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Abstract We give the first constant factor approximation algorithm for
the asymmetric Virtual Private Network (VPN) problem with arbitrary
concave costs. We even show the stronger result, that there is always a
tree solution of cost at most 2-OPT and that a tree solution of (expected)
cost at most 49.84 - OPT can be determined in polynomial time.

For the case of linear cost we obtain a (2—|—5%)—approximation algorithm
for any fixed ¢ > 0, where S and R (R > S) denote the outgoing and
ingoing demand, respectively.

Furthermore, we answer an outstanding open question about the com-
plexity status of the so called balanced VPN problem by proving its NP-
hardness.

1 Introduction

The asymmetric Virtual Private Network (VPN) problem is defined on a com-
munication network represented as an undirected connected graph G = (V, E)
with cost vector ¢ : E — Q, where ¢, indicates the cost of installing one unit
of capacity on edge e. Within this network, there is a set of terminal nodes that
want to communicate with each other, but the amount of traffic between pairs
of terminals is not known exactly. Instead, each vertex v has two thresholds
b, b, € Ny, representing the cumulative amount of traffic that v can send and
receive, respectively. The bounds implicitly describe a set of valid traffic matrices
which the network has to support. In particular, a traffic matrix specifies for each
ordered pairs of vertices (u, v), a non-negative amount of traffic that v wishes to
send to v. Such a set of traffic demands corresponds to a valid traffic matrix if
and only if the total amount of traffic entering and leaving each terminal v does
not exceed its bounds b, and b}, respectively.

A solution to an instance of the asymmetric VPN problem is given by a col-
lection of paths P containing exactly one path for each ordered pair of terminals,
and a capacity reservation z : £ — Q4. Such a solution (P, z) is feasible if ev-
ery valid traffic matrix can be routed via the paths in P without exceeding the
capacity reservation x. The aim is to find a feasible solution that minimizes the
total cost of the installation.
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A feasible solution is called a tree solution if the union of the selected paths
induces a tree.

The VPN problem was introduced by Fingerhut et al. [1] and Gupta et al. [2],
and it soon attracted a lot of attention in the network design community. In fact,
the model is relevant for many practical applications where flexible communi-
cation scenarios are needed, e.g. to face phenomena like input data uncertainty,
demands that are hard to forecast as well as traffic fluctuations, which are typical
for instance in IP networks.

Such a high interest in the problem motivated several authors (see e.g.
[3,4,5,6,7,8,9,10]) in the investigation of the model and its important variations.
A recent survey on network design problems provided by Chekuri [11] reports a
lot of interesting open questions concerning VPN models, some of them discussed
below.

1.1 Related Work

The asymmetric VPN problem is APX-hard, even if we restrict to tree solutions
[1,2]. The current best approximation algorithm gives a ratio of 3.55 [4]. Still,
the best known upper bound on the ratio between an optimal solution and an
optimal tree solution is 4.74 [9].

A quite natural variant of this problem is the so-called balanced VPN problem,
that is, when the following condition holds: Y, b = > b, . Italiano et al. [5]
show that, differently from the asymmetric version, an optimal tree solution in
this case can be found in polynomial time, and Eisenbrand et al. [4] obtain that
an optimal tree solution is in fact a 2-approximate solution for the general case.
Unfortunately, it has been recently shown that the cheapest solution does not
always have a tree structure [12]. Nevertheless, the complexity of the balanced
VPN problem is still an open question [11,5].

Finally, an important variant of this problem is the symmetric VPN prob-
lem, where each vertex has one single integer bound b, representing the total
amount of traffic that v can exchange with the other nodes: in this case, a so-
lution specifies an u — v path for each unordered pair of nodes and a capacity
reservation vector in such a way that every valid traffic matrix can be routed
via the selected paths, where a valid traffic matrix now specifies an amount of
flow that each unordered pair of nodes wishes to exchange, without exceeding
the given threshold for each node. Both papers [1] and [2] show that an optimal
tree solution can be computed in polynomial time. It has been conjectured in
Erlebach et al. [3] and in Italiano et al. [5] that there always exists an optimal
solution to the symmetric VPN problem that is a tree solution: this has become
known as the VPN tree routing conjecture. The conjecture has first been proved
for ring networks [6,7], and was finally settled for general graphs by Goyal et al.
8]

Recently, Fiorini et al. [10] started the investigation of the symmetric VPN
problem with concave costs. More precisely, the concave symmetric VPN problem
is defined as the symmetric VPN problem, but the contribution of each edge to



the total cost is proportional to some concave non-decreasing function of the
capacity reservation. The motivation for studying this problem is due to the
fact that buying capacity can often reflect an economy of scale principle: the
more capacity is installed, the less is the per-unit reservation cost. They give
a constant factor approximation algorithm for the problem, and show that also
in this case there always exists an optimal solution that has a tree structure.
An alternative subsequent proof of the latter result is also given by Goyal et al.
[13]. The investigation of the concave asymmetric VPN problem has not been
addressed so far.

The importance of tree solutions becomes more evident in the context of
symmetric VPN and balanced VPN, where any tree solution has in fact a central
hub node, as shown by [2] for the symmetric case and by [5] for the balanced
case. More precisely, any tree solution in these cases has enough capacity such
that all the terminal nodes could simultaneously route their traffic to some hub
node r in network. Combining this with some simple observations, it follows
that computing the cheapest tree solution reduces to computing the cheapest
way to simultaneously send a given amount flow from the terminal nodes to
some selected hub node 7. In case of linear edge costs [2,5], the latter min-cost
flow problem becomes simply a shortest path tree problem. In case that the edge
costs are proportional to a non-decreasing concave cost function [10], the latter
min-cost flow problem is known as Single Sink Buy-At-Bulk (SSBB) problem (a
formal definition is given in the next section). Differently, the above property
does not hold for tree solutions of asymmetric VPN instances.

We point out that in the literature there is another possible definition of
SsBB that does not compute costs according to a concave cost function, but
instead deals with an input set of possible cable types that may be installed on
the edges, each with different capacity and cost. For this latter version of the
problem, the first constant approximation (roughly 2000) is due to Guha et al.
[14], subsequently reduced to 216 by Talwar [15] and to 76.8 by Gupta et al.
[16], with an algorithm based on random sampling. Refining their approach, the
approximation was later reduced to 65.49 by Jothi and Raghavachari [17], and
eventually to 24.92 by Grandoni and Italiano [18]. In this paper, according to
the first definition, we however refer to SSBB as the problem of routing a given
amount of flow from some terminal nodes to a hub node minimizing a concave
cost function on the capacity installed on the edges. It is shown in [10] that the
(expected) 24.92-approximation algorithm of Grandoni and Italiano [18] can be
used to obtain a tree solution with the same approximation factor for our version
of SsBB.

1.2 Our Contribution

We give the first constant factor approximation algorithm for the asymmetric
VPN problem with arbitrary concave costs, showing that a tree solution of ex-
pected cost at most 49.84- O PT can be computed in polynomial time. Moreover,
in case of linear cost, we show that for any fixed ¢ > 0 a (2 + a%)—approximate



solution can be obtained in polynomial time, with R := > b, S := > by,
and without loss of generality R > S.

The key-point of our approximation results is showing that there always ex-
ists a cheap solution with a capacitated central hub node, which in particular has
a cost of at most twice the optimum. More precisely, there exists a 2-approximate
solution with enough capacity such that any subset of terminals could simulta-
neously send their flow to a hub node r up to a cumulative amount of S. Then,
we show how to approximate such a centralized solution by using known results
on SSBB. Based on this, we can then state that there exists a VPN tree solution,
with cost at most 2 - OPT. This substantially improves the previous known up-
per bound of 4.74 on the ratio between an optimal solution and an optimal tree
solution, which only applies in case of linear costs. We remark that our result
holds considering any non-decreasing concave cost function.

The technique used to prove our results is substantially different from the
previous approaches known in literature. In fact, approximation algorithms de-
veloped in the past mostly relate on computing bounds on the global cost of an
optimal solution, e.g. showing that an approximate solution constructed out of
several matchings or Steiner trees, has a total cost that is not that far from the
optimum [9,4,16].

In contrast, we focus locally on the capacity installed on an edge, and we
show that, given any feasible solution, we can obtain a new solution with a
capacitated central hub node, such that, on average the capacity on an edge
is at most doubled. This result is independent on the cost function. Still, we
reinterpret the known fact that, given a set of paths, the minimal amount of
capacity to install on an edge can be computed by solving a bipartite matching
problem on some auxiliary graph. Using duality, we look instead at minimal
verter covers on such graphs, and this reinterpretation allows us to develop a
very simple analysis for our statement.

Eventually, we answer the open question regarding the complexity status of
the balanced VPN problem with linear costs. We prove that it is NP-hard even
with unit thresholds on each node.

2 Description of the Problem

In this section we describe in detail the problem addressed in this paper, and
other related problems that we will use to state our results.

(Concave/Linear) Virtual Private Network. An instance Z of the concave
Virtual Private Network (CVPN) problem consists of an undirected connected
graph G = (V, E) with edge costs ¢ : E — QT, two non-negative integer vectors
bt €ZV,b= € ZV, as well as a concave non-decreasing function f: Q; — Q..

A vertex v such that b +b; > 0 is referred to as a terminal: by duplicating
nodes, we can assume without loss of generality that each terminal is either a
sender s, with b > 0,b7 = 0, or a receiver r, with b = 0,b. > 0. Let S and
R be set of senders and receivers, respectively.



The vectors b™ and b~ specify a set of valid traffic matrices that can be
interpreted as follows. Let Kg r be the complete bipartite graph with nodes
partitioned into senders and receivers: each valid traffic matrix corresponds to a
fractional b-matching on Kg r and vice versa.

A solution to an instance of the problem is a pair (P,x), where P is a
collection of paths P := {P,, | Vr € R, s € S}, and 2 € QF specifies the capacity
to install on each edge of the network. A solution is feasible if the installed
capacities suffice to route each valid traffic matrix via the selected paths P. A
feasible solution is optimal if it minimizes the emerging cost > .5 ce - f(ze).

If f(ze) = z, that means we have linear costs on the edges, we term this
problem just Virtual Private Network (VPN) problem. We call an instance of
the problem balanced whenever S := 3 _obf equals R :=3 b .

Given a collection of paths P, the minimum amount of capacity z. that has
to be install on e € E to turn (P, x) into a feasible solution can be computed in
polynomial time as follows (see [2,5,4] for details):

x. = maximal cardinality of a b-matching in G, = (S U R, E.),
with (s,7) € E. & e € P,

Notice that, since the graph G, is bipartite, an optimum capacity reservation
vector x will always be integer.

Single Sink Buy-At-Bulk. An instance of the Single Sink Buy-At-Bulk (SSBB)
problem consists of an undirected connected graph G = (V, E) with edge costs
c: F — Q4, a demand function d : V. — N, a root » € V and a concave
non-decreasing function f: Q4 — Q4.

The aim is to find capacities . € Q4 for the edges, sufficient to simulta-
neously route a demand of d(v) from each node v to the root, such that the
emerging cost » . ce - f(xe) is minimized.

Sometimes it is assumed that d(v) € {0,1}, and in this case the vertices
D ={v eV |dw) =1} are called clients.

Single Sink Rent-or-Buy. An instance of the Single Sink Rent-or-Buy (SROB)
problem consists of an undirected connected graph G = (V, E) with edge costs
c: F — Q4, a demand function d : V — N, a root r € V and a parameter
M >1.

The aim is to find capacities z. € Q4 for the edges, sufficient to simulta-
neously route a demand of d(v) from each node v to the root, such that the
emerging cost ). p Ce - min{x., M} is minimized. Note that this problem is a
special case of Single Sink Buy-At-Bulk.

Steiner Tree. An instance of the Steiner tree problem consists of an undirected
connected graph G = (V, E) with edge costs ¢: E — Q4 and a set of terminals
KCV.

The aim is to find the cheapest tree T' C E spanning the terminals.



3 Approximation Results

We now state the first constant factor approximation algorithm for CVPN, start-
ing with some simplifying assumptions that we can make on a CVPN instance
without loss of generality.

First, by duplicating nodes, we may assume b*,b~ to be 0/1 vectors, that
means, bf = 1,b; = 0 for a sender s, and b7 = 0,b; = 1 for a receiver r. The
latter assumption is correct if we can guarantee that the paths in a solution
between copies of a terminal v and copies of a terminal u are all the same. Our
algorithm developed below can be easily adapted in such a way that it satisfies
the latter consistence property, and that it runs in polynomial time even if the
thresholds are not polynomially bounded. Note that, under these assumptions,
S =|S] and R = |R|. Then by symmetry, suppose that |R| > |S].

We propose the following algorithm.

Algorithm 1 cVPN algorithm
1. Choose a sender s* € S uniformly at random as the hub
2. Compute a pssgs-approximate SSBB tree solution (zc)ecr for graph G with clients
S UR, root s and cost function c - f(min{ze, |S|})
3. Return ((Psr)ses,rer, ') with path Ps, being the unique path in the tree defined
by the support of z., and x, = min{z., |S|}

Note that f(min{z,,|S|}) indeed is concave and non-decreasing in .. Let
OPT := OPTypx(Z) be the optimum cost for the CVPN instance Z.

Let us first argue, that the capacity reservation x/, in fact suffices. Consider
an edge e, which is used by k paths in the SSBB solution. Then the capacity
reservation is 2, > min{k, |S|}. It is easy to see that this is sufficient for the
constructed CVPN solution. Clearly the cost of this solution is equal to the cost
of the SsBB-solution.

We will now show that indeed, there is a SSBB-solution of cost at most 2-OPT
for the instance defined in Step (2) of the algorithm. As it was pointed out in
[10], any solution for SSBB can then be turned into a tree solution of at most
the same cost!.

To prove this, we first define 7’ as a modified CVPN instance, which differs
from Z in such a way that there is a single sender with non-unit threshold, and
in particular:

|S] ifv=s*

0 otherwise

1 ifveSUR
0 otherwise

bi(T) = { and b, (Z') = {

! This is not true anymore, if the function f is not concave, but defined by a set of
cables. In that case one might loose a factor of 2 in the approximation.



Intuitively we reroute all flow through the hub s*. We will now prove that this
new CVPN instance coincides with the SSBB problem, i.e. their optimum values
are identical.

Let O PTgsspi be the cost of an optimum SSBB solution for the instance defined
in Step (2) of the algorithm.

Lemma 1. OPTypn(Z') = OPTsspg.

Proof. Let Ps«, be the paths in a CVPN solution for Z’. Consider an edge ¢ € E
and let v1,...,vx € SU R be the nodes, such that e € Py«,,. If kK < |S| we can
define a traffic matrix in which s* sends 1 unit of flow to all v;. If k > |S|, we
may send 1 unit of flow from s* to each node in vy, ..., v|s. Anyway the needed
capacity of e is z, = min{k, |S|}, which costs ¢, - f(min{k,|S|}). This is the
same amount, which an SSBB solution pays for capacity k on e € E. Thus both
problems are equal. a

The critical point is to show that:
Lemma 2. E[OPTyu(Z")] < 2-OPTyun(T).

Proof. Let P = {Ps, | s € S,r € R} be the set of paths in the optimum cVPN
solution for Z and z. be the induced capacities. We need to construct a CVPN
solution of 7', consisting of s*-v paths P.., for v € SUR.

The solution is surprisingly simple: Choose a receiver r* € R uniformly at
random as a second hub. Take P..,. := P, as s*-r path. Furthermore concate-
nate Pl., := P« + Pes to obtain a s*-s path. To be more precise we can
shortcut the latter paths, such that they do not contain any edge twice.

We define a sufficient capacity reservation x/, as follows: Install |S| units of
capacity on the path Ps«,.«. Then for each sender s € S (receiver r € R) install in
a cumulative manner one unit of capacity on Ps.~ (on Ps«,, respectively). Note
that 2/, is a random variable, depending on the choice of s* and r*. We show
that E[xl] < 2x.. Once we have done this, the claim easily follows from Jensen’s
inequality and concavity of f:

E[OPTye(T')] < E[Z cef ()] < Z cef (Elze])] <2+ OPTvey(T)
e€l e€l

Now consider an edge e € E. Since we want to bound the quantity F[z.] in
terms of the original capacity z., let us inspect, how this capacity is determined.
Define the bipartite graph G. = (SUR, E.) containing an edge (s,r) € E, if and
only if e € P,,.. Then x, must be the cardinality of a maximal matching in Ge.
Kénig’s theorem (see e.g. [19,20]) says that there is a vertex cover C C SUR
with z, = |C| (see Figure 1 for a visualization).

We now distinguish two cases and account their expected contribution to
E[z].

e
1. Case: s* € SNC orr* € RNC. We account the worst case of |S| units of

capacity. The expected contribution is then
1SN

5]

IRNC|

Pr[(s* € SNC)V (r* e RNC)|-|S| < ]

1S+

S <|C]
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Figure 1. Example of a CVPN instance in (a), where terminals are depicted as rectan-
gles, senders are drawn solid. Only paths, crossing edge e are shown. In (b) the graph
G with vertex cover C is visualized, implying that z. = 2.

using |R| > |S|.

2. Case: s* € S\C,r* € R\C. We bound the probability of this case by 1. We
know that edge (s*,r*) cannot exist in G, since all edges need to be incident
to C. Consequently e does not lie on the path Ps«,«. Thus we just have to
install 1 unit of capacity for each sender s, such that (s,7*) € E.. But only
sender in S N C' may be adjacent to r* in G, thus this number is at most
|SNC|. A similar argument holds for the receivers. The expected contribution
of this case is consequently upperbounded by |SNC|+ |[RNC| = |C|.

Combining the expected capacities for both cases we derive that E[z]] < 2|C| =
2z, which implies the claim. a

As a consequence, our algorithm yields a 2pgssg-approximation. Using the
expected 24.92-approximation of [18], we conclude

Theorem 1. There is an expected 49.84-approximation algorithm for CVPN
which even yields a tree solution.

Using the derandomized SsBB algorithm of van Zuylen [21] with an approxi-
mation factor of 27.72 and the fact that all choices for s* € S can be easily tried
out, one obtains

Corollary 1. There is a deterministic factor 55.44-approzimation algorithm for
CVPN, which even yields a tree solution.



Corollary 2. Given any CVPN solution of cost o, one can find deterministically
and in polynomial time a tree solution of cost at most 2a.

Until now the best upper bound on the ratio of optimum solution by optimum
tree solution was 3 + /3 ~ 4.74 due to [9] which only worked in case of linear
cost.

3.1 Linear Costs

Next suppose that f(z.) = z., meaning that we have linear costs on the edges.
The 3.55-approximation algorithm of [4] still yields the best known ratio for
VPN.

Observe that the cost function ¢, - f(min{x., |S|}) = ¢, - min{z,, |S|} for
the SSBB instance constructed in the algorithm, matches the definition for the
Single Sink Rent-or-Buy problem (SROB) with parameter M = |S|, root s* and
clients S U R, thus any psros-approximate SROB algorithm can be turned into a
2psrop-algorithm for VPN.

In general pgrop < 2.92 is the best known bound due to [22], but in a special
case we can do better. In [22] it was proved, that for any constant 6 > 0, there
isal+ 6‘—]\3‘—approximation algorithm for SROB. Since D = S U R is the set of
clients and M = |S], this directly yields

Corollary 3. For any fized ¢ > 0, there is a polynomial time (2 + 5%)—appm-
ximation algorithm for VPN.

Recall that this result also holds in case of non-unit demands.

4 Hardness of Balanced VPN

We here consider the balanced VPN problem with linear costs. Recall that, while
the asymmetric VPN is NP-hard even restricted to tree solutions, an optimal tree
solution for this case can be computed in polynomial time as in the symmetric
version [5]. So far, the complexity of the balance VPN was an open question
[5,11]: we now show that the problem is NP-hard even with unit thresholds on
the nodes, by reduction from the Steiner Tree problem.

Given an instance Z for Steiner Tree consisting of a graph G = (V, E) with
cost function ¢ : E — Q, and set of k 4+ 1 terminals {v1,...,vg, vk11}, We
construct an instance Z’ of the balanced VPN problem on a graph G’ = (V' E')
as follows.

First, introduce two large numbers: C':= ) _pc. + 1, and M > (k +1)C.
To construct G’ from G, add a vertex ay and make it adjacent to the vertices
v1, Vg, ...,V by edges of cost C'. Then, add a path vgy1,a1, a2, as, as, where the
first two edges of the path have cost M, while the last two edges have cost kM.
Finally, add k vertices wy, wo, ..., wk, each of them adjacent to as with a zero
cost edge, and add 2k — 1 vertices w1, us, . .., usk—1, each of them adjacent to as
with a zero cost edge. Figure 2 shows the resulting graph G'.
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Figure 2. VPN instance Z'. Edges are labeled with their cost. Terminals are depicted
as rectangles, senders are drawn in gray.

Define the set of senders as S := {a1} U {u1,uz,...,u2x—1} and the set of
receivers as R := {v1,va,..., v} U{wi,we,...,w;}. Note that indeed |S| = |R].

Lemma 3. There exists a solution to the Steiner tree instance I of cost at most
C* if and only if there exists a solution to the balanced VPN instance I' with
cost at most Z = 2k*M + 2M + kC + C*.

Proof. (=) The only if part is trivial. Suppose there exists a solution T' to the
Steiner tree instance Z of cost C*. We construct a solution to Z’ by defining the
following paths:

— Pow, ={a1,a2} U{az,w;}, fori =1,... k;

— Puv; = {a1,v5+1} U {the edges of the unique (vi4+1 — v;)-path induced by
T}, fori=1,...,k;

= Puw, = {uj,a3} U{as, a2} U{ag,wi}, fori=1,... k j=1,...,2k—1;

— Pyjo, = {uj,a3} U{as,as} U{ag,vi}, fori =1,...k, j=1,...,2k— 1.

Finally, install the following amount of capacity on the edges of the graph:
xe = k for e = {az,a3} and e = {asz, a4}, xz. = 0 for e € E\T and z, = 1
otherwise. It is easy to see that the resulting set of paths and the capacity
vector x define a solution to Z’ of cost at most Z.

(«<=) For the reverse direction, suppose we have a VPN solution (P, z) to 7'
with cost at most Z. Recall that we may assume x to be an integer vector. We
now have to argue that in fact this solution must be of the same structure as
suggested in the (=) part.

First, we show that the paths in P from a; to v; (i = 1,...,k) contain
the edge {a1,vg+1}, while the paths from aq to w; (i = 1,...,k) contain the



edge {a1,az}. Similarly, we show that the paths from u; to v; (i = 1,...,k
and j =1,...,2k — 1) contain the edge {as,as}, while the paths from u; to w;
(t=1,...,kand j =1,...,2k — 1) contain the edge {az2,as}. Then, under the
above assumptions, we show that the support of the solution contains a set of
edges T' C F that span the vertices {v1, ..., vx+1} and whose total cost does not
exceed C*. The result then follows.

Claim 1. Fori=1,...,k, we have {a1,vp11} € Payv, and {a1,a2} € Py,

Proof. Suppose there is a path from a; to some node v; that does not contain
the edge {a1, vkt1}. Necessarily, it must contain the edges {a1,as}, {az, a3} and
{as,a4}. This means, that the capacity to be installed on the latter edges fulfills
Tajas > 1 and Zayas + Tazay, > (2k — 1) + 2, where the last inequality easily
follows considering the valid traffic matrix, in which a; sends 1 unit of flow to v;
and the remaining senders send 2k — 1 units of flow to the remaining receivers.
Therefore, the cost of the emerging solution is at least 2k2M + kM + M > Z
for every k > 2, yielding a contradiction. We can prove in a similar manner that
{a1,a2} € Py, foralli=1,... k. O

Claim 2. Fori=1,...,k and j =1,...,2k — 1, we have {a3, a4} € P,
{ag,a3} S Puj-wy

Ju; and

Proof. First, we focus on the capacity installed on the edges e = {as,a3} and
e’ = {as,aq}. Clearly, x. +x, > 2k—1. We now prove that in fact the inequality
is strict.

Suppose it holds with equality. We inspect the bipartite graphs G, and G/
(this time without a1, since we already proved that it uses neither e nor e’) and
let C,, C,r be the minimum vertex covers on G, G/, respectively. By hypothesis,
|Ce| + |Cer| = 2k — 1. That means that there is at least one node r € R that
does not belong to any of the two covers. Now notice that G, and G are
complementary bipartite graphs, since the union of their edges gives the complete
bipartite graph Ka_1 2k It follows than that C.UC.s = S\{a1}: otherwise, there
would be a node s € S\ ({a1} UC, UC) with an incident edge (s,r), that is
neither covered by C, nor by C./, a contradiction.

As a conclusion all senders in C, route to the 2k receivers on paths containing
the edge e, while all senders in Ce/ route to the 2k receivers on paths containing
the edge ¢’. Then it is easy to see, that the installed capacities satisfy z,, 4, >k
and xq,q, > k. Therefore, the cost of the emerging solution is at least 2k2M —
kM 4+ 2kM > Z, for k > 3, a contradiction.

It follows that x. + z., > 2k. Suppose now, there is a path from some u;
to some v; that does not contain the edge e = {as,a4}. Necessarily, it must
contain the edges {a1, a2} and {vk41,a1}. Using the previous claim, it is easy
to see that the installed capacities satisfy x., 4, > 2 and similarly x4,q, > 2.
Therefore, the cost of the emerging solution is at least 2k?M + 4M > Z, again
a contradiction.

We can prove in a similar manner that there is no path from some u; to some
w; that does not contain the edge ¢’ = {az, as}. O



Putting all together, it follows that @y, .4, > 1, Tayan = 1, Tagas > K,
ZTaga, > k, and the cost of the capacity installed on the latter edges is at least
2k2M + 2kM.

Now, consider the edges {as,v;}, ¢ = 1,...,k: clearly, > .| , ZTayw, >k,
since we can define a traffic matrix where k senders in S\ {a;} simultaneously

send k units of flow to vy, ..., v. It follows that >°. | | Cayv,Tage, = k- C.
Finally, let T' be the subset of edges of F that are in the support of the
solution. Suppose that T" does not span the nodes vy, ..., vg41. Then there exists

at least one node v; such that the path from a; to v; contains at least 2 edges
with cost C. But in this case, we would have ) ., , Zq,0, > k+ 1 and the

cost of the solution exceeds Z. We conclude that indeed T contains a Steiner
tree and ¢(T) < Z — (2k*M + 2M + kC) = C*. O

From the discussions above, it follows:
Theorem 2. The balanced VPN problem is NP-hard.

Note that the above reduction is not approximation preserving, i.e. in con-
trast to NP-hardness, the APX-hardness of Steiner tree [23] is not conveyed
to balanced VPN. In other words, our reduction does not exclude the possible
existence of a PTAS for balanced VPN.
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