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Objectives

Thin-shell and rod theory using discrete mechanics applied to structures in civil engineering.

The aim is to apply structure preserving algorithms to concrete problems in construction. The

major objectives of this interdisciplinary work is the search and the development of a practical

tool to study irregular surfaces. Goals of this work are to:

• Provide a mathematical model for thin-shells

• Provide a 2-dimensional simulation

Notation and Definitions

The reference configuration B ⊂ R
3 is a closed 2-submanifold. A configuration of B is an

embedding

Φ : B → S = R
3;

it represents a deformed state of the shell whose material configuration is B. Let C be the set

of all configurations of B. A motion of B is a curve t ∈ R 7→ Φt = Φ(t, ·) ∈ C.

If {θα}, α = 1, 2, is a coordinate system on B, the configuration Φ is written as

(θ1, θ2) ∈ B
Φ

7−→ (z1(θ1, θ2), z2(θ1, θ2), z3(θ1, θ2)) ∈ R
3,

where {zj(θ1, θ2)} are the Euclidean coordinates of the point x = Φ(X), X ∈ B.

With {̂ij} the standard basis vectors in R
3, the basis vectors of Tx (Φ(B)) associated to the

embedding Φ are

eα :=
∂zj

∂θα
îj, α = 1, 2, j = 1, 2, 3.

Let {Zj(θ1, θ2) | j = 1, 2, 3} be the Euclidean coordinates of X ∈ B ⊂ R
3. Let {Eα | α = 1, 2}

be the basis of TXB associated to the coordinate system {θ1, θ2}. We define E3 ⊥ TXB by

E3 =
E1 × E2

|E1 × E2|

to be the reference shell directora T.

In this work we consider the simplest properly invariant isotropicb constitutive relations for the

effective membrane and shear stress resultants. So we define the unit normal to the deformed

surface Φ(B)

e3 =
e1 × e2

|e1 × e2|

to be the deformed director t.

Denote by 〈·, ·〉
x

the standard inner product in R
3 for vectors based at x ∈ S = R

3 and by

〈·, ·〉
X

the standard inner product in R
3 for vectors based at X ∈ B. The components gαβ of

the metric tensor on Φ(B) (obtained by pulling back to Φ(B) by the inclusion map the inner

product 〈·, ·〉
x

on R
3) are defined by gαβ(x) := 〈eα, eβ〉x. Similarly define the components

Gαβ of the metric on B by Gαβ(X) := 〈Eα,Eβ〉X. Let [Gαβ] := [Gαβ]−1 and [gαβ] := [gαβ]−1.

Discrete Variational Mechanics

Let Φ(B)×Φ(B) be the discrete state space associated to the deformed surface Φ(B) and

define the discrete path space by Cd(Φ(B)) := {xd : {tk}
N
k=0

7→ {xk := xd(tk)} ∈ Φ(B)N}.

A discrete path xd ∈ Cd is said to be a solution of the discrete Euler-Lagrange equations if

(D2Ld(xk−1,xk) + D1Ld(xk,xk+1)) · δxk = 0

for all variations δxd ∈ Txd
Cd(Φ(B)) = {vx : {tk}

N
k=0

7→ {vx(tk)} ∈ TΦ(B)N}, where Ld is the

discrete Lagrangian.

We use uniform B-splines associated with the set of discrete paths to be able to define

Txd
Cd(Φ(B)) and the discrete Lagrangian (of order r) of a thin-shell

Ld(xk,xk+1, ∆t) =

∫ tk+1

tk

L(x, ẋ)dt + O(∆t)r+1

where L is the Lagrangian of the continuous systems and x(t) is the solution of the Euler-

Lagrange equations satisfying x(tk) = xk and x(tk+1) = xk+1.
aWe assume the existence of a traction vector t for the motion of B in S.
bIsotropic at x0 if SO(3) is a subset of material symmetries.

AVI as a mechanical tool for rod’ study

The strain mesures relative to the dual spatial surface basis [Simo and Fox, 1987, p 287]:

ǫij :=
1

2

(
〈ei, ej〉 − 〈Ei,Ej〉

)

ραβ :=

〈
∂Eα

∂θβ
,E3

〉
−

〈
∂eα

∂θβ
, e3

〉

For the simplest properly invariant isotropic constitutive relations we postulate the existence

of a stored energy function of the displacement field u of the form

W (u) =
1

2

(
Eh

1 − ν2

)
Hαβγδǫαβǫγδ +

1

2

(
Eh3

12(1 − ν2)

)
Hαβγδραβργδ

where E is Young’s modulus, ν is Poisson’s ratio, h is the thickness of the shell, and

Hαβγδ = ν GαβGγδ +
1

2
(1 − ν) (GαγGβδ + GαδGβγ).

As mentioned earlier and to ensure that the bending energy is finite we use B-splinesa. We

used quadratic uniform B-splines whose general form is:

xa(u) =
1

2
(u2, u, 1)





1 −2 1

−2 2 0

1 1 0




(xa−1,xa,xa+1)

T , with 0 6 u 6 1,

where a is a node of the triangulation T of the rod and a− 1, a + 1 are the neighboring nodes

of a. For a 1-simplex K ∈ T associated to the rod, the local Lagrangian has the form

LK(xK , ẋK, t) = TK(ẋK) − VK(xK, t),

where xK is the vector of positions of all nodes in the element K, VK(xK, t) is the elemental

potential energy, and

TK(ẋK) =
1

2
ẋ

t
KmKẋK ,

where mK is the mass matrix element (symmetric positive definite).

A particular choice of discrete Lagrangian, resulting in explicit integrators of the central-

difference type, is given by

Lj
K =

∫ t
j+1

K

t
j
K

TK (ẋK(t)) dt −
(
tj+1

K − tjK

)
VK

(
x

j+1

K , tj+1

K

)

where Lj
K is defined on the interval [tjK, tj+1

K ] for tjK = j∆tK (the jth time step for element

K). Indeed, theorically it is necessary to guarantee that a valid time step for each element will

allways be determined for each tj, to guarantee energy conservation. But, as it was noted in

[Lew, Marsden, Ortiz, and West, 2004, p. 199], if we fix the time step ∆tK for each simplex

K, the total energy of the system oscillates around a constant value without growth or decay,

so, as a first try, we have made this choice in our experiment, for simplicity.

The corresponding discrete action sum is

Sd =
∑

K∈T

∑

16j<NK

Lj
K ≈

∑

a

Na−1∑

i=0

1

2
ma(t

i+1
a −tia)

∣∣∣
∣∣∣
x

i+1
a − x

i
a+1

ti+1
a − tia

∣∣∣
∣∣∣
2

−
∑

K

NK−1∑

j=0

(tj+1

K −tjK)VK(xj+1

K ),

where x
i
a is the position of the node a at time tia. The position and the time are dependent of

two 1-simplices, one on each side.

The discrete version of Hamilton’s principle states that the discrete trajectory having prescribed

initial and final endpoints renders the discrete action sum stationary with respect to admissible

variations of the nodal coordinates xa. It leads to the discrete Euler-Lagrange equations

Di
aSd = 0

for all a ∈ T such that tinitial < tia < tfinal and a ∈ T \ ∂dB, where ∂dB is the boundary of

the reference seen as a complex simplicial boundary.

Thus, the element K accumulates and memorizes the impulses Ij
K over the time interval

(tj−1

K , tjK). At the end of the interval, the element releases its memorized impulses by imparting

percussions on its nodes.

In all the experiments, the value of the time step for each element is computed as ∆t = f h
c

where f = 1

100
(or close to it), and h is the radius of the largest ball contained in the element.

aIn R
3, if we want smalest element in the mesh the subdivision of the surface obtained by Loop or Catmull-Clark subdivisions are guaranted to be H2.

Simulations

Fig. 1 to 6 display the behavior of several beams with increasing stiffness. These results were

obtained using a module of elasticity E ranging from E = 11 to E = 11000, ν = 0.3, with

a beam of length L = 2m, width h = 1mm, and density ρ = 400kg/m3. The time of the

experiment is 1s in each case.

The time steps in seconds for each 1-simplex, from left to the right are:

0.0046, 0.0066, 0.0098, 0.0120, 0.0139, 0.0148, 0.0139, 0.0120, 0.0098, 0.0066.

If N is the number of nodes on the rod, define the position na of the node a at time t = 0 on

the rod by using the following rules, the first for the first N
2

nodes and the second for the last
N
2

nodes:

Xa = 2S−1

(na − 1

N − 1

)S

L, Xa =
(
1 − 2S−1

(N − na

N − 1

)S)
L

Module of elasticity E = 1100,  value of f = 0.01,  skew S = 1.5 Module of elasticity E = 11000,  value of f = 0.01,  skew S = 1.5
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