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Abstract— Compressed sensing (CS) deals with the reconstruc-
tion of sparse signals from a small number of linear measure-
ments. One of the main challenges in CS is to find the support
of a sparse signal from a set of noisy observations. In the CS
literature, several information-theoretic bounds on the scaling
law of the required number of measurements for exact support
recovery have been derived, where the focus is mainly on random
measurement matrices.

In this paper, we investigate the support recovery problem from
an estimation theory point of view, where no specific assump-
tion is made on the underlying measurement matrix. By using
the Hammersley-Chapman-Robbins (HCR) bound, we derive a
fundamental lower bound on the performance of any unbiased
estimator which provides necessary conditions for reliable `2-
norm support recovery. We then analyze the optimal decoder
to provide conditions under which the HCR bound is achievable.
This leads to a set of sufficient conditions for reliable `2-norm
support recovery.

I. INTRODUCTION

Linear sampling of sparse signals, with a number of samples
close to their sparsity level, has recently received great atten-
tion under the name of Compressed Sensing or Compressive
Sampling (CS) [1], [2]. A k-sparse signal θ ∈ Rp is defined
as a signal with k � p nonzero expansion coefficients in
some orthonormal basis or frame. The goal of compressed
sensing is to find measurement matrices Φm×p, followed
by reconstruction algorithms which allow robust recovery of
sparse signals using the least number of measurements m, and
low computational complexity.

In practice, however, all the measurements are noisy, and
thus the exact recovery of θ is impossible. Support recovery
refers to the problem of correctly estimating the position of the
non-zero entries based on a set of noisy observations. A large
body of recent work (e.g., [3], [4], [5], [6]) has established
information theoretic limits for exact support recovery based
on the {0, 1}−valued loss function. This work mainly focuses
on the standard Gaussian measurement ensemble where the
elements of the measurement matrix are drawn i.i.d from the
Gaussian distribution N (0, 1).

In this paper, we look at the support recovery problem from
an estimation theory point of view, where the error metric
between the true and the estimated support is the `2-norm.
The positions of the nonzero entries of θ forms a set of k
integers between 1 and p. Consequently, the support recovery
in a discrete setup can be regarded as estimating restricted
parameters. This leads us to use the Hammersley-Chapman-
Robbins (HCR) bound which provides a lower bound on

the variance of any unbiased estimator of a set of restricted
parameters [7], [8].

The organization of this paper is as follows. In Section II, we
provide a more precise formulation of the problem. We derive
the HCR bound for the support recovery problem in Section III,
where no assumption is made on the measurement matrix.
We then apply the obtained bound on random measurement
matrices, in order to determine a lower bound on the number
of measurements for reliable `2-norm support recovery. Of
equal interest are the conditions under which the derived HCR
bound is achievable. To this end, in Section IV, we study
the performance of the Maximum-Likelihood (ML) decoder
and derive conditions under which it becomes unbiased and
achieves the HCR bound. Again, no assumption is made on
the measurement matrix. Using the Gaussian measurement
ensemble, as an example, we can then identify the sufficient
number of measurements for reliable `2-norm support recovery.

II. PROBLEM STATEMENT

In this paper, we consider a deterministic signal model in
which θ ∈ Rp is a fixed but unknown vector with exactly k
non-zero entries. We refer to k as the signal sparsity, p as the
signal dimension, and define the support vector as the positions
of the non-zero elements of θ. More precisely,

s(θ) , (n1, n2, . . . , nk), (1)

where the corresponding non-zero entries of θ are

θs , (θn1 , θn2 , . . . , θnk). (2)

We assume that n1 < n2 < · · · < nk. Suppose we are given a
vector of m noisy observations y ∈ Rm of the form

y = Φθ + ε, (3)

where Φ ∈ Rm×p is the measurement matrix, and ε ∼
N
(
0, σ2Im×m

)
is additive Gaussian noise. Throughout this

paper, we assume w.l.o.g that σ2 is fixed, since any scaling
of σ2 can be acounted for in the scaling of θ. Let x = Φθ,
and Φs denote the subspace spanned by the columns of Φ at
positions indexed by s(θ). Since there are N =

(
p
k

)
subspaces

of dimension k, a number from 1 to N can be assigned to them
and w.l.o.g., we assume that x belongs to the first subspace
s1 = s.

Due to the presence of noise, θ cannot be recovered exactly.
However, a sparse-recovery algorithm outputs an estimate θ′.
In the support recovery problem, we are only interested in



estimating the support. To that end, we can consider different
performance metrics for the estimate. In [6], the measure of er-
ror between the estimate and the true signal is a {0, 1}−valued
loss function:

ρ1(θ, θ′) = I (s(θ) 6= s(θ′)) , (4)

where I(·) is the indicator function. This metric is appropriate
for the exact support recovery. In this work, we are interested in
an approximate support recovery. For this purpose, we consider
the following `2-norm error metric

ρ2(θ,θ′) = ‖s(θ)− s(θ′)‖22. (5)

Note that ρ2(θ,θ′) = 0 implies ρ1(θ,θ′) = 0 and vice-versa.
As was mentioned in [6], the SNR is not suitable for the

support recovery problem. It is possible to generate problem
instances for which the support recovery is arbitrarily difficult,
in particular, by sending the smallest coefficient to zero (as-
suming that k > 1) at an arbitrarily rapid rate, even as the
SNR becomes arbitrarily large by increasing the rest. Hence,
we also define

θmin = min
i∈s
|θi|. (6)

In particular, our results apply to any unbiased decoder that
operates over the signal class

C(θmin) = {θ ∈ Rp : |θi| ≥ θmin ∀i ∈ s}. (7)

With this setup, our goal is to find conditions for any unbiased
estimator, based on the parameters p,m, k and θmin, under
which the variance of error for any signal picked from the
signal class C(θmin) goes to zero as the signal dimension
increases. Our analysis is high dimensional in nature, in the
sense that the signal dimension p goes to infinity. More
precisely, we say the `2-norm support recovery is reliable if

lim
p→∞

ρ2(θ,θ′) = 0, (8)

for any θ ∈ C(θmin), under some scaling of (θmin, k,m) as a
function of p. For unbiased estimators, (8) is equivalent to

lim
p→∞

tr[cov(ŝ(θ))] = 0, (9)

where ŝ(θ) is the estimated support of θ. Since the support
estimation is based on y, with abuse of notation, we also denote
it by ŝ(y). Throughout this paper, we only consider unbiased
estimators.

III. HAMMERSLEY-CHAPMAN-ROBBINS BOUND

The Cramer-Rao (CR) bound is a well-known tool in statis-
tics which provides a lower bound on the variance of the error
of any unbiased estimator of an unknown deterministic param-
eter δ, from a set of measurements y [9]. More specifically, in
a single parameter scenario, the estimated value δ̂ satisfies

var(δ̂) ≥ 1

−
∫∞
−∞

∂2 ln P(y;δ)
∂δ2 P(y; δ)dy

, (10)

where P(y; δ) is the pdf of the measurements which depends
on the parameter δ. As (10) suggests, the CR bound is typically
derived for estimating a continuous parameter.

In many cases, there is a priori information on the esti-
mated parameter which restricts it to take values from a pre
determined set. An example is the estimation of the mean
of a normal distribution when one knows that the true mean
is an integer. In such scenarios, the Hammersley-Chapman-
Robbins (HCR) bound provides a stronger lower bound on the
variance of any unbiased estimator [7], [8]. More specifically,
let us assume that the set of independent observations y =
(y1, y2, . . . , ym) is drawn according to a probability distribution
with density function P(y; δ) where δ is a parameter belonging
to some parameter set ∆ (e.g., the set of integer numbers) and
completely characterizes the pdf. In addition, the sequence δ
is partitioned into two subsequences δ = (δ1, δ2) where we
are only interested in estimating the parameters included in
subsequence δ1. Let δ̂1(y) denote an unbiased estimator of
δ1. The HCR bound on the trace of the covariance matrix of
any unbiased estimator of δ1 is given by

tr[cov(δ̂1)] ≥ sup
δ′ 6=δ

‖δ1 − δ′1‖22∫
Rm

P2(y;δ′)
P(y;δ) dy − 1

, (11)

in which δ′ = (δ′1, δ
′
2) ∈ ∆. The set ∆ is chosen so that δ′

takes values according to the a priori information.
Example 3.1: For clarity, let us consider the performance

of an unbiased estimator of the mean of a normal distri-
bution based on independent samples of size m, i.e. y =
(y1, y2, . . . , ym). In this case, δ = (µ, σ2), δ1 = µ, δ2 = σ2

and
P(y; δ) = (2π)−n/2σ−ne−

1
2σ2

Pm
i=1(yi−µ)2 . (12)

Let µ̂(y) denote an unbiased estimator of µ, the parameter we
want to estimate. When there is no prior information on µ, it
follows from the CR bound that

var(µ̂) ≥ σ2/m. (13)

Once the mean is restricted to be an integer, we may write
δ1 = µ and δ′1 = µ + α where α is a non-zero integer. Then
upon integration we get

var(µ̂) ≥ max
α 6=0

α2

emα2/σ2 − 1
(14)

=
1

em/σ2 − 1
, (15)

where the maximum is attained for α = ±1. A point worth
mentioning is the role of prior information. While (13) drops
linearly, (15) decreases exponentially with respect to the num-
ber of observations. It is also interesting to note that (14)
applies as well to the case in which the parameter is not
restricted. We then have to deal with the maximization in (14)
for variations in α where α may take any value (not necessarily
integral) except α = 0. Since the RHS of (14) is a decreasing
function of α2, we let α→ 0 and we deduce (13).

In the support recovery problem, we know a priori that each
entry of the support vector takes values from the restricted set
∆ = {1, 2, . . . , p}. Hence the HCR bound can provide us with
a lower bound on the performance of any unbiased estimator.



Theorem 3.2: Assume ŝ(y) to be an unbiased estimator of
the support s. The HCR lower bound on the variance of ŝ(y)
is given by

tr[cov(ŝ)] ≥ max
i∈{2,··· ,N}

‖s− si‖2

e‖x−psi
x‖2/σ2 − 1

, (16)

in which psix denotes the projection of x onto the subspace
spanned by Φsi .

Proof: Since our observations are of the form y = Φθ+ε,
the set of unknown parameters δ consists of the support vector
s(θ) = (n1, n2, . . . , nk) and the corresponding coefficients
θs = (θn1 , θn2 , . . . , θnk). We are only interested in estimating
the support, hence, δ1 = s(θ) and δ2 = θs. Then

P2(y; δ′)
P(y; δ)

=
m∏
i=1

1√
2πσ

e−
(yi−2x′i+xi)

2−2(x′i−xi)
2

2σ2 , (17)

where x′ = Φθ′. Upon integration we get∫
Rm

P2(y; δ′)
P(y; δ)

dy − 1 = e
‖x−x′‖2

σ2 − 1. (18)

Using the HCR bound

tr[cov(ŝ)] ≥ sup
δ′ 6=δ

‖s− s′‖2

e‖x−x′‖2/σ2 − 1
. (19)

If x and x′ live in the same subspace, i.e., s = s′, the RHS
of (19) will be zero. Therefore, in order to find the supremum,
we can restrict our attention to all the signals which do not live
in the same subspace as x does:

tr[cov(ŝ)] ≥ sup
{θ′:s(θ′)6=s(θ)}

‖s− s′‖2

e‖x−x′‖2/σ2 − 1
. (20)

For each sequence s′, the numerator of (20) is fixed (it is the
`2 distance between the supports and does not depend on the
coefficients) while the denominator is minimized by setting
x′ = ps′x. This leads to (16).

In the following, we see how Theorem 3.2 helps us find a
lower bound on the number of measurements for reliable `2-
norm support recovery.

A. Necessary Conditions

Using the HCR bound, Theorem 3.2 provides a lower bound
on the performance of any unbiased estimator for the `2-
norm support recovery problem. In words, the `2-norm support
recovery is unreliable if the RHS of (16) is bounded away from
zero which yields to a lower bound on the minimum number
of measurements. The following example illustrates how this
bound can be used when the Gaussian measurement matrices
Φ are deployed.
Random Matrices: As an example, we obtain the necessary
conditions on the number of measurements required for reliable
`2-norm support recovery, when each entry Φij is drawn i.i.d.
from a Gaussian distribution N (0, 1).

Theorem 3.3: Let the measurement matrix Φ ∈ Rm×p
be drawn with i.i.d. elements from a Gaussian distribution

with zero-mean and variance one. Then the `2-norm support
recovery over the signal class C(θmin) is unreliable if

m < max
{
k,
σ2 log(p− k)

θ2min

}
. (21)

Proof: From Theorem 3.2 we know that for any x′ ∈ s′
we have

tr[cov(ŝ)] ≥ ‖s− s′‖2

e‖x−x′‖2/σ2 − 1
. (22)

The `2-norm support recovery is reliable if (8) holds for any
θ ∈ C(θmin). In particular, when s(θ) = (1, 2, . . . , k) and
it takes on θmin as its last non-zero entry, i.e., θk = θmin.
Moreover, assume that θ′ is equal to θ on all the positions
but the smallest non-zero value. Note that one can find a θ′

such that ‖s − s′‖2 be at least (p − k)2 by simply choosing
s(θ′) = (1, 2, . . . , k − 1, p), i.e., putting the smallest non-zero
entry of θ′ in the last position. Now

x− x′ = Φ(θ − θ′). (23)

This implies that

‖x− x′‖22
σ2

=
θ2min

σ2
Z, (24)

where Z ∼ χ2(m). Note that tr[cov(ŝ)] is bounded away from
zero if ‖s− s′‖2/(e‖x−x′‖2/σ2 − 1) does not go to zero. This
will happen if

Pr
(
‖x− x′‖2

σ2

.
< log (p− k)

)
→ 1, (25)

as p → ∞, where by A
.
< B we mean multiplicatively less

than B in asymptote, i.e., there exists a constant δ > 0 such
that A ≤ (1 + δ)B. The expression (25) is equivalent to

Pr
(
Z

.
>
σ2 log(p− k)

θ2min

)
→ 0, (26)

as p → ∞. It is known that a centralized χ2 variate with m
degrees of freedom satisfies

Pr
[
Z −m ≥ 2

√
mt
]
≤ e−t, (27)

for all t ≥ 0 [10]. Combining (26) and (27) leads to

Pr
(
Z

.
>
σ2 log(p− k)

θ2min

)
≤ e
−
„
σ2 log(p−k)

θ2min
−m

«2

/4m
, (28)

provided that

m < (1 + C)
σ2 log(p− k)

θ2min

, (29)

for some constant C > 0 (note that (27) is only valid for t ≥ 0).
Clearly, under the condition (29), the right hand side of (28)
tends to zero as p grows.
Table I demonstrates the necessary conditions for different
scalings of k and θmin as a function of p.

Up to this point we have discussed the HCR bound and
its application in finding necessary conditions on the number
of measurements for reliable `2-norm support recovery. What
remains is to find conditions under which the HCR bound is
achievable which consequently provides us with the sufficient
number of measurements for reliable `2-norm support recovery.



IV. ACHIEVABILITY OF THE HCR BOUND

We now analyze the performance of the Maximum-
Likelihood (ML) estimator for the `2-norm support recovery
and find conditions under which it becomes unbiased and
in addition, its performance moves towards that of the HCR
bound. Provided that any 2k columns of the measurement
matrix Φ are linearly independent, the noiseless measurement
vector x = Φθ belongs to one and only one of the N possible
subspaces. Since the noise ε ∈ Rm is i.i.d. Gaussian, the ML
estimator selects the subspace closest to the observed vector
y ∈ Rm. More precisely,

ŝML = argmin
s:|s|=k

‖y − psy‖2. (30)

Now, consider another subspace Φs′ , of dimension k where
s 6= s′. Clearly an error happens, when ML selects the support
s′ in place of the true support s. Let PrML(s′) denote the
probability that ML selects the subspace s′ instead of s among
all the subspaces.

Lemma 4.1: Let y = x + ε, where x = Φθ ∈ Φs, ε ∼
N (0, σ2I) and s′ be a support sequence different from s. Then

Pr
ML

(s′) < Pr
(
‖ε‖ ≥ ‖x− ps

′x‖
2

)
. (31)

Proof: ML chooses s′ over s if and only if

min
t′∈Φs′

‖y − t′‖ < min
t∈Φs

‖y − t‖. (32)

Let us assume that ‖ε‖ < ‖x−ps′x‖/2. Then, for any t′ ∈ Φs′ ,
we have

‖y − t′‖2 = ‖x− t′ + ε‖2

≥ ‖ε‖2 + ‖x− t′‖2 − 2‖x− t′‖‖ε‖
(a)
> ‖ε‖2

= ‖y − x‖2

≥ min
t∈s
‖y − t‖2,

where in (a), we used the mentioned assumption. This implies
that if ‖ε‖ ≤ ‖x− ps′x‖/2, the ML estimator will not choose
s′ over s. Since the probability that the ML estimator picks s′

instead of s is less than the probability that it prefers s′ to s,
we get (31).

Lemma 4.2: Let the number of measurements m, be even.
Then

Pr
ML

(s′) < e−r/2
m/2−1∑
t=0

(r/2)t

t!
, (33)

where r = ‖x−ps′x‖
2

4σ2 .
Proof: By Lemma 4.1 we have

Pr
ML

(s′) < 1− Pr
(
‖ε‖2

σ2
< r

)
.

The random variable ‖ε‖
2

σ2 is distributed according to the chi-
square distribution with m degrees of freedom. By using the
cdf of the chi-square distribution, we obtain

Pr
ML

(s′) < 1− γ(m/2, r/2)
Γ(m/2)

, (34)

where Γ(m), is the Gamma function and γ(m,x), is the lower
incomplete Gamma function. It is easy to show that for an even
number m,

γ(m/2, r/2)
Γ(m/2)

= e−r/2
∞∑
t=m

2

(r/2)t

t!
.

Since by the Taylor expansion er/2 =
∑∞
t=0

(r/2)t

t! , we obtain

γ(m/2, r/2)
Γ(m/2)

= 1− e−r/2
m/2−1∑
t=0

(r/2)t

t!
. (35)

Combining (34) and (35) will lead to the lemma.
Lemma 4.3: Let r = αm for some constant α > 1. Then

we have

Pr
ML

(s′) <
r

2α
c(α)−r, (36)

in which c(α) = e(α−1)/2α/α1/2α > 1 and c(α) −→
√
e as α

grows.
Proof: Note that for t < r

2 , the function f(t) =
(
r
2

)t
/t!

is strictly increasing. By observing that m
2 − 1 < r

2 , and
employing Lemma 4.2 we get:

Pr
ML

(s′) < e−r/2

m
2 −1∑
t=0

(r/2)t

t!

< e−r/2
m

2
(r/2)m/2

(m/2)!
(a)
< e−r/2

m

2
(r/2)m/2

(m/2e)m/2

=
r

2α

(
e(α−1)/2α

α1/2α

)−r
,

where in (a) we used the inequality m! > (m/e)m. It can be
verified that c(α) > 1 for α > 1. Although we do not prove it
here, it is not hard to see that the upper bound shows a linear
decay for α ≤ 1.
In the following theorem, we provide an upper bound on the
performance of the ML estimator. Based on Lemma 4.1, the
ML probability of error is related to the minimum distance
between x and its projections onto the other subspaces. Let
dmin , min

s′:s′ 6=s
‖x− ps′x‖, β = d2

min/4mσ
2 and rmin = βm.

Theorem 4.4: For β > 1, the performance of the ML
estimator is upper bounded as

tr[cov
ML

(ŝ)] <
kmp2

2
c(β)−rmin . (37)

Proof: By Lemma 4.1, we know that if ‖ε‖ < dmin/2,
ML makes the correct choice. Therefore, from Lemma 4.3, we
obtain

Pr
ML

(err) <
rmin

2β
c(β)−rmin , (38)



Since ‖s − si‖2 < kp2 and PrML(err) =
∑N
i=2 PrML(si), we

obtain

tr[cov
ML

(ŝ)] =
N∑
i=2

Pr
ML

(si)‖s− si‖2

< kp2 rmin

2β
c(β)−rmin

=
kmp2

2
c(β)−rmin .

In general, the ML estimator can be biased and its performance
cannot be compared with unbiased estimators. The following
theorem provides us with the condition under which it becomes
unbiased.

Theorem 4.5: Under the conditions m ≥ (1 +
ε) log (p)/β log c(β), for some fixed ε > 0 and β bounded
away from 1, the ML estimator is asymptotically unbiased as
p→∞.

Proof: Let ŝ = (n̂1, n̂2, . . . , n̂k) be the ML estimate for
the true support set s = (n1, n2, . . . , nk). Then

E(ŝ) =
N∑
i=1

ŝi Pr
ML

(ŝi)

= sPr
ML

(s) +
∑
ŝi 6=s

ŝi Pr
ML

(ŝi).

Since
∑
ŝi 6=s PrML(ŝi) = PrML(err) and 1 ≤ n̂i ≤ p for 1 ≤

i ≤ k, we have∑
ŝi 6=s

ŝi Pr
ML

(ŝi) ≤ (p, p, . . . , p) Pr
ML

(err).

Since β > 1, from (38) we get

lim
p→∞

∑
ŝi 6=s

ŝi Pr
ML

(ŝi) ≤ lim
p→∞

(p, p, . . . , p)
m

2
c(β)−βm

(a)
= 0,

where in (a), we used m ≥ (1 + ε) log (p)/β log c(β). Obvi-
ously, PrML(s)→ 1 as p→∞. Hence E(ŝ) = s.

As we observe, our results do not depend on any specific
measurement matrix. On the one hand, Theorem 4.4 provides
us with an upper bound on the error of the ML estimator. On the
other hand, since by Theorem 4.5, the ML estimator is unbiased
under the mentioned conditions, its estimation error is lower
bounded by the HCR bound, which shows a 9 dB gap in the
denominator with the upper bound. Therefore, such asymptotic
behavior of the ML estimator, shows the achievability of the
HCR bound, under the mentioned conditions.

In the following, we see how Theorem 4.4 leads to find the
sufficient number of measurements for reliable `2-norm support
recovery where the Gaussian measurement ensemble is used.

A. Sufficient Conditions

Theorem 4.4 provides us with an upper bound on the
performance of the ML estimator. For reliable `2-norm support
recovery, the RHS of (37) should go to zero as p → ∞. To
that end, one should make sure that first, β is bounded away
from one, which is a property of the underlying measurement

Necessary conditions Sufficient conditions
k = Θ(p)

θ2min = Θ
`

1
k

´ Θ (p log p) ∗

k = Θ(p)
θ2min = Θ (1)

Θ(p) Θ(p)

k = o(p)
θ2min = Θ

`
1
k

´ Θ (k log(p− k)) ∗

k = o(p)
θ2min = Θ (1)

Θ (k) Θ
`
k log p

k

´
TABLE I

NECESSARY AND SUFFICIENT CONDITIONS ON THE NUMBER OF

MEASUREMENTS REQUIRED FOR RELIABLE `2-NORM SUPPORT RECOVERY.

matrix and second, that the number of measurements is at least
of the order of log p which assures that the ML estimator is
unbiased.

Theorem 4.6: Let the measurement matrix Φ be drawn with
i.i.d. elements from a Gaussian distribution N (0, 1). If the
minimum value remains constant (meaning θmin = Θ(1)), then
m = Θ(k log p−k

k ) number of measurements suffices to ensure
reliable `2-norm support recovery.

Proof: The proof follows the same lines as [6] to show
that both mentioned conditions are simultaneously satisfied. We
refer the reader to our technical report [11] for details.
Sufficient conditions in different regimes are shown in Table I.
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