Fast Multi-view Face Tracking With Pose Estimation

Javier Cruz Mota, Julien Meynet, Taner Arsan*, Jean-Philippe Thiran

*Kadir Has University, Computer Engineering Department, Istanbul, Turkey
Fast Multi-view Face Tracking With Pose Estimation

Julien Meynet, Taner Arsan*, Javier Cruz Motilla, Jean-Philippe Thiran

*Kadir Has University, Computer Engineering Department, Istanbul, Turkey
Overview

- Introduction to face detection and tracking
- Face class modeling
- Multi-view face modeling
- Fast tracking and pose estimation
- Experiments and results
- Conclusions
Introduction to face detection

- Face detection:
 - Feature-based approaches
 - Geometrical models
 - Skin colour,…
 - Example based approaches:
 Use a sliding window to scan an image and perform binary classification:
 - Template matching
 - SVMs
 - AdaBoost,…
Face class modeling

- Asymmetric AdaBoost is used for learning face vs. non face classifiers
- Haar-like filters: computationally efficient
- Anisotropic Gaussian filters: more discriminant
Haar-like vs. Gaussian filters

- Test error function of AdaBoost iterations
Multi-view face modeling

- Idea: use specific binary classifiers for each pose:

 - In plane rotation
 - Elevation: θ
 - Out-of-plane rotation: ϕ
Multi-view face modeling

- A binary pose classifier:
 \[\{\text{Pose}(\theta_i,\phi_i)\}\] vs. \{other poses + non faces\}

- Hierarchical sampling of the pose plane:
Fast face tracking

- Condensation is used for tracking detected faces
- Tracking in two steps:
 1. Track the position:
 2. Track the pose at the given position
Experiments

- Datasets
 - CMU Pose, Illumination and Expression (PIE): 47954 images
 - INIRIALPES: 2597 images
 - Feret dataset
 - Non face examples: bootstrapping on randomly selected images

- System
 - 20x20 pixels images
 - 1 GC: a cascade of Haar filters (\approx150 filters)
 - 59 PC: each PC is a cascade of GF with \approx75 filters
Results

- 93% of correct classification on complex videos
- Very precise out-of-plane estimation
- Average estimation on elevation
Results – time performances

- Tests on 1500 frames of a sequence of 320x240 pixels

<table>
<thead>
<tr>
<th>Detector</th>
<th>fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection frame by frame</td>
<td>6.36</td>
</tr>
<tr>
<td>Tracking</td>
<td>23.45</td>
</tr>
</tbody>
</table>
Conclusions

- Fast multi-view face tracking
- Tree of classifiers (from general to specific)
- Tracking in 2 steps: position + pose