Automatic facial expression recognition

A discrete choice approach

Michel Bierlaire

transp-or.epfl.ch

Transport and Mobility Laboratory, EPFL

Automatic facial expression recognition -p, 1/46

Outline

- Facial expressions
- Data
- Variables
- Static expressions
- Dynamic expressions
- Conclusion

Automatic facial expression recognition -p, 2/46

"The face is the most extraordinary communicator, capable of accurately signaling emotion in a bare blink of a second, capable of concealing emotion equally well"

Deborah Blum

Facial expressions

- 1872 Darwin: universality of facial expressions
- **1971** Ekman: six primary emotions, that possess each a distinctive content together with a unique facial expression:
 - Happiness
 - Sadness
 - Fear
 - Anger
 - Disgust
 - Surprise

1978 Ekman's Facial Action Unit Coding System (FACS)

Facial expressions

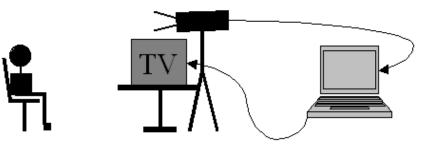
- Active field of research
- Mostly in the machine learning and computer vision communities
- Some difficulties:
 - Context dependency (time, gestures, verbal reaction, etc.)
 - Ambiguity of expressions
 - Need for a ground truth

Cohn-Kanade database

- Testbed for research in automatic facial image analysis
- About 500 image sequences from 100 subjects
- Subjects were instructed by an experimenter to perform a series of 23 facial displays
- Expressions based on FACS action units (see later)

Example of recorded video:

Automatic facial expression recognition -p.7/46


Example of recorded video:

Automatic facial expression recognition – p. 8/46

Facial Expressions and Emotion Database, TU Munich Experimental setup:

Automatic facial expression recognition – p. 9/46

Example of video shown:

Automatic facial expression recognition – p. 10/46

Example of recorded video:

Automatic facial expression recognition – p. 11/46

Another example of recorded video:

Automatic facial expression recognition – p. 12/46

- Database: 18 different individuals
- Each individual performed all six desired actions three times.
- Additionally, three sequences doing no expressions at all are recorded.
- Total: 399 sequences.

For more information:

www.mmk.ei.tum.de/ waf/fgnet

Automatic facial expression recognition – p. 13/46

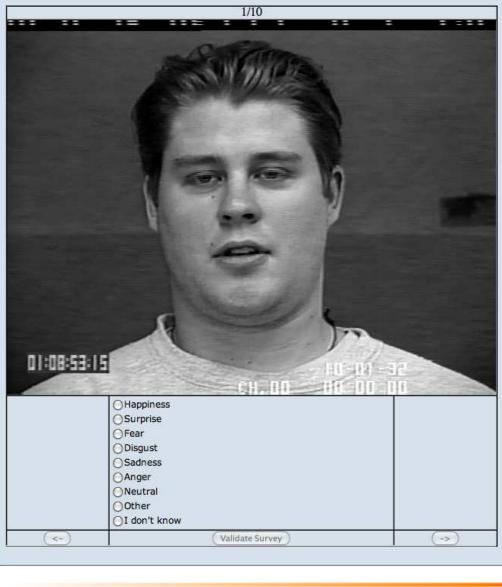
Data: choice

Choice experiment:

- Present an image or a video sequence
- Ask the respondent to select the most appropriate expression among
 - Happiness
 - Surprise
 - Fear
 - Disgust
 - Sadness
 - Anger
 - Neutral
 - Other
 - I don't know

Survey for static images:

```
lts5www.epfl.ch/face
```


Designed by Matteo Sorci

Automatic facial expression recognition – p. 15/46

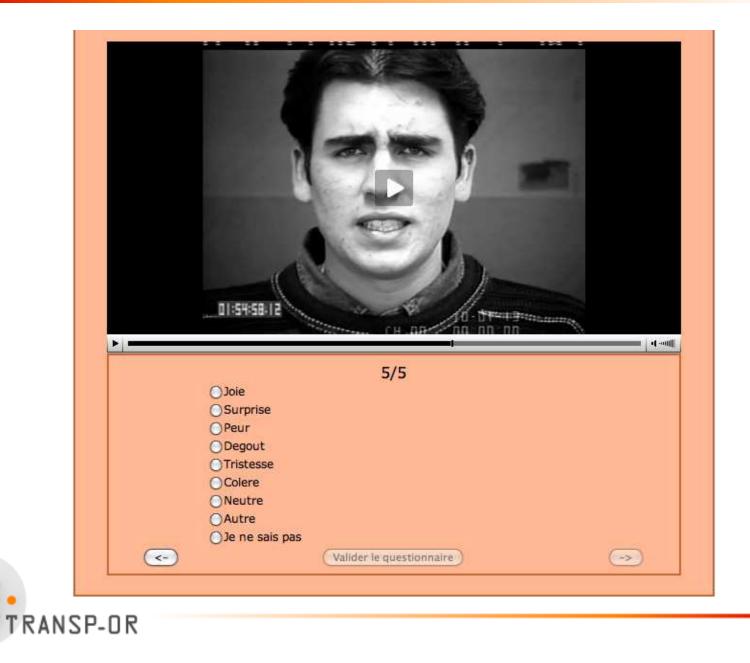
Data: choice

Automatic facial expression recognition – p. 16/46

Data: choice

Automatic facial expression recognition – p. 17/46

Survey for video sequences:


transp-or2.epfl.ch/videosurvey
Designed by Thomas Robin and Javier Cruz

Automatic facial expression recognition – p. 18/46

Data: choice

Automatic facial expression recognition – p. 19/46

Data: choice

Variables

- Objective: explain the choice of an expression using variables describing the face
- Require image analysis techniques
- Cootes, Edwards and Taylor (2001) *Active Appearance Models* PAMI, 23, 681-685.
 - Statistical models of shape and texture
 - Shape and texture are often correlated
 - Correlation learned from PCA
 - Another PCA is used combining the previous two

Data extraction

Shape:

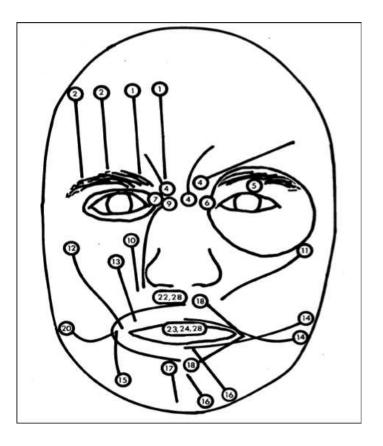
• Automatic extraction of a list of points

•
$$x = (x_1, y_1, \dots, x_n, y_n)'$$

Automatic facial expression recognition - p. 22/46

Explanatory variables

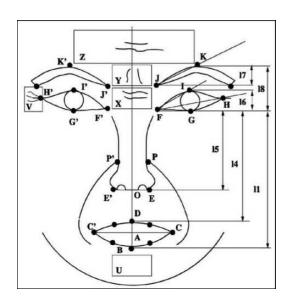
- FACS Action Units
- Expression Descriptive Units
- Active Appearance Model



Automatic facial expression recognition – p. 23/46

FACS Action Units

- 1978: Ekman & Friesen proposed the Facial Action Coding System
- Measurement units called *Action Units* (AUs)
- AUs are contraction or relaxations of one or more muscles
 - 46 AUs account for changes in facial expression
 - 12 AUs describe changes in gaze direction and head orientation



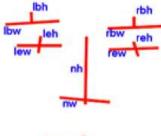
FACS: leading standard for measuring facial expressions

Automatic facial expression recognition - p. 24/46

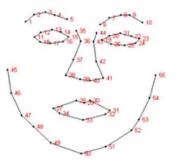
FACS Action Units

AU1	AU2	AU4	AU5	AU6	AU7
100	6	36	00		-
Inner Brow Raiser	Outer Brow Raiser	Brow Lowerer	Upper Lid Raiser	Cheek Raiser	Lid Tightener
AU9	AU10	AU12	AU15	AU16	AU17
Nose Wrinkler	Upper Lip Raiser	Lip Corner Puller	Lip Corner Depressor	Lower Lip Depressor	Chin Raiser
AU20	AU23	AU24	AU25	AU26	AU27
1 2	· ·	1	Ē	Ē	
Lip Stretcher	Lip Tightener	Lip Pressor	Lips part	Jaw Drop	Mouth Stretch

www.bk.isy.liu.se/candide

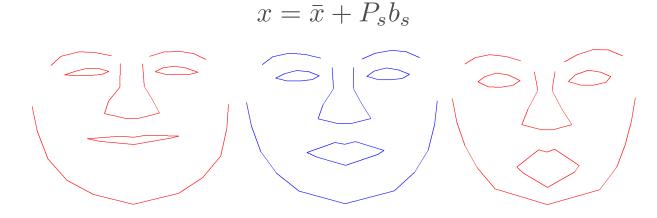

Automatic facial expression recognition – p. 25/46

Expression Descriptive Units


EDU Measures	Measures definition
EDU1	$\frac{1}{2}(\frac{leh}{lew} + \frac{reh}{rew})$
EDU2	$\frac{lbh}{lbw}$
EDU3	$\frac{rbh}{rbw}$
EDU4	$\frac{mh}{mw}$
EDU5	$\frac{nh}{nw}$
EDU6	$\frac{lew}{mw}$
EDU7	$\frac{leh}{mh}$
EDU8	$rac{leh+reh}{lbh+rbh}$
EDU9	$\frac{lew}{nw}$
EDU10	$\frac{nw}{mw}$
EDU11	$\frac{EDU2}{EDU4}$
EDU12	$\frac{EDU3}{EDU4}$
EDU13	$\frac{EDU2}{EDU10}$
EDU14	$\frac{EDU3}{EDU14}$

STRANSP-OR

Proposed by Antonini, Sorci, Bierlaire and Thiran (2006)



Automatic facial expression recognition – p. 26/46

Active Appearance Model

Shape:

- $x = (x_1, y_1, \dots, x_n, y_n)'$
- Apply PCA

Automatic facial expression recognition – p. 27/46

Active Appearance Model

Texture:

 \Longrightarrow warp to mean shape \Longrightarrow

Texture is represented by a vector g

Automatic facial expression recognition - p. 28/46

Active Appearance Model

Texture: Apply PCA

$$g = \bar{g} + P_g b_g$$

Finally, apply PCA on b_s and b_g

$$b = \begin{pmatrix} Wb_s \\ b_g \end{pmatrix} = Qc = \begin{pmatrix} Q_s \\ Q_g \end{pmatrix} c$$

Varying *c* changes both shape and texture (demo using AAM lab...)

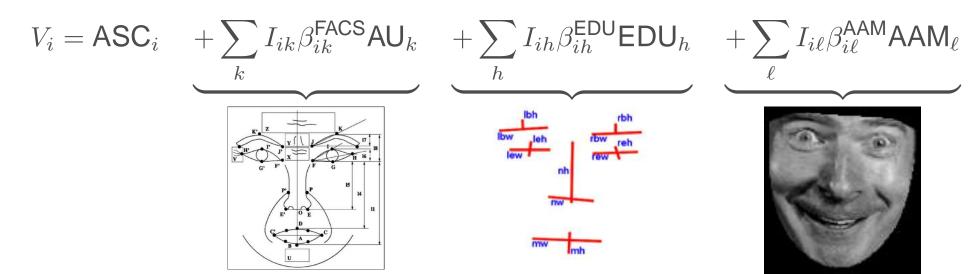
Automatic facial expression recognition – p. 29/46

Discrete choice model:

Decision maker : a person evaluating an expression

Choice set : happiness, surprise, etc. (see surveys)

Attributes : FACS, EDU, AAM


Characteristics : possibility to account for heterogeneity of perceptions and interpretations (not done here)

Model : up to now, logit model

The model

Data: 39000 observations from 1718 respondents

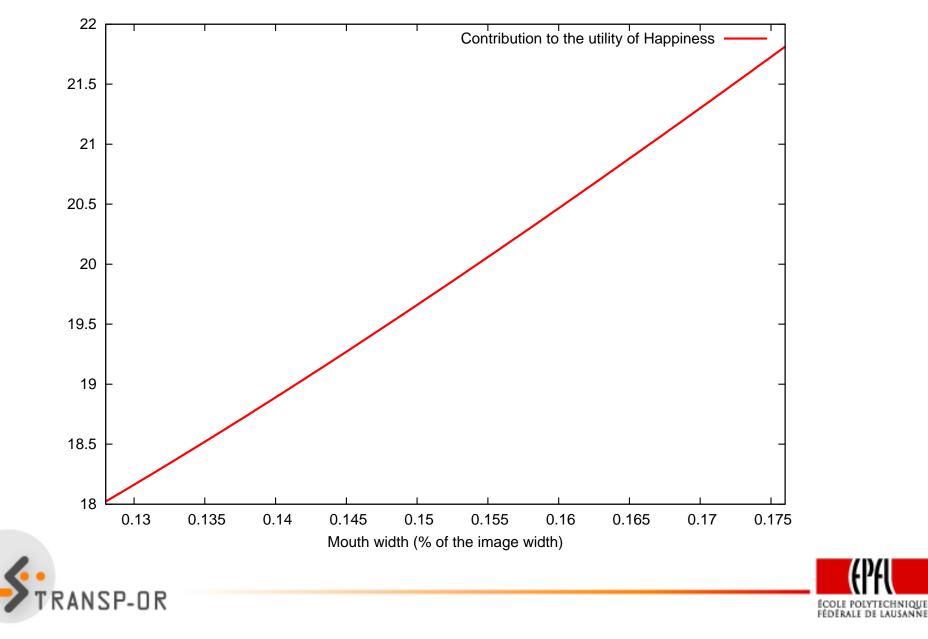
Model	Nbr of parameters	LL
AU only	93	-57121
AU + EDU	120	-55027
AU + EDU + AAM	145	-54657

Automatic facial expression recognition – p. 31/46

Effects of mouth width on utility of "happiness"

$$U_{\text{happiness}} = \cdots + \beta_1 \frac{\text{mouth height}}{\text{mouth width}} + \beta_2 \text{mouth width} + \cdots$$

	Estimate	t-test
β_1	8.38	8.25
β_2	105	37.64


The wider the mouth, the happier...

Automatic facial expression recognition - p. 32/46

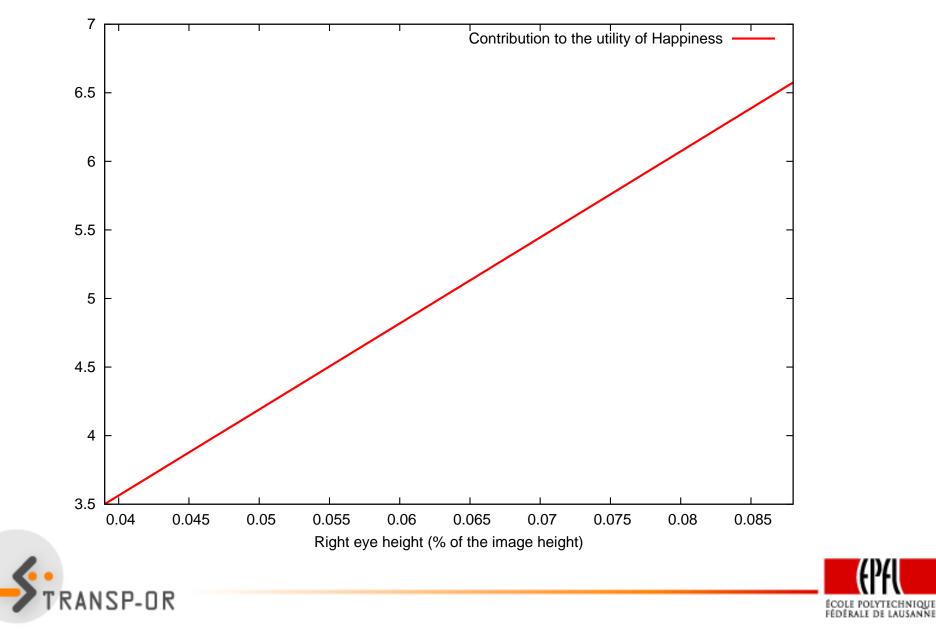
Some parameters

Effects of the height of the right eye on happiness

$$U_{\text{happiness}} = \cdots + \beta_1 \frac{1}{2} \left(\frac{\text{left eye height}}{\text{left eye width}} + \frac{\text{right eye height}}{\text{right eye width}} \right) +$$

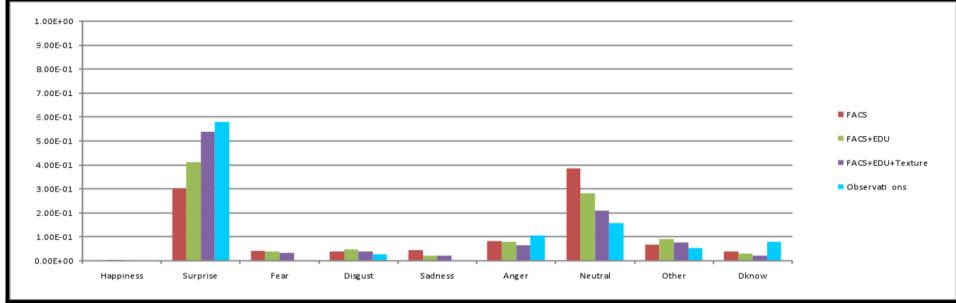
 $\beta_2 \frac{\mathrm{left~eye~height} + \mathrm{right~eye~height}}{\mathrm{left~eyebrow~height} + \mathrm{right~eyebrow~height}} +$

 β_3 right eye height $+ \cdots$


	Estimate	t-test
β_1	-4.61	-5.54
β_2	6.15	8.89
β_3	36	3.95

Automatic facial expression recognition - p. 34/46

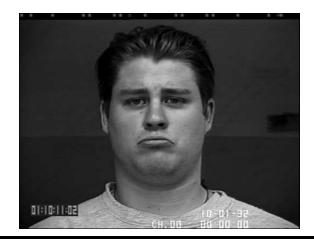
Some parameters

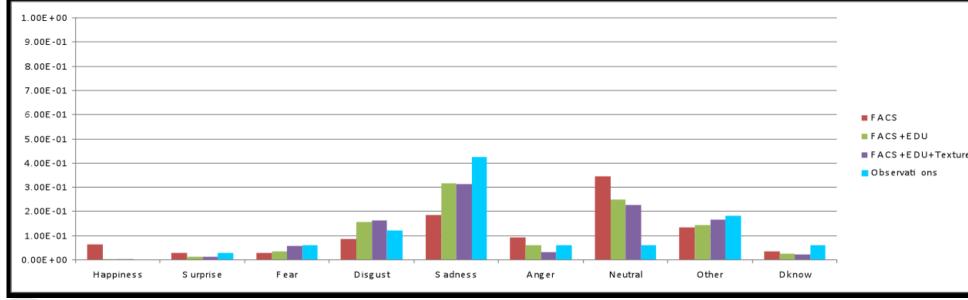


Automatic facial expression recognition – p. 35/46

Simulation: good

38 observations

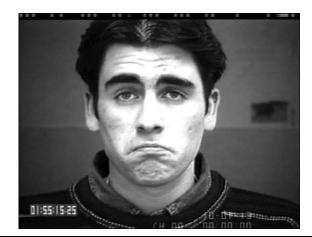


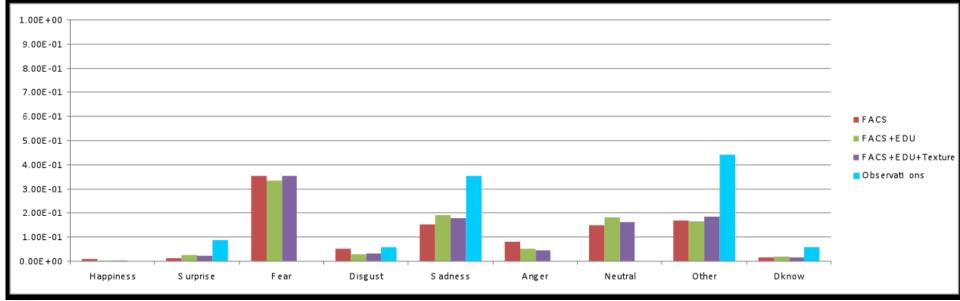


Automatic facial expression recognition – p. 36/46

Simulation: not too bad

38 observations





Automatic facial expression recognition – p. 37/46

Simulation: poor

38 observations

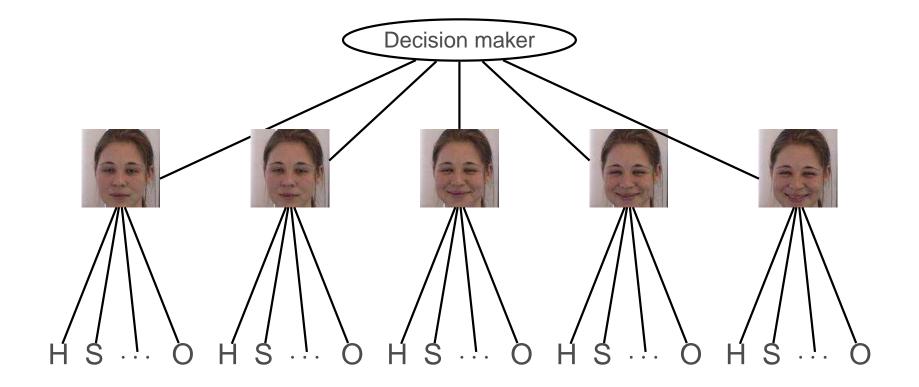
Automatic facial expression recognition - p. 38/46

Dynamic Expressions

Video = sequence of images

Automatic facial expression recognition - p. 39/46

Dynamic Expressions


Modeling assumptions :

- Time discretization (frames) : one second
- One frame will trigger the choice
- The choice of this frame is not observed
- For a given frame, we use the same model as for static expressions

Dynamic Expressions

Automatic facial expression recognition – p. 41/46

Models and variables

- Video sequence *o*
- Decision maker *n*
- Prob. that frame t is selected: $P_n(t|o)$ (logit). Variables:
 - image attributes, e.g. size of the mouth
 - duration since beginning
- Prob. that expression i is selected in frame t: $P_n(i|t, o)$. Static model (logit)
- Prob. that expression *i* is selected

$$P_n(i|o) = \sum_t P_n(i|t,o)P_n(t|o)$$

Models and variables

• Panel effect: random parameter ξ_n

$$P_n(i_1, \dots, i_{O_n} | \xi_n) = \prod_{o=1}^{O_n} P_n(i_o | o, \xi_n) = \prod_{o=1}^{O_n} \sum_t P_n(i_o | t, o) P_n(t | o, \xi_n)$$

• Integrate

$$P_n(i_1, ..., i_{O_n}) = \int_{\xi} \prod_{o=1}^{O_n} \sum_t P_n(i_o|t, o) P_n(t|o, \xi) f(\xi) d\xi$$

• Log likelihood

$$\mathcal{L} = \sum_{n=1}^{N} \log \int_{\xi} \prod_{o=1}^{O_n} \sum_{t} P_n(i_o|t, o) P_n(t|o, \xi) f(\xi) d\xi$$

Dynamic expression

- Ongoing project
- Estimation procedure under development
- Model specification must be investigated further

Summary

- Main idea: consider the identification of an expression as a choice
- Explanatory variables: features of the face
- Static case:
 - combine three types of variables
 - obtain meaningful model with significant parameters
- Dynamic case:
 - extend the static model
 - assume that one frame is representative

The faces of the team

Thomas Robin

Javier Cruz

ANSP-OR

Matteo Sorci

Gianluca Antonini

Jean-Philippe Thiran

Michel Bierlaire

