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Abstract We revisit simultaneous Diophantine approzimation, a classi-
cal problem from the geometry of numbers which has many applications
in algorithms and complexity. The input to the decision version of this
problem cousists of a rational vector a € Q", an error bound ¢ and a
denominator bound N € Ny. One has to decide whether there exists
an integer, called the denominator @Q with 1 < @ < N such that the
distance of each number @ - a; to its nearest integer is bounded by e.
Lagarias has shown that this problem is NP-complete and optimization
versions have been shown to be hard to approximate within a factor
ne/ 19818 for some constant ¢ > 0. We strengthen the existing hardness
results and show that the optimization problem of finding the smallest
denominator Q € Ny such that the distances of Q) - «; to the nearest in-
teger are bounded by ¢ is hard to approximate within a factor 2" unless
P =NP.

We then outline two further applications of this strengthening: We show
that a directed version of Diophantine approximation is also hard to
approximate. Furthermore we prove that the mizing set problem with
arbitrary capacities is NP-hard. This solves an open problem raised by
Conforti, Di Summa and Wolsey.

1 Introduction

Diophantine approximation is one of the fundamental topics in mathematics.
Roughly speaking, the objective is to replace a number or a vector, by another
number or vector which is very close to the original, but less complex in terms of
fractionality. A famous example is the Gregorian calendar, which approximates
a solar year with its leap year rule.

Since the invention of the LLL algorithm [15], simultaneous Diophantine ap-
proximation has been a very important object of study also in computer science.
One powerful result, for example, is the one of Frank and Tardos [7] who pro-
vided an algorithm based on Diophantine approximation and the LLL algorithm
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which, among other things, shows that a combinatorial 0/1-optimization prob-
lem is polynomial if and only if it is strongly polynomial.

Let us denote the distance of a real number z € R to its nearest integer by
{z} = min{|z — z|: z € Z} and the distance of a vector v € R"™ to its nearest
integer vector w.r.t. the infinity norm £« by {{v}} = min{||v — z||e: z € Z"}.

Lagarias [14] has shown that it is NP-complete to decide whether there exists
an integer @ € {1,..., N} with {{Q-a}} <e¢,given « € Q®, N € N, and € > 0.
The best approzimation error én of a vector a € Q™ with denominator bound
N € Ny is defined as oy = min{{{Q - a}}: Q@ € {1,...,N} }. Lagarias [14]
showed also that the existence of a polynomial algorithm, which computes on
input @ € Q" and N € Ny a number Q € {1,...,2"/2. N} with {{Q-a}} < én
implies NP = co-NP.

Lagarias’ reduction was then sharpened to an inapproximability result by
Rossner and Seifert [21] and Chen and Meng [1] to the extent that, given o € Q
and N as above, it is NP-hard to compute a Q € {1,...,|n® 818" | N} with
{{Q - a}} < ne/legloensy where ¢ > 0 is a constant. We revisit the reduction
technique of Lagarias [14] and its sharpening by Rossner and Seifert [21] to
obtain the following theorem.

Theorem 1. There exists a constant ¢ > 0 and a polynomial time transforma-
tion which maps an instance C of SAT to an instance « € Q™", N e N, e € Q4
of simultaneous Diophantine approximation such that the following holds.

i) If C is satisfiable, then there is a Q € {[N/2],...,N} with {{Q-a}} <e.
ii) If C' is not satisfiable, then one has {{Q - a}} > nc/1°81e" . ¢ for each
Qe{l,...,2"-N}.
iii) The error bound € satisfies € < 1/(2%7).

The crucial differences between our result and the result in [21] are as follows. In
case 1), there exists a good @ which is at least [N/2] whereas the result in [21]
guarantees only a good @ in the interval {1,..., N}. In case ii) each @ which
is bounded by 2" - N is violating the distance bound by n¢/1°81°¢" whereas the
reduction of [21] together with the result of [1] guarantees this violation only
for @ € {1,...,[n*/'°81¢" | . N}, These differences facilitate the application of
our hardness result to other problems from the geometry of numbers and integer
programming. We describe three such applications in this paper.

Applications

One immediate consequence of Theorem 1 is that the best denominator problem

min{Q € Ny: {{Q@-a}} <e}

cannot be approximated within a factor of 2" unless P = NP, see Corollary 1.
Furthermore, it follows that the existence of a polynomial algorithm, which com-
putes on input @ € Q", N € Ny anumber @ € {1,...,2"-N} with {{Q-a}} < dn
implies P = NP improving the result of Lagarias [14] mentioned above to the



extent of replacing the factor 2*/2 and the assumption NP # co-NP by 2" and
P # NP respectively, see Corollary 2.

We then provide a strong inapproximability result for directed Diophantine
approzimation, where the distance to the nearest integer vector which is greater
than or equal to @ - @ has to be small. Directed Diophantine approximation was
for example considered by Henk and Weismantel [12] in the context of an inte-
ger programming problem and an optimization version of directed Diophantine
approximation was shown to be hard to approximate within a constant factor
by the authors of this paper [6].

Finally we apply our results to solve an open problem raised by Conforti,
Di Summa and Wolsey [3] concerning the complexity of a linear optimization
problem over a mizing set with arbitrary capacities, a type of integer program
which frequently appears in production planning.

2 A strengthening of the Lagarias, Rossner-Seifert
reduction

The goal of this section is to prove Theorem 1. To do this, we rely on several
results from the literature. Our starting point is a similar result for the shortest
integer relation problem. Here, one is given a vector a € Z™ and the goal is to
find a nonzero integral solution x € Z" of the equation a’z = 0 of minimum
infinity norm. By modifying a reduction from Super-Sat to shortest vector in
the infinity norm by Dinur [5], Chen and Meng [1] showed that there exists a
reduction from SAT to shortest integer relation with the property that if C' is
satisfiable, then the optimum value of the shortest integer relation problem is one
and if C' is unsatisfiable, then the optimum value of the shortest integer relation
problem is at least n¢/ 818" for some constant ¢ > 0. This can be extended to
the following result which we prove in the appendix. The only difference to the
stated result above is the presence of condition c).

Lemma 1. There exists a constant ¢ > 0 and a polynomial time algorithm,
which maps a SAT-formula C to an instance a € Z" of shortest integer relation-
with the following properties:

a) If C is satisfiable, then min{||z|/sc: a’x =0, 2 € Z" — 0} = 1.

b) If C is not satisfiable, then min{||z|: a’x =0, x € Z" — 0} > n/loglogn,

¢) There exists an optimum solution x of min{||z|/o: a’o =0, x € Z" -0} with
X Z 1.

We proceed from Lemma 1 to show the existence of a reduction from SAT to
simultaneous Diophantine approximation with properties i), ii) and iii). For this,
by Lemma 1 it is enough to provide a reduction from a shortest integer relation
problem min{||z|«: a’z = 0, z € Z™ — 0} with the property that there exists
an optimum solution x with z; > 1 to an instance of simultaneous Diophantine
approximation «g, ..., ay, &, N such that the following assertions hold.



I) If the optimum value of the shortest integer relation problem is one, then
there exists a @ € {[N/2],..., N} with {{Q-a}} <e.
IT) For each p € {1,...,n} the following statement is true: If the optimum
value of the shortest integer relation problem is larger than p, then {{Q -
a}} >p-eforeach Q € {1,...,2"- N}.
III) The error bound ¢ satisfies ¢ < 1/(227).

The rest of the proof of Theorem 1 follows closely the proof of Lagarias [14]
and the one of Rossner and Seifert [21]. Let min{||z||o: a’2 =0, z € Z" -0} be
the instance of shortest integer relation. One can efficiently find different primes
Dyq1,---,Gqn as well as natural numbers R and 7 in polynomial time, such that

Lon-30 ol <pf<qf <gf <...<qf <(1+4)-qf

2. p and all ¢; are co-prime to all a;

3. qf >22m.pht

4. The values of T, R, p, q1,- .., q, are bounded by a polynomial in the input
length of a.

A proof of this claim with weaker bounds is presented in [14,21]. The crucial
difference to the results in these papers is the bound 3), which before stated
that p® times a polynomial in the input encoding is at most ¢ . Here we have
the exponential factor 22" instead. The full proof is in the Appendix.

The following system of congruences appears already in [16] and is also crucial
in the reductions presented in [14,21].

T =pr A (1)
ri Sqr 0 Vi# (2)
i #q; 0 (3)

For each j, this is a system of congruences with co-prime moduli and thus, the
Chinese remainder theorem (see, e.g. [18]) guarantees that there exists a solution
rj foreach j =1,...,n.

Lemma 2. The systems

ijaj =0 and Z:Ejrj =,r 0 (4)
Jj=1 j=1

have the same set of integral solutions x € Z"™ with ||z||cc < n.

Proof. Since a; =,r 15, each solution x € Z" of the equation on the left is also a
solution of the congruence equation on the right. If € Z™ is a solution for the
congruence on the right, then Z?:l ajr; =,r 0. Assume furthermore ||z|o < n.
If we can infer that the absolute value of 377 a;x; is strictly less than pft, then

> i1 ajz; = 0 follows. But
n n

1> zia <n- Y lag| < p”

=1

Jj=1

by the choice of the prime numbers. O



We now provide the construction of the instance «g, ..., a,,e, N of the si-
multaneous Diophantine approximation problem for our reduction. By r;l S/
we denote the unique integer in {1,..., qu — 1} with r; - r]fl = 1. This must
exist since r; #,; 0 implies that r; is a unit in the ring quT. The instance is

1
Qg = —&
ph
-1
r.
J
aj=—=, j=1,...,n
J q;*-F
n
N:ZTJ'
j=1
1
£ = —.
qaf

The bound iii) on ¢ follows from ¢f > 22" . pf. Let 2 € Z" be a solution
of the shortest integer relation problem with [|z||cc < 1. Consider the integer
Q = >_7_, rj-x; whose absolute value is bounded by N =37, r;. What is the
distance of @ - « to the nearest integer vector in the infinity norm?

Since Y7, 7y x; =pr o5y aj-x; = 0 it follows that p* divides Y7, ;-5
which means that {Qao} = 0. For i > 1 one has r; * - DT T =,r x; (since
rj =qr 0fori # j) and since z; € {0, +1} one has {Q-a;} <1/¢f <1/¢{ =e.In
other words, () is an integer whose absolute value is bounded by N which satisfies
{{Q-a}} <e. Thisis almost condition I), except that Q € {[N/2],..., N} might
not be satisfied.

To achieve this additional bound on ) we use the fact that there exists an
optimal solution of the shortest integer relation problem which satisfies 1 > 1
and we choose r; significantly larger than the other ;. Consider again the system
of congruences (1-3). Let B = pft | q; and let 0 < 1% < B/q] be a solution
to (1) and (2). If 7/ $équ 0, then 7; = v otherwise r; = + B/q] . Thus each
r; is bounded by 0 <r; < 2. B/ qu. We choose r; however considerably larger,
namely 1 = 7} +12nB/ql or v} +(12n+1)B/q} . In this way we have ry > 6n-r;.
By choosing the r; in this way, we obtain the following lemma.

Lemma 3. If min{||z||o: a’x = 0,2 € Z" — 0} = 1, then there ezists a Q €
{[N/2],...,N} such that {{Q - a}} <e.

Proof. By our assumption, there exists an optimum solution x € Z" of the
shortest integer relation problem with z; = 1. Let @, as in the discussion above,
be Q = 377 rjz;. We have already seen that {{Q - a}} < ¢ holds and clearly
Q@ <377 rj = N. On the other hand 21 > 1, ||[2[o = 1 and 1 > 6nr; for each
j=2,...,nimplies Q@ > N/2. a

The next lemma provides condition ITI).



Lemma 4. Let p be any number in {1,...,n} and suppose there exists a Q €
{1,...,2"N} with {{Q - a}} < p-e. Then, the optimum value of the shortest
integer relation problem is at most p.

Proof. We construct a solution x of the shortest integer relation instance: Let
x; be the smallest integer in absolute value with

-1 _
Qr;" =,

T Tj.
A

We need to show three things, namely
|z]|ec <p, ©#0 and a’z=0. (5)

The first assertion of (5) follows from the fact that ¢f < ¢ < (14 1/p) - qf
which implies the strict inequality in

-1
. r
gl (e e
q; 4q; 4 q;

Observe that @ is a multiple of p’. If this was not the case, then

Q 1 P
@ ={2) 2oty
pR) TR T af
since ¢f' > 227p® and p < n. We next show that Q = >, air;. This implies
directly that 2 # 0, since @Q > 1. Furthermore @ =,r 0 and Lemma 2 imply
together with ||z]/s < p that a”2 = 0 and (5) is proved.
Multiplying the equation @ - r;l =7 T with r; yields @ =7 1T Let
D = [I;_, ¢ We have Q =, riz; and 0 =,r 7z, for j # i and thus
Q = Z?Zl r;x;. Since the moduli ¢! are co-prime, this implies that Q =p
Z?:l rjz;. We are done with the proof, once we have shown that @ < D/2 and
| Z?:l x;r;| < D/2, since then both values must coincide if they are congruent
to each other modulo D.
We first bound the value of |37, x;r;|. This is at most p- 37, r; <n-N.

Applying the bound r; < 13- np®D /¢ and ¢f > 2?7 - p® we can bound N by

N <13-n?-D/2%"

Consequently

1> ar| <13-0° - D/2"

j=1
which is smaller than D/2 for n sufficiently large. Finally @ is bounded by 2" N
which is also bounded by D/2 for n large enough. The claim follows. O

This proves Theorem 1.



2.1 Hardness of the best denominator

We now discuss the hardness of the best denominator problem. The input to
this problem is ai,...,a,,e € Q and the task is to find a smallest Q@ € N,
with {{Q - a}} < e. The following corollary is an immediate consequence of
Theorem 1.

Corollary 1. If P # NP, then there does not exist a polynomial time approxima-
tion algorithm for the best denominator problem with an approzimation factor
2m,

Furthermore we can strengthen the result of Lagarias [14] which states that,
if there exists a polynomial time algorithm which, on input & € Q™ and N € N
computes a Q € {1,...,2"/2N} with {{Q-a}} < dx, then NP = co-NP. Recall
that oy = min{ {{Q - a}}: @ € {1,..., N} }. The strengthening is as follows.

Corollary 2. If there exists a polynomial time algorithm which computes on
input « € Q" and N € Np a Q € {1,...,2" - N} with {{Q - a}} < dn, then
P = NP.

Proof. Consider an instance «, N, e which stems from the reduction of a SAT-
formula C as in Theorem 1 and suppose that there exists an algorithm which
computes in polynomial time a @ € {1,...,2"N} with {{@Q - a}} < dn. If
{{Q - a}} < e, then C is satisfiable. Otherwise, C' is unsatisfiable. This implies
the assertion. a

3 Directed Diophantine Approximation

In this section we consider a variant of the classical Diophantine approximation
problem, in which we measure the distance of the vector @ - « to the nearest
integer vector which is in each component greater or equal than @ -a. We use the
notation {z}! for the distance of the real number x € R to the nearest integer
which is greater or equal to =, {z}! = min{z — z: z € Z, z > z}. For a vector
a € R™ we denote its distance to the nearest integer greater or equal to o by
{{a}1}, in other words

{a}} = min{||lz — aljeo: © € Z™, > a}.

An instance of directed Diophantine approximation consists of oy, ..., ay, e, N
with o; € Q, e € Q and N € N,.. The goal of this section is to show the following
theorem.

Theorem 2. There is a constant ¢ > 0 and a polynomial time transformation
which maps a SAT instance C to an instance ag, ..., an, e, N of directed Dio-
phantine approximation such that the following conditions hold.

i’) If C is satisfiable, then there exists a Q € {[N/2],..., N} with {{Q-a}'} <
€.



ii’) If C is unsatisfiable, then for each Q € {1,...,|[n%/1°81°8"|N'} one has
HQ-a}l} > 2%e.

iii’) The error bound ¢ satisfies € < 3/2™.

Proof. For the proof of this theorem, we rely on Theorem 1. Let aq,...,ap,e, N
be a simultaneous Diophantine approximation instance which results from the
transformation from SAT. From this, we construct an instance of directed Dio-

phantine approximation o, ..., a5, , N,¢’ with
! .
a;=a;—90 i=1,...,n
12 .
O, =—;—0 i=1,...,n
e =3¢,

where § = 2¢/N.

Suppose that there exists a Q € {[N/2],..., N} with {{Qa}} < ¢ and let z;
be the nearest integer to @ - ;. Since Q- > ¢ it follows that Q(«; +0) > z; and
thus that the distance of Q(a;+0) to |Q(a;+9)] is bounded by |Q(a;+0) —z;| <
|Qav;—2i|+|QJ| < 3e. This means that {Q(—a;—9)}! < 3¢. Similarly, Q(a;—0) <
z; and thus {Q(a; —d)}! is bounded by |Q(a; — ) — z;| < |Qa; — 2| +|Q] < 3e.
This implies property i’).

Next let p € {1,...,n} and suppose that there exists a @ € {1, ..., pN} with
{{Qa’}1} < 2"¢’. We show that this implies that {{Qa}} < 2pe which in turn
shows that property ii’) holds.

Foreach i € {1,...,n} there exists an integer z; which lies between Q(«; —9)
and Q(a; +9), since otherwise one of the values {Q(c; — 9)}! or {Q(—a; —9)}7
is at least 1/2. But {{Q - o/}'} < 2"’ = 2"3¢ < 1/2, a contradiction. Then
Q(a; —6) < z; < Q(ay + 0) implies

Qo — zi] < QF < 2pe.

4 Hardness of Mixing Set

In recent integer programming approaches for production planning the study of
simple integer programs which are part of more sophisticated models has become
very successful in practice, see, e.g. [19]. One of these simple integer programs
is the so-called mizing set [9,2]. The constraint system of a mixing set problem

is of the form
s+a;y; >b; i=1,...,n,
s>0
v €Z i=1,...,n, (6)
s eR.
where a;,b; € Q. Optimizing a linear function over this mixed integer set can be

done in polynomial time if all a; are equal to one |9,17] or if a;11/a; is an integer
for each i = 1,...,n — 1 [22], see also [3,4] for subsequent simpler approaches.



Conforti et al. [3] pose the problem, whether one can optimize a linear func-
tion over the set of mixed-integer vectors defined by (6) also in the general case,
to which they refer as the case with arbitrary capacities, in polynomial time.
In this section, we apply our results on directed Diophantine approximation to
show that this problem is NP-hard.

Suppose we have an instance of the directed Diophantine approximation
problem «, N, e, where we are supposed to round down to the nearest integer
vector. By using the notation {z}! = min{z — 2z: 2 < x,2 € Z} for z € R and
{{v}'} = min{||v—2||oo: 2 € Z", z < v} and the observation that {z}! = {—xz}!
it follows that Theorem 2 is also true if the rounding up operation is replaced by
rounding down. We next formulate an integer program to compute a ¢ which
yields a good approximation by rounding down and satisfies the denominator
bound Q € {1,...,N}.

min Y (Q - o — i)
Q-1/ai 320 i=1,....n

Q=1
Q<N

Qaylu"'ayn € Z.

The goal is to transform this integer program into a linear optimization problem
over a mixing set. Consider the following mixing set.

Q—-1/a;-y; >0 i=1,...,n

Q+0-y2>1
Q—-y-120 (7)
QeR

Y—-1,Y0,Y15---3Yn S Z

We now argue that, if the linear optimization problem over this mixing set can
be done in polynomial time, then P = NP.

Suppose that the linear optimization problem can be solved in polynomial
time. Then, we can also solve the linear optimization problem over the non-
empty face of the convex hull of the solutions which is induced by the inequality
Q —y-—1 > 0, see, e.g., [8]. This enforces @ to be an integer. Next consider the
following objective function

min ) (Q-a; —yi) + (2" 'e/N)(Q — N). (8)

i=1

The sum on the left is measuring the distance of Q- « to its nearest integer vector
from below in the ¢;-norm. The term on the right stems from the removal of the
constraint ) < N, which would not be allowed in a system defining a mixing set.
In fact, we thereby follow a Lagrangian relaxation approach, which is common
in approximation algorithms, see e.g. [20], in order to show a hardness result.

Theorem 3. Optimizing a linear function over a mixing set is NP-hard.
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Proof. Let ag,...,a,, N,e be an instance of directed Diophantine approxima-
tion with rounding down, which stems from a transformation from SAT, as in
Theorem 2 and suppose that one can solve the linear optimization problem with
objective function (8) over the convex hull of the mixing set. Then we can also
optimize this over the face induced by @ — y_1 > 0. This merely means that we
can find a pure integer optimum solution over the mixing set (7).

Our instance agq,...,ay, N, e has the following property. If the originating
SAT formula is satisfiable, then there exists a @ € {[N/2],..., N} with {{Q -
a}t} < e and if not, then there does not exist a Q € {1,..., |n¢/ 10818 | N}
with {{Q - a}!} < 27e.

In the case where the SAT formula is satisfiable, let @ € {[N/2],...,N}
with {{Q-a}'} < e. The objective function value of this @ with the appropriate
y; yields an objective function value bounded by n - €.

Suppose now that the SAT formula is not satisfiable and consider a solution
Q with appropriate y; of the mixing set problem. If Q € {1,..., [n*/1oglosn| N}
then the objective function is at least

one — on—lo = gn—lg
If Q is larger than |n®/ 19818 | N then the objective function value is at least
2n715( an/ log lognJ _ 1)

Thus the problem of optimizing a linear function over a mixing set with arbitrary
capacities is NP-hard. O
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Appendix

Shortest integer relation

By modifying a reduction from Super-Sat to shortest vector in the infinity norm
by Dinur [5], Chen and Meng [1] showed that there exists a reduction from
SAT to shortest integer relation with the property that if C is satisfiable, then
the optimum value of the shortest integer relation problem is one and if C is
unsatisfiable, then the optimum value of the shortest integer relation problem
is at least n®/1°81°¢" for some constant ¢ > 0. Here, we show that this can be
extended such that there exists an optimum solution of shortest integer relation,
whose first component is nonzero, thus give a proof of Lemma, 1.



12

Let min{||z||s: a2 = 0,2 € Z™ — 0} be an instance of a shortest integer

relation problem. Consider the matrix

0 o707 ...07
0 0T o7 ... 07T

A= : - c Z(n+1)x(n2+l)
0 0707 ... a7
—lel el . el
containing n copies of a’ on a shifted diagonal and having (—1,e?,el’,... el)

as last row, where e; is the i-th n-dimensional unit column vector. The rest is
filled by zeros.

Clearly, the optimization problems min{||z|s: a’z = 0,7 € Z® — 0} and
min{||z|o: Az =0,z € Z""+! — 0} are equivalent and the second optimization
problem has the property that there is always an optimum solution with nonzero
first entry. Kannan [13] provided an algorithm replacing a system Az = 0 by
one equation a’”'z = 0 in polynomial time such that the sets {x € 77 Ax =
0, |z]loe < 1} and {z € Z"°+1: @'z = 0, ||z]|ls < p} are identical. His algorithm
is polynomial in the encoding length of A and p. Choosing ;1 = n is enough
for our purposes so that Kannan’s algorithm yields the desired shortest integer
relation instance min{||z||o: 'z = 0, 2 € Z"" 1 — 0}.

Computing dense primes

In the reduction from shortest integer relation to simultaneous Diophantine ap-
proximation (Sect. 2) we rely on the fact that one can efficiently compute prime
numbers p, q1, ..., q, and integers R and 7" with

Lon-Y" ol <pf<qf <¢f <...<qh <(1+1)-qf,

2. p and all ¢; are co-prime to all ay,

3. qf >22. ph,

4. the values of T, R,p,q1,-..,q, are bounded by a polynomial in the input
length of a.

The algorithm which we now present is almost identical, up to better bounds, to
the one proposed by Lagarias [14] and uses two deep results from number theory.
The first one is the prime number theorem, which states that w(n) ~ n/logn,
see, e.g. [18]. The second result is the following theorem by Heath-Brown and
Iwaniec [10,11].

Theorem 4. For each § > 11/20, there exists a constant c¢s such the interval
[z, 2 + 2°] contains a prime for each z > c;.

Let m be the binary encoding length of a. The number of different primes
which divide a component of a is bounded by m. We can compute the first m+1
prime numbers with the sieve of Eratosthenes. Here the prime number theorem
is used, since we run the sieve on the first O(mlogm) natural numbers. Out of
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these primes we choose one which is co-prime to all components of a. This is the
prime p from above. Next, we compute the smallest integers R and 7" such that
p" >n-30 |aj] and 27 > 2*"p". The values of R and T are bounded by a
polynomial in m.

Next, the result of Heath-Brown and Iwaniec comes into play. Let 6 = 3/5
and consider the sequence

2 =T% 4422, for i =0,...,7% — 1.
Each interval [z;, z; + 213 / %]
T > ¢5. The number z?/

contains a prime number, since may may assume
5
can be bounded by

P = (1% 4 i(21)12)°

(T20 4 T2 (2T) 12)

< 3/5
< (27)*2.

From this it follows that z; + zf /5 < Zjy1, which implies that the interval
[T2°, 720 + T2(2T)'?] contains T2 prime numbers. Since T%(27)'? < T for
T large enough, we infer that the interval

[T20, T20 4 T15]

contains T2 primes. If we denote the largest and smallest prime in this interval
bY Pmax and pmin respectively, then prax/Pmin < 14 (1/ T)5 and consequently

1
(Pmasx/Pmin) T < (14 (1/T))T < M7 <142/TH <1+ —.
n

Here, we used the inequality 1 4+ = < e® and e* < 1+ 2z for z € [0, 1].

By choosing T' larger than m + n + 1, we may obtain prime numbers ¢; <
... < gy from the interval [T%0, 729 + T5], which are co-prime to p and each a;
and hence satisty the conditions (1-4).



