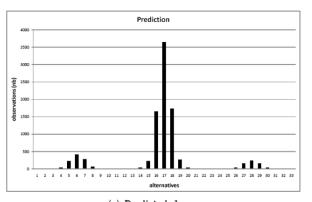
• Parameters values consistent with hypothesis

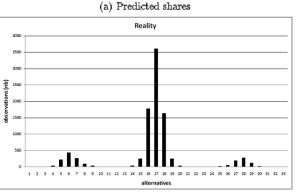
Variable	Coefficient	t test 0	t test 1
name	estimate		
Bddir	-0.0790	-24.53	
Badist	-1.55	-11.66	
βdir_extreme	-0.0326	-9.30	
βdir_side	-0.0521	-21.87	
βdir_central	-0.0252	-8.74	
β _{accLS}	-4.97	-22.61	
β _{accHS}	-7.47	-5.21	
β _{dec}	-0.0630	-2.40	
λ_{aocLS}	4.16	15.94	
λ_{aocHS}	0.358	2.09	
$\lambda_{ m dec}$	-2.41	-8.43	
$\alpha_{\sf acc}^{\sf L}$	0.942	2.28	
ρ_{acc}^{L}	-0.489	-2.19	
γ_{acc}^{L}	0.625	2.87	
$\alpha_{ m dec}^{ m L}$	3.69	6.90	
ρ_{dec}^{L}	-0.663	-7.11	
$\gamma_{\rm dec}^{\rm L}$	0.652	6.19	
δ_{aoc}^{L}	-0.171	-2.33	
$\alpha_{\rm C}$	-0.00639	-9.82	
ρ _C	0.239	-8.28	
μ_{acc}	1.66	9.73	3.88
μ_{const}	1.50	13.46	4.48
$\mu_{central}$	2.35	1.93	1.11
µ _{not_central}	1.75	9.46	4.04

Model validation: methodology

- Validation of the specification:
 - Development of a model with constants only (ASC model)
 - Simulation on the Japanese data set
 - Cross validation on the Japanese data set
- Validation of the model:
 - Simulation on an experimental Dutch data set, not used for model estimation
 - Comparison of the proposed model with the ASC model

Model validation: model constants-only


- The simplest model: utility of each alternative represented only by an alternative specific constant (ASC)
- This model with only constants (ASC model) estimated on the Japanese data set.
 - 28 parameters (33, minus 4 never chosen, minus 1 for normalization)
- It reproduces the aggregated observations proportions of the Japanese data set
- The ASC model **used for comparison** (for example the number of outliers)

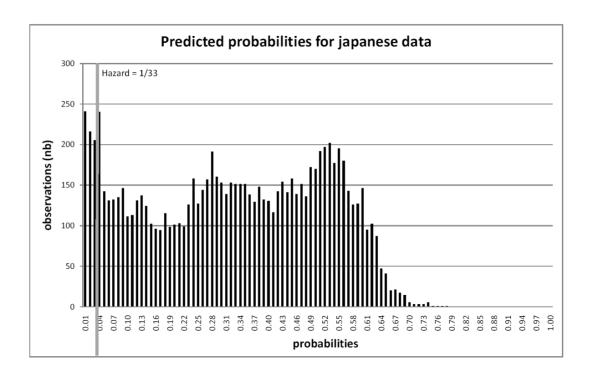


Model validation: simulation on the Japanese data set (Aggregate level)

• The proposed model is applied to the Japanese data set (used for estimation)

(b)) Observed	shares
-----	------------	--------

Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	8489.27	8481	0.10%
Left	3, 4, 14, 15, 25, 26	349.67	367	-4.72%
Right	8, 9, 19, 20, 30, 31	415.41.	407	2.08%
Extreme left	1, 2, 12, 13, 23, 24	12.29	10	22.96%
Extreme right	10, 11, 21, 22, 32, 33	14.30	16	-10.59%


Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	1041.50	1065	-2.21%
constant speed	12 - 22	7606.49	7565	0.55%
deceleration	23 - 33	633.02	651	<i>−</i> 2.76 %

Model validation: simulation on the Japanese data set (Disaggregate level)

• Outlier: Observation with predicted probability less than 1/33 (hazard)

Number of outliers:

7.13% for proposed model 19.90% for ASC model

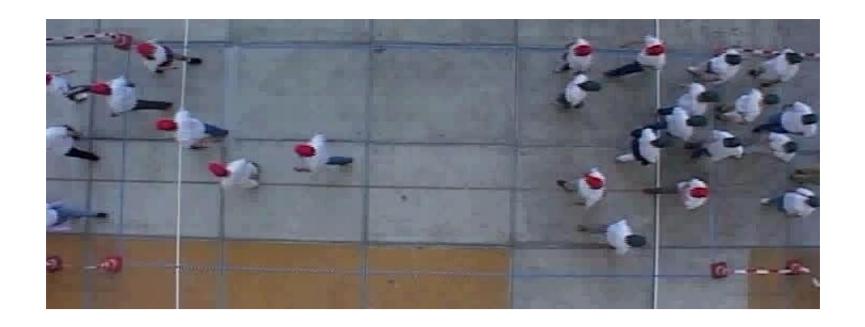
Model validation: Cross-validation on the Japanese data set

Japanese data splited into 5 subsets, each containing 20% of the observations

5 experiments : 1 subset saved for **validation estimation** of the model on the 4 remaining

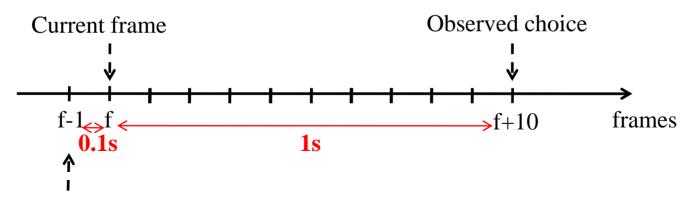
Number of **outliers** (compared with the ASC model cross validation)

Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.78%	6.36%	7.60%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%


Robust specification

The Dutch data set: video sequence

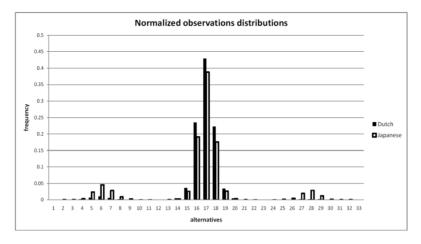
• Collected at Delft university, in 2000-2001, 2 pedestrians crossing flows



The Dutch data set: general information

- Experimental data set
- Video sequence recorded at 10 frames per second
- Pedestrians trajectories extracted from the video sequence
- For each pedestrian trajectory:

frame used to calculate speed and direction



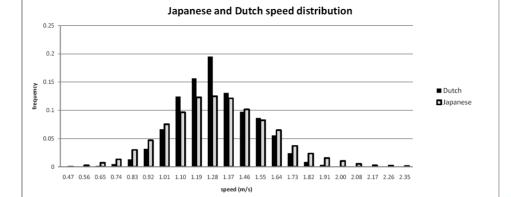
The Dutch data set: comparison with the Japanese data set

Normalized observations distribution among alternatives

• Observations repartitions inside the nest (Japanese / Dutch)

Nest	# steps	% of total
acceleration	1065	11.48%
constant speed	7565	81.51%
deceleration	651	7.01%
central	4297	46.30%
not central	4984	53.70%

Nest	# steps	% of total
acceleration	1273	2.68%
constant speed	45869	96.61%
deceleration	339	0.71%
central	20950	44.12%
not central	26531	55.88%

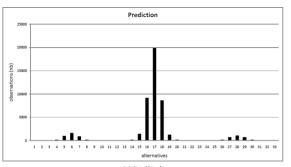


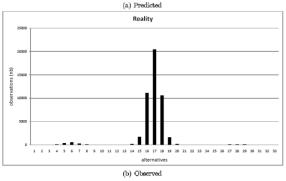
The Dutch data set: comparison with the Japanese data set

• Quite similar observations proportions in the **direction's cones** (not for speed regime)

Dataset	extremeleft	left	front	\mathbf{right}	extremeright
Japanese	0.11%	3.95%	91.38%	4.39%	0.17%
Dutch	0.06%	4.40%	91.35%	4.15%	0.04%

Speed distributions have different shapes (experimental design of Dutch data set)

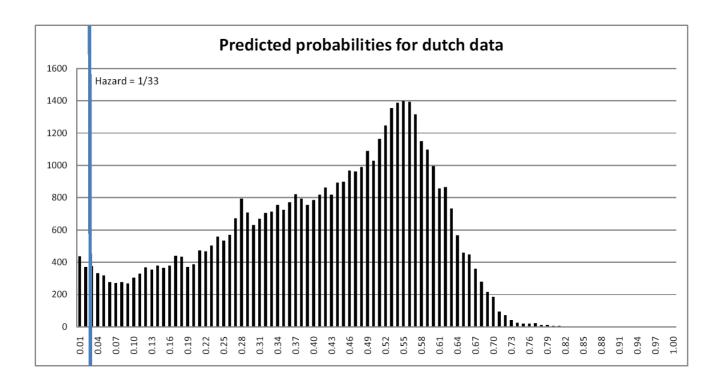




Model validation: simulation on the Dutch data set (Aggregate level)

• The proposed model is applied to the **Dutch** data set (**NOT** used for estimation)

Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43619.98	43374	0.57%
Left	3, 4, 14, 15, 25, 26	1968.79	2089	-5.75%
Right	8, 9, 19, 20, 30, 31	1764.39	1972	-10.53%
Extreme left	1, 2, 12, 13, 23, 24	45.86	27	69.85%
Extreme right	10, 11, 21, 22, 32, 33	81.97	19	331.44%


Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	3892.35	1273	205.76%
constant speed	12 - 22	40733.53	45869	-11.20%
deceleration	23 - 33	2855.12	339	742.22%

Model validation: simulation on the Dutch data set (Disaggregate level)

• Outlier: Observation with predicted probability less than 1/33 (hazard)

Number of outliers: 2.48%

Model validation: Comparison with the ASC model on the Dutch data set (Aggregate level)

• The ASC model is applied to the Dutch data set and compared to the proposed model)

ASC model

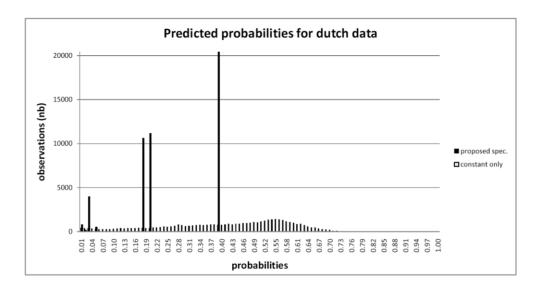
Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43386.42	43374	0.03%
Left	3, 4, 14, 15, 25, 26	1877.47	2089	-10.13%
Right	8, 9, 19, 20, 30, 31	2082.10	1972	5.58%
Extreme left	1, 2, 12, 13, 23, 24	51.16	27	89.47%
Extreme right	10, 11, 21, 22, 32, 33	81.85	19	330.80%

Area	Γ	M_Γ	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	5448.24	1273	327.98%
constant speed	12 - 22	38700.42	45869	-15.63%
deceleration	23 - 33	3330.34	339	882.40%

Proposed model

Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43619.98	43374	0.57%
Left	3, 4, 14, 15, 25, 26	1968.79	2089	-5.75%
Right	8, 9, 19, 20, 30, 31	1764.39	1972	-10.53%
Extreme left	1, 2, 12, 13, 23, 24	45.86	27	69.85%
Extreme right	10, 11, 21, 22, 32, 33	81.97	19	331.44%

Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	3892.35	1273	205.76%
constant speed	12 - 22	40733.53	45869	-11.20%
deceleration	23 - 33	2855.12	339	742.22%



Equivalent for direction (logical, due to proportions)

Model validation: simulation on the Japanese data set (Disaggregate level)

• Outlier: Observation with predicted probability less than 1/33 (hazard)

Number of outliers:

2.48% for proposed model10.31% for ASC model

Superiority of the proposed model

Simulator

- Simulation of 2 pedestrian crossing flows with the model
- Example: | 2 pedestrians entering on the scene per second | Simulation of 300s | Random speed and direction

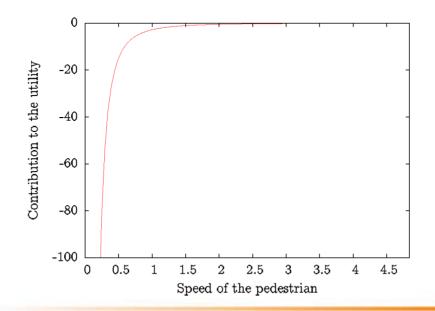
Conclusions and Perspectives

. Conclusions:

- Discrete choice model for pedestrian walking behavior with 'unconstrained' and 'constrained' parameters
- Model **estimated** on a real data set, parameters values consistent with hypothesis
- Model validated on a real data set, **not used for estimation**
- Operating Simulator

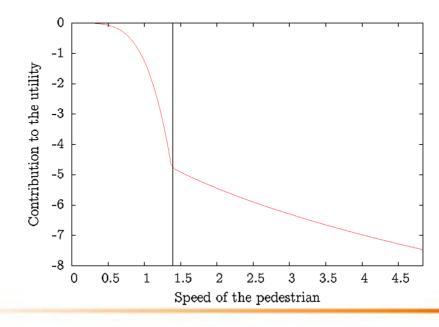
• Perspectives :

- Improve the **acceleration** and **deceleration** patterns
- Incorporate physical characteristics of the pedestrians
- Model the **strategical** and **tactical** behavioural levels


Thanks for your attention

http://transp-or2.epfl.ch/publications.php#techrep

• Free flow acceleration (unconstrained):



- Free flow acceleration (unconstrained):
 - Acceleration:

-4.97 4.16 -7.47 0.358
$$\beta_{\text{accLS}}I_{\text{LS}}I_{\text{v,acc}}(\nu_{\text{n}}/\nu_{\text{maxLS}})^{\lambda_{\text{accLS}}} + \beta_{\text{accHS}}I_{\text{HS}}I_{\text{v,acc}}(\nu_{\text{n}}/\nu_{\text{max}})^{\lambda_{\text{accHS}}}$$

Low speed

High speed

• Leader-Follower (constrained):

• Collision avoidance (constrained):

-0.00639 0.239 non significative
$$\frac{1}{\sqrt{4}} \frac{1}{\sqrt{4}} \frac{1}{\sqrt{4}} \frac{1}{\sqrt{4}} \frac{1}{\sqrt{4}} I_{C} \alpha_{C} e^{-\rho_{C} D_{C}} \Delta v_{C}^{\gamma_{C}} \Delta \theta_{C}^{\delta_{C}}$$

