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hAbstra
t We revisit simultaneous Diophantine approximation, a 
lassi-
al problem from the geometry of numbers whi
h has many appli
ationsin algorithms and 
omplexity. The input to the de
ision version of thisproblem 
onsists of a rational ve
tor α ∈ Qn, an error bound ε and adenominator bound N ∈ N+. One has to de
ide whether there existsan integer, 
alled the denominator Q with 1 ≤ Q ≤ N su
h that thedistan
e of ea
h number Q · αi to its nearest integer is bounded by ε.Lagarias has shown that this problem is NP-
omplete and optimizationversions have been shown to be hard to approximate within a fa
tor
nc/ log log n for some 
onstant c > 0. We strengthen the existing hardnessresults and show that the optimization problem of �nding the smallestdenominator Q ∈ N+ su
h that the distan
es of Q · αi to the nearest in-teger are bounded by ε is hard to approximate within a fa
tor 2n unlessP = NP.We then outline two further appli
ations of this strengthening: We showthat a dire
ted version of Diophantine approximation is also hard toapproximate. Furthermore we prove that the mixing set problem witharbitrary 
apa
ities is NP-hard. This solves an open problem raised byConforti, Di Summa and Wolsey.1 Introdu
tionDiophantine approximation is one of the fundamental topi
s in mathemati
s.Roughly speaking, the obje
tive is to repla
e a number or a ve
tor, by anothernumber or ve
tor whi
h is very 
lose to the original, but less 
omplex in terms offra
tionality. A famous example is the Gregorian 
alendar, whi
h approximatesa solar year with its leap year rule.Sin
e the invention of the LLL algorithm [15℄, simultaneous Diophantine ap-proximation has been a very important obje
t of study also in 
omputer s
ien
e.One powerful result, for example, is the one of Frank and Tardos [7℄ who pro-vided an algorithm based on Diophantine approximation and the LLL algorithm
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2whi
h, among other things, shows that a 
ombinatorial 0/1-optimization prob-lem is polynomial if and only if it is strongly polynomial.Let us denote the distan
e of a real number x ∈ R to its nearest integer by
{x} = min{|x − z| : z ∈ Z} and the distan
e of a ve
tor v ∈ Rn to its nearestinteger ve
tor w.r.t. the in�nity norm ℓ∞ by {{v}} = min{‖v − z‖∞ : z ∈ Zn}.Lagarias [14℄ has shown that it is NP-
omplete to de
ide whether there existsan integer Q ∈ {1, . . . , N} with {{Q ·α}} ≤ ε, given α ∈ Qn, N ∈ N+ and ε > 0.The best approximation error δN of a ve
tor α ∈ Qn with denominator bound
N ∈ N+ is de�ned as δN = min{ {{Q · α}} : Q ∈ {1, . . . , N} }. Lagarias [14℄showed also that the existen
e of a polynomial algorithm, whi
h 
omputes oninput α ∈ Qn and N ∈ N+ a number Q ∈ {1, . . . , 2n/2 ·N} with {{Q ·α}} ≤ δNimplies NP = 
o-NP.Lagarias' redu
tion was then sharpened to an inapproximability result byRössner and Seifert [21℄ and Chen and Meng [1℄ to the extent that, given α ∈ Qnand N as above, it is NP-hard to 
ompute a Q ∈ {1, . . . , ⌊nc/ log log n⌋N} with
{{Q · α}} ≤ nc/ log log nδN where c > 0 is a 
onstant. We revisit the redu
tionte
hnique of Lagarias [14℄ and its sharpening by Rössner and Seifert [21℄ toobtain the following theorem.Theorem 1. There exists a 
onstant c > 0 and a polynomial time transforma-tion whi
h maps an instan
e C of SAT to an instan
e α ∈ Qn, N ∈ N+, ε ∈ Q+of simultaneous Diophantine approximation su
h that the following holds.i) If C is satis�able, then there is a Q ∈ {⌈N/2⌉, . . . , N} with {{Q · α}} ≤ ε.ii) If C is not satis�able, then one has {{Q · α}} ≥ nc/ log log n · ε for ea
h

Q ∈ {1, . . . , 2n · N}.iii) The error bound ε satis�es ε ≤ 1/(22n).The 
ru
ial di�eren
es between our result and the result in [21℄ are as follows. In
ase i), there exists a good Q whi
h is at least ⌈N/2⌉ whereas the result in [21℄guarantees only a good Q in the interval {1, . . . , N}. In 
ase ii) ea
h Q whi
his bounded by 2n ·N is violating the distan
e bound by nc/ log log n, whereas theredu
tion of [21℄ together with the result of [1℄ guarantees this violation onlyfor Q ∈ {1, . . . , ⌊nc/ log log n⌋ · N}. These di�eren
es fa
ilitate the appli
ation ofour hardness result to other problems from the geometry of numbers and integerprogramming. We des
ribe three su
h appli
ations in this paper.Appli
ationsOne immediate 
onsequen
e of Theorem 1 is that the best denominator problem
min{Q ∈ N+ : {{Q · α}} ≤ ε}
annot be approximated within a fa
tor of 2n unless P = NP, see Corollary 1.Furthermore, it follows that the existen
e of a polynomial algorithm, whi
h 
om-putes on input α ∈ Qn, N ∈ N+ a number Q ∈ {1, . . . , 2n·N} with {{Q·α}} ≤ δNimplies P = NP improving the result of Lagarias [14℄ mentioned above to the



3extent of repla
ing the fa
tor 2n/2 and the assumption NP 6= 
o-NP by 2n andP 6= NP respe
tively, see Corollary 2.We then provide a strong inapproximability result for dire
ted Diophantineapproximation, where the distan
e to the nearest integer ve
tor whi
h is greaterthan or equal to Q ·α has to be small. Dire
ted Diophantine approximation wasfor example 
onsidered by Henk and Weismantel [12℄ in the 
ontext of an inte-ger programming problem and an optimization version of dire
ted Diophantineapproximation was shown to be hard to approximate within a 
onstant fa
torby the authors of this paper [6℄.Finally we apply our results to solve an open problem raised by Conforti,Di Summa and Wolsey [3℄ 
on
erning the 
omplexity of a linear optimizationproblem over a mixing set with arbitrary 
apa
ities, a type of integer programwhi
h frequently appears in produ
tion planning.2 A strengthening of the Lagarias, Rössner-Seifertredu
tionThe goal of this se
tion is to prove Theorem 1. To do this, we rely on severalresults from the literature. Our starting point is a similar result for the shortestinteger relation problem. Here, one is given a ve
tor a ∈ Zn and the goal is to�nd a nonzero integral solution x ∈ Zn of the equation aT x = 0 of minimumin�nity norm. By modifying a redu
tion from Super-Sat to shortest ve
tor inthe in�nity norm by Dinur [5℄, Chen and Meng [1℄ showed that there exists aredu
tion from SAT to shortest integer relation with the property that if C issatis�able, then the optimum value of the shortest integer relation problem is oneand if C is unsatis�able, then the optimum value of the shortest integer relationproblem is at least nc/ log log n for some 
onstant c > 0. This 
an be extended tothe following result whi
h we prove in the appendix. The only di�eren
e to thestated result above is the presen
e of 
ondition 
).Lemma 1. There exists a 
onstant c > 0 and a polynomial time algorithm,whi
h maps a SAT-formula C to an instan
e a ∈ Zn of shortest integer relation-with the following properties:a) If C is satis�able, then min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} = 1.b) If C is not satis�able, then min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} ≥ nc/ log log n.
) There exists an optimum solution x of min{‖x‖∞ : aT x = 0, x ∈ Zn−0} with
x1 ≥ 1.We pro
eed from Lemma 1 to show the existen
e of a redu
tion from SAT tosimultaneous Diophantine approximation with properties i), ii) and iii). For this,by Lemma 1 it is enough to provide a redu
tion from a shortest integer relationproblem min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} with the property that there existsan optimum solution x with x1 ≥ 1 to an instan
e of simultaneous Diophantineapproximation α0, . . . , αn, ε, N su
h that the following assertions hold.



4 I) If the optimum value of the shortest integer relation problem is one, thenthere exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Q · α}} ≤ ε.II) For ea
h ρ ∈ {1, . . . , n} the following statement is true: If the optimumvalue of the shortest integer relation problem is larger than ρ, then {{Q ·
α}} > ρ · ε for ea
h Q ∈ {1, . . . , 2n · N}.III) The error bound ε satis�es ε ≤ 1/(22n).The rest of the proof of Theorem 1 follows 
losely the proof of Lagarias [14℄and the one of Rössner and Seifert [21℄. Let min{‖x‖∞ : aT x = 0, x ∈ Zn−0} bethe instan
e of shortest integer relation. One 
an e�
iently �nd di�erent primes

p, q1, . . . , qn as well as natural numbers R and T in polynomial time, su
h that1. n ·
∑n

j=1 |aj | < pR < qT
1 < qT

2 < . . . < qT
n < (1 + 1

n ) · qT
12. p and all qi are 
o-prime to all aj3. qT

1 > 22n · pR4. The values of T, R, p, q1, . . . , qn are bounded by a polynomial in the inputlength of a.A proof of this 
laim with weaker bounds is presented in [14,21℄. The 
ru
ialdi�eren
e to the results in these papers is the bound 3), whi
h before statedthat pR times a polynomial in the input en
oding is at most qT
1 . Here we havethe exponential fa
tor 22n instead. The full proof is in the Appendix.The following system of 
ongruen
es appears already in [16℄ and is also 
ru
ialin the redu
tions presented in [14,21℄.

rj ≡pR aj (1)
rj ≡qT

i
0 ∀i 6= j (2)

rj 6≡qj
0 (3)For ea
h j, this is a system of 
ongruen
es with 
o-prime moduli and thus, theChinese remainder theorem (see, e.g. [18℄) guarantees that there exists a solution

rj for ea
h j = 1, . . . , n.Lemma 2. The systems
n

∑

j=1

xjaj = 0 and n
∑

j=1

xjrj ≡pR 0 (4)have the same set of integral solutions x ∈ Zn with ‖x‖∞ ≤ n.Proof. Sin
e aj ≡pR rj , ea
h solution x ∈ Zn of the equation on the left is also asolution of the 
ongruen
e equation on the right. If x ∈ Zn is a solution for the
ongruen
e on the right, then ∑n
j=1 ajxj ≡pR 0. Assume furthermore ‖x‖∞ ≤ n.If we 
an infer that the absolute value of ∑n

j=1 ajxj is stri
tly less than pR, then
∑n

j=1 ajxj = 0 follows. But
|

n
∑

j=1

xjaj | ≤ n ·

n
∑

j=1

|aj | < pRby the 
hoi
e of the prime numbers. ⊓⊔



5We now provide the 
onstru
tion of the instan
e α0, . . . , αn, ε, N of the si-multaneous Diophantine approximation problem for our redu
tion. By r−1
j ∈ Zwe denote the unique integer in {1, . . . , qT

j − 1} with rj · r
−1
j ≡qT

j
1. This mustexist sin
e rj 6≡qj

0 implies that rj is a unit in the ring ZqT
j
. The instan
e is

α0 =
1

pR

αj =
r−1
j

qT
j

, j = 1, . . . , n

N =

n
∑

j=1

rj

ε =
1

qT
1

.The bound iii) on ε follows from qT
1 > 22n · pR. Let x ∈ Zn be a solutionof the shortest integer relation problem with ‖x‖∞ ≤ 1. Consider the integer

Q =
∑n

j=1 rj ·xj whose absolute value is bounded by N =
∑n

j=1 rj . What is thedistan
e of Q · α to the nearest integer ve
tor in the in�nity norm?Sin
e ∑n
j=1 rj ·xj ≡pR

∑n
j=1 aj ·xj = 0 it follows that pR divides ∑n

j=1 rj ·xjwhi
h means that {Qα0} = 0. For i ≥ 1 one has r−1
i ·

∑n
j=1 rj · xj ≡qT

i
xi (sin
e

rj ≡qT
i

0 for i 6= j) and sin
e xi ∈ {0,±1} one has {Q·αi} ≤ 1/qT
i ≤ 1/qT

1 = ε. Inother words, Q is an integer whose absolute value is bounded by N whi
h satis�es
{{Q·α}} ≤ ε. This is almost 
ondition I), ex
ept that Q ∈ {⌈N/2⌉, . . . , N}mightnot be satis�ed.To a
hieve this additional bound on Q we use the fa
t that there exists anoptimal solution of the shortest integer relation problem whi
h satis�es x1 ≥ 1and we 
hoose r1 signi�
antly larger than the other rj . Consider again the systemof 
ongruen
es (1-3). Let B = pR

∏n
j=1 qT

j and let 0 ≤ r′j ≤ B/qT
j be a solutionto (1) and (2). If r′j 6≡qT

j
0, then rj = r′j otherwise rj = r′j + B/qT

j . Thus ea
h
rj is bounded by 0 ≤ rj ≤ 2 · B/qT

j . We 
hoose r1 however 
onsiderably larger,namely r1 = r′1+12nB/qT
1 or r′1+(12n+1)B/qT

1 . In this way we have r1 ≥ 6n·rj .By 
hoosing the rj in this way, we obtain the following lemma.Lemma 3. If min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} = 1, then there exists a Q ∈
{⌈N/2⌉, . . . , N} su
h that {{Q · α}} ≤ ε.Proof. By our assumption, there exists an optimum solution x ∈ Zn of theshortest integer relation problem with x1 = 1. Let Q, as in the dis
ussion above,be Q =

∑n
j=1 rjxj . We have already seen that {{Q · α}} ≤ ε holds and 
learly

Q ≤
∑n

j=1 rj = N . On the other hand x1 ≥ 1, ‖x‖∞ = 1 and r1 ≥ 6nrj for ea
h
j = 2, . . . , n implies Q ≥ N/2. ⊓⊔The next lemma provides 
ondition II).



6Lemma 4. Let ρ be any number in {1, . . . , n} and suppose there exists a Q ∈
{1, . . . , 2nN} with {{Q · α}} ≤ ρ · ε. Then, the optimum value of the shortestinteger relation problem is at most ρ.Proof. We 
onstru
t a solution x of the shortest integer relation instan
e: Let
xj be the smallest integer in absolute value with

Qr−1
j ≡qT

j
xj .We need to show three things, namely

‖x‖∞ ≤ ρ, x 6= 0 and aT x = 0. (5)The �rst assertion of (5) follows from the fa
t that qT
1 < qT

j < (1 + 1/ρ) · qT
1whi
h implies the stri
t inequality in

∣

∣

∣

∣

∣

xj

qT
j

∣

∣

∣

∣

∣

=

{

Qr−1
j

qT
j

}

≤ ρ · ε =
ρ

qT
1

<
ρ + 1

qT
j

.Observe that Q is a multiple of pR. If this was not the 
ase, then
{Qα0} =

{

Q

pR

}

≥
1

pR
>

ρ

qT
1

= ρ · ε,sin
e qT
1 > 22·npR and ρ ≤ n. We next show that Q =

∑n
i=1 xiri. This impliesdire
tly that x 6= 0, sin
e Q ≥ 1. Furthermore Q ≡pR 0 and Lemma 2 implytogether with ‖x‖∞ ≤ ρ that aT x = 0 and (5) is proved.Multiplying the equation Q · r−1

j ≡qT
j

xj with rj yields Q ≡qT
j

rjxj . Let
D =

∏n
j=1 qT

j . We have Q ≡qT
i

rixi and 0 ≡qT
i

rjxj for j 6= i and thus
Q ≡qT

i

∑n
j=1 rjxj . Sin
e the moduli qT

i are 
o-prime, this implies that Q ≡D
∑n

j=1 rjxj . We are done with the proof, on
e we have shown that Q < D/2 and
|
∑n

j=1 xjrj | < D/2, sin
e then both values must 
oin
ide if they are 
ongruentto ea
h other modulo D.We �rst bound the value of |∑n
j=1 xjrj |. This is at most ρ ·

∑n
j=1 rj ≤ n ·N .Applying the bound rj ≤ 13 · npRD/qT

1 and qT
1 > 22n · pR we 
an bound N by

N ≤ 13 · n2 · D/22n.Consequently
|

n
∑

j=1

xjrj | ≤ 13 · n3 · D/22nwhi
h is smaller than D/2 for n su�
iently large. Finally Q is bounded by 2nNwhi
h is also bounded by D/2 for n large enough. The 
laim follows. ⊓⊔This proves Theorem 1.



72.1 Hardness of the best denominatorWe now dis
uss the hardness of the best denominator problem. The input tothis problem is α1, . . . , αn, ε ∈ Q and the task is to �nd a smallest Q ∈ N+with {{Q · α}} ≤ ε. The following 
orollary is an immediate 
onsequen
e ofTheorem 1.Corollary 1. If P 6= NP, then there does not exist a polynomial time approxima-tion algorithm for the best denominator problem with an approximation fa
tor
2n.Furthermore we 
an strengthen the result of Lagarias [14℄ whi
h states that,if there exists a polynomial time algorithm whi
h, on input α ∈ Qn and N ∈ N+
omputes a Q ∈ {1, . . . , 2n/2N} with {{Q · α}} ≤ δN , then NP = 
o-NP. Re
allthat δN = min{ {{Q · α}} : Q ∈ {1, . . . , N} }. The strengthening is as follows.Corollary 2. If there exists a polynomial time algorithm whi
h 
omputes oninput α ∈ Qn and N ∈ N+ a Q ∈ {1, . . . , 2n · N} with {{Q · α}} ≤ δN , thenP = NP.Proof. Consider an instan
e α, N, ε whi
h stems from the redu
tion of a SAT-formula C as in Theorem 1 and suppose that there exists an algorithm whi
h
omputes in polynomial time a Q ∈ {1, . . . , 2nN} with {{Q · α}} ≤ δN . If
{{Q · α}} ≤ ε, then C is satis�able. Otherwise, C is unsatis�able. This impliesthe assertion. ⊓⊔3 Dire
ted Diophantine ApproximationIn this se
tion we 
onsider a variant of the 
lassi
al Diophantine approximationproblem, in whi
h we measure the distan
e of the ve
tor Q · α to the nearestinteger ve
tor whi
h is in ea
h 
omponent greater or equal than Q ·α. We use thenotation {x}↑ for the distan
e of the real number x ∈ R to the nearest integerwhi
h is greater or equal to x, {x}↑ = min{z − x : z ∈ Z, z ≥ x}. For a ve
tor
α ∈ Rn we denote its distan
e to the nearest integer greater or equal to α by
{{α}↑}, in other words

{{α}↑} = min{‖x− α‖∞ : x ∈ Zn, x ≥ α}.An instan
e of dire
ted Diophantine approximation 
onsists of α1, . . . , αn, ε, Nwith αi ∈ Q, ε ∈ Q and N ∈ N+. The goal of this se
tion is to show the followingtheorem.Theorem 2. There is a 
onstant c > 0 and a polynomial time transformationwhi
h maps a SAT instan
e C to an instan
e α0, . . . , αn, ε, N of dire
ted Dio-phantine approximation su
h that the following 
onditions hold.i') If C is satis�able, then there exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Q·α}↑} ≤
ε.



8ii') If C is unsatis�able, then for ea
h Q ∈ {1, . . . , ⌊nc/ log log n⌋N} one has
{{Q · α}↑} > 2nε.iii') The error bound ε satis�es ε ≤ 3/2n.Proof. For the proof of this theorem, we rely on Theorem 1. Let α1, . . . , αn, ε, Nbe a simultaneous Diophantine approximation instan
e whi
h results from thetransformation from SAT. From this, we 
onstru
t an instan
e of dire
ted Dio-phantine approximation α′

1, . . . , α
′
2n, N, ε′ with

α′
i = αi − δ i = 1, . . . , n

α′
i+n = −αi − δ i = 1, . . . , n

ε′ = 3ε,where δ = 2ε/N .Suppose that there exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Qα}} ≤ ε and let zibe the nearest integer to Q ·αi. Sin
e Q · δ ≥ ε it follows that Q(αi + δ) ≥ zi andthus that the distan
e of Q(αi+δ) to ⌊Q(αi+δ)⌋ is bounded by |Q(αi+δ)−zi| ≤
|Qαi−zi|+|Qδ| ≤ 3ε. This means that {Q(−αi−δ)}↑ ≤ 3ε. Similarly, Q(αi−δ) ≤
zi and thus {Q(αi− δ)}↑ is bounded by |Q(αi − δ)−zi| ≤ |Qαi−zi|+ |Qδ| ≤ 3ε.This implies property i').Next let ρ ∈ {1, . . . , n} and suppose that there exists a Q ∈ {1, . . . , ρN} with
{{Qα′}↑} ≤ 2nε′. We show that this implies that {{Qα}} ≤ 2ρε whi
h in turnshows that property ii') holds.For ea
h i ∈ {1, . . . , n} there exists an integer zi whi
h lies between Q(αi−δ)and Q(αi + δ), sin
e otherwise one of the values {Q(αi − δ)}↑ or {Q(−αi − δ)}↑is at least 1/2. But {{Q · α′}↑} ≤ 2nε′ = 2n3ε < 1/2, a 
ontradi
tion. Then
Q(αi − δ) ≤ zi ≤ Q(αi + δ) implies

|Qαi − zi| ≤ Qδ ≤ 2ρε.

⊓⊔4 Hardness of Mixing SetIn re
ent integer programming approa
hes for produ
tion planning the study ofsimple integer programs whi
h are part of more sophisti
ated models has be
omevery su

essful in pra
ti
e, see, e.g. [19℄. One of these simple integer programsis the so-
alled mixing set [9,2℄. The 
onstraint system of a mixing set problemis of the form
s + ai yi ≥ bi i = 1, . . . , n,

s ≥ 0
yi ∈ Z i = 1, . . . , n,
s ∈ R.

(6)where ai, bi ∈ Q. Optimizing a linear fun
tion over this mixed integer set 
an bedone in polynomial time if all ai are equal to one [9,17℄ or if ai+1/ai is an integerfor ea
h i = 1, . . . , n − 1 [22℄, see also [3,4℄ for subsequent simpler approa
hes.



9Conforti et al. [3℄ pose the problem, whether one 
an optimize a linear fun
-tion over the set of mixed-integer ve
tors de�ned by (6) also in the general 
ase,to whi
h they refer as the 
ase with arbitrary 
apa
ities, in polynomial time.In this se
tion, we apply our results on dire
ted Diophantine approximation toshow that this problem is NP-hard.Suppose we have an instan
e of the dire
ted Diophantine approximationproblem α, N, ε, where we are supposed to round down to the nearest integerve
tor. By using the notation {x}↓ = min{x − z : z ≤ x, z ∈ Z} for x ∈ R and
{{v}↓} = min{‖v−z‖∞ : z ∈ Zn, z ≤ v} and the observation that {x}↓ = {−x}↑it follows that Theorem 2 is also true if the rounding up operation is repla
ed byrounding down. We next formulate an integer program to 
ompute a Q whi
hyields a good approximation by rounding down and satis�es the denominatorbound Q ∈ {1, . . . , N}.

min
∑n

i=1(Q · αi − yi)

Q − 1/αi · yi ≥ 0 i = 1, . . . , n
Q ≥ 1
Q ≤ N

Q, y1, . . . , yn ∈ Z.The goal is to transform this integer program into a linear optimization problemover a mixing set. Consider the following mixing set.
Q − 1/αi · yi ≥ 0 i = 1, . . . , n

Q + 0 · y0 ≥ 1
Q − y−1 ≥ 0

Q ∈ R

y−1, y0, y1, . . . , yn ∈ Z.

(7)We now argue that, if the linear optimization problem over this mixing set 
anbe done in polynomial time, then P = NP.Suppose that the linear optimization problem 
an be solved in polynomialtime. Then, we 
an also solve the linear optimization problem over the non-empty fa
e of the 
onvex hull of the solutions whi
h is indu
ed by the inequality
Q − y−1 ≥ 0, see, e.g., [8℄. This enfor
es Q to be an integer. Next 
onsider thefollowing obje
tive fun
tion

min

n
∑

i=1

(Q · αi − yi) + (2n−1ε/N)(Q − N). (8)The sum on the left is measuring the distan
e of Q·α to its nearest integer ve
torfrom below in the ℓ1-norm. The term on the right stems from the removal of the
onstraint Q ≤ N , whi
h would not be allowed in a system de�ning a mixing set.In fa
t, we thereby follow a Lagrangian relaxation approa
h, whi
h is 
ommonin approximation algorithms, see e.g. [20℄, in order to show a hardness result.Theorem 3. Optimizing a linear fun
tion over a mixing set is NP-hard.



10Proof. Let α1, . . . , αn, N, ε be an instan
e of dire
ted Diophantine approxima-tion with rounding down, whi
h stems from a transformation from SAT, as inTheorem 2 and suppose that one 
an solve the linear optimization problem withobje
tive fun
tion (8) over the 
onvex hull of the mixing set. Then we 
an alsooptimize this over the fa
e indu
ed by Q− y−1 ≥ 0. This merely means that we
an �nd a pure integer optimum solution over the mixing set (7).Our instan
e α1, . . . , αn, N, ε has the following property. If the originatingSAT formula is satis�able, then there exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Q ·
α}↓} ≤ ε and if not, then there does not exist a Q ∈ {1, . . . , ⌊nc/ log log n⌋N}with {{Q · α}↓} ≤ 2nε.In the 
ase where the SAT formula is satis�able, let Q ∈ {⌈N/2⌉, . . . , N}with {{Q ·α}↓} ≤ ε. The obje
tive fun
tion value of this Q with the appropriate
yi yields an obje
tive fun
tion value bounded by n · ε.Suppose now that the SAT formula is not satis�able and 
onsider a solution
Q with appropriate yi of the mixing set problem. If Q ∈ {1, . . . , ⌊nc/ log log n⌋N},then the obje
tive fun
tion is at least

2nε − 2n−1ε = 2n−1ε.If Q is larger than ⌊nc/ log log n⌋N , then the obje
tive fun
tion value is at least
2n−1ε(⌊nc/ log log n⌋ − 1).Thus the problem of optimizing a linear fun
tion over a mixing set with arbitrary
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iety, 115(1, Ser. A):73�103, 2008.AppendixShortest integer relationBy modifying a redu
tion from Super-Sat to shortest ve
tor in the in�nity normby Dinur [5℄, Chen and Meng [1℄ showed that there exists a redu
tion fromSAT to shortest integer relation with the property that if C is satis�able, thenthe optimum value of the shortest integer relation problem is one and if C isunsatis�able, then the optimum value of the shortest integer relation problemis at least nc/ log log n for some 
onstant c > 0. Here, we show that this 
an beextended su
h that there exists an optimum solution of shortest integer relation,whose �rst 
omponent is nonzero, thus give a proof of Lemma 1.



12 Let min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} be an instan
e of a shortest integerrelation problem. Consider the matrix
A =















0 aT
0

T . . . 0T

0 0
T aT . . . 0T... ... ... . . . ...

0 0
T

0
T . . . aT

−1 eT
1 eT

2 . . . eT
n















∈ Z(n+1)×(n2+1)
ontaining n 
opies of aT on a shifted diagonal and having (−1, eT
1 , eT

2 , . . . , eT
n )as last row, where ei is the i-th n-dimensional unit 
olumn ve
tor. The rest is�lled by zeros.Clearly, the optimization problems min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} and

min{‖x‖∞ : Ax = 0, x ∈ Zn2+1 − 0} are equivalent and the se
ond optimizationproblem has the property that there is always an optimum solution with nonzero�rst entry. Kannan [13℄ provided an algorithm repla
ing a system Ax = 0 byone equation a′T x = 0 in polynomial time su
h that the sets {x ∈ Zn2+1 : Ax =

0, ‖x‖∞ ≤ µ} and {x ∈ Zn2+1 : a′x = 0, ‖x‖∞ ≤ µ} are identi
al. His algorithmis polynomial in the en
oding length of A and µ. Choosing µ = n is enoughfor our purposes so that Kannan's algorithm yields the desired shortest integerrelation instan
e min{‖x‖∞ : a′T x = 0, x ∈ Zn2+1 − 0}.Computing dense primesIn the redu
tion from shortest integer relation to simultaneous Diophantine ap-proximation (Se
t. 2) we rely on the fa
t that one 
an e�
iently 
ompute primenumbers p, q1, . . . , qn and integers R and T with1. n ·
∑n

j=1 |aj | < pR < qT
1 < qT

2 < . . . < qT
n < (1 + 1

n ) · qT
1 ,2. p and all qi are 
o-prime to all aj ,3. qT

1 > 22n · pR,4. the values of T, R, p, q1, . . . , qn are bounded by a polynomial in the inputlength of a.The algorithm whi
h we now present is almost identi
al, up to better bounds, tothe one proposed by Lagarias [14℄ and uses two deep results from number theory.The �rst one is the prime number theorem, whi
h states that π(n) ≈ n/ logn,see, e.g. [18℄. The se
ond result is the following theorem by Heath-Brown andIwanie
 [10,11℄.Theorem 4. For ea
h δ > 11/20, there exists a 
onstant cδ su
h the interval
[z, z + zδ] 
ontains a prime for ea
h z > cδ.Let m be the binary en
oding length of a. The number of di�erent primeswhi
h divide a 
omponent of a is bounded by m. We 
an 
ompute the �rst m+1prime numbers with the sieve of Eratosthenes. Here the prime number theoremis used, sin
e we run the sieve on the �rst O(m log m) natural numbers. Out of



13these primes we 
hoose one whi
h is 
o-prime to all 
omponents of a. This is theprime p from above. Next, we 
ompute the smallest integers R and T su
h that
pR > n ·

∑n
j=1 |aj | and 2T > 22npR. The values of R and T are bounded by apolynomial in m.Next, the result of Heath-Brown and Iwanie
 
omes into play. Let δ = 3/5and 
onsider the sequen
e

zi = T 20 + i · (2T )12, for i = 0, . . . , T 2 − 1.Ea
h interval [zi, zi + z
3/5
i ] 
ontains a prime number, sin
e may may assume

T > cδ. The number z
3/5
i 
an be bounded by

z
3/5
i =

(

T 20 + i(2T )12
)3/5

<
(

T 20 + T 2(2T )12
)3/5

≤ (2T )12.From this it follows that zi + z
3/5
i < zi+1, whi
h implies that the interval

[T 20, T 20 + T 2(2T )12] 
ontains T 2 prime numbers. Sin
e T 2(2T )12 < T 15 for
T large enough, we infer that the interval

[T 20, T 20 + T 15]
ontains T 2 primes. If we denote the largest and smallest prime in this intervalby pmax and pmin respe
tively, then pmax/pmin ≤ 1 + (1/T )5 and 
onsequently
(pmax/pmin)

T ≤ (1 + (1/T )5)T ≤ e1/T 4

≤ 1 + 2/T 4 ≤ 1 +
1

n
.Here, we used the inequality 1 + x ≤ ex and ex ≤ 1 + 2x for x ∈ [0, 1].By 
hoosing T larger than m + n + 1, we may obtain prime numbers q1 <

. . . < qn from the interval [T 20, T 20 + T 15], whi
h are 
o-prime to p and ea
h ajand hen
e satisfy the 
onditions (1�4).


