Some research projects at the Transport and Mobility Laboratory (EPFL)

Michel Bierlaire

transp-or.epfl.ch

Transport and Mobility Laboratory, EPFL

Some research projects at the Transport and Mobility Laboratory (EPFL) - p. 1/4

Transport and Mobility Laboratory

- 19 members, including
 - 8 PhD students
 - 3 postdocs
- Research themes:
 - Transportation research
 - Operations Research
 - Discrete choice models
 - Other: computer vision, image analysis, hospital management, marketing.

Two projects

- Automatic facial expression recognition: a discrete choice approach
- Exploiting mobility data from Nokia smartphones

Outline

- Facial expressions
- Data
- Variables
- Static expressions
- Dynamic expressions
- Conclusion

"The face is the most extraordinary communicator, capable of accurately signaling emotion in a bare blink of a second, capable of concealing emotion equally well"

Deborah Blum

- 1872 Darwin: universality of facial expressions
- **1971** Ekman: six primary emotions, that possess each a distinctive content together with a unique facial expression:
 - Happiness
 - Sadness
 - Fear
 - Anger
 - Disgust
 - Surprise

1978 Ekman's Facial Action Unit Coding System (FACS)

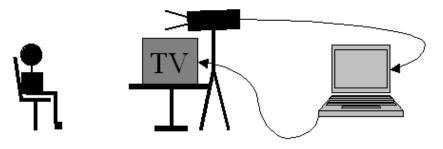
Facial expressions

- Active field of research
- Mostly in the machine learning and computer vision communities
- Some difficulties:
 - Context dependency (time, gestures, verbal reaction, etc.)
 - Ambiguity of expressions
 - Need for a ground truth

Cohn-Kanade database

- Testbed for research in automatic facial image analysis
- About 500 image sequences from 100 subjects
- Subjects were instructed by an experimenter to perform a series of 23 facial displays
- Expressions based on FACS action units (see later)

Example of recorded video:


Some research projects at the Transport and Mobility Laboratory (EPFL) -p, 9/4

Example of recorded video:

Facial Expressions and Emotion Database, TU Munich Experimental setup:

Some research projects at the Transport and Mobility Laboratory (EPFL) -p, 11/2

Example of video shown:

Some research projects at the Transport and Mobility Laboratory (EPFL) - p. 12/4

Example of recorded video:

Some research projects at the Transport and Mobility Laboratory (EPFL) - p. 13/4

Another example of recorded video:

Some research projects at the Transport and Mobility Laboratory (EPFL) - p. 14/4

- Database: 18 different individuals
- Each individual performed all six desired actions three times.
- Additionally, three sequences doing no expressions at all are recorded.
- Total: 399 sequences.

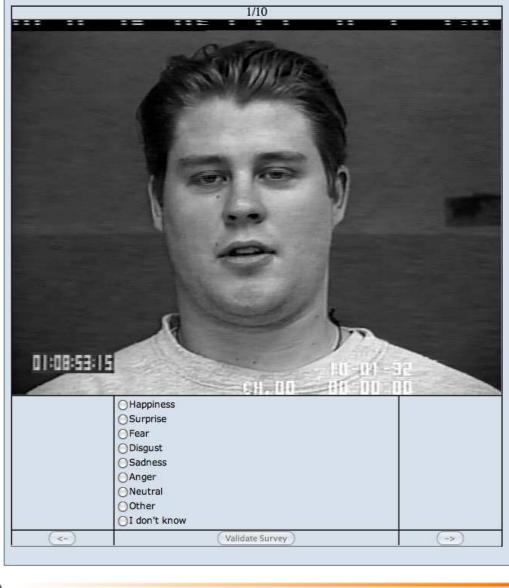
For more information:

www.mmk.ei.tum.de/ waf/fgnet

Data: choice

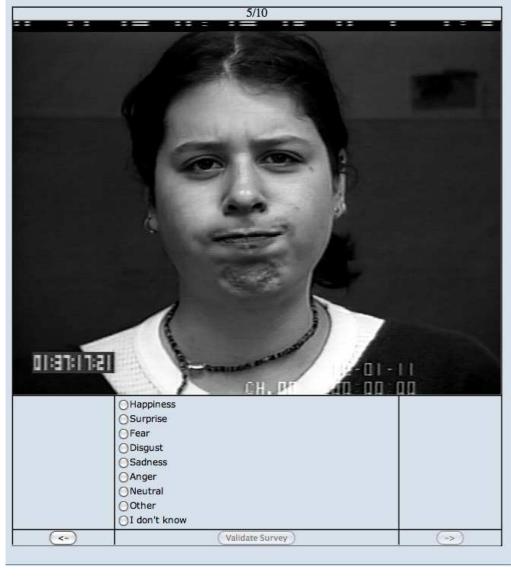
Choice experiment:

- Present an image or a video sequence
- Ask the respondent to select the most appropriate expression among
 - Happiness
 - Surprise
 - Fear
 - Disgust
 - Sadness
 - Anger
 - Neutral
 - Other
 - I don't know



Survey for static images: lts5www.epfl.ch/face Designed by Matteo Sorci

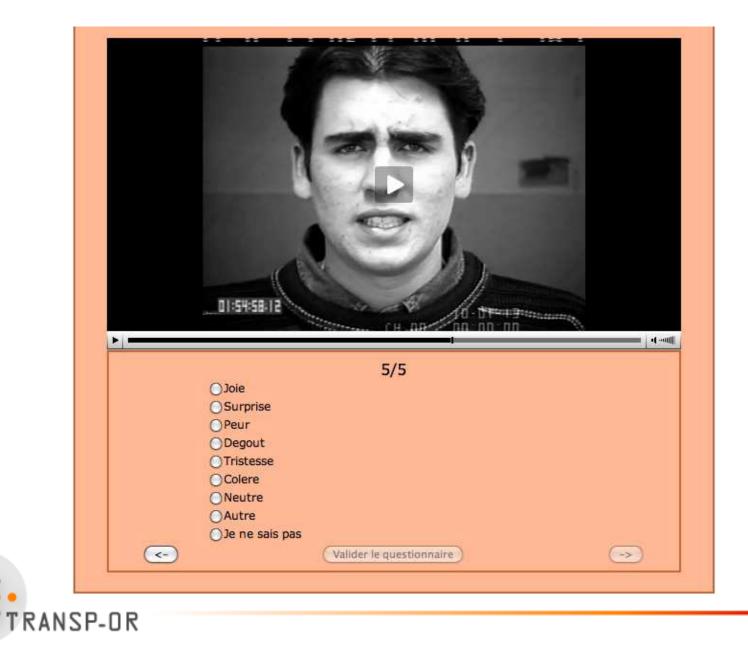
Data: choice



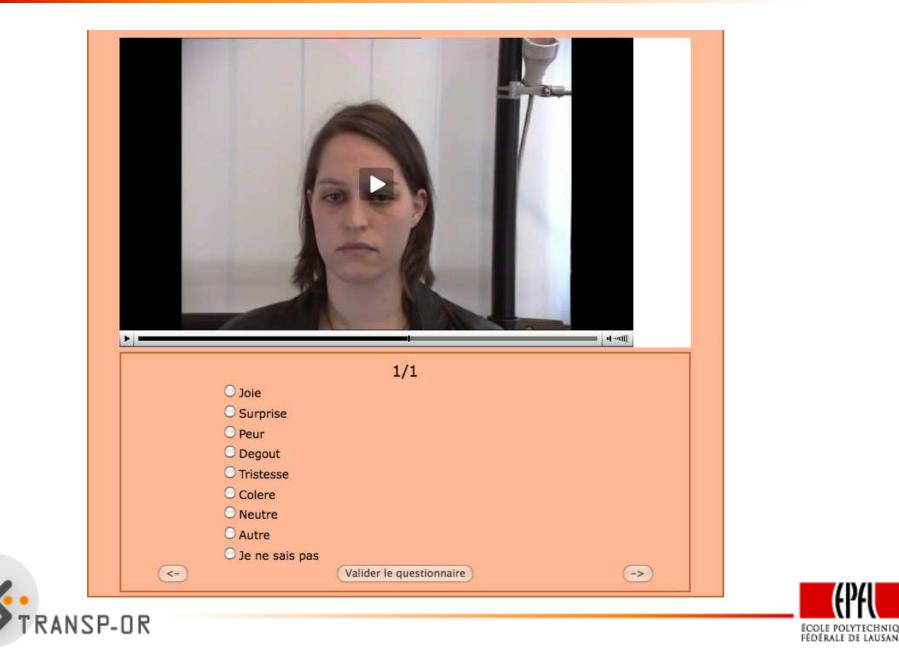
Some research projects at the Transport and Mobility Laboratory (EPFL) - p. 18/4

Data: choice

Some research projects at the Transport and Mobility Laboratory (EPFL) - p. 19/4


Survey for video sequences:

```
transp-or2.epfl.ch/videosurvey
Designed by Thomas Robin and Javier Cruz
```



Data: choice

Data: choice

Variables

- Objective: explain the choice of an expression using variables describing the face
- Require image analysis techniques
- Cootes, Edwards and Taylor (2001) *Active Appearance Models* PAMI, 23, 681-685.
 - Statistical models of shape and texture
 - Shape and texture are often correlated
 - Correlation learned from PCA
 - Another PCA is used combining the previous two

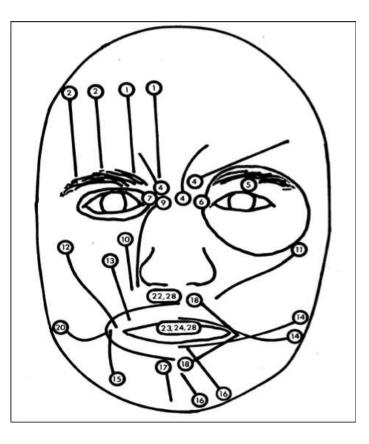
Data extraction

Shape:

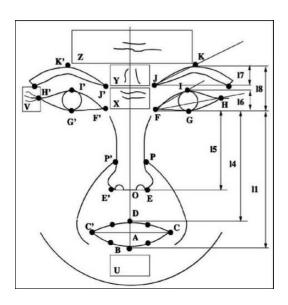
• Automatic extraction of a list of points

•
$$x = (x_1, y_1, \dots, x_n, y_n)'$$

Explanatory variables


- FACS Action Units
- Expression Descriptive Units
- Active Appearance Model

FACS Action Units

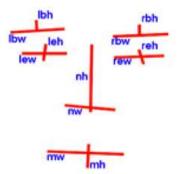

- 1978: Ekman & Friesen proposed the Facial Action Coding System
- Measurement units called *Action Units* (AUs)
- AUs are contraction or relaxations of one or more muscles
 - 46 AUs account for changes in facial expression
 - 12 AUs describe changes in gaze direction and head orientation

FACS: leading standard for measuring facial expressions

FACS Action Units

AUI	AU2	AU4	AU5	AU6	AU7
100	66	36	00	00	6
Inner Brow Raiser	Outer Brow Raiser	Brow Lowerer	Upper Lid Raiser	Cheek Raiser	Lid Tightener
AU9	AU10	AU12	AU15	AU16	AU17
Nose Wrinkler	Upper Lip Raiser	Lip Corner Puller	Lip Corner Depressor	Lower Lip Depressor	Chin Raiser
AU20	AU23	AU24	AU25	AU26	AU27
2	-	1	Ē	Ē	
Lip Stretcher	Lip Tightener	Lip Pressor	Lips part	Jaw Drop	Mouth Stretch

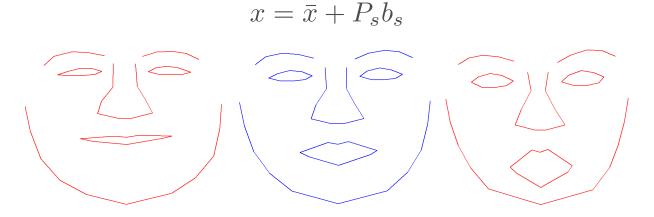
www.bk.isy.liu.se/candide



Expression Descriptive Units

EDU Measures	Measures definition
EDU1	$\frac{1}{2}(\frac{leh}{lew} + \frac{reh}{rew})$
EDU2	$\frac{lbh}{lbw}$
EDU3	$\frac{rbh}{rbw}$
EDU4	$\frac{mh}{mw}$
EDU5	$\frac{nh}{nw}$
EDU6	$\frac{lew}{mw}$
EDU7	$\frac{leh}{mh}$
EDU8	$rac{leh+reh}{lbh+rbh}$
EDU9	$\frac{lew}{nw}$
EDU10	$\frac{nw}{mw}$
EDU11	$\frac{EDU2}{EDU4}$
EDU12	$\frac{EDU3}{EDU4}$
EDU13	$\frac{EDU2}{EDU10}$
EDU14	$\frac{EDU3}{EDU14}$

Proposed by Antonini, Sorci, Bierlaire and Thiran (2006)



Active Appearance Model

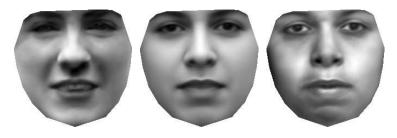
Shape:

- $x = (x_1, y_1, \dots, x_n, y_n)'$
- Apply PCA

Active Appearance Model

Texture:

 \Longrightarrow warp to mean shape \Longrightarrow


Texture is represented by a vector g

Active Appearance Model

Texture: Apply PCA

$$g = \bar{g} + P_g b_g$$

Finally, apply PCA on b_s and b_g

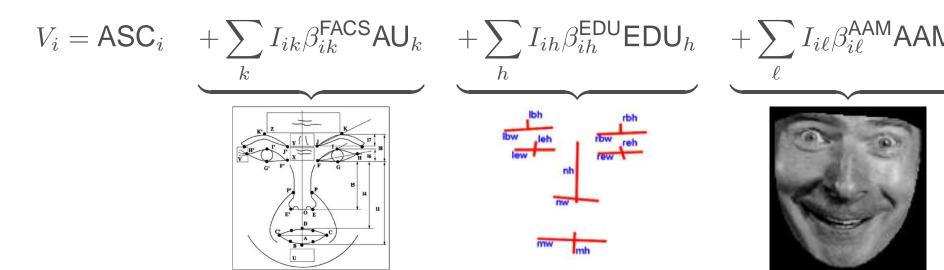
$$b = \begin{pmatrix} Wb_s \\ b_g \end{pmatrix} = Qc = \begin{pmatrix} Q_s \\ Q_g \end{pmatrix} c$$

Varying c changes both shape and texture (demo using AAM lab...)

Discrete choice model:

```
Decision maker : a person evaluating an expression
```

Choice set : happiness, surprise, etc. (see surveys)


```
Attributes : FACS, EDU, AAM
```

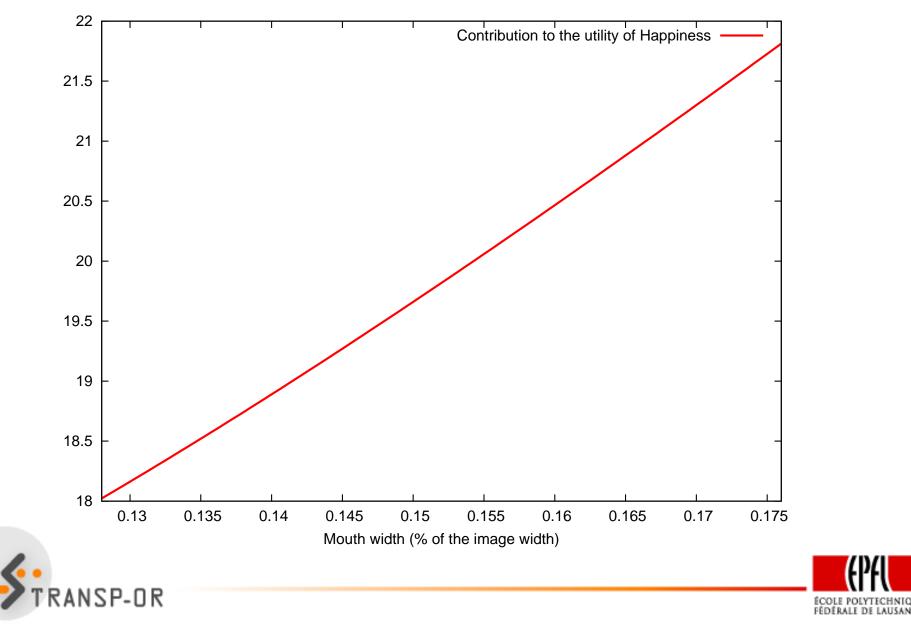
- **Characteristics** : possibility to account for heterogeneity of perceptions and interpretations (not done here)
- Model : up to now, logit model

The model

Data: 39000 observations from 1718 respondents

Model	Nbr of parameters	LL
AU only	93	-57121
AU + EDU	120	-55027
AU + EDU + AAM	145	-54657

Effects of mouth width on utility of "happiness"


 $U_{\text{happiness}} = \dots + \beta_1 \frac{\text{mouth height}}{\text{mouth width}} + \beta_2 \text{mouth width} + \dots$ $\frac{\text{Estimate} \quad t\text{-test}}{\beta_1 \quad 8.38 \quad 8.25}$ $\beta_2 \quad 105 \quad 37.64$

The wider the mouth, the happier...

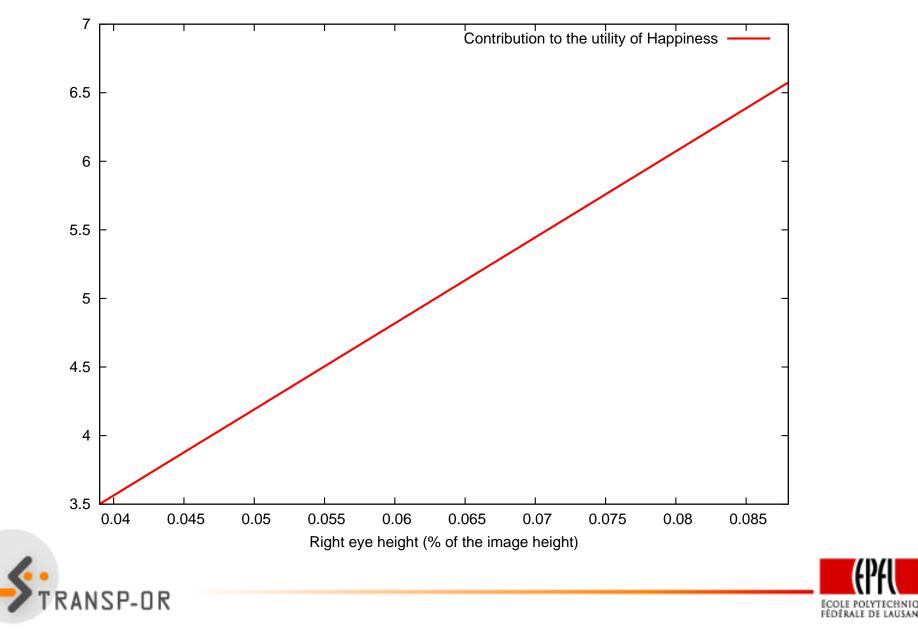
Some parameters

Some parameters

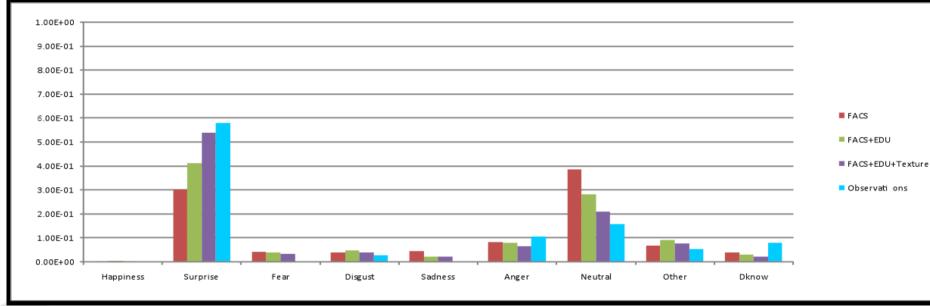
Effects of the height of the right eye on happiness

$$U_{\text{happiness}} = \cdots + \beta_1 \frac{1}{2} \left(\frac{\text{left eye height}}{\text{left eye width}} + \frac{\text{right eye height}}{\text{right eye width}} \right) +$$

 $\beta_2 \frac{\mathrm{left~eye~height} + \mathrm{right~eye~height}}{\mathrm{left~eyebrow~height} + \mathrm{right~eyebrow~height}} +$

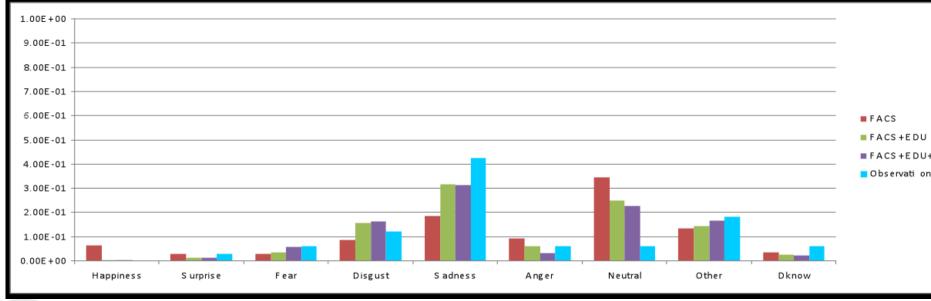

 β_3 right eye height + · · ·

	Estimate	t-test
β_1	-4.61	-5.54
β_2	6.15	8.89
β_3	36	3.95

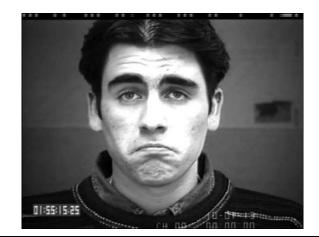

Some parameters

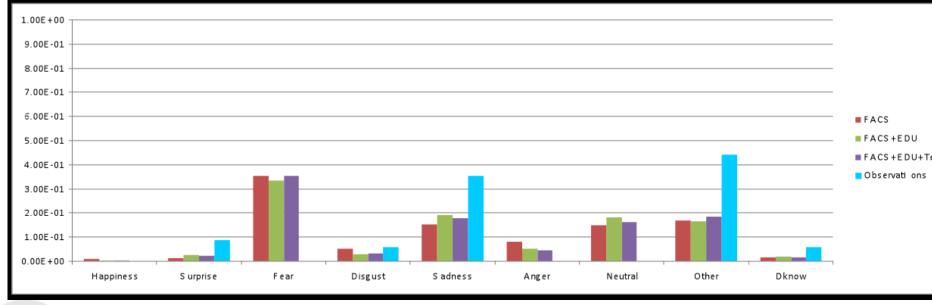
Simulation: good

38 observations



Simulation: not too bad


38 observations



Simulation: poor

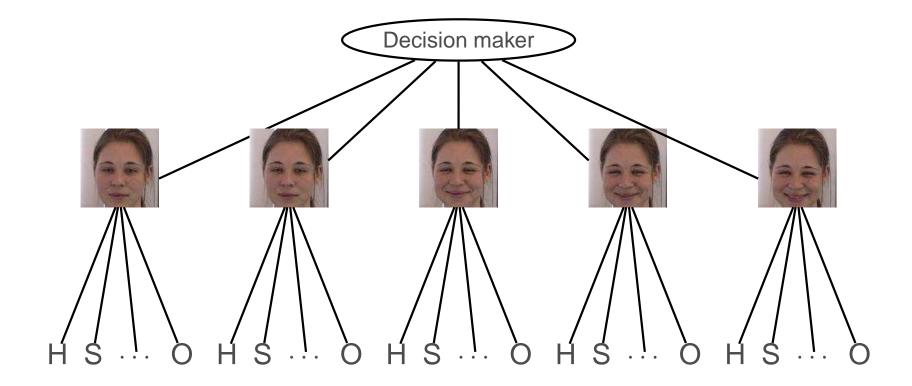
38 observations

Dynamic Expressions

Video = sequence of images

Some research projects at the Transport and Mobility Laboratory (EPFL) -p. 41/4

Dynamic Expressions


Modeling assumptions :

- Time discretization (frames) : one second
- One frame will trigger the choice
- The choice of this frame is not observed
- For a given frame, we use the same model as for static expressions

Dynamic Expressions

Some research projects at the Transport and Mobility Laboratory (EPFL) -p, 43/4

Models and variables

- Video sequence *o*
- Decision maker n
- Prob. that frame t is selected: $P_n(t|o)$ (logit). Variables:
 - image attributes, e.g. size of the mouth
 - duration since beginning
- Prob. that expression i is selected in frame t: $P_n(i|t, o)$. Static model (logit)
- Prob. that expression *i* is selected

$$P_n(i|o) = \sum_t P_n(i|t,o)P_n(t|o)$$

Models and variables

• Panel effect: random parameter ξ_n

$$P_n(i_1, \dots, i_{O_n} | \xi_n) = \prod_{o=1}^{O_n} P_n(i_o | o, \xi_n) = \prod_{o=1}^{O_n} \sum_t P_n(i_o | t, o) P_n(t | o, \xi_n)$$

• Integrate

$$P_n(i_1, \dots, i_{O_n}) = \int_{\xi} \prod_{o=1}^{O_n} \sum_t P_n(i_o|t, o) P_n(t|o, \xi) f(\xi) d\xi$$

• Log likelihood

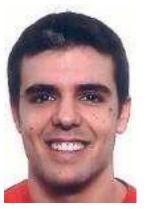
$$\mathcal{L} = \sum_{n=1}^{N} \log \int_{\xi} \prod_{o=1}^{O_n} \sum_{t} P_n(i_o|t, o) P_n(t|o, \xi) f(\xi) d\xi$$

Dynamic expression

- Ongoing project
- Estimation procedure under development
- Model specification must be investigated further

Summary

- Main idea: consider the identification of an expression as a choice
- Explanatory variables: features of the face
- Static case:
 - combine three types of variables
 - obtain meaningful model with significant parameters
- Dynamic case:
 - extend the static model
 - assume that one frame is representative



The faces of the team

Thomas Robin

Javier Cruz

ANSP-OR

Matteo Sorci

Gianluca Antonini

Jean-Philippe Thiran

Michel Bierlaire

Exploiting mobility data from Nokia smartphones

Michel Bierlaire, Jeffrey Newman Transport and Mobility Laboratory Ecole Polytechnique Fédérale de Lausanne

Nokia @ EPFL

• Nokia Research Centers research.nokia.com/locations

- Bangalore, India
- Beijing, China
- Cambridge, UK
- Cambridge, Ma
- Helsinki, Finland
- Hollywood, Ca
- Lausanne, Switzerland (since June 2008)
- Nairobi, Kenya
- Palo Alto, Ca
- Tampere, Finland

Research project

Objective:

- Investigate the potential of Nokia smartphones for mobility data collection
- Project Manager: Jeffrey Newman
- Research assistant: Jingmin Chen
- Steps:
 - Design and prepare the data collection campaign
 - Organize the data collection
 - Estimate behavioral models

Proposed data collection campaign

- Approximately 100 participants
- They receive a Nokia N95 phone, with data collection software preloaded
- They fill travel & activity surveys

Proposed data collection campaign

- They utilize their own personal SIM card, and are reimbursed for data-transmission charges incurred
- Data collected, and survey contents, will be coordinated between TRANSP-OR and other EPFL labs, to suit a range of current and future research needs

Nokia N95 Phone Features

- GSM (regular wireless phone network) info
- GPS tracking, network-based Assisted GPS available
- Accelerometer
- 802.11b/g WiFi
- Bluetooth
- Camera
- Calendar
- Phone / Instant Message logs

Ethical issue

- The project is currently submitted to an ethic committee
- Highly personal information is being collected
- Participants must be aware of:
 - What data is actually collected
 - What we are doing with the data
- They have the right to
 - Access the data about them
 - Drop from the survey and have the data erased

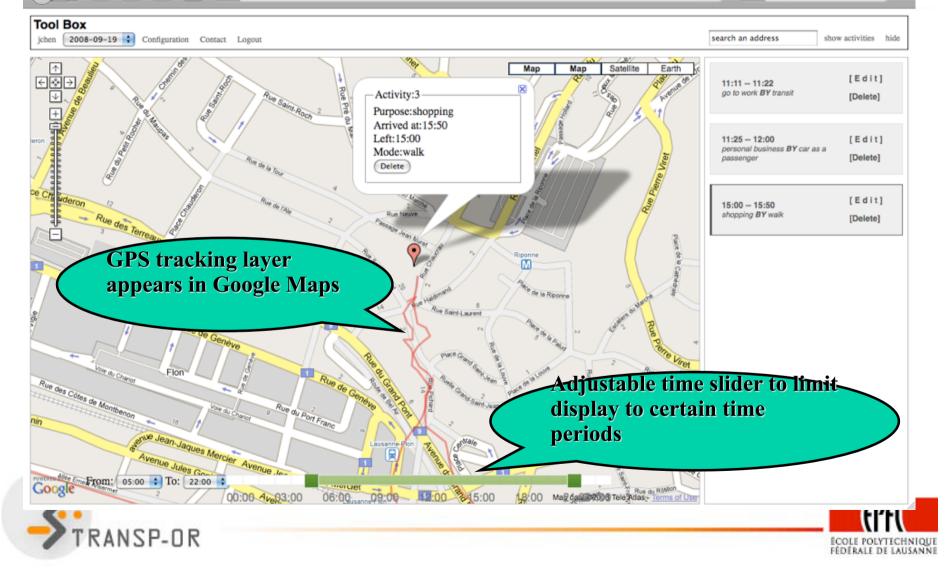
Potential data uses

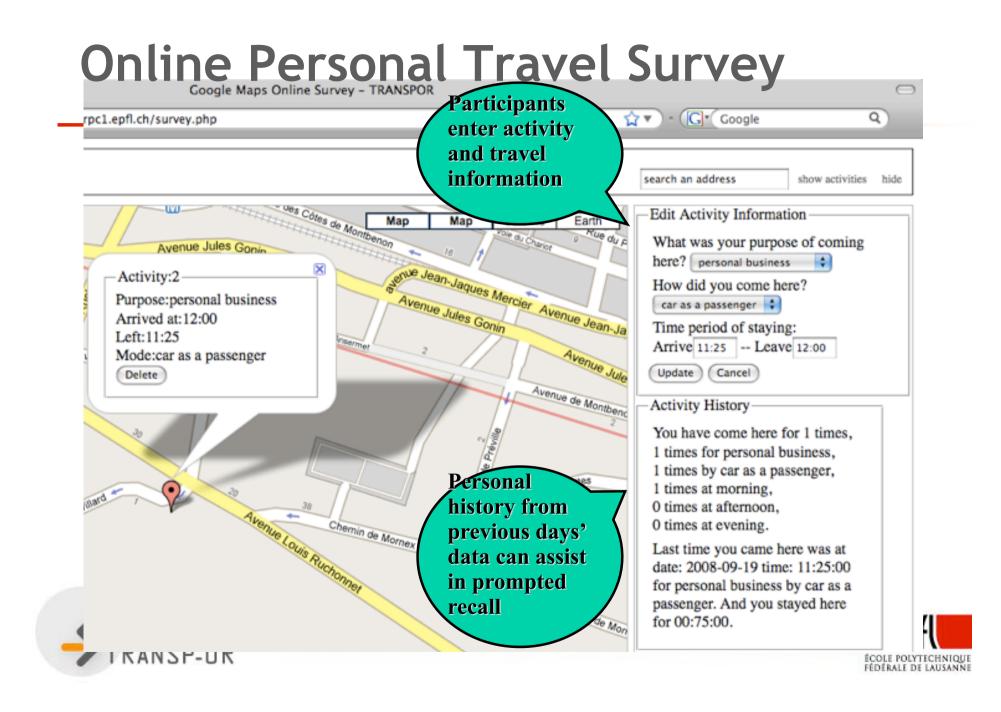
- GPS and accelerometer: current position, speed and acceleration \rightarrow mode and route
- When GPS signal is unavailable, position can be guessed with GSM, WiFi, historical data
- Phone book, phone log: social network
- Calendar: activities
- Audio and video samples: contextual measurements

Potential data uses

- Phone interface design and usage
- Signal processing
- Indoor positioning
- Etc.

- A small number (6) of phones have been received by the TRANSP-OR lab for evaluation
- An online travel review and survey tool is in development
 - Designed to be (hopefully) intuitive, simple, and fast for participants
 - Custom phone software for data collection is in development


Online Personal Travel Survey


(C) (X) (A) (D) (http://transporpc1.epfl.ch/survey.php

☆▼) - (G* Google

0

Q)

Battery Problems

- Standard Nokia phone batteries:
 - BL-5F (N95) provides 950 mAh
 - BL-6F (N95 8GB) provides 1200 mAh
- Autonomy: 6 hours
 - with GPS tracking enabled continuously
 - Obviously unacceptably short
- But:
 - the phone has other position-identifying tools (GSM, Wifi, etc.)
 - Not necessary to collect GPS info continuously

- Software development:
 - algorithm for switching the GPS receiver on and off at appropriate times
- Objectives:
 - minimize the loss of relevant positional data (when the subject is moving)
 - only drop unnecessary data (when the subject is stationary)

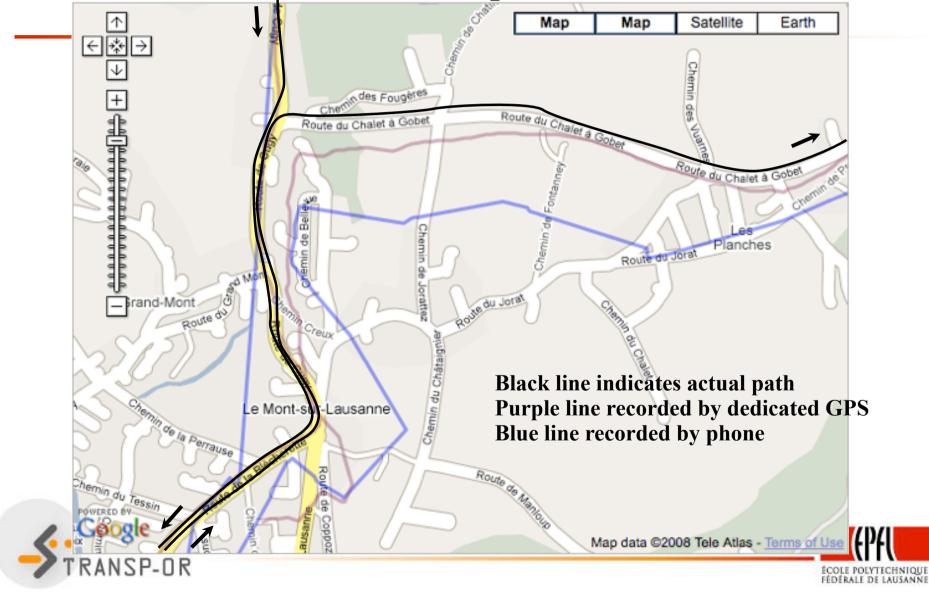
Issue:

- The GPS unit when switched on will take some time to acquire a fix (a few seconds to a few minutes).
- Possible solution:
 - The use of the Nokia Assisted-GPS feature reduces this time
 - but it requires an active internet connection (GPRS or 3G), with concomitant battery usage

Experiment:

- We are collecting GPS data simultaneously from the Nokia phone and a second, dedicated GPS receiver
- This will allow comparison of switched and continuous tracks, to evaluate different switching algorithms

As a side effect, we discovered that the GPS accuracy for Nokia phones is pretty low...



Phone GPS Accuracy is Low

Blue line recorded by phone

Phone GPS Accuracy is Low

GPS Accuracy

Low accuracy

- not great for users
- but provides opportunity for mathematical research: how can we account for the poor quality of GPS service?
- Traditional map matching of low quality GPS tracks could introduce large biases, creating inaccurate routes for trips
- Proposed solution: use of measurement equations

Future Plans

- Integration of phone software and web survey system
 - the phone automatically uploads each day's data over wireless connection
- Spring 2009: pilot data collection campaign
 - about30 participants
 - test the system for functionality and bugs
- Summer 2009 (?):
 - Rolling out to 100 (or more) participants for a full scale data collection effort

