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We provide an introduction on reduced basis (RB) method for the solution of
parametrized partial differential equations (PDEs). We introduce all the main
ingredients to describe the methodology and the algorithms used to build the
approximation spaces and the error bounds. We consider a model problem
describing a steady potential flow around parametrized bodies and we provide
some illustrative results.
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1. Introduction

In several optimization contexts arising, for example, in the aerospace indus-
try, the problem of the resolution of PDEs in parametrized configurations
is growing. The necessity to avoid to rebuild the geometry for each simu-
lation and to have real-time computations in the many-query context pro-
vides a strong motivation for the development of the reduced basis method
(Refs. 1-6) as a tool for the solution of parametrized problem built upon
finite element (FE) method (Ref. 7).

In Sec. 2 we define a model problem, then in Sec. 3 we provide some
basic results for the introduction of the methodology. Sec. 4 and Sec. 5 are
devoted for the introduction of lower bounds for the coercivity constant and
for a posteriori error bounds, respectively. In Sec. 6 we present numerical
results considering steady potential flows around parametrized bodies, then

*Numerical simulations in collaboration with Gwenol Grandperrin (EPFL, Mathematics
Section)
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some conclusions follow.

2. Problem definition

We introduce an abstract model problem. We consider D C RP as the
range of variation of p parameters and Q C R? as a domain (p and d are
integers). The functional space X¢ is such that (Hg(2)) C X¢ C (H'(2)),
with H'(£2) the Sobolev space defined as H'(Q) = {f € L*(Q) | D*f €
L?(Q),a < 1} and D*f derivation of f in the distributions sense, L?()) =
{f 10— ‘fo(m)2dx < oo}; HYQ) = {f € HYQ) | f = 0 on 99} and
Hb:{f€H1|f:00nFD,DC39}.

We introduce Yy € D a bilinear and coercive form a(.,.; ) and two
linear and continuos functionals f(.;u) and I(.; ), then we consider the
following “exact” problem

For i € D, solve
s¢(p) = U(us(p); p) s.t. u®(p) € X© satisfies (1)
a(u®,v;p) = flv;p) Yo e X°

We define a scalar product and a norm related with the energy of the system
as: (w,v), = a(w,v; ), and |||wl||, = (w,w>é Yw,v € X, respectively. We
also introduce a second scalar product and its norm defined on X¢ (7 > 0)
for a selected 7z such that (Ref. 6) (w,v)x = (w,v)g + 7(w,v)12(q), and

1
[lw||x = (w,w)% Yw,v € X°¢, respectively. We introduce the crucial
hypothesis that the bilinear form a can be expressed as

Q
a(w,v; ) = Y ©9()a (w, v) (2)
q=1

such that for ¢ = 1,...,Q: ©7 : C — R is depending on pu and
a? : X° x X°¢ — R is p-independent.? This hypothesis on a allows us
to significantly improve the computational efficiency in the evaluation of
a(w,v; p): the component a,(w,v) can be computed once and then stored
to form (2). We are interested in geometrical parametrizations such that
Q will be a reference (and fixed) domain and it can be seen as the pre-
image of Qg(u) (depending on the parameters) denoted original domain
through the transformation 7 : Q@ — Qp. We can define ag(wp, vo; 1) as
a(w,v; p) = ao(T (w), T (v); ).

We introduce a numerical discretization in our model problem given by
finite element method such that the space XV ¢ X¢ (dim(X") = N) and
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the problem is reformulated as

For 1 € D, solve
sN(w) = 1w (1) and vV (p) € XN satisfies (3)
a(uN,vip) = flo;p) Vo e XN

We recall the definition of the coercivity constant for the discretized prob-

V() = infyen 2, Vi€ D,

lem as «

3. Reduced basis method

We introduce a principal set of parameters = = {u?,..., yVNmes} C D and
then for 1 < N < N we define the subsets Sy = {u',...,u"N} to
which we associate the Lagrange reduced basis space (see Refs. 2,5,6) de-
fined as W{ = wect{u™N(u"),1 < n < N}. It is clear that the nested
(or hierarchical) condition is valid for S; C Sy C ... C Sn,,,, and for
WM cwdc...c WJJ\\/CMT C XN. The finite element solutions u™ (u™)
for 1 < n < Ny and for some properly selected values of the parameter
u™ are referred to as snapshots. By a Galerkin projection we can solve the

reduced basis problem defined as

For a new p € D, evaluate
SN (1) = L(uN () sty (u) € W € XV satisfies (4)
a(uy,v; ) = f(v) Yo € WR.

The goal is to obtain a cheap evaluation of s¥ (u) for many values of .
Lemma 3.1 shows that sf\vf is converging to sV quadratically with respect
to the convergence® of u to w/V.

Lemma 3.1. Best approzimation of RB method and quadratic convergence
of the output for 1l = f (compliance, see Ref. 2) is given by:

(1) 11N (1) = ()l ]x < infype xr [T (1) = wl]],05

(2) sN (1) = 53 (1) = [[[w™ (1) — uy ()][[7-

When [ # f the “square” effect in the convergence is given by the solution of
a dual problem.® To have a system from (4) which is not ill-conditioned we
can use a Gram-Schmidt orthonomalization procedure (see Ref. 2) for the
snapshots vV (1), 1 < n < Nyae, with respect to the scalar product (-, ) x
to obtain (N 1 < n < Nyae as basis functions, so that W% = {(N}n 1N
for 1 < N < Npjaz-
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We can rewrite wy as

N
un (1) = > uN, (m)C- (5)

m=1

By posing v = ¢V, 1 <n < N in (4) we get

N
> alh, G muN () = £(GY)  1<n<N, (6)
m=1

and by (2) we may rewrite (6) as

N Q
z(z@qm)aq«x,m)u%m<u>:f<<ﬁ> L<n<N. (@)

m=1 \¢g=1

Here ¢V are independent by  and so the quantities f(¢Y) (1(¢)), 1 <n <
Npaz and aq(g“n/\{, C,jlv), 1 <n < Npaz, 1 < g <Q can be pre-computed and
stored to decouple the offline computational part (parameter independent)
from the online one (parameter dependent). The output can be computed

as sf\vf = Zﬁizl uf\v/m(u)l(CnA{)

3.1. Greedy algorithm for reduced basis space construction

Let = a subset of D, used as a surrogate of D to test the reduced basis
approximation. This subset has to be sufficiently rich and it can be built
by using Monte-Carlo sampling (with uniform or log density, see Ref. 2).

In order to build the space Wf\\,/ , given = and N, we start by con-
sidering S; = {u'}, WiV = span{u™ (u")}. Then, for N =2,..., Npaz, we
look for

p = argmax Ay _1(u)
pe=

where Ay = AP or A3, are the error bounds for the energy or the output
sf\v[ , respectively. These quantities will be introduced in Sec. 5. Instead of
fixing N4, it is possible to set a tolerance e as stopping criterium for a
new pV when max,ez Ay—_1(p) < e. We define, in a recursive way, Sy =
Sy_1UpN and W& = W, Uspan{u™N (z™)}. In this way only few FE
solutions have to be computed (just the selected snapshots).

4. Lower bounds for the coercivity constant

We are interested in getting a fast and reliable method to compute a lower
bound for the corcivity constant which is going to play a role in the error
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bounds. We use the so-called successive constraint method (SCM), briefly
recalled here, see Refs. 6,8. This method uses online a linear programming
algorithm with a number of operations independent by N.

Let us introduce an objective function J°% : D x R® — R, s.t.
(u,y) Z ©9(u)y, where y = (y1,...,y0). The coercivity con-
stant can be expressed as oN(p) = infuey T (u;y) where Y =

Y € R¥ | 3w, € XV such that Yg = %, 1<qg< Q} . We introduce
yilx

also a box of constraints

H[ r, S s Sl ®)

wGXN ||'LUHX weXN HwHX

We properly select a set of parameters in D denoted with C; =
{ukcm €D, ....ulcn € D}, and we indicate with Cy’“ the set of M > 1
elements of C; nearest u € D; if M > J then C'y’” = Cj. There are some
techniques to build C; as reported in Ref. 8. Given Cy, M e N={1,2,...}
and p € D, we define Yy p(u; Cy, M) as

Vip( Cr M) = {y € B |y € BIM (. 9) > oV (). v € O3]

such that Y C Yrp(u; Cy, M) VYu € D (being Yy p richer than Y) and
we define the lower bound of the coercity constant as o)y (u; Cy, M) =
mingey, , oy, J 7 (1,y) such that oYs(p) < oM (), Yu € D. The
problem of computing a lower bound for the coercivity constant 0/2/ g is
a linear programming minimization problem with @ variables y1,...,y¢
and 2Q + M constraints. Each y; is subject to two constraints from B (8)
and then there are the M conditions J°% (i y) > o (u/), V' € O3
and |CJM’“| < M. Given B and {oN (i) | i/ € Cy}, the evaluation of

1 — o5 (1) is independent by A

5. A posteriori error estimation

We introduce here the a posteriori error bounds as described in Refs. 2,6,9.
We are interested in a method which should be realible and efficient. We
reconsider the finite element problem (3) and the Galerkin projection to
get the problem (4). We define e(u) = v (1) — uf (1) € XV. Thanks to
the linearity of a(.,.) we have
ale(p), v; ) = a(u™ (1), v; ) — a(ufy (1), v; )

= f(vin) —aluy (u),vip) Vo€ XV,
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6
We denote
r(vi i) = £ (05 ) = alu (), v ), (9)
to get the equation of the residual
a(e(p),v; ) = r(v; p). (10)
Thanks to Riesz representation theorem we can write r(v; u) as
r(vip) = (@(p)v)x  YoexV, (11)

so that from (10) we get ale(p),v; ) = (é(un),v)x. At the same time we
have ||r(-§N)H(XN r= T| U|7‘I;)
o)z (1) introduced in Sec. 4 we define the following error bound for the

energy norm

[lé(1)||x- By the coercivity lower bound

lle(w)llx
A () = L2IX (12)
! O‘i\/B(,U)
and for the output
lle(u)|5
AV = o) (13)

Concerning A%, if I = f we have also that [s" () —s¥ ()| < A% = (AS)?
for N=1,..., Npaz and for all € D. See Ref. 6 for demonstrations.

5.1. Offltine-online computational procedures

The residual (9) can be computed as

r(v; ) = f(v) — au (1), v; 1)

N Q
S N (1) Y 01 (m)at(¢,v) by (5)-(2)

by (11) we get (&(), v)x = r(v; )

Il
=
=

|
WE
M@

©)

[t=)
=
EX
~

= C+ X5 Yol Oy, (ma® (G, v)

We may rewrite é(pu) )
1<n<N,1<qc< are given by the following

where C and L,
problems

C,v)x = flv) Yve XN
{(5 ) x = —ad(¢N,v) Yoe XN, (14)
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The quantity ||é(u)||% is then given by

el = ( ch+2ZZ@q w)(C, L) x  (15)

Q N
+> ) el puy, Z Z ()l (u)(L, L9, x

In the offline part, we compute quantities p-independent like C, £I, 1 <
1 < Npaz, 1 < ¢ < Q and we store (C,C)X,(C,ﬁ;{)X,(E%,EZ,)X 1<
n,n < Npaz,1 < ¢,¢ < Q. In the offline part, the computational com-
plexity depends on N,.., @ and A. In the online part we compute the
p-dependent quantities ©9(p), 1 < ¢ < Q, uj]\\,[n(u), 1 <n < N. To evaluate
(15) we perform O(Q?N?) operations, independently by N

6. Numerical results

We present here some numerical results as example of application of re-
duced basis method to potential flows around parametrized bodies (see
Ref. 10), representing for example the bulb of a yacht (with or without
the keel) or the nacelles of an aircraft or bodies placed under the wings
and/or the fuselage. We provide the general parametrization, state equa-
tion, convergence results and some representative solutions. Our emphasys
is on computational performance.

6.1. Bulb and keel

In Fig. 1 we report two very preliminary configurations used as a
parametrized bodies for our first tests. The first configuration, describing
just the bulb without the keel, has three parameters 1, 2, 3 for the non-
symmetric ellipse, the second configuration, with the inclusion of the keel
in the bulb configuration has five parameters including a parametrization
on the keel height and width.

In Fig. 2 we report the two domains used for this first tests. We used
a simple inviscid and irrotational fluid model described by a potential flow
(Ref. 10) and represented by a Laplace problem, whose strong formulation
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B i

Fig. 1. Parametrized bodies: bulb (left) and keel with bulb (right).

L,

T, I,

Fig. 2. Domains for the bulb (left) and for the keel with the bulb (right).

is
Find vV (1) € XV s.t

AN =0 on {2

WV =1 on I'y
duN =1 on I'y
8nuN:O on FQUF4UF5,

where 0,, indicates the normal derivative. On the outflow I'y we impose a
non-homogeneous Dirichlet condition representing the potential level, on I'g
we impose a non-homogeneous Neumann condition representing the impo-
sition of a (unity) velocity in the normal direction, on I'y, Ty, I's we impose
a homogeneous Neumann condition representing a condition of zero veloc-
ity in the normal direction of the body and/or walls (non-penetration).
The previous problem is then transfomed in the form introduced in (1). We
report in Fig. 3 some convergence results plotting the quantity max(A?)
(12) over a very large sample = C D as a function of N during the greedy
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algorithm of Sec. 3.1 for the two test configurations. For the coercivity lower
bounds of Sec. 4 we used an approximation with J = 169 and J = 187,
respectively for the bulb and for the bulb with the keel. The parameters
range is given by D = [1,4] x [1,4] x [1,4] for the first example (bulb) and
by D = [1,7] x[1,7] x [1,7] x[1, 8] x [1, 5] for the second one (keel and bulb).
Computational results were performed using the library rbMIT.!!
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Fig. 3. Very fast convergence of the greedy algorithm over a large sample of parameters:
maximum AP (12) as a function of N for the bulb configuration (left) and for the keel
and the bulb (right).

We report in Fig. 4 representative solutions of the bulb problem for a
reference value of u = [3,4,3]. We report the potential solution with over
the velocity field (on the left) and the pressure field (on the right) computed
by the Bernoulli Theorem.!?

Velacity errer = 00019088 Presaure error - 0omssads

1j
2
50 s
. 4
a0
4
s
&l
2
20 c{ e
2 4 8 35 10

0 s 8 4 2 0o 2 4 &8 8 10 a0 8 8 4 2 0

Fig. 4. A representative solution of velocity and potential (left) and pressure (right) for
the bulb test.
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Thanks to reduced basis method we can get real-time evaluations and
visualizations of parametrized problems by testing a large number of differ-
ent configurations, corresponding to many u’s belonging to D. In Table 1
we report offline and online computational times for the two first tests. We
can see that the average online computational times for the solution of the
problem for a certain p € D (with error bounds) is less than 1% compared
with the offline computational times needed to set the geometry, build the
mesh and compute FE solutions (and error bound ingredients preparation).

Table 1. Computational times for the two preliminary tests and

comparison.
test bulb bulb and keel
phase | computational times (s) | computational times (s)
offline 553.8 763.4
online 5.2 7.4
ratio 0.94% 0.97%

6.2. A more complex example: several parametrized bodies

We consider here a more complex example where we study a parametrized
configuration made up by three bodies with different shape, size and posi-
tion. This test can be seen as a preliminary study for a trimaran configu-
ration, a multihulled boat or for an aircraft with many nacelles.

In Fig. 5 we report a scheme with 8 parameters considered: parame-
ters u1 — e are describing the bodies’ geometry, which are non-symmetric
ellipses (upper and lower bodies have the same parametrization py — pg).
Parameters p; and pg are responsible of the position of the bodies in the
domain and their mutual distance ( horizontal and vertical distance). The
range of variation of the parameters is given by D = [3, 8] x [3, 20] x [3, 20] x
[3,8] x [3,20] x [3,6] x [3,8] x [—8,8]. In the same figure we illustrate the
domain €.

The state problem is the same as the one described in Sec. 6.1 where we
considered steady potential flow; in this case we have just two more bound-
aries to consider: I's and T'; with homogeneous Neumann condition (zero
velocity). We report in Fig. 6 the mesh and triangulation of the considered
configuration (using rbMIT!!) and some convergence results plotting the
quantity max(AS?) (12) over a very large sample = C D as a function of
N, during the greedy algorithm of Sec. 3.1. For the coercivity lower bounds
of Sec. 4 we used an approximation with J = 200.



June 10, 2009 21:42 WSPC - Proceedings Trim Size: 9in x 6in  Rozza AIMI'lII

11

Fig. 5. Parametrized geometrical configuration with three bodies (left) and schematic
domain (right).

s Plot de | erreur
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Fig. 6. Mesh and triangulation of the considered configuration (left); convergence of the
greedy algorithm over a large sample of parameters: maximum A% (12) as a function
of N for the same configuration (right).

We report in Table 2 offline and online computational times for the
last test. We can see that the average online times for the solution of the
problem for a certain p € D is less than 0.5% compared with the offline
computational times needed to set the geometry, build the mesh and com-
pute FE solutions (and error bound ingredients). The method is well suited,
efficient and reliable for the solution of PDEs in parametrized geometries
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in the many query context.

Table 2. Computational times for
the third test.

phase | computational times (s)
offline 4853.7
online 16.6

ratio 0.34%

7. Conclusion

We have described the basic elements of the reduced basis method and

introduced simple problems dealing with a steady potential flow around

parametrized bodies. The offline-online computational decomposition strat-

egy is crucial to achieve computational economies of at least two orders of

magnitude in the many query context and in a repetitive computational

environment. A posteriori error bounds and greedy algorithm convergence
prove the reliability of the methodology.
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