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Dictionary Learning for Stereo Image Representation
Ivana Tošić, Member, IEEE, and Pascal Frossard, Senior Member, IEEE

Abstract—One of the major challenges in multi-view imaging
is the definition of a representation that reveals the intrinsic
geometry of the visual information. Sparse image representations
with overcomplete geometric dictionaries offer a way to efficiently
approximate these images, such that the multi-view geometric
structure becomes explicit in the representation. However, the
choice of a good dictionary in this case is far from obvious. We
propose a new method for learning overcomplete dictionaries
that are adapted to the joint representation of stereo images. We
first formulate a sparse stereo image model where the multi-view
correlation is described by local geometric transforms of dictio-
nary elements (atoms) in two stereo views. A maximum-likelihood
(ML) method for learning stereo dictionaries is then proposed,
where a multi-view geometry constraint is included in the prob-
abilistic model. The ML objective function is optimized using
the expectation-maximization algorithm. We apply the learning
algorithm to the case of omnidirectional images, where we learn
scales of atoms in a parametric dictionary. The resulting dictio-
naries provide better performance in the joint representation of
stereo omnidirectional images as well as improved multi-view
feature matching. We finally discuss and demonstrate the benefits
of dictionary learning for distributed scene representation and
camera pose estimation.

Index Terms—Dictionary learning, multi-view imaging, omni-
directional cameras, sparse approximations.

I. INTRODUCTION

R ECENT development of camera network applications
has fostered a large interest in multi-view and stereo

image processing research. Visual sensor networks capture
multiple images of a 3-D scene from different viewpoints. The
resulting multi-view images contain rich information about
both the structure and the texture of objects in the 3-D scene.
The processing of such high dimensional visual information
opens many research challenges, such as multi-view compres-
sion, 3-D geometry estimation and scene analysis.
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The representation of 3-D information from multiple views
relies on the theory of multiple view geometry [1], which re-
lates image features representing the same 3-D objects in dif-
ferent views. Pixel-based image representation is used in most
of the image-based 3-D geometry (depth) estimation methods.
However, pixel representations are highly inefficient for image
compression. On the contrary, image representations with or-
thogonal bases are efficient for compression but generally fail
to efficiently capture the true geometry of objects in a scene.
An alternative solution could be to model intra-view correlation
by block translations [2], but these approaches usually suffer
from blocking artifacts. Therefore, multi-view imaging requires
new representation methods that give good performance both in
compression and scene geometry estimation. Sparse image rep-
resentations with overcomplete geometric dictionaries offer a
promising way to solve this problem [3].

An overcomplete dictionary is a collection of waveforms
called atoms, whose size is greater than the signal dimension.
Since there is not much restriction on the choice of a dictionary
except that it has to span the signal space, one can choose
any collection of atoms that is capable of capturing the signal
structure. An interesting signal representation is the one that is
sparse, i.e., the signal is represented as a linear combination of
only few atoms. Sparsity plays a crucial role in compression
and in a variety of inverse problems. However, sparsity largely
depends on the design of the dictionary, which represents a dif-
ficult and challenging problem. Dictionary learning for sparse
signal representations has become an extremely active area of
research in the last few years, for example in image [4]–[6] and
video representation [7]–[9]. Still, there has been no work on
learning dictionaries for stereo image representation. Learning
such dictionaries could bring significant improvements in ap-
plications that require multi-view compression or camera pose
and depth estimation for example.

This paper presents a novel method for learning dictionaries
of geometric atoms that are adapted to the representation of
multi-view images. As the correlation between multi-view im-
ages arises from the geometric constraints on objects in the
scene, it can be simply described by local geometric transforms
of atoms [3]. We propose to learn dictionaries that efficiently de-
scribe the content of natural images and simultaneously permit
to capture the geometric correlation between multi-view im-
ages. We concentrate on the problem of two views and develop a
maximum likelihood (ML) method for learning dictionaries that
lead to improved image approximation under a sparsity prior,
and at the same time give better matching of sparse low-level
visual features in stereo views. Learning is based on a new prob-
abilistic model that includes the epipolar geometry relations.
The ML optimization problem is cast as an energy minimiza-
tion problem, which is solved with an Expectation-Maximiza-
tion (EM) algorithm. The experimental results show the signifi-
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cant benefits of stereo dictionary learning for applications such
as distributed scene representation and camera pose recovery.

We first overview the related work on dictionary learning in
Section II. The stereo image model is introduced in Section III.
Section IV presents the optimization problem for learning dic-
tionaries adapted to stereo images, while its solution is given in
Section V. Experimental results in omnidirectional imaging are
presented in Sections VI and VII.

II. RELATED WORK

One of the earliest work addressing the problem of learning
overcomplete dictionaries for image representation was the
sparse coding method of Olshausen and Field [4], [10], pri-
marily introduced as a model of early visual sensory coding.
This method is based on maximizing the likelihood that a
natural image arises from the overcomplete dictionary ,
when the generative image model is considered as sparse image
decomposition into dictionary elements. Therefore, the ML
method solves the optimization problem ,
for , where the coefficient vector is considered
as a hidden variable and is a noise vector. The optimization
is solved in two iterative steps: the sparse coding step, where
the dictionary is kept fixed and the sparse coefficient vector

that best approximates the image is found; and a dictionary
update step, where is kept fixed and the dictionary is up-
dated to maximize the objective maximum likelihood function
using gradient descent. The proposed learning method yields
dictionary components (atoms) that are localized, oriented and
bandpass, and resemble the receptive fields of simple neurons
in the primary visual area V1 in mammalian brain. This method
has also been extended to natural movies [7]–[9].

The probabilistic approach to dictionary learning has been
later adopted by other researchers. Engan et al. [11], [12]
have introduced a method of optimal directions (MOD), which
includes the sparse coding and dictionary update steps that
iteratively optimize the objective ML function. Their method
differs from the work of Olshausen and Field in two aspects.
First, while in [4] the sparse coding step involves finding the
equilibrium solution of the differential equation over , MOD
uses either the OMP [11] or the FOCUSS [12] algorithm to
find sparse vector . Second, instead of doing gradient descent,
the dictionary is updated by the closed-form solution of the
minimum energy constraint. These two modifications make
the MOD approach faster compared to the ML method of
Olshausen and Field. Maximum a posteriori (MAP) dictionary
learning method, proposed by Kreutz-Delgado et al. [5] belongs
also to the family of two-step iterative algorithms based on
probabilistic inference. Instead of maximizing the likelihood

, the MAP method maximizes the posterior probability
. This essentially reduces to the same two-step algo-

rithm (i.e., sparse coding-dictionary update), where dictionary
update includes an additional constraint on the dictionary that
can be for example a unit Frobenius norm of or a unit
norm of all atoms in the dictionary. The sparse coding step is
performed with FOCUSS [13].

A slightly different family of dictionary learning techniques
is based on vector quantization (VQ) achieved by K-means clus-
tering. The VQ approach for dictionary learning has been first
proposed by Schmid-Saugeon and Zakhor in Matching Pursuit
based video coding [14]. Their algorithm optimizes a dictionary
given a set of image patches by first grouping patterns such that
their distance to a given atom is minimal, and then by updating
the atom such that the overall distance in the group of patterns
is minimal. The implicit assumption here is that each patch can
be represented by a single atom with a coefficient equal to one,
which reduces the learning procedure to K-means clustering.
Since each patch is represented by only one atom, the sparse
coding step is trivial here. A generalization of the K-means
for dictionary learning, called the K-SVD algorithm, has been
proposed by Aharon et al. in [6]. After the sparse coding step
(where any pursuit algorithm can be employed), the dictionary
update is performed by sequentially updating each column of

using a singular value decomposition (SVD) to minimize the
approximation error. The update step hence follows a general-
ized K-means algorithm since each patch can be represented by
multiple atoms with different weights.

Finally, there exist other approaches for learning special
types of dictionaries, like unions of orthonormal basis [15],
shift-invariant dictionaries [16], block-based dictionaries and
constrained overlapping dictionaries [17]. A comparison of all
state-of-the-art dictionary learning methods is made difficult
by the fact that the efficiency of the algorithms differs with the
dictionary size and the training data. Advantageously, ML and
MAP methods are characterized by the possibility of extending
the probabilistic modeling to higher-dimensional data, like
videos [8], [9] or stereo images. It is also possible to include
different correlated modalities such as audio and visual signals
in order to learn audio-visual dictionaries [18]. Because of
this property, we have chosen the ML approach for learning
parametric dictionaries in stereo imaging.

Even though there exists a plethora of dictionary learning
methods for monocular images, there has been little work
that target the problem of learning overcomplete dictionaries
for stereo imaging or for binocular sensory coding. Hoyer
and Hyvärinen [19] have applied the independent component
analysis (ICA) to learn the orthogonal basis of stereo images.
In their model, each stereo pair is a linear combination of stereo
basis functions, which are composed of left and right compo-
nents. Their algorithm results in Gabor-like basis functions
that are tuned to different disparities. Okajima has proposed an
Infomax learning approach, where the receptive fields of binoc-
ular neurons are learned by maximizing the mutual information
between the stereo image model and the disparity [20]. They
have obtained results similar to Hoyer and Hyvärinen. The
stereo dictionary learning method that we propose in this work
differs from previous work because it learns stereo atoms from
stereo image pairs under explicit geometric constraints. The
disparity estimation is included in the probabilistic model of
stereo images, thus removing the need for disparity compensa-
tion as a preprocessing step (e.g., in [19] eye fixation selection
is applied before ICA). However, the main target of this work
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is not to study the receptive fields of binocular cells, but rather
to design stereo dictionaries that have good properties for both
image approximation and 3-D structure estimation.

III. MULTI-VIEW IMAGING

A. Stereo Image Model

Before deriving a maximum likelihood dictionary learning
method for stereo images, we first need to define the stereo
image model. We consider two images vectorized into column
vectors: the left image and right image . The images
and have sparse representations in dictionaries and ,
respectively. Both dictionaries are of size . The images do
not have to be exactly sparse, but they can be approximated by
sparse decompositions of atoms up to an approximation error

, resp. . Hence, we have:

(1)

where the vectors and represent the coefficients for the left
and the right image, respectively. The index sets ,

, label the atoms that participate
in the sparse decompositions of and , respectively. In
other words, , , denote the atoms with
non-zero coefficients, i.e., and . This model
assumes that both stereo images are -sparse, i.e., composed
of atoms, while the atoms in the left and the right image do
not have to be identical . The motivation behind this
model is that left and right images record the visual information
from the same 3-D environment and typically contain the image
projections of the same 3-D scene features, thus the number of
sparse components will be approximately the same. However,
the sparse components might be different since the images are
recorded from different viewpoints. If the dictionary consists
of localized and oriented atoms that represent well the edges
and objects geometry in general, we can say that stereo images
contain similar atoms, but locally transformed (shifted, rotated,
etc.). Therefore, we further assume that signals and are
correlated in the following way:

(2)

where denotes the transform of an atom in to
an atom in . It is different for each . This
correlation model is a special case of the model introduced in
[3] when there are no occlusions. Since they do not participate
in stereo matching, occlusions should not be considered for the
learning of stereo dictionaries. Therefore, we assume in (2) that
the occlusions in the scene are not dominant and that they can
be included in the approximation errors , .

Object and atom transforms arising from the change of view-
point can be usually represented by the 2-D similarity group
elements (2-D translation, rotation and isotropic scaling) and
anisotropic scaling of the image features [3]. Such transforms

are efficiently represented with a parametric dictionary whose
construction is built on translation, rotation and scaling of a gen-
erating function defined in the Hilbert space . Formally, the
parametric dictionary is constructed by changing
the atom index that defines the rotation, translation and
scaling transforms applied to the generating function . This is
equivalent to applying a unitary operator to the generating
function , i.e.,: . Finally, the function needs to
be normalized and have the norm equal to one1. Therefore,
we define atoms in the structured dictionary as: .

The multi-dimensional space of parameters is continuous
and infinite, thus building a dictionary with all possible trans-
forms yields an infinite dictionary. However, in practical cases,
only a discrete set of transform parameters is used.
We further define our dictionaries and as structured dictio-
naries that are built on the same generating function , but with
possibly different sets of parameters: for , and for .
To simplify the notation, we introduce the following equivalen-
cies:

(3)

where we assume that and are normalized. An im-
portant property of the structured dictionary is that a transform
of an atom in the left image into an atom in the right image
reduces to a transform of its transform parameters, i.e.,

(4)

In the following, the transform that changes atom into an
atom is denoted as . Since the parametric dictionary is
built on rotation, translation and anisotropic scaling of the gen-
erating function, these are the types of atom transforms that we
consider. Note also that one can design parametric dictionaries
built on perspective transforms where each atom would be de-
scribed by eight parameters. However, this would increase the
dictionary size and the complexity.

B. Multi-View Geometry

The transforms , relating the atoms in the
left and right view in (2) are not arbitrary. As the corresponding
atoms are approximations of the same features in the 3-D space,
the atom transforms have to satisfy multi-view epipolar geom-
etry constraints. The epipolar geometry constraint imposes a
geometric relation between 3-D points and their image projec-
tions. Consider a point on the left image, given by the coordi-
nates , and a point on the right image. Let these two points
represent image projections of the same 3-D point from two
camera positions with a relative pose . is the
relative orientation between cameras. is their relative
position. Let further lie on the spatial support of atom and

lie on the spatial support of atom , as illustrated
in Fig. 1. It can be shown that transforming the atom with

is equivalent to a linear transform of the coordinate system
, i.e., [21]. The epipolar geometry constraint

is then

1The vector � norm is denoted as � � � .
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Fig. 1. Epipolar geometry between stereo atoms.

(5)

Matrix is obtained by representing the cross product of with
as matrix multiplication. Clearly, denotes the linear

transform of coordinates between atoms and

, thus it depends on the parameters and . Knowing
these parameters, it is straightforward to derive the analytic form
for . This form is derived in [3], [21] for omnidirectional
images.

Note however that the epipolar constraint in (5) is rarely satis-
fied exactly, due to discrete spatial sampling of images. It can be
only evaluated with a certain error (distance) . The estimated
epipolar constraint is thus given as

(6)

where . Moreover, since there is uncer-
tainty in epipolar geometry estimation, the epipolar measure is
not symmetric. When a point in the second image is trans-
formed to a point in the first image, we have the epipolar ge-
ometry estimate given by

(7)

where . The most likely transforms
(equivalently ) in pairs of stereo images are the transforms
that give small average epipolar error over all corresponding
pairs of points . We use this property in the max-
imum-likelihood learning of stereo dictionaries presented in
Section IV.

IV. ML LEARNING OF DICTIONARIES FOR STEREO IMAGES

A. Problem Formulation

Following a similar approach as in [4], we formulate the prob-
abilistic framework for the ML learning of overcomplete dic-
tionaries , that are used to represent the stereo images
and respectively. We define the likelihood that stereo im-
ages captured by two cameras with a relative pose , are well
represented with a small set of atom pairs related by multi-view
geometry constraints. In other words, we want to learn the dic-
tionaries and simultaneously. Therefore, we need to maxi-
mize the probability that the observed stereo images and
are well represented by dictionaries and under a sparsity
prior, and that the epipolar constraint between all corresponding
points on and is satisfied, i.e., that the total epipolar dis-
tance between all corresponding points equal to zero, .

Therefore, the goal of learning is to find the overcomplete dic-
tionaries and that are the solutions of the following op-
timization problem:

(8)

where and . When images
and have sparse approximations in and , respectively,
we can approximate the probability in (8) as

(9)

A similar approximation is proposed in [10] in the learning of
dictionaries for natural images. Applying the chain rule and
using the fact that does not bring more information to

, than , , we obtain

(10)

We can now rewrite the optimization problem of (8) as

(11)

where the objective function consists of three components:
1) the stereo image likelihood ; 2) the
epipolar likelihood ; and 3) the prior on
the coefficients . In the following, we evaluate
each one of these three terms of the objective function.

B. The Stereo Image Likelihood

The stereo image likelihood can be
modeled by a Gaussian white noise that describes the approxi-
mation error in the image model in (1). We thus have

(12)

where is the variance of the Gaussian noise. Note that
we have used in (12) the fact that the sum of two zero-mean
Gaussian random variables is also a zero-mean Gaussian
random variable. In the rest of the paper, we omit the normal-
ization constants of distributions since they do not influence the
optimization problem in (8), and we use instead of .

C. The Epipolar Matching Likelihood

We compute now the likelihood that the epipolar constraint
is equal to zero given the stereo image model in (2), i.e.,

. This likelihood prioritizes the atoms that
correspond to the same 3-D objects in our stereo image model.
The epipolar matching of two points on the left and right images,
which are the projections of the same point in the 3-D space,
has been derived in the Section III-B. The estimation errors
and of the epipolar constraints and are assumed to be
i.i.d. white zero-mean Gaussian noises of variances and ,
respectively. We can thus define the conditional probabilities of
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the random variables and , given a pair of points , and
atoms , as

The atoms and influence the functions and that are
based on the transform . Since we want to find the proba-
bility that two atoms satisfy the epipolar constraint, we are inter-
ested in the probability of a particular realization of the random
variables and when they are simultaneously equal to zero.
Therefore, we define the conditional probability of ,

, given , , ,

(13)

We extend this conditional probability to all pairs of pixels
that undergo the transform defined by the atom pair, i.e., for all

, , . Let denote the event that the epipolar
constraints are simultaneously respected for all pairs of pixels.
In this case, we have , for all , where

and

. Note that small letters within square
brackets in the superscript denote the pixel counter parameter. If
we assume that the estimation of the epipolar distance for each
pixel pair can be computed independently, we have

(14)

where and . The

weights , permit to control the importance of the
epipolar constraints. In particular, they give more importance to
the epipolar constraint at points that are closer to the geometric
discontinuity represented by the atom, where the estimation of
the epipolar constraint is more reliable. This is represented by
the function in (14) in order to simplify the notation.

Finally, the probability of the epipolar matching for the stereo
image pair is the product of probabilities of epipolar matching
for pairs of active atoms. The active atoms participate in the

sparse decompositions of the left and right image with their re-
spective coefficients and , which are different from zero.
Then, we can model the probability as

(15)

where is the indicator function defined as: if
and if .

D. Prior on the Coefficient Vector Distributions

The last term in our objective function in (11) is the joint
distribution of the coefficients and , given
the dictionaries and . We assume that the pairs of coeffi-
cients are pairwise independent, which is usually the
case when the image approximations are sparse enough. Then,
the distribution becomes factorial, and we can
write

(16)

We compute now the conditional probabilities and the distribu-
tions of the coefficients that are used in (16). We assume that
pixels keep their intensity values under the local transforms in-
duced by the viewpoint change. This assumption holds in multi-
view images when the scene is Lambertian, and when the atom
transforms correctly represent local transforms. Equivalently,
we can write

(17)

where . This means that if the transform
maps a pixel at position on the image into a pixel at posi-
tion on the image , then those pixels have the same inten-
sity. Under the assumption given in (17), we can use the Lemma
1 in [22], which states the following equality:

(18)

where is the Jacobian de-
terminant (or simply the Jacobian) of the linear transform .
Recall that the inner products in (18) correspond to the coeffi-
cients and related to the atoms under consideration. Using
the sparse image model and the relation in (18) we obtain the
following probabilities:

(19)
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where is the standard deviation of the zero-mean Gaussian
noise that models the difference between and . The
detailed derivation of (19) is given in Appendix A.

We model now the prior distributions of the coefficients.
These distributions depend on an arbitrarily chosen dictionary.
However, imposing the independence of the coefficients with
respect to the dictionary during learning leads to a dictionary
that gives the same prior distribution of coefficients for all types
of images. Furthermore, when the prior on coefficients is tightly
peaked at zero, the learning leads to a universal dictionary in
which all natural images have sparse decompositions. We
choose here a different approach than the one proposed in [4],
where the coefficients prior is a heavy-tailed Laplace distribu-
tion, peaked at zero. Instead, we assume that the coefficients
and are drawn from a Bernoulli distribution over the activity
of coefficients and , where denotes the indicator
function. For this distribution is

if ;
if

and similar holds for . Choosing introduces a spar-
sity assumption on the coefficients. These prior distributions
represent the case when a large number of coefficients is exactly
zero, which is a better sparsity prior than the Laplace distribu-
tion where many coefficients are close to, but not exactly equal
to zero. When the images are represented by atoms from a
dictionary of size , we have

(20)

and the same holds for . Without loss of generality, we pose
. Therefore, reducing the value of increases

the level of ”sparseness“ of coefficients. As the coefficients
and for , are independent and identically
distributed, the (20) can be rewritten as

(21)
A similar expression holds for , i.e., .
From (16), (19) and (21), we can write

(22)

where the term in the second exponent follows from the assump-
tion that the left and the right image are of the same sparsity, i.e.,

.
We have now defined all three components of our objective

function in (11). The Section V proposes an approach for nu-
merical optimization of the objective function using the Expec-
tation-Maximization algorithm.

V. EM-BASED ENERGY MINIMIZATION ALGORITHM

A. Energy Minimization Problem

The ML optimization problem of (11) is equivalent to solving
the following energy minimization problem:

(23)

where denotes the energy function given as

(24)

The energy function thus consists in the sum of four main terms
that are respectively

1) the data fidelity term, expressed by the energy of the ap-
proximation error after sparse approximation of images
and ,

2) the epipolar constraint term, measuring the epipolar
matching of atoms in sparse decompositions of a stereo
image pair,

3) the coefficient similarity term, measuring the correlation of
coefficients of stereo atom pairs under a local transform,

4) the sparsity term, expressing the degree of sparsity of the
stereo image pair.

We can see that the first three terms depend on the choice of
the dictionaries and , while the last term depends only on
the coefficient vectors and . Therefore, we group the first
three terms into a function and express
the energy function as

(25)

B. EM-Based Algorithm

The energy minimization problem can be solved iteratively
by alternating between two steps. In the first step, is kept
constant and the energy function is minimized with respect to
the coefficients . The second step keeps the obtained co-
efficients constant, while performing the gradient descent
on to minimize the energy , which is equivalent to min-
imizing . Therefore, the algorithm iterates
between the sparse coding and the dictionary learning steps until
convergence. In order to have stable learning, each iteration of
the proposed algorithm has to be performed on a set of stereo im-
ages randomly chosen from a large
database of stereo pairs taken from different camera poses. This
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algorithm is then equivalent to an Expectation-Maximization al-
gorithm [23], where the images are the observed vari-
ables, represent hidden variables, and are the pa-
rameters [24], [25]. The Expectation (E) step corresponds to the
sparse coding (inference) step, while the Maximization (M) step
corresponds to the learning step.

1) Minimization With Respect to the Coefficients: In the
sparse coding step, for each stereo image pair in a
randomly chosen set we solve for and

(26)
We can see that this problem is similar to the constrained
sparse approximation problem when cast as an unconstrained
problem. The multiplier is the trade-off parameter be-
tween minimizing the energy in and the sparsity of coefficient
vectors and . Since finding the global optimum of such a
problem is NP-hard, we use the greedy approach to find a locally
optimal solution. Although they are not guaranteed to find the
sparsest solution for such problems, greedy algorithms have per-
formed quite well with fast convergence in practice [26]–[28].
An advantage of using a greedy approach here is that it leads
to a signal approximation using a small set of coefficients dif-
ferent from zero. In contrary, minimization algorithms leads
to many small but non-zero coefficients, which would increase
the computation time of the epipolar constraint part of the en-
ergy function in (24).

We propose a greedy algorithm that chooses at each iteration
the pair of atoms , that give the minimal value of the

function

(27)

where and are the residues of the left and right
images respectively, after iterations2. At the beginning,
the residues are: and and they are updated
at each step as

(28)

The coefficients and are simply evaluated as

(29)

2We introduce a slight abuse of notation here, as ��� in the superscript hold an
iteration counter, while in Section IV-C they hold a pixel index.

We will refer to this algorithm as Multi-view Matching Pur-
suit (MVMP)3, which can be shown to be essentially the Weak
Matching Pursuit [29]. The bound of the approximation rate of
MVMP can be found in [30].

2) Minimization With Respect to the Atom Scale Parame-
ters: Once the atoms , , that participate
in the decomposition of images and have been found by
MVMP, their coefficients are kept fixed while the atoms are up-
dated by minimizing the energy function. Knowing the selected
atoms, the energy function at step becomes

(30)

Since we have a set of stereo images, in the M step we mini-
mize over the average energy . It can be observed that the
energy function is actually an analytic function of the atom
parameters and in the case of parametric dic-
tionaries as defined in Section III-A. Hence, we can calculate its
derivatives with respect to each parameter. Therefore, one can
use the multivariate gradient descent, or the multivariate conju-
gate gradient method to find the local minimum of with
respect to and , given the coefficients and for each

.
The sparse coding and the learning steps are iteratively

repeated until convergence is achieved. The complexity of
the stereo dictionary learning algorithm is twice larger than
the complexity of the same algorithm that learns from single
images, augmented by the cost of evaluating the epipolar geom-
etry between atoms. However, learning parametric dictionaries
has a much smaller cost than learning general type dictionaries
[4], [6], as the number of free parameters is drastically reduced
from the number of pixels in all atoms to the number of possible
atom parameters (different scales in our case). The complexity
of learning a sufficient number of atom parameters from stereo
images is thus comparable to the complexity of dictionary
learning for single images.

VI. LEARNING FOR STEREO OMNIDIRECTIONAL IMAGES

A. Spherical Imaging Framework

The proposed ML stereo dictionary learning method does not
put any assumption on the type of cameras used for stereo image
acquisition. Since omnidirectional cameras with wide fields of
view represent a convenient solution for 3-D scene representa-
tion, we perform learning of dictionaries for stereo omnidirec-
tional images.

Omnidirectional images obtained by catadioptric cameras
can be appropriately mapped to spherical images [30]. There-
fore, we use a dictionary of atoms on the 2-D unit sphere as
proposed in [31] in order to represent spherical images. The

3Although we take here only two images, we can generalize the algorithm to
more than two images by pairwise image correspondence.
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Fig. 2. (a)–(b) Two views from the “Mede” database, first image set. (c)–(d) Two views from the “Mede” database, second image set.

generating function is defined in the space of square-inte-
grable functions on a unit two-sphere , ,
where is the polar angle and is the azimuth angle. We
use a dictionary of edge-like atoms on the sphere, based on a
generating function that is a Gaussian in one direction and its
second derivative in the orthogonal direction

(31)

where is a normalization constant. For the weighting
function in the epipolar geometry constraints of (14) we use a
Gaussian envelope of the form

(32)
This function gives positive weights to the points on the main
(central) lobe of the atom , while the weights are close
to zero outside of the main lobe. The weights are higher to-
wards the axis of the discontinuity represented by the atom.
Choosing such a weighting function for the epipolar geometry
estimation permits to use only the points that are likely to sat-
isfy the epipolar constraints, and to exclude the points repre-
sented by the ripples of the second derivative of the Gaussian.
The dictionary is then built by changing the atom parameters

. The triplet represents Euler
angles that describe the motion of the atom on the sphere by an-
gles and along and respectively, and the rotation of the
atom around its axis with an angle . The parameters and
represent anisotropic scaling factors.

The epipolar geometry constraint for the considered stereo
image model is given in (5). The transform that
relates a point on atom to its corresponding trans-

formed point on the transformed atom can be
defined via the linear transform of the coordinate system. The
closed form of this transform can be found in [3], [30].

B. Learning Testbed

We describe now the experimental testbed that we have used
for dictionary learning on stereo spherical images. Even if the
dictionary is constructed by translation, rotation and scaling of
the generating function, we focus on the learning of scaling

parameters only. The scaling parameters are the most impor-
tant parameters since they define the shape of the atoms, which
become elongated as the scales become anisotropic. Alterna-
tively, translations and rotations depend highly on the distance
and orientations of the cameras, so that learning these param-
eters is meaningful only when cameras are static (it results in
a position-specific dictionary). We want to perform learning of
scales from the set of atom parameters and

from for atoms that are present in sparse ap-
proximations of stereo views and satisfy the epipolar geometry
constraint. The energy function of (24) is minimized only with
respect to these parameters. We have performed the minimiza-
tion using the conjugate gradient4. The other parameters are kept
fixed. The motion parameters include the positions of all
pixels in an image. The rotation parameter has been sampled
uniformly between 0 and with resolution . We have taken
the same motion and rotation parameters for the left and right
dictionaries.

We have tested the proposed stereo dictionary learning algo-
rithm on our “Mede” omnidirectional multi-view database5. The
database consists of 54 omnidirectional images of the indoor
environment, grouped into two sets: set without plants (27 im-
ages), and set with plants (27 images). Different views have been
captured by placing cameras on different positions on the floor,
without camera rotation. We have formed 216 pairs of images
with different distances between the cameras. Since we know
the camera positions and the rotation is identity, the relative pose
matrices and are known for each image pair. Sample views
are illustrated in Fig. 2.

The first step in the learning algorithm (i.e., the expectation
(E) step implemented by MVMP) needs to be performed on a
big set of statistically different stereo images for the learning
results to be meaningful. In order to limit the complexity of
the whole learning process and yet include the image diversity,
we select small patches of pixels from the spherical
images obtained by mapping the omnidirectional images to the
unit sphere. As cropping a square image patch from a spherical
image is feasible only when its center lies on the equator, we
rotate the sphere such that the center of the patch coincides with
the equator and then crop it. This rotation is taken into account
when we estimate the epipolar geometry. Therefore, in the E

4http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
5Database is available upon request.
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Fig. 3. Example of a pair of stereo patches and their MVMP selected atoms.
(a) The left patch, (b)-(d) the first three atoms in the MVMP decomposition of
the left patch; (e) right patch, (f)-(h) the first three atoms in the MVMP decom-
position of the right patch.

step we form a set of pairs of stereo patches. For each
we randomly choose an image pair from the

database, then we randomly select a point on the sphere and
we extract two patches from two stereo images centered on this
point. The MVMP is then performed on each pair of patches
independently, and atoms are selected. Examples of atoms
are shown in Fig. 3(b)–(d) and (f)–(h). The dictionary learning
step (M step) is then performed by minimizing the sum of the
energy function given by (30) for all patches.

In our experiments, we have taken pairs of patches
of size 12 12, that have been obtained by cropping slightly
bigger patches of 16 16 in order to avoid border effects. All
patches have been normalized to the same variance 0.1 in order
to equalize the importance of each patch. Moreover, the patches
have been whitened by spherical low-pass filtering in order to
flatten the image spectrum and make all frequencies equally im-
portant, as proposed in [4]. The number of positions in the dic-
tionary construction is 12 12 and the number of rotations is
set to 4. Finally, the pairs of scales have been independently
randomly initialized for the left and right dictionary, with 5
pairs of anisotropic scales each in the range (from big
to small atoms). The MVMP algorithm selects atoms
per patch. Since the size of the patches is small, three atoms
are usually enough to represent the main geometrical compo-
nents in the patch. Before starting the learning algorithm, we
have performed MVMP on a set of randomly selected patches
to estimate the variances and .

C. Learned Dictionaries

We first present the resulting dictionaries obtained by the pro-
posed learning method applied to stereo omnidirectional im-
ages. In order to see the influence of the part of objective func-
tion that relies on the multi-view constraint, we have introduced
a factor in the energy function

(33)

We can see that for , the energy function in (33) is equal
to the one in (24). On the other hand, for , there are no

Fig. 4. Initial and learned scales of the atoms for the left and right dictionaries.
All atoms are on the North pole.

multi-view constraints in the energy function, and the dictionary
learning is based only on minimization of the approximation
error and the sparse penalty.

The initial values of scales , , and have
been chosen randomly, and they are given in the first two
columns of Table I. The atoms built with these initial scales and
centered at the North Pole are shown in the first row in Fig. 4.
We then learn the scaling parameters with 50 iterations of the
EM algorithm. At this point, the change in parameters becomes
small and the solution can be considered as stable. The learned
scales , , and are given in columns 3 to 10
in Table I, for , 1, 3, 5. Learning has been initialized with
the same initial scales, for all values of . The corresponding
atoms are shown in Fig. 4.

We observe first that the learned dictionaries include atoms
of different scales; they are therefore able to approximate sig-
nals at various scales. When , the learned atoms are elon-
gated along the direction of the Gaussian function and narrow in
the direction of the second derivative of the Gaussian function.
These results are in consistency with the previous work on dic-
tionary learning for image representation in the single view case
[4]. However, when we increase and hence include the geom-
etry constraints in the stereo learning, we obtain different results
for atoms scales. The atoms become elongated in the direction
of the second derivative of the Gaussian function and narrow
in the direction of the Gaussian function, which is an opposite
effect than in the case where . This can also be seen in
Fig. 5, which gives a graphical representation of the anisotropy
scale ratio for all learned atoms, sorted in the descending
order, for , 1, 5. Most of the values of (especially
the peak values) increase with the increase of , which confirms
the anisotropy effect that is visible in Fig. 4. Another effect of
the multiview constraint is that for the learned scales
generally tend to give smaller atoms than for . They are
most probably due to the local nature of the epipolar constraint.
Namely, the depth of the scene rapidly changes around object
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TABLE I
INITIAL AND LEARNED SCALE PARAMETERS FOR THE LEFT AND RIGHT DICTIONARY, FOR DIFFERENT VALUES OF THE PARAMETER �

Fig. 5. Anisotropy scale ratio ��� in descending order over all learned atoms,
for � � �, 1, 5.

boundaries leading to different disparity and epipolar matching.
Since the object boundaries are represented by 2-D disconti-
nuities on the image of a 3-D scene, the epipolar geometry is
mostly satisfied along the discontinuity and in a limited area.
This renders the learned atoms anisotropic and small. It high-
lights the great importance of the geometric constraints in the
learning of dictionaries for stereo images.

VII. APPLICATIONS

A. Distributed Scene Representation

Distributed scene representation with stereo or multi-view
cameras corresponds to the problem where each image of the
scene is approximated independently from the others. Namely,
we do not search for corresponding atoms during sparse approx-
imation using MVMP, but we rather apply MP independently on
each image and then match the corresponding atoms for joint
reconstruction. The number of correspondences between atoms
from different views is very important for scene representation,
because these pairs carry the geometric correlation between two
images. For example, in distributed multi-view coding, a bigger
number of atom stereo pairs directly reduces the required trans-
mission rate and improves the coding performance [3]. If the

atoms that form the learned dictionaries and represent the
statistically optimal atoms for both image approximation and
epipolar geometry, one should expect that the learned dictionary
results in more corresponding atom pairs than a randomly ini-
tialized dictionary, even in distributed settings. In order to verify
it, we select randomly two image patches, and with the
same center from a randomly chosen pair of omnidirectional
images in the “Mede” database. The size of the patches is set
to 40 40 pixels, which is slightly larger than the size used for
learning. After independent MP decompositions of the left and
right patch using respectively and with 10 atoms per patch,
the epipolar constraints are evaluated for all possible pairs of left
and right atoms , , . The
epipolar measure is equal to half of the value in (14),
and represents the epipolar atom distance per view.

Fig. 6(a) plots on the axis the number of atom pairs
that have the epipolar distance smaller or equal than
the threshold value given on the -axis. We call this curve the
cumulative correspondence number (CCN) curve. The left part
of CCN curves with small is more important than the right
part, because the correspondences are more reliable when their
epipolar distance is smaller. All CCN curves have been aver-
aged over 100 randomly chosen image pairs. We can see that
CCN curves for , and are all above the
CCN curve of the randomly initialized dictionary. This confirms
that our learning algorithm produces dictionaries that result in
a larger number of correspondences between atoms of different
views. On the other hand, for , the CCN curve is either
close to the CCN curve of the random dictionary, or below it.
This shows that designing dictionaries for image approximation
without considering the multi-view geometry can lead to subop-
timal dictionaries for stereo images. Fig. 6(b) shows the average
approximation rate (i.e., energy decay) during the iterations of
the MP for images and . We plot the ratio between the
sum of the residues of the left and right images after itera-
tions and the sum of their initial energies. We can see that for
all values of the approximation rate using learned dictionaries
is better than using random dictionaries. Moreover, increasing
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Fig. 6. Performance of the learned dictionaries in distributed settings: (a) Cumulative correspondence number (CCN) curves for initial dictionary and learned
dictionaries, for � � �, 1, 3, 5; (b) MP energy decay for � and � .

Fig. 7. Performance of the learned dictionaries in distributed settings, with averaging over random initial dictionaries. (a) Average Cumulative correspondence
number (CCN) curve for 100 random initial dictionaries and CCN curves for learned dictionaries, for � � �, 1, 3, 5; b) MP energy decay for � and � .

the value of induces only a minor penalty in the approxima-
tion rate; optimizing the dictionaries for stereo matching does
not significantly impact the approximation rate.

In order to verify that the superior performance of the learned
dictionary over the initial one is not due to the unlucky selec-
tion of the initial dictionary, we compare the performance of
the learned dictionaries to an average performance of different
randomly selected initial dictionaries. We select randomly 100
initial dictionaries and 100 stereo image pairs, and plot the av-
erage CCN curve for the initial dictionary. This curve is shown
with the blue solid line in Fig. 7(a). We see that the learned dic-
tionaries still give more correspondences than the random ones
for small values of . Therefore, they lead to more atom pairs
with a better epipolar matching. The comparison of the energy
decay in this case is shown in Fig. 7(b), and it is similar to the
results in Fig. 6(b).

The learned dictionaries can be beneficial for distributed rep-
resentation and coding of multi-view images. We evaluate the
performance of the distributed coder presented in [3] with new,
learned dictionaries. As in [3], we use Lab images for evalu-

ation, which do not belong to the training set “Mede”. Since
stereo learning results in two dictionaries that are very sim-
ilar, we use the parameters only of the dictionary . The dis-
tributed coder is based on coding with side information, where
image is independently encoded, while the image is
encoded by coset coding of atom indexes and quantization of
their respective coefficients [3]. We use the learned dictionary
in Section VI-C for and 16 orientations. The image is
encoded independently at 0.21 bpp with a PSNR of 30.61 dB,
while the image is encoded by coset coding. Fig. 8 shows
the rate-distortion (RD) curves for the image , where the
dash-dotted line corresponds to the uniformly sampled dictio-
nary [3], and the solid line corresponds to the learned dictio-
nary. The dashed line presents the RD performance of indepen-
dent coding with MP and the uniform dictionary. We can see
that the learned dictionary improves the DSC performance for
almost 1 dB at low rate. This confirms our previous observation
that the learned dictionary increases the probability of finding
correlated atoms between different views. When the number of
these correlated atoms decreases, the coder performance satu-
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TABLE II
CAMERA POSE ESTIMATION WITH RANDOM INITIAL AND LEARNED DICTIONARIES, FOR TARGET TRANSLATION � � �����

TABLE III
CAMERA POSE ESTIMATION WITH RANDOM INITIAL AND LEARNED DICTIONARIES, FOR TARGET TRANSLATION � � �����

Fig. 8. Rate-distortion performance of the DSC coder for image � from the
Lab image dataset [3].

rates irrespectively of the dictionary. In this case, one has to
employ a solution that is robust to occlusions [32].

The idea of using disparity learning for efficient distributed
coding of stereo images has been previously suggested by Var-
odayan et al. [33]. Their algorithm performs online disparity
learning during decoding (it is thus image-dependent) and re-
quires a feedback channel. Our approach is quite different how-
ever, because we perform offline learning of general dictionaries
that are not image-dependent and we do not require a feedback
channel.

B. Camera Pose Estimation

Finally, we discuss the benefits of dictionary learning for the
camera pose estimation algorithm proposed in [21]. This algo-
rithm extracts atoms from two views in a distributed fashion,
and then finds the atom pairs that are related by local geometric
transforms. The selected atom pairs and their transforms are
then used to find point correspondences in two views, which
are used to estimate the camera pose using the eight-point al-
gorithm [34]. Additionally, we apply Ransac [35] for camera

pose estimation in order to be more robust against outliers. We
have estimated the camera pose using the initial and learned
dictionaries for . Two pairs of images from the “Mede”
database have been selected, with translation and

respectively. For each image in a stereo pair, we
have randomly chosen 20 patches of 40 40 pixels, located at
the same position in two stereo images. The same image patches
are decomposed by MP using initial and learned dictionaries,
giving 3 atoms per patch and thus 60 atoms per image. The
estimated translation vectors and the angular errors in radians
are shown in Tables II and III for both target vectors . We
can see that estimation using the learned dictionary gives sig-
nificantly better performance than using a randomly initialized
dictionary, in terms of the angular error. The learned dictionary
leads to a precise estimation of the translation, while the initial
dictionary cannot even determine the direction of translation.
For completeness, we have also compared our pose estimation
method to an approach that uses matching of SIFT features [36]
followed by Ransac, where each feature is described by a vector
of 128 components and the corresponding spatial position [36].
This is a standard approach to pose estimation [37]. The results
of pose estimation using 60 SIFT features per image are re-
ported in the last columns of Tables II and III, with and without
Ransac. In both cases, the minimal error with SIFT features is
always higher than the error of the learned dictionary without
Ransac. Therefore, using the learned dictionary for pose estima-
tion without Ransac gives the smallest error in both examples.
Note finally, that Ransac does not necessarily improve the per-
formance of all algorithms, due to the small number of features
and thus insufficient statistics. The atom-based approach with a
learned dictionary appears to be the best solution when the rel-
ative camera pose has to be estimated from a small number of
features.
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VIII. CONCLUSIONS

We have proposed a new method for learning overcomplete
dictionaries for representing stereo images. A stereo image
model where sparse components are related with local trans-
forms is used as a base for developing a maximum likelihood
(ML) method for learning stereo dictionaries. The epipolar
geometry constraint has been included in the probabilistic
model in order to force the learning algorithm to select atoms
that offer good approximation performance and simultaneously
satisfy multi-view geometry constraints. The experimental
results on omnidirectional images have shown that our method
results in dictionaries that give both better stereo matching and
approximation properties than randomly selected dictionaries.
It leads to important benefits in applications such as distributed
scene representation and camera pose estimation.

APPENDIX

Conditional Coefficient Probabilities: We com-
pute here conditional probabilities and

.We first replace the expansions for and
from (1) in (18), and get for all

(34)

which can be rewritten as

(35)

or simply

(36)

where

(37)

We will further assume that is a small value, since it is a
sum of the projection of some noise to a chosen atom, and a
linear combination of inner products of a chosen atom with other
atoms in the image decomposition. When the image decomposi-
tion is sparse and the dictionary is overcomplete, the assumption
is usually verified. However, we cannot use directly the expres-
sion in (36) to derive the distribution because the
sparse support of the stereo images is not known, and hence also
the indexes , and . Therefore, we say that an

arbitrary stereo atom pair , and their coefficients , sat-
isfy (36) up to a certain error , which includes also . There-
fore, we have

(38)

where is the Jacobian of the linear transform of the coor-
dinate system induced by the transform between atoms and

. When and are the coefficients of a stereo pair, then
they satisfy (38) with a small value of the noise . Otherwise,

and are not significant in sparse decompositions of stereo
images (according to the model in (1)) and hence the noise
is also small. Therefore, we model as white Gaussian noise
of variance and get

Although , are not explicitly contained in the probability
expression, they are implicitly there since is evaluated as a
Jacobian of a transform between and . Multiplying (36)
with , we can get a symmetric relation

(39)

where we used the fact that variance of the noise
can be evaluated as . Note that the same expression
for can be obtained by considering the inverse
transform from atom to atom , because the Jacobian
of a linear transform satisfies: .
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[30] I. Tošić, “On unifying sparsity and geometry for image-based scene
represenation,” Ph.D. dissertation, EPFL, Lausanne, Switzerland,
2009.
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