
New Hardness Results for DiophantineApproximationFriedrih Eisenbrand⋆ and Thomas RothvoÿInstitute of MathematisEPFL, Lausanne, Switzerland{friedrih.eisenbrand,thomas.rothvoss}�epfl.hAbstrat We revisit simultaneous Diophantine approximation, a lassi-al problem from the geometry of numbers whih has many appliationsin algorithms and omplexity. The input to the deision version of thisproblem onsists of a rational vetor α ∈ Qn, an error bound ε and adenominator bound N ∈ N+. One has to deide whether there existsan integer, alled the denominator Q with 1 ≤ Q ≤ N suh that thedistane of eah number Q · αi to its nearest integer is bounded by ε.Lagarias has shown that this problem is NP-omplete and optimizationversions have been shown to be hard to approximate within a fator
nc/ log log n for some onstant c > 0. We strengthen the existing hardnessresults and show that the optimization problem of �nding the smallestdenominator Q ∈ N+ suh that the distanes of Q · αi to the nearest in-teger are bounded by ε is hard to approximate within a fator 2n unlessP = NP.We then outline two further appliations of this strengthening: We showthat a direted version of Diophantine approximation is also hard toapproximate. Furthermore we prove that the mixing set problem witharbitrary apaities is NP-hard. This solves an open problem raised byConforti, Di Summa and Wolsey.1 IntrodutionDiophantine approximation is one of the fundamental topis in mathematis.Roughly speaking, the objetive is to replae a number or a vetor, by anothernumber or vetor whih is very lose to the original, but less omplex in terms offrationality. A famous example is the Gregorian alendar, whih approximatesa solar year with its leap year rule.Sine the invention of the LLL algorithm [15℄, simultaneous Diophantine ap-proximation has been a very important objet of study also in omputer siene.One powerful result, for example, is the one of Frank and Tardos [7℄ who pro-vided an algorithm based on Diophantine approximation and the LLL algorithm
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2whih, among other things, shows that a ombinatorial 0/1-optimization prob-lem is polynomial if and only if it is strongly polynomial.Let us denote the distane of a real number x ∈ R to its nearest integer by
{x} = min{|x − z| : z ∈ Z} and the distane of a vetor v ∈ Rn to its nearestinteger vetor w.r.t. the in�nity norm ℓ∞ by {{v}} = min{‖v − z‖∞ : z ∈ Zn}.Lagarias [14℄ has shown that it is NP-omplete to deide whether there existsan integer Q ∈ {1, . . . , N} with {{Q ·α}} ≤ ε, given α ∈ Qn, N ∈ N+ and ε > 0.The best approximation error δN of a vetor α ∈ Qn with denominator bound
N ∈ N+ is de�ned as δN = min{ {{Q · α}} : Q ∈ {1, . . . , N} }. Lagarias [14℄showed also that the existene of a polynomial algorithm, whih omputes oninput α ∈ Qn and N ∈ N+ a number Q ∈ {1, . . . , 2n/2 ·N} with {{Q ·α}} ≤ δNimplies NP = o-NP.Lagarias' redution was then sharpened to an inapproximability result byRössner and Seifert [21℄ and Chen and Meng [1℄ to the extent that, given α ∈ Qnand N as above, it is NP-hard to ompute a Q ∈ {1, . . . , ⌊nc/ log log n⌋N} with
{{Q · α}} ≤ nc/ log log nδN where c > 0 is a onstant. We revisit the redutiontehnique of Lagarias [14℄ and its sharpening by Rössner and Seifert [21℄ toobtain the following theorem.Theorem 1. There exists a onstant c > 0 and a polynomial time transforma-tion whih maps an instane C of SAT to an instane α ∈ Qn, N ∈ N+, ε ∈ Q+of simultaneous Diophantine approximation suh that the following holds.i) If C is satis�able, then there is a Q ∈ {⌈N/2⌉, . . . , N} with {{Q · α}} ≤ ε.ii) If C is not satis�able, then one has {{Q · α}} ≥ nc/ log log n · ε for eah

Q ∈ {1, . . . , 2n · N}.iii) The error bound ε satis�es ε ≤ 1/(22n).The ruial di�erenes between our result and the result in [21℄ are as follows. Inase i), there exists a good Q whih is at least ⌈N/2⌉ whereas the result in [21℄guarantees only a good Q in the interval {1, . . . , N}. In ase ii) eah Q whihis bounded by 2n ·N is violating the distane bound by nc/ log log n, whereas theredution of [21℄ together with the result of [1℄ guarantees this violation onlyfor Q ∈ {1, . . . , ⌊nc/ log log n⌋ · N}. These di�erenes failitate the appliation ofour hardness result to other problems from the geometry of numbers and integerprogramming. We desribe three suh appliations in this paper.AppliationsOne immediate onsequene of Theorem 1 is that the best denominator problem
min{Q ∈ N+ : {{Q · α}} ≤ ε}annot be approximated within a fator of 2n unless P = NP, see Corollary 1.Furthermore, it follows that the existene of a polynomial algorithm, whih om-putes on input α ∈ Qn, N ∈ N+ a number Q ∈ {1, . . . , 2n·N} with {{Q·α}} ≤ δNimplies P = NP improving the result of Lagarias [14℄ mentioned above to the



3extent of replaing the fator 2n/2 and the assumption NP 6= o-NP by 2n andP 6= NP respetively, see Corollary 2.We then provide a strong inapproximability result for direted Diophantineapproximation, where the distane to the nearest integer vetor whih is greaterthan or equal to Q ·α has to be small. Direted Diophantine approximation wasfor example onsidered by Henk and Weismantel [12℄ in the ontext of an inte-ger programming problem and an optimization version of direted Diophantineapproximation was shown to be hard to approximate within a onstant fatorby the authors of this paper [6℄.Finally we apply our results to solve an open problem raised by Conforti,Di Summa and Wolsey [3℄ onerning the omplexity of a linear optimizationproblem over a mixing set with arbitrary apaities, a type of integer programwhih frequently appears in prodution planning.2 A strengthening of the Lagarias, Rössner-SeifertredutionThe goal of this setion is to prove Theorem 1. To do this, we rely on severalresults from the literature. Our starting point is a similar result for the shortestinteger relation problem. Here, one is given a vetor a ∈ Zn and the goal is to�nd a nonzero integral solution x ∈ Zn of the equation aT x = 0 of minimumin�nity norm. By modifying a redution from Super-Sat to shortest vetor inthe in�nity norm by Dinur [5℄, Chen and Meng [1℄ showed that there exists aredution from SAT to shortest integer relation with the property that if C issatis�able, then the optimum value of the shortest integer relation problem is oneand if C is unsatis�able, then the optimum value of the shortest integer relationproblem is at least nc/ log log n for some onstant c > 0. This an be extended tothe following result whih we prove in the appendix. The only di�erene to thestated result above is the presene of ondition ).Lemma 1. There exists a onstant c > 0 and a polynomial time algorithm,whih maps a SAT-formula C to an instane a ∈ Zn of shortest integer relation-with the following properties:a) If C is satis�able, then min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} = 1.b) If C is not satis�able, then min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} ≥ nc/ log log n.) There exists an optimum solution x of min{‖x‖∞ : aT x = 0, x ∈ Zn−0} with
x1 ≥ 1.We proeed from Lemma 1 to show the existene of a redution from SAT tosimultaneous Diophantine approximation with properties i), ii) and iii). For this,by Lemma 1 it is enough to provide a redution from a shortest integer relationproblem min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} with the property that there existsan optimum solution x with x1 ≥ 1 to an instane of simultaneous Diophantineapproximation α0, . . . , αn, ε, N suh that the following assertions hold.



4 I) If the optimum value of the shortest integer relation problem is one, thenthere exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Q · α}} ≤ ε.II) For eah ρ ∈ {1, . . . , n} the following statement is true: If the optimumvalue of the shortest integer relation problem is larger than ρ, then {{Q ·
α}} > ρ · ε for eah Q ∈ {1, . . . , 2n · N}.III) The error bound ε satis�es ε ≤ 1/(22n).The rest of the proof of Theorem 1 follows losely the proof of Lagarias [14℄and the one of Rössner and Seifert [21℄. Let min{‖x‖∞ : aT x = 0, x ∈ Zn−0} bethe instane of shortest integer relation. One an e�iently �nd di�erent primes

p, q1, . . . , qn as well as natural numbers R and T in polynomial time, suh that1. n ·
∑n

j=1 |aj | < pR < qT
1 < qT

2 < . . . < qT
n < (1 + 1

n ) · qT
12. p and all qi are o-prime to all aj3. qT

1 > 22n · pR4. The values of T, R, p, q1, . . . , qn are bounded by a polynomial in the inputlength of a.A proof of this laim with weaker bounds is presented in [14,21℄. The ruialdi�erene to the results in these papers is the bound 3), whih before statedthat pR times a polynomial in the input enoding is at most qT
1 . Here we havethe exponential fator 22n instead. The full proof is in the Appendix.The following system of ongruenes appears already in [16℄ and is also ruialin the redutions presented in [14,21℄.

rj ≡pR aj (1)
rj ≡qT

i
0 ∀i 6= j (2)

rj 6≡qj
0 (3)For eah j, this is a system of ongruenes with o-prime moduli and thus, theChinese remainder theorem (see, e.g. [18℄) guarantees that there exists a solution

rj for eah j = 1, . . . , n.Lemma 2. The systems
n

∑

j=1

xjaj = 0 and n
∑

j=1

xjrj ≡pR 0 (4)have the same set of integral solutions x ∈ Zn with ‖x‖∞ ≤ n.Proof. Sine aj ≡pR rj , eah solution x ∈ Zn of the equation on the left is also asolution of the ongruene equation on the right. If x ∈ Zn is a solution for theongruene on the right, then ∑n
j=1 ajxj ≡pR 0. Assume furthermore ‖x‖∞ ≤ n.If we an infer that the absolute value of ∑n

j=1 ajxj is stritly less than pR, then
∑n

j=1 ajxj = 0 follows. But
|

n
∑

j=1

xjaj | ≤ n ·

n
∑

j=1

|aj | < pRby the hoie of the prime numbers. ⊓⊔



5We now provide the onstrution of the instane α0, . . . , αn, ε, N of the si-multaneous Diophantine approximation problem for our redution. By r−1
j ∈ Zwe denote the unique integer in {1, . . . , qT

j − 1} with rj · r
−1
j ≡qT

j
1. This mustexist sine rj 6≡qj

0 implies that rj is a unit in the ring ZqT
j
. The instane is

α0 =
1

pR

αj =
r−1
j

qT
j

, j = 1, . . . , n

N =

n
∑

j=1

rj

ε =
1

qT
1

.The bound iii) on ε follows from qT
1 > 22n · pR. Let x ∈ Zn be a solutionof the shortest integer relation problem with ‖x‖∞ ≤ 1. Consider the integer

Q =
∑n

j=1 rj ·xj whose absolute value is bounded by N =
∑n

j=1 rj . What is thedistane of Q · α to the nearest integer vetor in the in�nity norm?Sine ∑n
j=1 rj ·xj ≡pR

∑n
j=1 aj ·xj = 0 it follows that pR divides ∑n

j=1 rj ·xjwhih means that {Qα0} = 0. For i ≥ 1 one has r−1
i ·

∑n
j=1 rj · xj ≡qT

i
xi (sine

rj ≡qT
i

0 for i 6= j) and sine xi ∈ {0,±1} one has {Q·αi} ≤ 1/qT
i ≤ 1/qT

1 = ε. Inother words, Q is an integer whose absolute value is bounded by N whih satis�es
{{Q·α}} ≤ ε. This is almost ondition I), exept that Q ∈ {⌈N/2⌉, . . . , N}mightnot be satis�ed.To ahieve this additional bound on Q we use the fat that there exists anoptimal solution of the shortest integer relation problem whih satis�es x1 ≥ 1and we hoose r1 signi�antly larger than the other rj . Consider again the systemof ongruenes (1-3). Let B = pR

∏n
j=1 qT

j and let 0 ≤ r′j ≤ B/qT
j be a solutionto (1) and (2). If r′j 6≡qT

j
0, then rj = r′j otherwise rj = r′j + B/qT

j . Thus eah
rj is bounded by 0 ≤ rj ≤ 2 · B/qT

j . We hoose r1 however onsiderably larger,namely r1 = r′1+12nB/qT
1 or r′1+(12n+1)B/qT

1 . In this way we have r1 ≥ 6n·rj .By hoosing the rj in this way, we obtain the following lemma.Lemma 3. If min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} = 1, then there exists a Q ∈
{⌈N/2⌉, . . . , N} suh that {{Q · α}} ≤ ε.Proof. By our assumption, there exists an optimum solution x ∈ Zn of theshortest integer relation problem with x1 = 1. Let Q, as in the disussion above,be Q =

∑n
j=1 rjxj . We have already seen that {{Q · α}} ≤ ε holds and learly

Q ≤
∑n

j=1 rj = N . On the other hand x1 ≥ 1, ‖x‖∞ = 1 and r1 ≥ 6nrj for eah
j = 2, . . . , n implies Q ≥ N/2. ⊓⊔The next lemma provides ondition II).



6Lemma 4. Let ρ be any number in {1, . . . , n} and suppose there exists a Q ∈
{1, . . . , 2nN} with {{Q · α}} ≤ ρ · ε. Then, the optimum value of the shortestinteger relation problem is at most ρ.Proof. We onstrut a solution x of the shortest integer relation instane: Let
xj be the smallest integer in absolute value with

Qr−1
j ≡qT

j
xj .We need to show three things, namely

‖x‖∞ ≤ ρ, x 6= 0 and aT x = 0. (5)The �rst assertion of (5) follows from the fat that qT
1 < qT

j < (1 + 1/ρ) · qT
1whih implies the strit inequality in

∣

∣

∣

∣

∣

xj

qT
j

∣

∣

∣

∣

∣

=

{

Qr−1
j

qT
j

}

≤ ρ · ε =
ρ

qT
1

<
ρ + 1

qT
j

.Observe that Q is a multiple of pR. If this was not the ase, then
{Qα0} =

{

Q

pR

}

≥
1

pR
>

ρ

qT
1

= ρ · ε,sine qT
1 > 22·npR and ρ ≤ n. We next show that Q =

∑n
i=1 xiri. This impliesdiretly that x 6= 0, sine Q ≥ 1. Furthermore Q ≡pR 0 and Lemma 2 implytogether with ‖x‖∞ ≤ ρ that aT x = 0 and (5) is proved.Multiplying the equation Q · r−1

j ≡qT
j

xj with rj yields Q ≡qT
j

rjxj . Let
D =

∏n
j=1 qT

j . We have Q ≡qT
i

rixi and 0 ≡qT
i

rjxj for j 6= i and thus
Q ≡qT

i

∑n
j=1 rjxj . Sine the moduli qT

i are o-prime, this implies that Q ≡D
∑n

j=1 rjxj . We are done with the proof, one we have shown that Q < D/2 and
|
∑n

j=1 xjrj | < D/2, sine then both values must oinide if they are ongruentto eah other modulo D.We �rst bound the value of |∑n
j=1 xjrj |. This is at most ρ ·

∑n
j=1 rj ≤ n ·N .Applying the bound rj ≤ 13 · npRD/qT

1 and qT
1 > 22n · pR we an bound N by

N ≤ 13 · n2 · D/22n.Consequently
|

n
∑

j=1

xjrj | ≤ 13 · n3 · D/22nwhih is smaller than D/2 for n su�iently large. Finally Q is bounded by 2nNwhih is also bounded by D/2 for n large enough. The laim follows. ⊓⊔This proves Theorem 1.



72.1 Hardness of the best denominatorWe now disuss the hardness of the best denominator problem. The input tothis problem is α1, . . . , αn, ε ∈ Q and the task is to �nd a smallest Q ∈ N+with {{Q · α}} ≤ ε. The following orollary is an immediate onsequene ofTheorem 1.Corollary 1. If P 6= NP, then there does not exist a polynomial time approxima-tion algorithm for the best denominator problem with an approximation fator
2n.Furthermore we an strengthen the result of Lagarias [14℄ whih states that,if there exists a polynomial time algorithm whih, on input α ∈ Qn and N ∈ N+omputes a Q ∈ {1, . . . , 2n/2N} with {{Q · α}} ≤ δN , then NP = o-NP. Reallthat δN = min{ {{Q · α}} : Q ∈ {1, . . . , N} }. The strengthening is as follows.Corollary 2. If there exists a polynomial time algorithm whih omputes oninput α ∈ Qn and N ∈ N+ a Q ∈ {1, . . . , 2n · N} with {{Q · α}} ≤ δN , thenP = NP.Proof. Consider an instane α, N, ε whih stems from the redution of a SAT-formula C as in Theorem 1 and suppose that there exists an algorithm whihomputes in polynomial time a Q ∈ {1, . . . , 2nN} with {{Q · α}} ≤ δN . If
{{Q · α}} ≤ ε, then C is satis�able. Otherwise, C is unsatis�able. This impliesthe assertion. ⊓⊔3 Direted Diophantine ApproximationIn this setion we onsider a variant of the lassial Diophantine approximationproblem, in whih we measure the distane of the vetor Q · α to the nearestinteger vetor whih is in eah omponent greater or equal than Q ·α. We use thenotation {x}↑ for the distane of the real number x ∈ R to the nearest integerwhih is greater or equal to x, {x}↑ = min{z − x : z ∈ Z, z ≥ x}. For a vetor
α ∈ Rn we denote its distane to the nearest integer greater or equal to α by
{{α}↑}, in other words

{{α}↑} = min{‖x− α‖∞ : x ∈ Zn, x ≥ α}.An instane of direted Diophantine approximation onsists of α1, . . . , αn, ε, Nwith αi ∈ Q, ε ∈ Q and N ∈ N+. The goal of this setion is to show the followingtheorem.Theorem 2. There is a onstant c > 0 and a polynomial time transformationwhih maps a SAT instane C to an instane α0, . . . , αn, ε, N of direted Dio-phantine approximation suh that the following onditions hold.i') If C is satis�able, then there exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Q·α}↑} ≤
ε.



8ii') If C is unsatis�able, then for eah Q ∈ {1, . . . , ⌊nc/ log log n⌋N} one has
{{Q · α}↑} > 2nε.iii') The error bound ε satis�es ε ≤ 3/2n.Proof. For the proof of this theorem, we rely on Theorem 1. Let α1, . . . , αn, ε, Nbe a simultaneous Diophantine approximation instane whih results from thetransformation from SAT. From this, we onstrut an instane of direted Dio-phantine approximation α′

1, . . . , α
′
2n, N, ε′ with

α′
i = αi − δ i = 1, . . . , n

α′
i+n = −αi − δ i = 1, . . . , n

ε′ = 3ε,where δ = 2ε/N .Suppose that there exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Qα}} ≤ ε and let zibe the nearest integer to Q ·αi. Sine Q · δ ≥ ε it follows that Q(αi + δ) ≥ zi andthus that the distane of Q(αi+δ) to ⌊Q(αi+δ)⌋ is bounded by |Q(αi+δ)−zi| ≤
|Qαi−zi|+|Qδ| ≤ 3ε. This means that {Q(−αi−δ)}↑ ≤ 3ε. Similarly, Q(αi−δ) ≤
zi and thus {Q(αi− δ)}↑ is bounded by |Q(αi − δ)−zi| ≤ |Qαi−zi|+ |Qδ| ≤ 3ε.This implies property i').Next let ρ ∈ {1, . . . , n} and suppose that there exists a Q ∈ {1, . . . , ρN} with
{{Qα′}↑} ≤ 2nε′. We show that this implies that {{Qα}} ≤ 2ρε whih in turnshows that property ii') holds.For eah i ∈ {1, . . . , n} there exists an integer zi whih lies between Q(αi−δ)and Q(αi + δ), sine otherwise one of the values {Q(αi − δ)}↑ or {Q(−αi − δ)}↑is at least 1/2. But {{Q · α′}↑} ≤ 2nε′ = 2n3ε < 1/2, a ontradition. Then
Q(αi − δ) ≤ zi ≤ Q(αi + δ) implies

|Qαi − zi| ≤ Qδ ≤ 2ρε.

⊓⊔4 Hardness of Mixing SetIn reent integer programming approahes for prodution planning the study ofsimple integer programs whih are part of more sophistiated models has beomevery suessful in pratie, see, e.g. [19℄. One of these simple integer programsis the so-alled mixing set [9,2℄. The onstraint system of a mixing set problemis of the form
s + ai yi ≥ bi i = 1, . . . , n,

s ≥ 0
yi ∈ Z i = 1, . . . , n,
s ∈ R.

(6)where ai, bi ∈ Q. Optimizing a linear funtion over this mixed integer set an bedone in polynomial time if all ai are equal to one [9,17℄ or if ai+1/ai is an integerfor eah i = 1, . . . , n − 1 [22℄, see also [3,4℄ for subsequent simpler approahes.



9Conforti et al. [3℄ pose the problem, whether one an optimize a linear fun-tion over the set of mixed-integer vetors de�ned by (6) also in the general ase,to whih they refer as the ase with arbitrary apaities, in polynomial time.In this setion, we apply our results on direted Diophantine approximation toshow that this problem is NP-hard.Suppose we have an instane of the direted Diophantine approximationproblem α, N, ε, where we are supposed to round down to the nearest integervetor. By using the notation {x}↓ = min{x − z : z ≤ x, z ∈ Z} for x ∈ R and
{{v}↓} = min{‖v−z‖∞ : z ∈ Zn, z ≤ v} and the observation that {x}↓ = {−x}↑it follows that Theorem 2 is also true if the rounding up operation is replaed byrounding down. We next formulate an integer program to ompute a Q whihyields a good approximation by rounding down and satis�es the denominatorbound Q ∈ {1, . . . , N}.

min
∑n

i=1(Q · αi − yi)

Q − 1/αi · yi ≥ 0 i = 1, . . . , n
Q ≥ 1
Q ≤ N

Q, y1, . . . , yn ∈ Z.The goal is to transform this integer program into a linear optimization problemover a mixing set. Consider the following mixing set.
Q − 1/αi · yi ≥ 0 i = 1, . . . , n

Q + 0 · y0 ≥ 1
Q − y−1 ≥ 0

Q ∈ R

y−1, y0, y1, . . . , yn ∈ Z.

(7)We now argue that, if the linear optimization problem over this mixing set anbe done in polynomial time, then P = NP.Suppose that the linear optimization problem an be solved in polynomialtime. Then, we an also solve the linear optimization problem over the non-empty fae of the onvex hull of the solutions whih is indued by the inequality
Q − y−1 ≥ 0, see, e.g., [8℄. This enfores Q to be an integer. Next onsider thefollowing objetive funtion

min

n
∑

i=1

(Q · αi − yi) + (2n−1ε/N)(Q − N). (8)The sum on the left is measuring the distane of Q·α to its nearest integer vetorfrom below in the ℓ1-norm. The term on the right stems from the removal of theonstraint Q ≤ N , whih would not be allowed in a system de�ning a mixing set.In fat, we thereby follow a Lagrangian relaxation approah, whih is ommonin approximation algorithms, see e.g. [20℄, in order to show a hardness result.Theorem 3. Optimizing a linear funtion over a mixing set is NP-hard.



10Proof. Let α1, . . . , αn, N, ε be an instane of direted Diophantine approxima-tion with rounding down, whih stems from a transformation from SAT, as inTheorem 2 and suppose that one an solve the linear optimization problem withobjetive funtion (8) over the onvex hull of the mixing set. Then we an alsooptimize this over the fae indued by Q− y−1 ≥ 0. This merely means that wean �nd a pure integer optimum solution over the mixing set (7).Our instane α1, . . . , αn, N, ε has the following property. If the originatingSAT formula is satis�able, then there exists a Q ∈ {⌈N/2⌉, . . . , N} with {{Q ·
α}↓} ≤ ε and if not, then there does not exist a Q ∈ {1, . . . , ⌊nc/ log log n⌋N}with {{Q · α}↓} ≤ 2nε.In the ase where the SAT formula is satis�able, let Q ∈ {⌈N/2⌉, . . . , N}with {{Q ·α}↓} ≤ ε. The objetive funtion value of this Q with the appropriate
yi yields an objetive funtion value bounded by n · ε.Suppose now that the SAT formula is not satis�able and onsider a solution
Q with appropriate yi of the mixing set problem. If Q ∈ {1, . . . , ⌊nc/ log log n⌋N},then the objetive funtion is at least

2nε − 2n−1ε = 2n−1ε.If Q is larger than ⌊nc/ log log n⌋N , then the objetive funtion value is at least
2n−1ε(⌊nc/ log log n⌋ − 1).Thus the problem of optimizing a linear funtion over a mixing set with arbitraryapaities is NP-hard. ⊓⊔Referenes1. W. Chen and J. Meng. An improved lower bound for approximating shortestinteger relation in l∞ norm (SIR∞). Information Proessing Letters, 101(4):174�179, 2007.2. M. Conforti, M. Di Summa, and L. A. Wolsey. The mixing set with �ows. SIAMJournal on Disrete Mathematis, 21(2):396�407 (eletroni), 2007.3. M. Conforti, M. D. Summa, and L. A. Wolsey. The mixing set with divisible apa-ities. In A. Lodi, A. Panonesi, and G. Rinaldi, editors, The The 13th Confereneon Integer Programming and Combinatorial Optimization, IPCO 08, Leture Notesin Computer Siene, pages 435�449. Springer, 2008.4. M. Conforti and G. Zambelli. The mixing set with divisible apaities: a simpleapproah. Manusript.5. I. Dinur. Approximating SVP∞ to within almost-polynomial fators is NP-hard.Theoretial Computer Siene, 285(1):55�71, 2002. Algorithms and omplexity(Rome, 2000).6. F. Eisenbrand and T. Rothvoÿ. Stati-priority realtime-sheduling: Response timeomputation is NP-hard. RTSS'08, 2008.7. A. Frank and É. Tardos. An appliation of simultaneous Diophantine approxima-tion in ombinatorial optimization. Combinatoria, 7:49�65, 1987.8. M. Grötshel, L. Lovász, and A. Shrijver. Geometri algorithms and ombinatorialoptimization, volume 2 of Algorithms and Combinatoris. Springer-Verlag, Berlin,seond edition, 1993.
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12 Let min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} be an instane of a shortest integerrelation problem. Consider the matrix
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∈ Z(n+1)×(n2+1)ontaining n opies of aT on a shifted diagonal and having (−1, eT
1 , eT

2 , . . . , eT
n )as last row, where ei is the i-th n-dimensional unit olumn vetor. The rest is�lled by zeros.Clearly, the optimization problems min{‖x‖∞ : aT x = 0, x ∈ Zn − 0} and

min{‖x‖∞ : Ax = 0, x ∈ Zn2+1 − 0} are equivalent and the seond optimizationproblem has the property that there is always an optimum solution with nonzero�rst entry. Kannan [13℄ provided an algorithm replaing a system Ax = 0 byone equation a′T x = 0 in polynomial time suh that the sets {x ∈ Zn2+1 : Ax =

0, ‖x‖∞ ≤ µ} and {x ∈ Zn2+1 : a′x = 0, ‖x‖∞ ≤ µ} are idential. His algorithmis polynomial in the enoding length of A and µ. Choosing µ = n is enoughfor our purposes so that Kannan's algorithm yields the desired shortest integerrelation instane min{‖x‖∞ : a′T x = 0, x ∈ Zn2+1 − 0}.Computing dense primesIn the redution from shortest integer relation to simultaneous Diophantine ap-proximation (Set. 2) we rely on the fat that one an e�iently ompute primenumbers p, q1, . . . , qn and integers R and T with1. n ·
∑n

j=1 |aj | < pR < qT
1 < qT

2 < . . . < qT
n < (1 + 1

n ) · qT
1 ,2. p and all qi are o-prime to all aj ,3. qT

1 > 22n · pR,4. the values of T, R, p, q1, . . . , qn are bounded by a polynomial in the inputlength of a.The algorithm whih we now present is almost idential, up to better bounds, tothe one proposed by Lagarias [14℄ and uses two deep results from number theory.The �rst one is the prime number theorem, whih states that π(n) ≈ n/ logn,see, e.g. [18℄. The seond result is the following theorem by Heath-Brown andIwanie [10,11℄.Theorem 4. For eah δ > 11/20, there exists a onstant cδ suh the interval
[z, z + zδ] ontains a prime for eah z > cδ.Let m be the binary enoding length of a. The number of di�erent primeswhih divide a omponent of a is bounded by m. We an ompute the �rst m+1prime numbers with the sieve of Eratosthenes. Here the prime number theoremis used, sine we run the sieve on the �rst O(m log m) natural numbers. Out of



13these primes we hoose one whih is o-prime to all omponents of a. This is theprime p from above. Next, we ompute the smallest integers R and T suh that
pR > n ·

∑n
j=1 |aj | and 2T > 22npR. The values of R and T are bounded by apolynomial in m.Next, the result of Heath-Brown and Iwanie omes into play. Let δ = 3/5and onsider the sequene

zi = T 20 + i · (2T )12, for i = 0, . . . , T 2 − 1.Eah interval [zi, zi + z
3/5
i ] ontains a prime number, sine may may assume

T > cδ. The number z
3/5
i an be bounded by

z
3/5
i =

(

T 20 + i(2T )12
)3/5

<
(

T 20 + T 2(2T )12
)3/5

≤ (2T )12.From this it follows that zi + z
3/5
i < zi+1, whih implies that the interval

[T 20, T 20 + T 2(2T )12] ontains T 2 prime numbers. Sine T 2(2T )12 < T 15 for
T large enough, we infer that the interval

[T 20, T 20 + T 15]ontains T 2 primes. If we denote the largest and smallest prime in this intervalby pmax and pmin respetively, then pmax/pmin ≤ 1 + (1/T )5 and onsequently
(pmax/pmin)

T ≤ (1 + (1/T )5)T ≤ e1/T 4

≤ 1 + 2/T 4 ≤ 1 +
1

n
.Here, we used the inequality 1 + x ≤ ex and ex ≤ 1 + 2x for x ∈ [0, 1].By hoosing T larger than m + n + 1, we may obtain prime numbers q1 <

. . . < qn from the interval [T 20, T 20 + T 15], whih are o-prime to p and eah ajand hene satisfy the onditions (1�4).


