Parallel computing for simulated maximum likelihood estimation in Biogeme

Michel Bierlaire

transp-or.epfl.ch

Transport and Mobility Laboratory, EPFL
Mixtures

- Utility: $V_{in}(\beta)$ where β is one random parameter
- Kernel: logit model

$$P_n(i|\beta) = \frac{e^{V_{in}(\beta)}}{\sum_j e^{V_{jn}(\beta)}}$$

- Choice model: mixture of logit models

$$P_n(i) = \int_{\beta} P_n(i|\beta) f(\beta) d\beta$$

- Computation by simulation: let β_r, $r = 1, \ldots, R$ be draws from f

$$P_n(i) \approx \hat{P}_n(i) = \frac{1}{R} \sum_{r=1}^{R} P_n(i|\beta_r)$$
Mixtures with panel data

- Utility at time t: $V_{int}(\beta)$ where β is one random parameter
- Kernel: logit model

$$P_n(i_t|\beta) = \frac{e^{V_{int}(\beta)}}{\sum_j e^{V_{int}(\beta)}}, \quad P_n(i_1, \ldots, i_T|\beta) = \prod_{t=1}^{T} P_n(i_t|\beta)$$

- Choice model:

$$P_n(i_1, \ldots, i_T) = \int P_n(i_1, \ldots, i_T|\beta)f(\beta)d\beta$$

- Computation by simulation: let $\beta_r, r = 1, \ldots, R$ be draws from f

$$P_n(i_1, \ldots, i_T) \approx \hat{P}_n(i_1, \ldots, i_T) = \frac{1}{R} \sum_{r=1}^{R} \prod_{t=1}^{T} P_n(i_t|\beta_r)$$
Simulated maximum likelihood

Estimator of the likelihood:

$$\sum_{n=1}^{N} \log P_n(i_1, \ldots, i_T) \approx \sum_{n=1}^{N} \log \hat{P}_n(i_1, \ldots, i_T) = \frac{1}{R} \sum_{n=1}^{N} \sum_{r=1}^{R} \prod_{t=1}^{T} P_n(i_t | \beta_r)$$

- Biased estimator:

$$\log E[\hat{P}_n(i|\beta)] \neq E[\log \hat{P}_n(i|\beta)]$$

- Under some conditions, it is a **consistent** (asymptotically unbiased) estimator, so that many draws are necessary.
Software

- Three indented loops
- $N \times R \times T$ computations of the kernel model at each iteration
- **Example:** $1000 \times 5000 \times 10 = 5 \cdot 10^7$
- Speed up: parallel computing — divide the sample
- $1, \ldots, n \sim 0 = n_1, \ldots, n_2, \ldots, \ldots, n_{P+1} = N$
- Ideally, intervals with about the same size

\[
\mathcal{L}_p = \frac{1}{R} \sum_{n=n_p+1}^{n_p+1} \sum_{r=1}^{R} \prod_{t=1}^{T} P_n(i_t|\beta_r)
\]

\[
\frac{\partial \mathcal{L}_p}{\partial \theta} = \frac{1}{R} \sum_{n=n_p+1}^{n_p+1} \sum_{r=1}^{R} \left(\prod_{t=1}^{T} P_n(i_t|\beta_r) \right) \left(\sum_{t=1}^{T} \frac{\partial P_n(i_t|\beta_r)}{\partial \theta} \frac{1}{P_n(i_t|\beta_r)} \right)
\]
Software

\[\mathcal{L} = \sum_{p=1}^{P} \mathcal{L}_p \]

\[\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{p=1}^{P} \frac{\partial \mathcal{L}_p}{\partial \theta} \]

- Implementation with *multithreading*
- Each \(p \) is assigned to a different “thread”.
- Threads are parts of a program that can run without interfering with each other.
- Very appropriate in this case.
- Overhead: the above accumulation.

But... not sufficient.
Interpreted vs compiled

- To allow sufficient flexibility to the user, biogeme can be seen as an interpreted language
 - Constant book-keeping for the numbering of the variables, the parameters
 - Nonlinear utility functions are differentiated on the fly
- The new version provides also a “compiler”
- `mymodel.mod` ➔ `mymodel.cc` ➔ `mymodel.o`
- `mymodel.o + biogeme.dll = mymodel.exe`
Performance

Estimation of a mixtures of logit model with a log normal parameter, 1000 observations

<table>
<thead>
<tr>
<th>Version</th>
<th># processors</th>
<th>Draws</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>BIOGEME</td>
<td>1</td>
<td>08:03</td>
</tr>
<tr>
<td>FASTBIOGEME</td>
<td>1</td>
<td>01:37</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>01:08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>00:44</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>00:31</td>
</tr>
</tbody>
</table>
Performance: overhead

Overhead = (actual time – theoretical time)/actual time
Theoretical time = time with 1 processor / # processors

- 2 processors: 32%
- 4 processors: 45%
- 8 processors: 59%
Conclusion

- Compilation is more important than parallelism
- Both provide significant time savings
- Overhead increases significantly with the number of processors