ObJECTIVES

Thin-shell and rod theory using discrete mechanics applied to structures in civil engineering. The aim is to apply structure preserving algorithms to concrete problems in construction. The tool to study irregular surfaces. Goals of this work are to:

- Provide a mathematical model for thin-shells
- Provide a 2 -dimensional simulation

Notation and Definitions
The reference configuration $\mathcal{B} \subset \mathbb{R}^{3}$ is a closed 2-submanifold. A configuration of \mathcal{B} is an embedding

$$
\Phi: \mathcal{B} \rightarrow \mathcal{S}=\mathbb{R}^{3} ;
$$

represents a deformed state of the shell whose material configuration is \mathcal{B} Let \mathcal{C} be the set of all configurations of \mathcal{B}. A motion of \mathcal{B} is a curve $t \in \mathbb{R} \mapsto \Phi_{t}=\Phi(t, \cdot) \in \mathcal{C}$.
If $\left\{\theta^{\alpha}\right\} \quad \alpha=1,2$, is a coordinate system on \mathcal{B} the configuration Φ is written as

$$
\left(\theta^{1}, \theta^{2}\right) \in \mathcal{B} \stackrel{\Phi}{\longrightarrow}\left(z^{1}\left(\theta^{1}, \theta^{2}\right), z^{2}\left(\theta^{1}, \theta^{2}\right), z^{3}\left(\theta^{1}, \theta^{2}\right)\right) \in \mathbb{R}^{3},
$$

here $\left\{z^{j}\left(\theta^{1}, \theta^{2}\right)\right\}$ are the Euclidean coordinates of the point $\mathbf{x}=\Phi(\mathbf{X}), \mathbf{X} \in \mathcal{B}$.
With $\left\{\mathbf{i}_{j}\right\}$ the standard basis vectors in \mathbb{R}^{3}, the basis vectors of $T_{\mathbf{x}}(\Phi(\mathcal{B}))$ associated to the embedding Φ are

$$
\mathbf{e}_{\alpha}:=\frac{\partial z^{j}}{\partial \theta^{\alpha}} \widehat{\mathbf{i}}_{j}, \quad \alpha=1,2, \quad j=1,2,3 .
$$

Let $\left\{Z^{j}\left(\theta^{1}, \theta^{2}\right) \mid j=1,2,3\right\}$ be the Euclidean coordinates of $\mathbf{X} \in \mathcal{B} \subset \mathbb{R}^{3}$. Let $\left\{\mathbf{E}_{\alpha} \mid \alpha=1,2\right\}$ be the basis of $T_{\mathrm{X}} \mathcal{B}$ associated to the coordinate system $\left\{\theta^{1}, \theta^{2}\right\}$. We define $\mathbf{E}_{3} \perp T_{\mathbf{x}} \mathcal{B}$ by

$$
E_{3}=\frac{\mathbf{E}_{1} \times \mathbf{E}_{2}}{\left|\mathbf{E}_{1} \times \mathbf{E}_{2}\right|}
$$

o be the reference shell director ${ }^{a} \mathbf{T}$.
In this work we consider the simplest properly invariant isotropic ${ }^{b}$ constitutive relations for the effective membrane and shear stress resultants. So we define the unit normal to the deformed surface $\Phi(\mathcal{B})$

$$
\mathrm{e}_{3}=\frac{\mathbf{e}_{1} \times \mathbf{e}_{2}}{\left|\mathbf{e}_{1} \times \mathbf{e}_{2}\right|}
$$

o be the deformed director t .
Denote by $\langle\cdot, \cdot\rangle_{\mathbf{x}}$ the standard inner product in \mathbb{R}^{3} for vectors based at $\mathbf{x} \in \mathcal{S}=\mathbb{R}^{3}$ and by $\langle\cdot, \cdot\rangle_{\mathbf{X}}$ the standard inner product in \mathbb{R}^{3} for vectors based at $\mathbf{X} \in \mathcal{B}$. The components $g_{\alpha \beta}$ of放 metric tensor on $\Phi(\mathcal{B})$ (obtained by pulling back to $\Phi(\mathcal{B})$ by the inclusion map the inner $G_{\alpha \beta}$ of the metric on \mathcal{B} by $G_{\alpha \beta}(\mathbf{X}):=\left\langle\mathbf{E}_{\alpha}, \mathbf{E}_{\beta}\right\rangle_{\mathbf{X}}$. Let $\left[G^{\alpha \beta}\right]:=\left[G_{\alpha \beta}\right]^{-1}$ and $\left[g^{\alpha \beta}\right]:=\left[g_{\alpha}\right]^{-1}$.

Discrete Variational Mechanics
Let $\Phi(\mathcal{B}) \times \Phi(\mathcal{B})$ be the discrete state space associated to the deformed surface $\Phi(\mathcal{B})$ and define the discrete path space by $\mathcal{C}(\Phi(\mathcal{B}))=\left\{\mathbf{x}_{\mathbf{x}^{\prime}} \cdot\left\{t^{\prime}\right\}^{N} \mapsto\left\{\mathbf{x}_{1}:=\mathbf{x}_{(}\left(t_{A}\right)\right\} \in \Phi(\mathcal{B})^{N}\right\}$ A discrete path $\mathbf{x}_{d} \in \mathcal{C}_{d}$ is said to be a solution of the discrete Euler-Lagrange equations if

$$
\left(D_{2} L_{d}\left(\mathbf{x}_{k-1}, \mathbf{x}_{k}\right)+D_{1} L_{d}\left(\mathbf{x}_{k}, \mathbf{x}_{k+1}\right)\right) \cdot \delta \mathbf{x}_{k}=0
$$

or all variations $\delta \mathbf{x}_{d} \in T_{\mathbf{x}_{d}} \mathcal{C}_{d}(\Phi(\mathcal{B}))=\left\{v_{\mathbf{x}}:\left\{t_{k}\right\}_{k=0}^{N} \mapsto\left\{v_{\mathbf{x}}\left(t_{k}\right)\right\} \in T \Phi(\mathcal{B})^{N}\right\}$, where L_{d} is the discrete Lagrangian.
We use uniform B-splines associated with the set of discrete paths to be able to define $T_{\mathrm{x}_{d}} \mathcal{C}_{d}(\Phi(\mathcal{B})$) and the discrete Lagrangian (of order r) of a thin-shell

$$
L_{d}\left(\mathbf{x}_{k}, \mathbf{x}_{k+1}, \Delta t\right)=\int_{t_{k}}^{t_{k+1}} L(\mathbf{x}, \dot{\mathbf{x}}) d t+\mathcal{O}(\Delta t)^{r+1}
$$

where L is the Lagrangian of the continuous systems and $\mathbf{x}(t)$ is the solution of the EulerLagrange equations satisfying $\mathbf{x}\left(t_{k}\right)=\mathbf{x}_{k}$ and $\mathbf{x}\left(t_{k+1}\right)=\mathbf{x}_{k+1}$.

AVI AS A MECHANICAL TOOL FOR ROD' STUDY
The strain mesures relative to the dual spatial surface basis [Simo and Fox, 1987, p 287]:

$$
\begin{gathered}
\epsilon_{i j}:=\frac{1}{2}\left(\left\langle\mathbf{e}_{\mathbf{e}}, \mathbf{e}_{j}\right\rangle-\left\langle\mathbf{E}_{i}, \mathbf{E}_{j}\right\rangle\right) \\
\rho_{\alpha \beta}:=\left\langle\frac{\partial \mathbf{E}_{\alpha}}{\partial \theta^{\beta}}, \mathbf{E}_{3}\right\rangle-\left\langle\frac{\partial \mathbf{e}_{\alpha}}{\partial \theta^{\beta}}, \mathbf{e}_{3}\right\rangle
\end{gathered}
$$

For the simplest properly invariant isotropic constitutive relations we postulate the existence of a stored energy function of the displacement field \mathbf{u} of the form

$$
W(\mathbf{u})=\frac{1}{2}\left(\frac{E h}{1-\nu^{2}}\right) H^{\alpha \beta \gamma \delta} \epsilon_{\alpha \beta \beta} \epsilon_{\gamma \delta}+\frac{1}{2}\left(\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\right) H^{\alpha \beta \gamma \delta} \rho_{\alpha \beta} \rho_{\gamma \delta}
$$

where E is Young's modulus, ν is Poisson's ratio, h is the thickness of the shell, and

$$
H^{\alpha \beta \gamma \delta}=\nu G^{\alpha \beta} G^{\gamma \delta}+\frac{1}{2}(1-\nu)\left(G^{\alpha \gamma} G^{\beta \delta}+G^{\alpha \delta} G^{\beta \gamma}\right) .
$$

As mentioned earlier and to ensure that the bending energy is finite we use B-splines ${ }^{a}$. We used quadratic uniform B-splines whose general form is:

$$
\mathbf{x}_{a}(u)=\frac{1}{2}\left(u^{2}, u, 1\right)\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 2 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\mathbf{x}_{a-1}, \mathbf{x}_{a}, \mathbf{x}_{a+1}\right)^{T}, \text { with } 0 \leqslant u \leqslant 1,
$$

where a is a node of the triangulation \mathcal{T} of the rod and $a-1, a+1$ are the neighboring nodes of a. For a 1 -simplex $K \in \mathcal{T}$ associated to the rod, the local Lagrangian has the form

$$
L_{K}\left(\mathbf{x}_{K}, \dot{\mathbf{x}}_{K}, t\right)=T_{K}\left(\dot{\mathbf{x}}_{K}\right)-V_{K}\left(\mathbf{x}_{K}, t\right),
$$

where \mathbf{x}_{K} is the vector of positions of all nodes in the element $K, V_{K}\left(\mathbf{x}_{K}, t\right)$ is the elemental potential energy, and

$$
T_{K}\left(\dot{x}_{K}\right)=\frac{1}{2} \dot{\mathbf{x}}_{K}^{t} \mathbf{m}_{K} \dot{\mathbf{x}}_{K},
$$

where \mathbf{m}_{K} is the mass matrix element (symmetric positive definite)
A particular choice of discrete Lagrangian, resulting in explicit integrators of the centraldifference type, is given by

$$
L_{K}^{j}=\int_{t_{K}^{j}}^{t_{K}^{j+1}} T_{K}\left(\dot{\mathbf{x}}_{K}(t)\right) d t-\left(t_{K}^{j+1}-t_{K}^{j}\right) V_{K}\left(\mathbf{x}_{K}^{j+1}, t_{K}^{j+1}\right)
$$

where L_{K}^{j} is defined on the interval $\left[t_{K}^{j}, t_{K}^{j+1}\right]$ for $t_{K}^{j}=j \Delta t_{K}$ (the j th time step for element K). Indeed, theorically it is necessary to guarantee that a valid time step for each element will allways be determined for each t_{j}, to guarantee energy conservation. But, as it was noted in [Lew, Marsden, Ortiz, and West, 2004, p. 199], if we fix the time step Δt_{K} for each simplex K, the total energy of the system osciliates around a constant value withou growth or decay so, as a first try, we have made this choice
The corresponding discrete action sum is
$S_{d}=\sum_{K \in \mathcal{T}} \sum_{1 \leqslant j<N_{K}} L_{K}^{j} \approx \sum_{a} \sum_{i=0}^{N_{a}-1} \frac{1}{2} m_{a}\left(t_{a}^{i+1}-t_{a}^{i}\right)\left\|\frac{\mathbf{x}_{d}^{i+1}-\mathbf{x}_{a+1}^{i}}{t_{a}^{i+1}-t_{a}^{i}}\right\|^{2}-\sum_{K} \sum_{j=0}^{N_{K}-1}\left(t_{K}^{j+1}-t_{K}^{j}\right) V_{K}\left(\mathbf{x}_{K}^{j+1}\right)$, where \mathbf{x}_{a}^{i} is the position of the node a at time t^{i}. The position and the time are dependent of two 1 -simplices, one on each side.
The discrete version of Hamilton's principle states that the discrete trajectory having prescribed initial and final endpoints renders the discrete action sum stationary with respect to admissible variations of the nodal coordinates \mathbf{x}_{a}. It leads to the discrete Euler-Lagrange equations

$$
D_{a}^{i} S_{d}=0
$$

for all $a \in \mathcal{T}$ such that $t_{\text {initial }}<t_{a}^{i}<t_{\text {final }}$ and $a \in \mathcal{T} \backslash \partial_{d} \mathcal{B}$, where $\partial_{d} \mathcal{B}$ is the boundary of the reference seen as a complex simplicial boundary.
Thus, the element K accumulates and memorizes the impulses I_{K}^{j} over the time interval $\left(t_{K}^{j-1}, t_{K}^{j}\right)$. At the end of the interval, the element releases its memorized impulses by imparting percussions on its nodes.

In all the experiments, the value of the time step for each element is computed as $\Delta t=f$ where $f=\frac{1}{100}$ (or close to it), and h is the radius of the largest ball contained in the element.

Simulations

Fig. 1 to 6 display the behavior of several beams with increasing stiffness. These results wer obtained using a module of elasticity E ranging from $E=11$ to $E=11000, \nu=0.3$, with a beam of length $L=2 \mathrm{~m}$, width $h=1 \mathrm{~mm}$, and density $\rho=400 \mathrm{~kg} / \mathrm{m}^{3}$. The time of the experiment is $1 s$ in each case.
The time steps in seconds for
. for each 1 -simplex, from left to the right are
it If N is the number of nodes on the rod, define the position n_{a} of the node a at time $t=0$ on $\frac{N}{2}$ nodes

$$
\mathbf{X}_{a}=2^{S-1}\left(\frac{n_{a}-1}{N-1}\right)^{S} L, \quad \mathbf{X}_{a}=\left(1-2^{S-1}\left(\frac{N-n_{a}}{N-1}\right)^{S}\right) L
$$

References
Lew, A., J. E. Marsden, M. Ortiz, and M. West [2003], Asynchronous variational integrators Arch. Rational Mech. Anal. 167, 85-146.
Lew, A., J. E. Marsden, M. Ortiz, and M. West [2004] Variational time integrators. Int JJ Numer. Methods Engra. 60 153-212 Numer. Methods Engrg. 60, 153-212
arscen, J.E. and M. West [2001]. Discrete mechanics and variational integrators. Acta Nu
Simo, J.C. and D.D. Fox [1989], On a stress resultant geometrically exact shell model. Formulation and optimal parametrization. Comput. Methods Appl. Mech. Engrg. 72(3) 267-304

