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Abstract

The two central topics of information theory are the compression and the
transmission of data. Shannon, in his seminal work, formalized both these
problems and determined their fundamental limits. Since then the main goal
of coding theory has been to find practical schemes that approach these limits.

Polar codes, recently invented by Arikan, are the first “practical” codes that
are known to achieve the capacity for a large class of channels. Their code
construction is based on a phenomenon called “channel polarization”. The
encoding as well as the decoding operation of polar codes can be implemented
with O(N log N) complexity, where N is the blocklength of the code.

We show that polar codes are suitable not only for channel coding but also
achieve optimal performance for several other important problems in informa-
tion theory. The first problem we consider is lossy source compression. We
construct polar codes that asymptotically approach Shannon’s rate-distortion
bound for a large class of sources. We achieve this performance by design-
ing polar codes according to the “test channel”, which naturally appears in
Shannon’s formulation of the rate-distortion function. The encoding operation
combines the successive cancellation algorithm of Arikan with a crucial new
ingredient called “randomized rounding”. As for channel coding, both the en-
coding as well as the decoding operation can be implemented with O(N log N)
complexity. This is the first known “practical” scheme that approaches the
optimal rate-distortion trade-off.

We also construct polar codes that achieve the optimal performance for
the Wyner-Ziv and the Gelfand-Pinsker problems. Both these problems can
be tackled using “nested” codes and polar codes are naturally suited for this
purpose. We further show that polar codes achieve the capacity of asymmetric
channels, multi-terminal scenarios like multiple access channels, and degraded
broadcast channels. For each of these problems, our constructions are the first
known “practical” schemes that approach the optimal performance.

The original polar codes of Arikan achieve a block error probability decay-
ing exponentially in the square root of the block length. For source coding, the
gap between the achieved distortion and the limiting distortion also vanishes
exponentially in the square root of the blocklength. We explore other polar-
like code constructions with better rates of decay. With this generalization,



we show that close to exponential decays can be obtained for both channel
and source coding. The new constructions mimic the recursive construction of
Arikan and, hence, they inherit the same encoding and decoding complexity.
We also propose algorithms based on message-passing to improve the finite
length performance of polar codes.

In the final two chapters of this thesis we address two important problems
in graphical models related to communications. The first problem is in the area
of low-density parity-check codes (LDPC). For practical lengths, LDPC codes
using message-passing decoding are still the codes to beat. The current anal-
ysis, using density evolution, evaluates the performance of these algorithms
on a tree. The tree assumption corresponds to using an infinite length code.
But in practice, the codes are of finite length. We analyze the message-passing
algorithms for this scenario. The absence of tree assumption introduces corre-
lations between various messages. We show that despite this correlation, the
prediction of the tree analysis is accurate.

The second problem we consider is related to code division multiple ac-
cess (CDMA) communication using random spreading. The current analysis
mainly focuses on the information theoretic limits, i.e., using Gaussian in-
put distribution. However in practice we use modulation schemes like binary
phase-shift keying (BPSK), which is far from being Gaussian. The effects of
the modulation scheme cannot be analyzed using traditional tools which are
based on spectrum of large random matrices. We follow a new approach using
tools developed for random spin systems in statistical mechanics. We prove a
tight upper bound on the capacity of the system when the user input is BPSK.
We also show that the capacity depends only on the power of the spreading
sequences and is independent of their exact distribution.

Keywords : Polar codes, low-complexity schemes, channel coding, source
coding, Wyner-Ziv problem, Gelfand-Pinsker problem, multi-terminal scenar-
ios, exponent of polar codes, Reed-Muller Codes, belief propagation, LDPC
codes, density evolution, CDMA communication, statistical mechanics, inter-
polation method.



Résumeé

Les deux sujets centraux de la théorie de I'information sont la compression et
la transmission des données. Shannon, dans son travail fondamental, formal-
isa ces deux problemes et détermina les limites théoriques ultimes associées.
Depuis, le but principal de la théorie du codage a été de trouver des schémas
de faible complexité qui s’approchent de ces limites.

Les codes polaires (polar codes), inventés récemment par Arikan, sont les
premiers codes pratiques qui atteignent la capacité, pour une large classe de
canaux. La construction de ces codes est basée sur un phénomene appelé
“polarisation du canal”. Les opérations de codage, et de décodage basé sur
une méthode d’éliminations successives, peuvent étre implémentées avec une
complexité O(N log N) ou N est la longueur du code.

Comme nous le montrons, les codes polaires sont non seulement bien adaptés
pour le codage de canal, mais atteignent la performance optimale de plusieurs
autres problemes importants en théorie de I'information. Le premier probleme
que nous considérons est le codage de source avec pertes. Nous construisons des
codes polaires qui atteignent la limite ultime donnée par la fonction de distor-
sion de Shannon pour une large classe de sources. Nous montrons que cette per-
formance optimale est atteinte en choisissant un code polaire adapté au “canal-
test” qui apparait naturellement dans ’expression de Shannon pour la fonction
de distorsion. L’opération de codage combine I'algorithme d’éliminations suc-
cessives d’Arikan avec un nouvel ingrédient crucial appelé “I’arrondi aléatoire”.
Les deux opérations, le codage et le décodage, peuvent étre implémentées avec
une complexité de O(N log N). Il s’agit du premier schéma qui est de faible
complexité tout en atteignant la limite ultime donnée par la fonction de dis-
torsion.

Nous construisons aussi des codes polaires qui sont optimaux pour les
problemes de Wyner-Ziv et de Gelfand-Pinsker. Dans ces deux problemes,
la performance optimale est atteinte grace a des codes “emboités”, et les codes
polaires s’appliquent de facon tres naturelle dans ce contexte. Nous mon-
trons aussi que les codes polaires sont optimaux pour les canaux asymétriques,
pour des scénarios muti-terminaux comme le canal a acces multiple et le canal
broadcast dégradé. Pour chacun de ces problemes, nos constructions sont les
premieres connues qui soient de faible complexité tout en atteignant la perfor-
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mance optimale.

Les codes polaires initiaux d’Arikan, pour le codage de canal, atteignent
une probabilité d’erreur de bloc décroissant exponentiellement avec la racine
carrée de la taille du bloc. Pour le codage de source, la différence entre la
distorsion atteinte et la limite ultime décroit aussi exponentiellement en fonc-
tion de la racine carrée de la longueur du bloc. Nous explorons d’autres con-
structions de codes polaires avec de meilleurs taux de décroissance. Avec ces
généralisations, nous montrons que des décroissances quasi-exponentielles peu-
vent étre obtenues pour ces deux situations. Les nouvelles constructions mim-
iquent la construction récursive d’Arikan, et donc héritent de la méme com-
plexité de codage et décodage. Nous proposons aussi des algorithmes basés sur
la propagation de messages pour améliorer la performance des codes polaires
pour les longueurs finies.

Les deux chapitres finaux de cette these s’attachent a deux problemes im-
portants concernant les modeles sur les graphes pour les communications. Le
premier est dans le domaine des codes de parité de basse densité (LDPC). Pour
des longueurs utilisées dans la pratique, les codes LDPC avec le décodeur de
propagation de messages, restent encore les codes a battre. L’analyse, utilisant
I’évolution de densité, évalue la performance de ces algorithmes sur un arbre.
L’hypothese de I’arbre correspond a 'utilisation d’un code de longueur infinie,
mais en pratique ceux-ci sont de longueur finie. Nous analysons la propa-
gation de messages pour ce dernier scenario. Sans 1’hypothse de 'arbre des
corrélations entre les messgaes sont introduites. Nous montrons que malgré
ces corrélations, la prédiction de ’analyse sur I'arbre est correcte.

Le second probleme que nous considérons est relié au canal a acces multiple
par répartition en code (CDMA) avec étalement aléatoire. L’analyse usuelle
porte essentiellement sur les entrées a distribution Gaussienne. Néanmoins,
en pratique on utilise des schémas de modulation par déplacement de phase
(par exemple BPSK) qui sont loins d’étre Gaussiens. Les effets de ces modu-
lations ne peuvent pas étre analysés avec les outils traditionnels qui sont basés
sur la théorie des grandes matrices aléatoires. Nous suivons une nouvelle ap-
proche utilisant les méthodes developpées pour les systemes de spin aléatoires
en mécanique statistique. Nous prouvons une borne supérieure optimale sur
la capacité du systeme pour des entrées BPSK. Nous montrons aussi que la
capacité dépend seulement de la puissance des séquences d’étalement et est
indépendante du détail de la distribution.

Mots clés: codes polaires, schémas de faible complexité, codage de canal,
codage de source, probleme de Wyner-Ziv, probleme de Gelfand-Pinsker, scé-
narios multi-terminaux, exposants des codes polaires, codes de Reed-Muller,
propagation de messages, codes LDPC, évolution de densité, communication
CDMA, mécanique statistique, méthode d’interpolation.
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Introduction

The two central topics of information theory are the efficient compression as
well as the reliable transmission of data. The applications of these topics are
everywhere; consider mobile communication, MP3 players, the Internet, CDs,
or any other modern day digital technology.

Data compression can be either lossless or lossy. If the data consists of bank
records or personal details we cannot afford to lose any information. In such
cases, the compression is achieved by exploiting patterns and redundancies in
the data. The commonly used zip format for storing data in computers is a
good example of a lossless compression scheme.

Lossy compression, as it literally means, involves loss of information. Lossy
compression is commonly used for multimedia data like images, music or video.
The JPEG format for images and the MP3 format for music are good examples
of lossy compression schemes. Why is lossy compression used at all? On
the one hand this is due to necessity. Most physical phenomena are real
valued. Storing them in digital form must involve some form of quantization,
and hence, some loss of information. On the other hand, once lets say a
video is captured in high-quality digital form, it can typically be compressed
substantially with very little loss in perceptual quality. Technically speaking,
given a source and a measure of quality, there is a trade-off between the storage
requirement and the quality. This trade-off can be exploited to adapt a source
coding scheme to a given situation. For example, a user with small bandwidth
may be happy to get a low quality video if the alternative is not to be able to
watch the video at all.

The second central topic of information theory is concerned with the trans-
mission of data through a noisy medium. To make communication reliable in
the presence of noise, the common procedure is to add redundancy to the data
before transmission. The intended receiver only has access to a noisy version



2 Introduction

of the data. However, if the redundancy is added in a clever way, then it is
possible to reconstruct the original data at the receiver. Adding redundancy
is called coding. Coding is a central part of any communication system; e.g.,
consider wired phones, mobile phones, or the Internet. Coding is also used
for storage on CDs and DVDs to prevent data loss due to scratches or errors
during the reading process.

1.1 Source and Channel Model

Shannon, in his seminal work [1], formalized the above problems of storage
and communication and determined their fundamental limits. He provided
a mathematical framework to study the problems systematically which lead
to the advances in the past 50 years. The generality of his approach allows
us to study even modern day scenarios, like mobile communication or ad-
hoc networks. The basic model addressed by Shannon consists of a source,
which generates the information, a sink which receives the information, and a
channel, which models the physical transfer of information.

Source Channel Sink

Figure 1.1: The basic communication scenario.

The source output is modeled as a realization of a random process {X,}.
Shannon showed that we can associate to this process an entropy, call it H (X).
The operational significance of entropy is that, for any R > H(X), there exists
a scheme to represent the source using only R bits per source symbol.

The channel is modeled by a conditional probability distribution. Let X
and ) denote the input and output alphabet of the channel. The channel
W : X — Y is a conditional probability distribution W (y|z). When =z is
transmitted through the channel, the output at the receiver is the realization
of a random variable Y € ) distributed as W (y|z). Shannon showed that
in spite of this randomness, by intelligently adding redundancy, the data can
be reproduced exactly at the receiver with high probability. He computed the
capacity of a channel, C(WW), which quantifies the maximum rate at which
reliable transmission of information is possible. In other words, for any R <
C(W), there exists a scheme which transmits R bits per channel use with
vanishing error probability.

From the above discussion it is clear that if the source entropy is less than
the channel capacity, i.e., if H(X) < C(W), then the source can be reliably
transmitted over the channel. The other crucial result of Shannon is that if
the source entropy is larger than the channel capacity, then reliable commu-
nication is not possible. Therefore, if H(X) > C(W) a loss of information
is unavoidable and the best one can hope for is to minimize this loss. In [2]
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Shannon introduced the notion of distortion which quantifies the dissimilar-
ity between the source output and its compressed representation. He then
characterized the rate-distortion trade-off R(D). This trade-off describes the
minimum rate required to achieve an average distortion D.

A crucial by-product of Shannon’s work is that splitting the source and
channel coding operations as shown in Figure 1.2 does not incur any loss
in performance (if measured only in terms of the achievable rates).! The
source coding module in Figure 1.2 compresses the source data to as low a
rate as possible given a desired upper bound on the distortion. The output
of the source encoder is passed through the channel coding module. This
module adds redundancy to protect the data against noise. At the decoder,
we first perform the channel decoding to remove the noise resulting from the
transmission. Then the source is decoded, i.e., we reconstruct the source data
from its compressed representation.

Source Channel Ch ] Channel Source
Encoder Encoder anne Encoder Decoder

Figure 1.2: The simplified communication scenario.

For both source and channel coding to approach their fundamental limits,
the blocklengths have to be large. This in turn has implications on the com-
plexity. Therefore, for practical applications, we require schemes that operate
with low space and computational complexity.

1.2 Existing Low-Complexity Schemes

Since Shannon’s seminal work [1] the main goal has been to construct low-
complexity coding schemes that achieve the fundamental limits. The com-
plexity issues arise in two different contexts.

The first issue is the amount of memory required to store the code. This
refers to the memory required for storing the mapping from the input of the
encoder to its output. A code of rate R and blocklength N consists of 2V# code-
words of length N. A naive representation of such a code requires O(N2V1)
bits of memory, which is not practical. A significant progress in this respect was
the result of Elias [3] and Dobrushin [4],[5, Section 6.2] which shows that linear
codes are sufficient to achieve the capacity of an important class of channels,
known as symmetric channels. Linear codes are subspaces of vector spaces.
Hence, a linear code can be specified in terms of a basis of this subspace. This
in turn can be done by describing RN vectors of length N. Therefore, the

1 Joint source-channel code designs are preferable if delay is also a concern. However,
they are typically more complicated than the modular approach.
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resulting memory requirement is O(N?) bits. This is an exponential improve-
ment over the general case. The corresponding result for source coding was
shown by Goblick [6],[7, Section 6.2.3].

The second issue is the computational complexity of the encoding and
decoding operations. In the following we give a brief history of some of the
important developments. For a detailed history of channel coding we refer the
interested reader to the excellent article by Costello and Forney [8].

1.2.1 Channel Coding

The initial research in coding was based on an algebraic approach. More
precisely, the focus was on developing linear binary codes with large minimum
distance (the smallest distance between any two distinct codewords) and good
algebraic properties. Recall that the purpose of these codes is to recover data
that is corrupted by noise during transmission. At the receiver, to simplify
the decoding process, the following two-step approach was adopted. First,
using the channel outputs, the value of individual bits are set to either 0 or
1, depending on whatever is more likely. This is called hard-decision. At the
second stage the code constraints are used. The decoder selects the codeword
that is closest to the received word (after hard-decision). Therefore, it is
desirable to employ codes with a large minimum distance, since they will allow
the correction of a large number of errors. This is true since as long as the
number of errors is less than half the minimum distance, the above procedure
is guaranteed to output the correct codeword.

The first algebraic codes were developed by Hamming and are named after
him. Hamming codes are single error correcting codes and they are optimal
in the sense of sphere packings.? Other important algebraic codes are Golay
codes, BCH codes [9, 10], Reed-Muller codes [11, 12] and Reed-Solomon codes
[13]. For all these codes efficient algebraic decoding algorithms are known.
These codes are prominently used today in CDs, DVDs and modems.

As mentioned in the previous section, to achieve optimal performance one
has to consider large blocklengths. The improvement in computational re-
sources made it feasible to consider larger and larger codes in practice. But
the previously discussed algebraic codes either have vanishing rate or vanishing
relative distance (ratio of minimum distance and blocklength) for increasing
blocklengths.

Product codes, introduced by Elias [14], were the first constructions which
asymptotically (in the blocklength) achieved both non-vanishing relative dis-
tance and rate. The idea is to construct large codes by combining two or more
codes of smaller length. Consider two codes C; and Cy of length n; and n..
Each codeword of the product code can be viewed as an n; X ns matrix such
that each column is a codeword of C; and each row is a codeword of Cy. A

2In more detail, the entire Hamming space consisting of 2V (N is the blocklength) N-
tuples can be covered with spheres of radius (d — 1)/2 (d is the minimum distance) placed
at every codeword.
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low-complexity but sub-optimal decoding algorithm is to decode each row and
column separately. However, the performance of such a combination was far
below the capacity of the channel.

Code concatenation, introduced by Forney [15], is another construction
based on combining codes. The idea is to first encode the data using C; and
then encode the resulting output with C,. Forney showed that for any rate
below the capacity, by an appropriate choice of the two component codes, the
error probability can be made to decay almost exponentially with a decoding
algorithm that has polynomial complexity.

The next big step in improving the decoding performance came from con-
sidering probabilistic decoding. In typical scenarios the capacity is significantly
reduced by making hard-decisions at the decoder. E.g., for Gaussian channels,
close to half the power is lost due to this first step. The idea of probabilis-
tic decoding is to make use of the channel outputs directly in the decoding
algorithm and to avoid this loss.

The first class of codes well suited for probabilistic decoding were convolu-
tional codes, introduced by Elias in [3]. The code structure enabled the devel-
opment of efficient decoding algorithms. In particular the Viterbi algorithm
[16], which minimizes the block error probability, and the BCJR algorithm [17],
which minimizes the bit error probability, both operate with complexity which
is linear in the blocklength. For any rate strictly less than the capacity of the
channel one can show that there exist convolutional codes whose probability
of error vanishes exponentially in the “constraint length”. However, the com-
plexity of the decoding algorithm also scales exponentially with the constraint
length. Therefore, for practical purposes Fano’s sequential decoding algorithm
[18] was considered. For rates less than the “computational cutoff rate”, the
complexity of this algorithm is linear in the blocklength and independent of
the constraint length. The cutoff rate is a rate that can be computed easily
and that is strictly smaller than the capacity. For rates above the cutoff rate,
the complexity is unbounded. This lead to the belief that, using practical
algorithms, rates above the cutoff rate could not be achieved.

Another class of codes which were introduced during the 60’s were low-
density parity-check (LDPC) codes [19]. As the name suggests, the parity-
check matrices of these codes have very few non-zero entries. In fact, these
matrices have a constant number of non-zero entries per row and column.
Gallager showed that these codes have a non-zero relative distance. He also
proposed a low-complexity iterative decoding algorithm. Unfortunately, due
to the lack of computational resources at that time, the power of these codes
and the decoding algorithms was not realised.

The invention of turbo codes by Berrou, Glavieux and Thitimajshima [20]
was a breakthrough in the practice of coding. Turbo codes achieved rates close
to the capacity, and far above the cutoff rate, using a linear complexity decod-
ing algorithm. The code is constructed by concatenating two convolutional
codes but with a random bit interleaver in between. The decoding algorithm
operates in iterations. In each iteration the BCJR algorithm is performed on
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each of the component codes and the reliabilities are exchanged. Since the
complexity of the BCJR algorithm is linear in the blocklength, the resulting
decoding algorithm is also of linear complexity. The original turbo code of
[20] matched the error probability of the best existing schemes which were
operating with twice the power. The interleaver and the iterative property of
the decoding algorithm are the two crucial components which are recurrent in
the capacity achieving schemes constructed later.

MacKay and Neal constructed codes based on sparse matrices [21] and ob-
served that they perform very well using a low complexity belief propagation
algorithm. It was later noticed that these codes were a special case of LDPC
codes and that the decoding algorithm is equivalent to the probabilistic de-
coding suggested by Gallager. Around the same time Sipser and Spielman [22]
constructed expander codes and came up with a simple decoding algorithm
that could correct a linear fraction of adversarial errors.

Wiberg, Loeliger and Kotter [23, 24] unified turbo codes and LDPC codes
under the framework of codes on graphs. Within this framework the turbo
decoding algorithm, the belief propagation algorithm of MacKay and Neal and
the probabilistic decoding of Gallager turn out to be different incarnations of
the same algorithm. The framework also provided a bridge between sparse
graph codes and other fields like machine learning, statistical mechanics and
computer science.

The success of turbo codes and the subsequent rediscovery of LDPC codes
revived the interest in LDPC codes and message passing algorithms. Some
of the first and important contributions to the analysis of message-passing
algorithms was done in a series of papers by Luby, Mitzenmacher, Shokrollahi,
Spielman and Stemann [25, 26, 27, 28]. In [25, 27|, the authors analyzed a sub-
optimal decoder known as “peeling decoder” for the binary erasure channel
(BEC). They constructed codes for the BEC which achieve capacity using the
peeling decoder. Later, in [29], the peeling decoder was formulated as a process
on a tree. The analysis of the new formulation is significantly simpler than
that of [25, 27].

In [30], Richardson and Urbanke developed density evolution which gen-
eralizes the analysis of the BEC [29] to any symmetric channel and a class
of algorithms known as message-passing algorithms. This class includes the
important belief propagation algorithm. Combining density evolution for be-
lief propagation with optimization techniques, codes that approach capacity of
Gaussian channel to within 0.0045dB [31] were constructed. However, unlike
the BEC, no capacity achieving codes are known for general channels.

Until now, many turbo and LDPC codes have been proposed which empir-
ically achieve rates close to capacity for various channels. However, none of
these codes are proven to achieve capacity for channels other than the BEC. In
this thesis we discuss polar codes. Polar codes, recently introduced by Arikan
[32], are a family of codes that provably achieve the capacity of symmetric
channels with “low encoding and decoding complexity”. This settles the long
standing open problem of achieving capacity with low complexity.
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1.2.2 Source Coding

Let us start with the lossless source compression problem. Huffman coding [33]
achieves the optimal compression for memoryless sources with known source
statistics. The Lempel-Ziv algorithm [34, 35] solves the problem for the wide
class of stationary ergodic sources. It even provides compression guarantees for
individual sequences. The algorithm is easily implementable and it is widely
used in commercial compression software, e.g., gzip.

The lossy compression problem is more difficult and the progress in this field
is less spectacular. The problem was formally defined by Shannon in 1959 [2].
The most commonly studied problem is the compression of a binary symmetric
source (BSS). Here we recall some of the past and current approaches. In
his paper [2], Shannon suggested to use error correcting codes and he even
provided some achievable rate-distortion pairs using Hamming codes. Since
then the progress in lossy source coding closely followed in the footsteps of
channel coding.

Trellis based quantizers [36] were perhaps the first “practical” solution for
the lossy compression problem. Their encoding complexity is linear in the
blocklength of the code (Viterbi algorithm). Like in channel coding, for any
rate strictly larger than R(D) the gap between the resulting distortion and
the design distortion D vanishes exponentially in the constraint length and
as mentioned before, the complexity scales exponentially with the constraint
length.

The success of sparse graph codes combined with low-complexity message-
passing algorithms for channel coding spurred the interest of many researchers
to investigate their performance for lossy source compression. In this respect,
Matsunaga and Yamamoto [37] showed that if the degrees of an LDPC ensem-
ble are chosen as large as O(log(/N)), where N is the blocklength, then this
ensemble saturates the rate-distortion bound if optimal encoding is employed.
Even more promising, Martininian and Wainwright [38] proved that properly
chosen MN codes (proposed by MacKay and Neal [21] for channel coding)
with bounded degrees are sufficient to achieve the rate-distortion bound under
optimal encoding.

Much less is known about the performance of sparse graph codes under
message-passing encoding. Initial observations suggested that LDPC codes
combined with message passing algorithms do not perform well in practice.
To understand why, the authors in [39] considered binary erasure quantization
(BEQ), the source-compression equivalent of the channel coding problem for
the BEC. For this problem, they show that LDPC-based quantizers fail if the
parity check density is o(log(/N)) but that properly constructed low-density
generator-matrix (LDGM) based quantizers combined with message-passing
encoders are optimal. The latter claim is based on a duality relationship
between the BEQ and the BEC. Using this duality, the problem of finding
optimal codes for the former problem is mapped to the problem of finding
capacity achieving codes for the BEC. The code for the BEQ is then given by
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the dual of the code designed for the BEC with appropriate erasure probability.

The above result is significant in two respects. First, it showed that LDGM
codes are suitable for source coding. Second, the source coding problem is
mapped to a channel coding problem. This made it possible to use the ma-
chinery developed for channel coding. Unfortunately the duality relationship
between the BEQ and the BEC is very specific and it does not extend to other
sources like the BSS.

Regular LDGM codes were considered for the BSS in [40] and [41]. Us-
ing non-rigorous methods from statistical physics the authors argue that these
codes approach the rate-distortion bound for large degrees using optimal en-
coding. In [40], it was empirically shown that LDGM codes with degree 2
check nodes perform well under a variant of belief propagation (BP) algorithm
known as reinforced BP (RBP).> The encoding algorithm in [41] is another
variant known as belief propagation inspired decimation (BID).

Let us now discuss briefly why BP itself does not work well for source
coding and why we need to employ variations of BP. The reason for the failure
of standard BP is the abundance of solutions. Typically, for a source word
there are many codewords that, if chosen, result in similar distortion. Let
us assume that these “candidate” codewords are roughly uniformly spread
around the source word to be compressed. It is then clear that a message-
passing decoder which operates locally can easily get “confused,” producing
locally conflicting information with regards to the “direction” towards which
one should compress.

A standard way to overcome this problem is to combine the message-passing
algorithm with “decimation” steps. This works as follows; first run the iterative
algorithm for a fixed number of iterations and subsequently decimate a small
fraction of the bits. More precisely, this means that for each bit which we
decide to decimate we choose a value. We then remove the decimated variable
nodes and adjacent edges from the graph. One is hence left with a smaller
instance of essentially the same problem. The same procedure is then repeated
on the reduced graph and this cycle is continued until all variables have been
decimated. In BID, the standard BP plays the role of the message-passing
algorithm.

Another approach to make message-passing algorithms work is to use re-
inforcement of the “priors”. Each bit is associated with a prior probability,
equivalent to the priors obtained from channel observations in channel coding.
In source coding, since there is no observation to start with, we initialize the
priors to uniform distribution over 0 and 1. The algorithm reinforces these pri-
ors during the encoding process. More precisely, we run the message-passing
algorithm for a few iterations and then update the priors using the current
messages. The message-passing algorithm is then started with the new priors.
This process is continued until we build strong biases in the priors. These pri-

3The author refers to this algorithm as Thouless-Anderson-Palmer approach, as it is
known by that name in statistical physics literature.
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ors are then used to decide the values of the bits. This is the principle behind
RBP.

The authors in [41] observe that BID as well as RBP do not perform well
when the check node degree is larger than 2. They argue that the reason for this
failure is the linearity of the check node. In order to accommodate check nodes
with larger degrees, the authors in [42] replace parity-check constraints with
non-linear constraints. The resulting code is similar to the k-SAT problem in
computer science. The encoding was therefore done using survey propagation
inspired decimation (SID), an algorithm used for finding solutions of a k-SAT
formula [43]. The empirical results show that SID combined with non-linear
codes achieve good performance.

In channel coding, the power of LDPC codes was fully realized only after
considering irregular codes. The code design for channel coding uses density
evolution for BP combined with optimization methods. The algorithms used
in source coding, namely RBP, BID, as well as SID, combine message-passing
with some additional steps as mentioned above. These additional steps make
their analysis difficult. In fact, the analysis of these algorithms is still an un-
solved problem. This makes the design and optimization of codes a challenging
task.

Motivated by the construction in [39], the authors in [44] consider those
LDGM codes whose duals (LDPC) are optimized for the binary symmetric
channel (BSC). More precisely, a source code for distortion D is taken to be
the dual of a channel code designed for BSC(p) where p = hy'(1 — D) and
ho(+) is the binary entropy function. Surprisingly, even though no duality
relationship is known between the two problems, the approach was successful.
They empirically show that by using SID one can approach closely the rate-
distortion bound. Recently, in [45] it was experimentally shown that even
using BID it is possible to approach the rate-distortion bound closely. The
key to make BID work is to properly choose the code and the parameters of
the algorithm.

The current state-of-the-art code design is thus based on the heuristic ap-
proach of designing an LDPC code for a suitably defined channel and then
taking its dual LDGM code. Such an approach does not extend to sources
other than the BSS. In addition to the heuristic argument, the code design
relies on finding capacity achieving codes for channel coding which itself is an
open problem.

1.3 Polar Codes

Polar codes, introduced by Arikan in [32], are the first provably capacity
achieving codes for any symmetric binary-input discrete memoryless channel
(B-DMC) that have low encoding and decoding complexity. The complexity
of these algorithms scales like O(N log N), where N is the block length of the
code.
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The origin of the idea of polar codes can be traced back to Arikan’s earlier
work on improving the computational cutoff rate of channels [46]. In this
paper, Arikan considers applying a simple linear transform to the channel
inputs before transmission and a successive cancellation decoder at the output.
Let W be the original channel and let W; and W, be the channels seen by the
bit that is decoded first and second respectively. Such a transformation results
in a larger average (over W; and W) cutoff rate compared to that of W.

The idea of polar codes is based on repeating the above process “recur-
sively”. The recursive process is equivalent to applying a linear transform on
a larger number of bits at the encoder. At the decoder, the bits are decoded
successively in a particular order. As a result the effective channels seen by
some of the bits are better than W and some are worse. Interestingly, as
the blocklength increases, these effective channels tend towards either a com-
pletely noisy channel or a clean channel with the fraction of clean channels
approaching the capacity of W. Arikan refers to this phenomenon as channel
polarization. This suggests a simple scheme where we fix the inputs to the
channels that are bad and transmit reliably over the clean channels without
any coding. The rate of such a scheme approaches the capacity of the channel.

However, for the scheme to be practical it remains to show that the re-
cursive transformation at the encoder and the successive cancellation decoder
can be implemented with low-complexity. Using a Fast-Fourier-like transform
Arikan showed that both the encoding and decoding operations can be imple-
mented with O(N log N) complexity. Effectively, the scheme achieves capacity
using low-complexity algorithms.

Arikan’s input transformation matrix is given by G¥" where Gy = [1 7],
and “®"” denotes the n-th Kronecker product. Choosing some of the input bits
to transmit information and fixing the rest is equivalent to choosing the rows
of G5 that form the generator matrix of the code. Such codes are referred to
as polar codes. Polar codes are closely related to RM codes. The generator
matrix of RM codes is also constructed from the rows of G3". The crucial
difference between the two codes lies in the rule used for picking the rows of
their generator matrices. RM codes correspond to the choice which maximizes
the minimum distance of the code. For polar codes, on the other hand, the
choice is dependent on the channel that is used. The choice optimizes the
performance under successive cancellation decoding.

1.4 Contribution of this Thesis

Most of this thesis is centered around polar codes. For the sake of complete-
ness, we also include our results in the area of LDPC codes and code-division
multiple access (CDMA) communication. But in order not to disturb the flow,
we placed these two extra topics in the last two chapters.

Our contributions in the area of polar codes can be classified into two main
categories. 1) We construct the first known low-complexity coding schemes
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that are optimal for a variety of important problems in information theory.
These include the lossy source coding problem as well as several problems
involving source and channel coding. 2) We expand the notion of polar codes
to include more general transforms. This allows us to construct polar codes
with considerably better block error probabilities. In Sections 1.4.1 and 1.4.2
we review these contributions in more detail. In Section 1.4.3 we outline our
contributions in the areas of LDPC codes as well as CDMA communication.

1.4.1 Polar Codes: Low-Complexity Schemes with optimal
performance

The first problem we consider is lossy source coding. Recall from the previ-
ous section that currently there are a variety of low-complexity schemes for
this problem, but that none of them achieve the rate-distortion bound. Our
main contribution is to show that suitable polar code constructions achieve
Shannon’s rate-distortion bound for an important class of sources. This class
includes in particular the well studied BSS. The codes are not only provably
optimal, but as the simulations suggest, they perform well in practice. For the
BSS with Hamming distortion the performance closely approaches the optimal
trade-off for reasonable blocklengths, lets say 10000.

Let us review the source coding problem. Given a source sequence, the
job of the encoder is to quantize it to a codeword with the aim of minimizing
the distortion. In our setting of using polar codes, the encoding algorithm
combines successive cancellation with “randomized rounding”; the latter is the
crucial new ingredient. Randomized rounding refers to determining a variable
by sampling according to its posterior probability rather than choosing the
value corresponding to the largest probability (MAP rule). It is exactly this
choice which makes the analysis possible. Randomized rounding can be viewed
as picking one codeword from a set of codewords having a similar distortion.

Let us get back to the general description of source coding. Once the en-
coder chooses the codeword, it describes it to the decoder using an index.
At the decoder, the codeword is reconstructed from the index. This opera-
tion is similar to the encoding operation of channel coding. Therefore, both
the encoding and decoding operations can be implemented with O(N log N)
complexity.

We also consider source coding problems with side information as well as
channel coding problems with side information. The optimal codes for these
problems require nested structures. For the former problem we require a good
channel code which can be partitioned into cosets of a good source code. For
the latter problem the role of the channel and source codes are reversed. In
Chapter 4, we provide a brief history of the current approaches. These ap-
proaches are based on creating the required nested structures using sparse
graph codes. However, as yet there do not exist any low-complexity schemes
that achieve the optimum performance. Our main result is to show that ap-
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propriately designed polar codes achieve optimal performance for each of these
problems. We exploit the natural nested structure existing in polar codes to
prove this result. The encoding and decoding operations are performed us-
ing successive cancellation algorithms. Hence they can be implemented with
O(Nlog N) complexity. We also discuss applications to multi-terminal prob-
lems like the Slepian-Wolf problem and the one-helper problem.

We show that polar codes achieve capacity of asymmetric channels, de-
graded broadcast channels as well as multiple access channels. The common
feature in all these problems is that we require codes which induce non-uniform
marginals over the channel inputs. We map the code design for each of the
afore-mentioned problems to the code design of an appropriately defined non-
binary (g-ary) input channel. The required binary code with non-uniform
marginals is then obtained by collapsing the ¢ symbols to the binary alphabet
using a surjective map. Once again, these are the first low-complexity schemes
that achieve capacity. We also discuss application of polar codes for compound
channels and show that the achievable rate is strictly less than the compound
capacity.

1.4.2 Improved Polar Codes

As we will explain in detail in Chapter 2, for any fixed rate R below capacity
and a sequence of polar codes of rate R, the block error probability decays at
best as O(2-™"*) [47]. Similarly, for the source coding problem, we show that
the resulting distortion approaches the target distortion D as D +O(2~® )1/2).
Notice that the exponent of the blocklength N is % in both the cases. How-
ever, from the random coding argument we know that there exist codes having
exponent 1 under MAP decoding. We therefore ask the following two ques-
tions. Is it the decoding algorithm or the code itself that results in a smaller
exponent? Are there polar codes which achieve exponent 17 With respect
to the first question we show that the reason for the smaller exponent is the
code itself. To answer the second question we explore other polar-like code
constructions. This is a joint work with Sagoglu and Urbanke [48].

Let us explain this in more detail. Recall that the rows of the generator
matrix of a polar code are chosen from the matrix G5". Our generalization
is based on choosing the rows from G§" for a general ¢ x ¢ matrix G,. Our
main result is to show that there exist families of codes that have an exponent
arbitrarily close to 1 using SC decoding. The recursive structure of these codes
enables to implement the SC algorithm with complexity O(2°N log N).

In the process we show that almost all matrices are suitable for channel
polarization. For a given matrix (G, we characterize its exponents both for
channel as well as source coding in terms of its “partial distances”. These dis-
tances can be computed easily for a given matrix. With this characterization,
the problem of designing polar codes with large exponent is transformed to a
simpler problem of finding ¢ x ¢ matrices with some properties. We also show
how to transform a matrix that achieves large exponent for source coding into
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a matrix that achieves the same exponent for channel coding. Effectively, the
two problems of finding good matrices for channel and source coding boil down
to a single problem.

The characterization in terms of the partial distances also allows us to
use tools from algebraic coding to design good matrices. Using tools like the
Gilbert-Varshamov bound and Hamming bound we obtain bounds on the best
possible exponent for any matrix GG,. We also show that for ¢ < 15 no matrix
has an exponent larger than % This is discouraging because it implies that
to improve the asymptotic performance of polar codes one has to consider
very large block lengths and also larger complexity. We further exploit the
relationship with algebraic coding to provide an explicit family of matrices
based on BCH codes. This family achieves exponent tending to 1 for large ¢
and an exponent larger than 1/2 for ¢ = 16, which is shown to be the best
possible exponent for ¢ = 16.

Even though polar codes promise good block error probability their perfor-
mance at practical blocklengths, in particular for channel coding, is not record
breaking. In fact this was the reason which prompted us to explore codes with
larger exponent. Another approach to improve the performance is to investi-
gate different decoding algorithms. We empirically show that the performance
of polar codes improves by considering belief propagation and some variants
of it.

1.4.3 Rigorous Results for Graphical Models

Polar codes form the core of this thesis. But we also include our results on
LDPC codes and CDMA communication. Both these problems are conve-
niently presented in a graphical way. These graphs play an important role in
their analysis. This explains the title for this section.

Exchange of Limits

As mentioned in Section 1.2.1, prior to the invention of polar codes, the best
known low-complexity coding schemes were based on LDPC codes combined
with message-passing decoding. For such a combination, both the code design
and the error probability analysis is based on density evolution (DE) [30].

DE analyzes the performance of the algorithm when the size of the graph is
infinite. As a consequence, the local neighborhood is a tree and the messages
seen on different edges are independent. The analysis is done by tracking the
evolution of the messages on a tree. Let P,(¢, N) denote the probability of
error for ¢ iterations of a code of blocklength N. Using DE, we can compute
limy_.o By(¢, N) for any fixed ¢. To quantify the performance of the algorithm
for unlimited number of iterations, the DE equations are analyzed in the limit
of ¢/ — oo. Mathematically, this corresponds to computing the limit

lim lim B,(¢, N).

{—o00 N—00
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In practice the size of the code is fixed and we perform a large number of
iterations (typically hundreds and limited only by the computational resources
at our disposal) at the receiver. It has been noticed in practice that increas-
ing the number of iterations only improves the performance of the algorithm.
Therefore, it is interesting to understand the behavior of the algorithm for un-
limited number of iterations. Mathematically, this corresponds to computing
the limit

im lim Py (¢, N).

1
N—o0 £—00

The tree assumption is not true in this limit and hence the DE equations
are no longer valid. The correlation between the messages on various edges of a
node makes the analysis difficult. Our main result is to show that under some
suitable technical conditions, which are satisfied by many message-passing de-
coders, the predictions given by the DE analysis are still accurate in the regime
where the decoding is successful. Mathematically, we show that

if  lim lim Py(N,¢) =0, then lim lim P,(N,¢) = 0.
{—o00 N—00 N—00 l—o0
This suggests that in the regime where the DE analysis predicts zero error
probability, the correlation between the variables decays rapidly with the dis-
tance and it does not degrade the performance of the algorithm.

Capacity of Binary input CDMA

The second problem that we consider is CDMA communication over an ad-
ditive white Gaussian noise channel using randomly generated spreading se-
quences. CDMA is used in multi-user scenarios for simultaneous access of
a common receiver in a wireless medium. A prominent example is the up-
link segment of cellular communication. This problem has been studied in
great detail when the input distribution of the users is Gaussian [49], which
corresponds to the information theoretic limits. However, in practice we use
constellations like binary phase-shift keying (BPSK), which is far from being
Gaussian. In contrast to the Gaussian input case, not much is known for these
inputs. The analysis used for Gaussian inputs, based on the spectrum of large
random matrices, is not applicable for other inputs.

For simplicity we treat the binary input case (BPSK), but the results can be
extended to other input constellations. We study the capacity of the system,
which is defined as the maximum achievable rate per user. Our approach is
based on treating the CDMA system as a random Ising model and using tools
developed for the analysis of random spin systems in statistical mechanics.
The main result is a tight upper bound on the capacity in the limit of large
number of users. The bound matches with the conjectured capacity which is
based on the replica method. We explain this conjecture in more detail in
Chapter 8. We show that in the limit of large number of users, the capacity
depends only on the power of the spreading sequences and is independent of
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their distribution. We also show that the capacity concentrates with respect
to the randomness in the spreading sequences in the large-user limit. In other
words, the capacity is the same for almost all spreading sequences.

The mathematical methods we use are quite powerful and are easily ap-
plicable to other scenarios. We demonstrate this by extending the results to
the case of users with unequal power constraints, channels with colored noise,
and other input constellations as well. We also derive the upper bound for
Gaussian input distribution which matches with the existing result and thus
strengthening our belief that the bounds are tight for other scenarios too.

1.5 Organization of the Thesis

Chapters 2 to 6 are related to polar codes. Chapter 7 is about LDPC codes
and Chapter 8 deals with the CDMA problem. The last two chapters are
self-contained and are not related to the rest of the thesis.

Chapter 2 reviews Arikan’s work on polar codes [32]. We explain the main
ideas behind the code construction and the successive cancellation (SC) de-
coding algorithm. We then show that polar codes achieve the capacity for
symmetric channels using SC decoding. The complexity of the encoding and
decoding algorithms is shown to be O(N log N), where N is the blocklength.
We also include a discussion about the complexity of the code construction.
The last section provides some simulation results.

Chapter 3 considers the lossy source coding problem. We introduce the SC
algorithm combined with randomized rounding that is used for the encoding
operation. We then show that properly designed polar codes using the SC
encoding algorithm achieve the Shannon’s rate-distortion bound for symmetric
sources. This is perhaps one of the most important contributions of this thesis
and it solves a long standing problem. Some simulation results for binary
symmetric source are provided. The chapter ends with a discussion on the
connection with channel coding.

Chapter 4 considers other communication scenarios including the source cod-
ing with side information as well as the channel coding with side information
problems. We show that polar codes again achieve optimal performance for
these problems using the low-complexity SC algorithm. Applications to other
problems like the lossless compression problem, the Slepian-Wolf problem and
the one-helper problem are also discussed. We then show that the capaci-
ties of asymmetric channels, degraded broadcast channels, and multiple access
channels can be achieved using non-binary polar codes. Simulation results are
provided for some of the problems.

Chapter 5 deals with the generalization of polar codes to ¢ x ¢ matrices.
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We explain the encoding and SC decoding in this case. We provide the formal
definition for the exponent of channel and source coding. We then characterize
the exponents in terms of partial distances. A duality relationship between the
two exponents is also provided. Using bounds from classical coding, bounds for
the best possible exponent are derived. The chapter ends with a construction
of a family of matrices based on BCH codes.

Chapter 6 deals with the relationship between polar codes and RM codes.
We show that the minimum distance of a polar code can scale at most as
O(N'2). We also discuss briefly about the relationship of SC decoder to
Dumer’s recursive algorithm. The empirical performance of polar codes under
some variants of belief propagation decoding is also shown. We then treat the
compound capacity of polar codes. Some open problems and future research
directions are also discussed.

Chapter 7 is the first of the two chapters dealing with graphical models. In
this chapter, we consider communication using LDPC codes over binary input
symmetric channels. We show that the density evolution analysis is indeed
correct for finite graphs and for noise values below the channel threshold. Our
results are split into two categories based on the variable degree. We first
discuss the results for large variable degrees (larger than 5) where we show
the exchange of limits for a large class message passing algorithms. We then
discuss the results for variable degree 3 and 4 which are based on different
methods.

Chapter 8 considers CDMA communication using binary inputs and random
spreading sequences. We provide concentration results with respect to the
spreading sequences. We also show that the capacity is independent of the
exact distribution of the spreading sequence. We provide an upper bound to
the capacity which matches with the conjectured capacity and hence believed
to be tight. We end this chapter with extensions to other channels and input
distributions.

1.6 Notation

Throughout the manuscript, we stick to the following notation. We use W :
X — Y to represent a binary input discrete memoryless channel (B-DMC)
with input alphabet X and output alphabet ). We use upper case letters
U, X,Y to denote random variables and lower case letters u,x,y to denote
their realizations. Let @ denote the vector (ug,...,uy—1) and let ui forv < j

denote the subvector (u;,...,u;). We use uj , and uj , to denote the subvector
of uf consisting of only the even indices and the odd indices respectively. For
any set F, |F| denotes its cardinality. Let up denote (u;,...,u;, ), where
{ix. € F i, < iry1}. We use the equivalent notation for random vectors too.
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All the logarithms are to the base 2. We use hs(-) to denote the binary entropy
function, i.e., hao(z) = —xlogz — (1 — x)log(l — x).

We use BEC(€) to denote the binary erasure channel with erasure proba-
bility €, BSC(p) to denote the binary symmetric channel with flip probability
p and BAWGNC(o) to denote an additive white Gaussian noise channel with
noise variance ¢ whose input is restricted to {£1} (BPSK). We let Ber(p)
denote a Bernoulli random variable with Pr(1) = p and Pr(0) = 1 — p.

1.7 Useful Facts

Let I(W) € [0, 1] denote the mutual information between the input and output
of W with uniform distribution on the inputs, i.e.,

1 Wiy 2)
1) =52 2 Wl loos o o mr Ty

Let Z(W) € [0, 1] denote the Bhattacharyya parameter of W, i.e.,

ZW) = VW)W (y/). (1.2)

yey

(1.1)

Also, let P.(W) denote the probability of error for a uniform distribution
over the input {0, 1}, i.e.,

1
P(W) = 3 DY Wyl 2) Lgwey m<wiylaeny- (1.3)
reX yey
Definition 1.1 (Symmetric B-DMC). A B-DMC W : X — Y is said to be
symmetric if there exists a permutation @ : Y — Y such that T = 7' and

W(yl0) = W(r(y)[1) for ally € Y.

Symmetric channels play an important role in information and coding the-
ory. Some of the most commonly studied channels like binary symmetric chan-
nel (BSC) and binary erasure channel (BEC) are both symmetric. For such
channels the symmetric mutual information (W) is equal to their capacity.
An important and useful property of symmetric B-DMCs is the following.

Theorem 1.2 (Symmetric B-DMC as BSCs [50]). Any symmetric B-DMC
can be decomposed into BSCs.

The above theorem implies that for any symmetric B-DMC W there ex-
ists a set of BSCs, say BSC(e),...,BSC(ex ), and a probability distribution
p1,-..,px over the set {1,..., K} such that using the channel W' is equivalent
to using a BSC(;), with index ¢ known only to the decoder, with probability
p;. Since the two channels are equivalent we have

(W) = Z piI(BSC(g;)), (1.4)
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ZW) =3 piZ(BSC(e), (1.5)
P(W) =3 piP(BSC(e:)). (1.6)

Definition 1.3 (Symmetrized B-DMC). For any B-DMC W : X — Y, the
symmetrized B-DMC Wy : X — Y x X is defined as

1

Lemma 1.4 (Channel Symmetrization). For any B-DMC W, there exists a
symmetric B-DMC W such that

I(W) =I(Wy), Z(W)=Z(W,), P(W)= P(W,).

Proof. Let Wy be the symmetrized B-DMC of Definition 1.3. The channel W,
is symmetric where the permutation = is given by 7(y,z) = (y,z @ 1). It is

easy to check that I(W) = 1(W), Z(W) = Z(W) and P, (W) = P,(W,). O

It is intuitive that I(1/) is close to 0 if and only if Z(W) is close to 1 and
vice-versa. The following lemma makes this intuition rigorous.

Lemma 1.5 (I(W) and Z(W)[32]). For any B-DMC W,

Proof. Note that Lemma 1.4 implies that it is sufficient to prove the inequal-
ities for symmetric B-DMCs. Theorem 1.2 combined with (1.4) and (1.5)
implies that it is sufficient to show the first inequality for BSC(¢). The claim
follows by checking that 2+v/€€ > hy(e).
For the BSC(€), the second inequality follows from hy(€) > 2€ which implies
(1 —ha(e))* < (1 —26)> =1 — 4e(1 — €). The result for symmetric B-DMCs
follows from the concavity of f(x) = /1 — 2% for x € [0,1) and Theorem 1.2.
0

Lemma 1.6 (P.(W) and Z(W) [51]). For any B-DMC W,

L1~ T=Z(W)P) < P.(W) < Z(W).

Proof. The upper bound follows from the inequality Liw(y|a)<w(y|ze1)}) <
Wiy|za1)
W(y|x)
bound for symmetric B-DMCs. It is easy to check that the lower bound is sat-
isfied with an equality for BSC. The result for symmetric B-DMCs follows from

the convexity of f(z) = 2(1 — V1 —2?) for z € (—1,1) and Theorem 1.2. O

. Note that Lemma 1.4 implies that it is sufficient to show the lower
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Definition 1.7 (Degradation). Let Wy : {0,1} — Yy and Wy : {0,1} — Vs
be two B-DMCs. We say that Wy is degraded with respect to Ws, denoted as
Wi X Wy, if there exists a DMC W : Yy — Yy such that

Wiy |2) = Y Walya | 2)W (41 | y2)-

Y2E€Y2

Lemma 1.8 (Bhattacharyya and Degradation). Let Wy and Wy be two B-
DMCs and let W7 < Ws5. Then,

Z(Wh) > Z(Ws).

Proof.
Z(Wh) = Z \/Wl(yl [ 0)Wi(y: | 1)
y1EV
- Z Z Wa(y2 | 0)W (y1 | y2) Z Wa(y2 [ YW (41| y2)
1€V || y2€d2 Y2€Y2

> Z Z VWa(ya | )W (y1 | y2) Walys | 1YW (y1 | ya)

Y1€EV1 Y2€V2

— Z \/Wz(yQ |0)Wa(y2 | 1) Z Wiy |y2) = Z(Wa),

Y2€Y2 y1€MN

where (a) follows from Cauchy-Schwartz inequality. O






Channel Coding : A
Review

In this chapter we discuss the construction of polar codes for channel coding.
It is based entirely on the work of Arikan [32]. This chapter lays the foundation
and sets the notation for the rest of this thesis. For the sake of brevity we skip
some of the proofs.

The polar code construction is based on the following observation: Let

GF“?]. (2.1)

Apply the transform G5™ (where “®*” denotes the n'"* Kronecker power) to a
block of N = 2" bits Uy . Transmit the result X' ' = U} 'G$" through
independent copies of a B-DMC W (see Figure 2.1).

Uy — Kol wl vy
Uy, —
G$™
Xpn_
Un-1— Nl W b—YN—1

Figure 2.1: The transform G5" is applied to the vector Uév’l and the resulting
vector X'~ ! is transmitted through the channel V.

Apply the chain rule to the mutual information between the input U2
and the output Y; . This gives

N-1 N-1
U S R DG G L ED DR G i/ )
i=0 i=0

21
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where the last equality follows from the fact that {U;} are independent. The
central observation of polar codes is that as n grows large, except for a negligi-
ble fraction, the terms in the summation either approach 0 (bad) or 1 (good).
Moreover, the fraction of those terms tending to 1 approaches the symmetric
mutual information I(W). This phenomenon is referred to as channel polar-
1zation.

Note that we can associate the i-th row of G5™ with I(U; Yy 1 US™).
More precisely, this term can be interpreted as the channel “seen” by the bit Uj;
assuming that we have already decoded all the previous bits. With this inter-
pretation we choose the generator matrix of the polar code of rate R in the fol-
lowing way; choose those N R rows of G5" with the largest I(U; Y{' 1| US™Y).
We will see later that such codes achieve rates close to I(W), with vanishing
block error probability, using a low-complexity SC decoder.

The following sections discuss polar codes in more detail. We start by ap-
plying the transform G5 to a two dimensional vector in Section 2.1. We discuss
the properties of the mutual information terms appearing in the chain rule.
In Section 2.2 we recursively apply this transform to N = 2" dimensional
vectors. In Section 2.3 we prove that channel polarization happens for the
recursive transform introduced in the previous section. We discuss the con-
struction of polar codes and analyze their block error probability in Section 2.4.
The complexity issues are considered in Section 2.5. Finally, in Section 2.6 we
end with some simulation results.

2.1 Basic Channel Transform

Let X = {0,1} and W : X — Y be a B-DMC. Consider a random vector U}
that is uniformly distributed over X?. Let X} = UjGs be the input to two
independent uses of the channel T and let Y;' be the corresponding outputs.
The channel between U; and Yy is defined by the transition probabilities

Xo
Uy + w Yo

X1
Uy w Y

Figure 2.2: Channel combining of two channels.

1 1

Walys | up) 2 [T Wil 2:) =TT W (i | (u§Ge)s). (2.2)

=0 1=0
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In [32], this step is referred to as channel combining, which reflects the fact
that two individual channels W are combined to create a new super channel
Wy @ X? — Y?. Note that the linear transform between Ui and X! is a
bijection. Therefore,

I(Uy; Yy) = 1(Xg: Yy) = 21(W).

Using the chain rule of mutual information we can split the left hand side of
the above equation as

[(UOI;YE])—[(UO, )+[(U1,Y1|UO)
_[(U07 )_'_[(Ul;}/OlaUO)

We can interpret the term I(Up; Yy) as the mutual information of the channel
between U and the output Yy, with U; considered as noise. Let us denote

this channel by WQ(O). The transition probabilities of WQ(O) : X — Y? are given
by marginalizing W2 over U; as follows

W3 (v | o) = ZWwOwo ZW?/0|U0@U1)W(?/1|U1)- (2:3)

Similarly, the term I(U;; Yy, Up) can be interpreted as the mutual information
of the channel between U; and Y when Uy is available at the decoder. Let us

denote this channel by W2(1). The transition probabilities of Wz(l) t X — VP X
are given by

1 1
W3 (o | wa) = 5Walys [ug) = 5W (4o [ @ u)W (g [wr). (24)

In [32], this step is referred to as channel splitting, which reflects the fact that
we split W5 into two channels WQ(O) and WQ(I).

Let us define the following notation for the channels created by the above
transformations. For any two B-DMCs @1 : X — V1,Qs : X — )y, let
Q1 ® Qs : X — Y1 X YV, denote the B-DMC

(Q1 8 Q2)(y1,y2 | u) = ZQ1 (1 |u® 2)Qa(y2 | @),
and let Q1 ® Q9 : X — Y X Vo x X denote the B-DMC

(Q1® Q2)(y1, Y2, v | u) = 5@1(% |z ® u)Qa(y2| u).
Using this notation, we can write W2(0) =W ®EW and W2(1) =W ®W. The
channels WQ(O) and Wg(l) satisfy the following properties.

Lemma 2.1 (Transformation of Mutual Information). Let W be a B-DMC
and let WQ(O) and W2(1) be as defined above. Then

W) + 1(W3Y) = 21(W),
1wy < 1wy < 1m3Y).
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Proof. The first equality follows from the chain rule of mutual information.
Since

1W") + 103 = I(U3: Yy = 1(X5:Y5) = 21(W).
The second inequality follows by combining the first equality with

(W) = I(U; Yy, Up)
=H(U,) — H(U, | Yy, Uy
> H(Uy) — H(Uy | Y1) = I(W).

O

Lemma 2.2 (Transformation of Bhattacharyya Parameter). Let W be a B-
DMC and let W2(0) and W2(1) be as defined before. Then

Z(W3") < 2Z(W) — Z(W)?,

Proof. Note that WQ(O) = W®EW and Wg(l) = W ® W. The two inequali-
ties follow by setting W; = Wy = W in Lemma 2.15 and Lemma 2.16 (see
Appendix). O

2.2 Recursive Application of the Basic Transform

In the previous section, using the channel combining and splitting operation,
we have created two new channels (Wz(o), Wz(l)) from two identical channels
(W, W). In Lemma 2.1 we have seen the first traces of polarization, with WQ(O)
being a worse channel than W and W2(1) being a better channel than W. In
this section, we will show how to combine N = 2" channels W such that the
channels {W](\;) N! resulting after the splitting operation polarize into either
clean channels or completely noisy channels.

The channel combining is done in a recursive manner. The channel Wy :
XN — YN is defined as

W) ™ Jud™) = Wiy ud s @ udy YWz (yh 5 [ uls ),

where uévp_l = (uq,us,...,uy_1) and ué\fe_l = (ug, U, . .., Un_2). Similarly, the
channel Wy is defined in terms of Wy/4. And the channel W5 is as defined

before, i.e., W plays the role of W; in the recursion,

W2(?/5 | U(l)) = Wi(yo | uo @ uw)W(yr | uy).

Figure 2.3 shows one step of this recursion. First apply the transform G5
to the 27! pairs (Us;, Usir1) and send the resulting output V5¥ ! through a
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O A a vy .
) L4 O
W2
Viv—2 YNn/2-1
Ry
Vi Yny2
P S e
Un-1 VN1 U YN-1
Wn

Figure 2.3: Recursive channel combining operation.

permutation Ry. The permutation Ry splits the output Vi ' into two sets
Voj’\g_l and Voji_l. The two sets are then fed as inputs to two identical channels
Wiyy2. As an illustrative example, Figure 2.4 shows the recursive combining
for 8 channels.

Let PUN XNy N denote the probability distribution induced on the set

XN x XN X yN due to the channel combining operation. Since U; are i.i.d.
Ber(Q) random variables, the probability distribution can be expressed as

1 N-1
N-1 -1
PUéV_l,Xé\/_l,YO]\’_1 (uo ) L 7y0 ) 2N1{xé\’ L=yl —tasmy H W yz ‘ xz)
=0

(2.5)
The channel between U}~ and YY" is defined by the transition probabilities

N-1
Wi (g™ 2g ") = Pyvr g (g 1w ™) = T W | (ug™™'GE™)).
=0

From now on we will drop the subscript of P whenever it is clear from its
arguments. The splitting operation is defined through the chain rule as before,

N-1
U5 = Iz YU,
i=0
The term I(U; YN ™', US™") corresponds to the channel between U; and
(Y1 U1, Let us denote this channel by W](\? X — YV x XL The
transition probabilities are given by

WA o= uf ™ ) 2 Plyd =g ug) =
N—1
1+1

Plyy " ud™ ) Puy ")
P(u;)

U
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Uo _@_@ .................... @ 444444444 w = Yo
0 VloA o—wl-n
Us (/ Va | (o ®X2 W F— Y,
Us & - S Y S
PR ¥ LN
Us % & ‘ SCH Y S
Us @ Vo | il ERR X | Wb v
Uy V7 X - v

Figure 2.4: The channel Wy obtained by combining 8 channels. The channels
corresponding to the outputs Y[)Te form the first W, channel (the dashed lines
show the channel transform matrix). Similarly, the channels corresponding to the
outputs Y/, form the second W, channel.

1 _
:WE:P(Q(])VHUO 2N1§:WN “Hug . (2.6)
N-1
Uity z+1

The following lemma shows the relationship between the channels {WJ(\?}
and the channels {WJ@Z} which is crucial for the analysis later.

Lemma 2.3 (Relation Between WJ(\f) and WJ@Q) Fori=0,...,N/2—1,

WA (g ! i)
1 iy Nj2—1 o i i i
) Z W]g/'}Q(yO / ug ' u2i+1)WJ§[}2(yN/2 7U3 o @ ug o gy @ i),

U2i+1

(2.7)

2i+1 — 7
W](\/ ! )<y(])V boug! | ugiga)
1 7 N/2—-1 i— i i— —
= §WJ(\7)2(90 P gt u2i+1)W](\7)2(yJ]\\77/217 uget @ ugly | ug ® ugipr). (2.8)
Proof.

WA (0 g uz)
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1 N/2—-1 — — — —
= oN-1 Z WN/Q(yO / | u(])\,[e ! 57 u(])\,fo 1)WN/2(yJ]:77/21 | ué\jo 1)

WN-1
2i4+1
1 1 N/2—-1
~ 9oN/2—1 Z WN/2 yN/2 \u )2N/2 1 Z WN/2 \u @uévo 1)-
u22+10 u22+le

The second summation can be written as

N21 N-1

‘ uO € D uO ,07 u2l+1 e)

u22+1 e

The equation (2.7) now follows from the definition of W](Vi) given in (2.6). Using
similar arguments equation (2.8) can also be derived. U

The identification

N/2—-1 7 7 ?
(Y ugel@ugol)ﬁyo, (Ynja oo ) = Y1,

(24) (2i4+1) (1)
W W s WN — W2 , Ug; — U, U2i+1 — Uz,

suggests that the relationship shown in (2.7) and (2.8) is very similar to the
equations (2.3) and (2.4) with one minor difference. For the 2 x 2 case, the

output of WQ(O) is yg which is the joint output of the two channels . This
is not the case for the channel transformation of (2.7) and (2.8). However,

the output of W](V , namely (y5' ', ug’™1), and the outputs of the two W](\;;Q

channels, namely (yg" /271 cugs ' @ udt) and (yN/2 ,ug '), are related by a

one-to-one map. Let f: YV x X% — YN x X% denote the map
PO 0 08 = (08 @ o, ad ).
Consider the channels W](VQ 2 W](VQ ") defined as
W(%) N-1 ,2i—1 , 2i—1 ] AW(%‘) N-1 ,2i—1 , 2i—1 ]
N (Yo » Upe » Ugo ) i) = Wy (yq s Upe s Upo | u2;)

Wﬁi+1)<f<yo uﬁle Luge ), ugi [ ugigr) 2 W](V%Jrl)( Yo “gle g ugzo b Ui | Uzi)-

Clearly, W (@) W](\; /o W](V}2 Moreover, up to a relabeling of the outputs,

the channel WNZ) is equivalent to the channel WJS,Q ") Therefore for all practical
purposes, the two channels are equivalent and hence we say

2 i i
WY =Wy, B, (2.9)
Based on similar reasoning, we say that

2i+1 i i
WJS/ = va}z ® W](V/2 (2.10)
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Lemma 2.4 (Transformation of [(W](Vi)) and Z(Wﬁ))) Let W be a B-DMC
and let Wﬁ) be as defined above. Then

IWRY) < I(Wy),) < TWRTY),
IWRY) + I(WE) = 21(W),).
and
ZWE) < 22(Wy),)* = Z(W3),),
Z(WEY) = 2(Wi),)2

Proof. The lemma follows by combining (2.9), (2.10), with Lemma 2.1 and
Lemma 2.2. U

2.3 Channel Polarization

In the previous section we have discussed a procedure to transform N copies
of W to N distinct channels {VV(Z JNSE Using the recursive relations (2.9)

and (2.10), we can express the channel WN) as follows Let b; ...b, denote

the n-bit binary expansion of i and let W, 4. W](\; . Then W](Vi) can be
obtained by repeating the following operation,

W(b1 ..... bkfl) W(bl ..... bk,1)7 lf bk} = 07

Worbi-rin) = { W ,poer) @ Wy by, i b =1 (2.11)

where

W _{waw, i =0,
GOy We W, ifb =1,

To analyze the behavior of these channels it is convenient to represent
them through the following random process. Let {B, : n > 1} be a sequence
of i.i.d. symmetric Bernoulli random variables defined over a probability space
(Q,F,P). Let Fy = {¢,Q} denote the trivial o-field and let {F,,n > 1}
denote the o-fields generated by the random variables (B, ..., B,). Moreover,
assume that F is such that 7o C F; C--- C F. Let Wy = W and {W,,,n > 0}
denote a tree process with two branches defined as

o { Wa@W, if B, =0,
n+1 W, ®W, if B, =1.

The output space of the random variable W,, is the set of channels {W(i)}anl.
Moreover, W, is uniformly distributed over the channels {W(l) Rl For our
purpose it is sufficient to track the Bhattacharyya parameters {Z ( )} and
the mutual informations {I(W )} Therefore, we will restrict ourselves to
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the analysis of the two processes {I,, : n > 0} = {I(W,) : n > 0} and
{Z, :n >0} = {Z(W,) : n > 0}. From the definitions of the random
variables I,, and Z,,, we have

[{i - I(W3)) € (a,b)}]

Pr(l, € (a,b)] = on ;
7 (@ a
PI‘[Zn c (CL, b)] — |{ Z(W22n) € ( 7b)}|

The random processes {I,,} and {Z,} satisfy the following properties.

Lemma 2.5 ({I,} and {Z,} [32]). Let {I,,Z,,F, : n > 0} be as defined
before. Then

(i) the sequence {(I,, F,) : n > 0} is a bounded martingale.
(11) the sequence {(Z,, F,) :n > 0} is a bounded super-martingale.

Proof. Let by ...b, be a realization of the random variables By, ..., B,,. Then

1
Ellyi1 | Br=b1,...,By=by) = =I(Wip,,..600) + §I(W(b1 ..... bo,1))

where the last equality follows from (2.11) and Lemma 2.1. Similarly, the proof
for {Z,} follows from (2.11) and Lemma 2.2. The boundedness for both the
processes follows from the fact that for any B-DMC W, 0 < I(W) < 1 and
0< Z(W) < 1. O

Lemma 2.6 (Channel Polarization [32]). Let {1, Z,, F, : n > 0} be as defined
before. Then

(i) the sequence {I,} converges almost surely to a random variable I, and

1 wp. (W),
IWZ{prﬂ—uW)

(ii) the sequence {Z,} converges almost surely to a random variable Z+, and

1 wp. 1—-1I(W),
Zox —{ 0 wp. I(W).

Proof. 1t is sufficient to prove one of the two statements. The second then
follows by applying Lemma 1.5. Since {I,} is a bounded martingale, the
limit lim,,_. I,, converges almost surely and in £! to a random variable I...
Similarly, since {Z,} is a bounded super-martingale, the limit lim,, .., Z,, con-
verges almost surely and in £! to a random-variable Z,,. The convergence in
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L' implies, E[|Z,41 — Z,|] "=" 0. Since Z,.1 = Z2 with probability 1, we
have

EHZn—i—l - Zn” > E[Zn(l - Zn)] > 0.

N | —

Thus, E[Z,(1-Z,)] "=" 0, which implies E[Z(1—Z4)] = 0. Therefore, Z,, €
{0,1} a.s. This fact combined with Lemma 1.5, implies that I, € {0,1} a.s.
Since {I,} is a martingale, we have P(I,, = 1) = E[I.] = E[l)] = I(W). O

From Lemma 2.6, we have for any ¢ > 0

po {1y e (=6 1]y

lim Pr[l, € (1 —0,1]] = I(W),

n—o00 on n—oo
- (4)
lim L I(W2;2 €M i pai, € 0,0)] = 1 1(W).

This implies that as the length gets larger almost all the channels {WJ(\;)}
get polarized to either clean channels (mutual information close to 1) or noisy
channels (mutual information close to 0). For obvious reasons, we refer to
the channels with mutual information close to 1 as “good channels” and the
remaining channels as “bad channels”.

2.4 Polar Codes Achieve Channel Capacity

In the previous section we have seen how to create channels that are polarized.
Having such a collection of channels between the encoder and the decoder
suggests a natural coding scheme where information bits are transmitted on
the good channels. The inputs to the remaining channels are fixed and declared
to the decoder in advance. Since the fraction of good channels is tending to
I(W), we can achieve rates close to I(W).

The mutual information I(Uy; Yo" !, Ui™") corresponds to decoding U; with
the knowledge of Uj™! and the output Y;'~'. To create such a channel, the
decoder should know U{~' when decoding U;. But the decoder knows in ad-
vance only those U; that are fixed (indices corresponding to bad channels) and
for the rest, the decoder can only have its estimate Uj, which need not be
correct. We therefore consider an SC decoder which decodes the bits in the
order Uy, ...,Uyn_1, so that the decoder at least has an estimate of Uéfl while
decoding U;. In the following we show that, using channel polarization, by an
appropriate choice of the indices that are fixed the block error probability of
the SC decoder vanishes for rates below ().

Let us first provide a few definitions regarding the coding scheme.

Definition 2.7 (Polar Code). The polar code Cn(F,ur), defined for any F C
{0,...,N =1} and ur € X1 is a linear code given by

Cy(F up) = {z) ' = ul'GY™ : upe € X‘Fc‘}.
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In other words the code Cy(F,ur) is constructed by fixing the indices in
F to up and varying the indices in F'° over all possible values. Let us refer to
the set F' as frozen set and the indices belonging to it as frozen indices. Using
a code Cy(F,up) is equivalent to transmitting U2~ through the channel Wy
with the indices in F' fixed to up.

Definition 2.8 (Polar Code Ensemble). The polar code ensemble Cy(F'), de-
fined for any FF C {0,1...,N — 1}, denotes the ensemble

CN(F) = {CN(F, UF),VUF € X'F‘}

Let Lg\? (yd, vi™") denote the function

. _ W(i) N—1 _i—1 0
L ) = st 10 (212)
Jug |1

Wy (o )
which is the likelihood ratio of U; given the output yo' ! and the past Uj™' =
ub™t. Let Us(yd ", ui™") denote the decision based on this likelihood, i.e.,

. .~ 0, if LYY uit) > 1,
Ui(yév ' » Ug = . g)@?\/,l ?,1) (2.13)
1, if Ly (yy uy ) <1

Let Cn(F,up) be the code used for transmission. The vector up is kept
fixed during the course of transmission and is declared to the decoder. At the
decoder consider an SC algorithm which operates as follows. For each i in the
range 0 till N — 1:

(i) If i € F, then set 4; = u;.
If « € F°, then compute L() YAty and set a; = U, yo Tt an .
0 0

Let the function U (y !, ur) denote the output of the above decoding algo-
rithm. Let Pg(F,ur) denote the block error probability of the code Cy(F, up)
with a uniform probability over the codewords. Let Pg(F') denote the average
block error probability of the ensemble Cx (F), i,e., average of Pg(F,ur) with
a uniform choice over all up € X1

Lemma 2.9 (Bounds on Block Error Probability). For a given B-DMC W
and a set of frozen indices F, the average block error probability Pg(F) is
bounded as

max1 (1 —\/1- Z(W](Vi))Q) < Py(F) <> z(Wwy

icFe 2 cre
i

Proof. Since the codewords are chosen with uniform distribution, the block
error probability for Cy(F,ur) can be expressed as

-1
Q\Fc 2 Wl T gt

Upc, yo
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1 —1 N—-1
= 9lF Z Wy | up )]l{ﬂz‘:fh(y{l, o A}

—1
2|FC Z WN | u )H{Hi:ﬁ?)—l:ué_l,f]i(yév_l,ﬁé_l);éui}

Upc 7y0

1 —1 N-—-1
— olF] Z Wy~ g VL5300 s}

N-—-1
Upc,Yg

Averaging over the ensemble Cy(F'), we get

Py(F) = 2‘F| ZPB (F,up)

1 —1
= 2_N Z WN( \u )H{Hi:Ui(yév_17ué_l)7éui}'

N—-1_ N-1
Uy Yo

For any j € F°, Pg can be lower bounded by

1 -1
Po(F)z 55 2 Wl 1)) gty

N1N1

_ § : } : ”fj) N 1y,
=3 |U]) () N=1,9-1 ..
W' vy~ Tug  luy) <1
uJeX §-1 V-1 W(J)(yN L=t ujen)

= R(W),

where P.(W) is the probability of error function defined in (1.3). Using the
union bound, Pg can be upper bounded as

Po(F) < o5 D Wl Hug ) D Ty v ) A}
N-1,N—-1 icFec
Uy Yo
<N RWY).
ieFe
The statement follows by applying Lemma 1.6. U

For the block error probability to vanish, we should show that for the
indices that are used to transmit information, i.e., for i € F°, Z (W ) decays
faster than 1/N. This corresponds to showing that the random process {Z,},
when tends to 0, decays at a sufficiently fast rate. In [47] Arikan and Telatar
obtained the following result which yields a stretched-exponential bound on
the block error probability.

Theorem 2.10 (Rate of Convergence [47]). Let {X,, : n > 0} be a positive
random process satisfying

Xn S Xn+1 S an
XnJrl = X72L

’E ’B
MI»—lmh—n
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Let Xoo = lim,, .o, X,, exist almost surely and Pr(X,, = 0) = Py. Then for
any (B < %,

lim Pr(X, <2°2") = P, (2.14)
and for any (3 > %,
lim Pr(X, >2%") =0. (2.15)

Our process {Z,} satisfies the conditions of Theorem 2.10 with ¢ = 2 and
P, = I(W). This implies the following theorem. Though the result follows
directly from Theorem 2.10, we state it as a theorem due to its significance.

Theorem 2.11 (Rate of Z,, Approaching 0 [47]). Given a B-DMC W, and
1
any 3 < 3,

lim Pr(Z, <272") = I(W).

n—oo

Now we are ready to prove the main theorem of this chapter which shows
that polar codes achieve the symmetric capacity using SC decoder.

Theorem 2.12 (Polar Codes Achieve the Symmetric Capacity [32]). Given
a B-DMC W and fized R < I(W), for any f < % there exists a sequence of
polar codes of rate Ry > R such that

Py = O(2~M"%),

Proof. Fix any 0 < 3 < % and € > 0. Choose the set of frozen indices as
; 1
Fy={i: 2w > Nz—W}.
Theorem 2.11 implies that for N sufficiently large,

FC
% >[(W) —e

The block error probability of such a scheme under SC decoding is

Pp(Fy) < ) Z(Wy) <27, (2.16)

i€Fy,

Recall that Pg(Fy) is the block error probability averaged over all choices of
up. Since the average block error probability fulfills (2.16), it follows that
there must be at least one choice of ug, for which

Pp(Fn,up,) < 2~ (V)

for any 0 < 3 < 3. O
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X 0.999985 Ug o Xo
X 0.992203 Ui X1
X 0.985336 Uz o+ Xo
X 0.772476  Us X3
X 0.963364 Ua & Xa
X 0.653824 Us Xs
X 0.532700 Us © X6
v~ 0.100113

X 0.899887 Us Xsg

X

0.467300 Ug
0.346176  Uio
0.036636 U1
0.227524 Uiz
0.014664 Uis
0.007797  Uia
0.000015 Uzs

MR RRARNREND

NN NN

Figure 2.5: Example of a polar code of length 16. The Bhattacharyya parameters
Z(WJ(VZ)) are shown for the BEC(0.5). The frozen indices are marked as x and the
remaining indices are marked as v'. The rate of the resulting code is 6/16.

Theorem 2.10 also provides a lower bound on the block error probability.
For any rate R > 0 and 3 > %, (2.15) implies that for n sufficiently large, any

set Iy, of size NR will satisfy max;epe 7 > 272" Combining this with the
lower bound in Lemma 2.9 we obtain

Py > 27(N)B.
Remark 2.13. In [32] Arikan showed that
lim Pr(Z, <2754 = [(W).

n—oo

The resulting bound on the block error probability is Pg(N, R) < N}/4'

Example 2.14 (Polar Code for N = 16, BEC(0.5)). Consider a polar code of
length N = 16. Let the code be designed for the BEC(0.5). The Bhattacharyya
parameters are shown in Figure 2.5. To design a code of rate 6/16, we choose
the frozen set F to consist of the 10 indices with the largest Bhattacharyya
parameters. We get FF'=1{0,1,2,4,8,3,5,6,9,10}.

In [32, Section VI] it was shown that for symmetric B-DMCs, all codes in
the ensemble Cxn(F') have the same performance. In other words, the value
of ur does not influence the block error probability. Therefore, a convenient
choice is to set it to zero.
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2.5 Complexity

2.5.1 Encoding and Decoding

The main advantage of polar codes is that both the encoding and the SC
decoding can be implemented with O(N log N) complexity. Let us first con-
sider the encoding complexity. Let xg(N) denote the encoding complexity for
blocklength N. The recursive channel combining operation shown in Figure 2.3
implies that

xe(N) = g +2xe(N/2).

The encoding complexity for block length 2 is xg(2) = 1 because we need just
one XOR operation to compute u{G>. The above recursive relation implies

Xp(N) = 5+ 2x5(N/2) = 5 + 2N/ -+ 25(N/4))

N N N
= o+ AN/ 2xp(N/B) = - = D log N,
This implies that the encoding complexity is O(N log V). For example, con-
sider the factor graph representation for N = 8 as shown in Figure 2.6. To
compute the vector z¥ from uf, we need % = 4 XOR operations in each layer

and there are log N = 3 layers in total.

Z:/.:- /H /'iH Wt D
s ;ﬁ
= ;Jj;/ :
L

Figure 2.6: Factor graph representation used by the encoder and the SC decoder.
The quantities % are the initial likelihoods of the variables X, when y; is

received at the out|5ut of a B-DMC W.

&
-
=

Let us now look at the SC decoding complexity. For a detailed explanation
with an example please refer to [32]. Using (2.7) and (2.8) we can prove that

7 N/2—-1 ~2i— ~Dj— ) —1 ~2i—
1+ LSV)/Z(yO / 7ug,e Lo u(Q),o 1)L§V)/2 (?/1]\\/[/217 u(Q),o 1)

LW ( N/2—1 ~2i—1 A2i—1)+L(i) 1 AQi_l)a

Ly i) =
~N/2Wo s Upe D Ug, N/2<y]]\\/[/2 » Ug,o
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L(2i+1)( N-1 A2z) _ L(i)

@ N1 g2 /( N/2—1 ~2i—1 2% 1)1 2u22L() ( —1 ~2i— 1)

Yo sUpe DUy, N/2\Yny2 > Yo,0

Therefore, the likelihoods {L%)} can be computed with O(N) computations
from the two sets of likelihoods

(L0, g @z ) i e {0, N/2 - 11},
(LS (N i) i € {0, N/2 = 1},

Now the problem is reduced to two similar problems of length N/2. Let
Xp(N) denote the decoding complexity of a code of block length N. Then

xXp(N) =O(N) +2xp(N/2).

The decoding complexity for blocklength 2 is O(1), assuming that infinite
precision arithmetic can be implemented with unit cost. By the same reasoning
as before this implies that the decoding complexity is O(N log N).

2.5.2 Code Construction

Another issue where complexity is of concern is the code de51gn Recall that
the code construction requires the knowledge of elther {Z(W. )} or{I (W(Z )}
It W is a BEC, then the resulting channels {W } are all BECS and hence it
is sufficient to track their erasure probabilities. These in turn are equal to the
Bhattacharyya parameters. For the BEC, the recursions (2.11) simplify to

_ ZZ(W(bl ----- bk—l)) - Z(W(bl ----- bk—l))2 if b, = 0,
)) B { Z(W(bl ----- bk—l))2 if by =1, (2'17)
where b; ... b, is the n-bit binary expansion of ¢ and Z(W](Vi)) =ZWer,. b))
Clearly, the computation of each Z (W](VZ)) can be accomplished using O(log N)
arithmetic operations. Hence, the total complexity is O(N log N), under the
assumption that infinite precision arithmetic can be implemented at unit cost.
As mentioned in [52], by reusing the intermediate Bhattacharyya parameters
the complexity can be reduced to O(N). Let xc (V) denote the code construc-
tion complexity for the BEC. The equations (2.17) imply that {Z](\?} can be

computed from {Z](\%} with an additional 2N operations. Therefore,

Xc(N) =2N + xc(N/2),

which implies x¢(N) = O(N) .

For channels other than the BEC, the complex1ty grows exponentially with
N. This is because, the output alphabet of WN is YV x X% Arkan suggested
to use Monte-Carlo method for estimating the Bhattacharyya parameters.

2w = S W VLY 6 e

N—1 _ i—1
Yo Yo
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1 ~1 1 N—1 1
=Y T e L B ),
yé\f*lﬂlléfl,ué\ifll
To estlmate the above quantlty, we generate (upy uﬁll) uniformly at random,

and y)' ' according to Wy (yg " Juf ', 1,u7") and compute LY )( AT
We repeat this process over many samples and take the average. It is clear

that, as we increase the number of samples the estimates converge to their

actual values. By replacing L( ) Wlth 9 we can estimate the probability

of error Pe(WJS;)). We use the latter quantlty for our simulations.

Another alternative is to use density evolution tools developed for the anal-
ysis of message passing algorithms. It is well known that density evolution [30)]
computes the effective channel seen by the root of a tree code. The channel
W](\;) can be represented as the effective channel seen by the root variable of
an appropriately defined tree code. First restrict W to be symmetric. Let
by ...b, be the n-bit binary expansion of i. The tree code consists of n + 1
levels, namely 0, ...,n. The root is at level n. At level i we have 2"~% nodes,
all of which are either check nodes if b; = 0 or variable nodes if b; = 1. An
example for W§5) is shown in Figure 2.7.

(5)
s by =1

Figure 2.7: Tree representation of the channel W8(5). The 3-bit binary expansion
of 5 is bybobs = 101. The right figure shows the tree embedded in the factor
graph of the code. The root variable r and the variables v, ..., v4 are marked for

reference. The shaded part of the factor graph is removed because Uj is known
but U{ is not known.

w w W w W w W w

The recursions in (2.11), imply that the channel law of Wﬁ) is equal to the
effective channel seen by the root node when the leaves are transmitted through
the channel . The tools developed for density evolution [51, Appendlx B
can be used for an efficient computation of the channel law of W

To use density evolution it is convenient to represent the Channel in the
log-likelihood domain. We refer the reader to [51] for a detailed description of
density evolution. The B-DMC W is represented as a probability distribution
over RU{=+oc}. The probability distribution is the distribution of the variable

log( il? ) where Y is distributed as W(y|0). During implementation, in
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order to keep the complexity in check, the space R is quantized. If the number
of quantization levels are fixed, then using similar arguments as in the case
of the BEC, we claim that the complexity of estimating the log-likelihood
densities of {W](\;)} is O(N) [52]. As n increases (the number of levels in the
tree) the quantization errors accumulate and hence, the number of quantization
levels should scale with n. It is an interesting open question to find what the
scaling should be.

If W is not symmetric, then we use the symmetrized channel W, at the
leaves. Recall from Definition 1.3, the channel W is defined as

1
Wiy, 212) = 5Wly| 2 & 0).

It can be shown that I(Wg\),) = I(WJ(\?) and Z(WS(]Z\),) = Z(W](Vi)). Therefore,
we can accomplish the task by using density evolution for the channel W.

2.6 Simulation Results and Discussion

Let us now look at the finite-length performance of polar codes for communica-
tion over the binary input additive white Gaussian noise channel (BAWGNC)
and the BEC. Even though we considered only discrete channels throughout
our discussion, the results can be extended to channels with continuous outputs
by replacing the summations over the output alphabet with integrals.

4

Figure 2.8: Performance of SC decoder in terms of block error probability, when
transmission takes place over the BAWGNC(o = 0.97865) (left) and BEC(0.5)
(right). The performance curves are shown for n = 10, 11,...,18.
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Recall that the length N of the code is always a power of 2, i.e., N =
2". Figure 2.8 shows the performance of polar codes under SC decoding for

BAWGNC(0.97865) and BEC(0.5). Both the channels have capacity 5. The

frozen set for BAWGNC are chosen using the estimates for Pe(W](Vi)). These
estimates are done using the Monte-Carlo method described in Section 2.5.2.
Since the channel is symmetric, we can restrict uj ' to zero.

For all the simulation points in the plots, the 95% confidence intervals are
shown. In most cases these confidence intervals are smaller than the point size
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and are therefore not visible. From the simulations we see that the performance
at small lengths is not impressive. In Chapter 6 we discuss some approaches
based on BP which significantly improve the empirical performance. However,
the resulting performance is still not comparable to that of the best known
LDPC codes.

2.A Appendix

The following lemmas have appeared in [51] in the context of the analysis of
the BP decoder for LDPC codes. These lemmas were also proved by Arikan
in [32].

Lemma 2.15 (Upper Bound on Z(W; & W) [51, 32]). Let Wy : X — ) and
Wy : X — Yy be two B-DMCs. Then

Z(W, 8 Wa) < Z(W)) + Z(Wa) — Z(W))Z(Ws).

Proof. Let Z = Z(W1 ® W) and Z; = Z(W;). Z can be expanded as follows.

Z =Y N WiB Wiy, 12| 0)W1 B Waly1,y2| 1)

= 5 7 [l 0 Wi | OW (| 0) o 1)
WA 10 Walua | O)Wa(or | D)Walaa 0
+ Wiy [ ) Wa(y2 | Wi (y1 [ 0)Wa(y2 [ 1)
F W | 1) Walyn | DWalyn | D Wy |0)]
= 225" Pl Poloe)
[Tt ) 0, Sl

where P;(y;) denotes

Py, = VWily: |2Wz(yz | 1).

Note that P; is a probability distribution over ;. Let [E; denote the expectation
with respect to P; and let

s |[Wily]0) Wiy |1)
&@‘¢m@m+¢mwm'
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Then Z can be expressed as

AVA
g A2

Eua |/l ) + (42002)° — 4.

If a > cand b > ¢, then Va+b—c < a+ Vb — Ve, Applying this
inequality with a = (A1(Y1))?, b = (A3(Y2))?, and ¢ = 4, we get

YAVA
Z < 12 ?(Ed[A1(V1)] + Ea[As(Y2)] - 2)
The claims follow by substituting E;[A;(Y;)] = Z% O

Lemma 2.16 (Z(W; ® W) [51, 32]). Let Wy : X — Yy and Wy : X — Yy be
two B-DMCs. Then

Z(Wy @ Wy) = Z(Wh)Z(W2).

Proof. Let Z = Z(Wy @ W) and Z; = Z(W;). Z can be expanded as follows.

Z =Y /W1 ®Way1,y2, x| 0)W; & Wa(ys,yz, 2| 1)

Y1,Yy2,T

:% ST VWil 2@ 0)Wa(ys | 0) Wi (g | & 1)Walys | 1)

Y1,Y2,T

— % > VWaly [00Waly2 [1) Y - VWiyr [z © 0)Wi(y: [z ® 1)

Yy2,T u
1
=3 Z VWalys | 0)Wa(ys | 1) 2,
Yy2,T



Source Coding

In this chapter, we construct polar codes that achieve Shannon’s rate-distortion
bound for a large class of sources using an SC encoding algorithm of complexity
O(Nlog(N)). This is arguably the central result of this thesis.

We start with a discussion of the symmetric rate-distortion function (Sec-
tion 3.1). It is the equivalent of the symmetric mutual information for the case
of channel coding. We then introduce the successive cancellation encoder in
Section 3.2. The main result is given in Section 3.3. In Section 3.4 we show
that for some class of sources all the codes in a given polar code ensemble have
the same performance. This simplifies the code design problem considerably.
We end in Section 3.5 by presenting some simulation results and discussing the
relationship to channel coding. This chapter is based on the results obtained
in [53].

3.1 Rate-Distortion

We model the source as a sequence of i.i.d. realizations of a random variable
Y € Y. Let X denote the reconstruction space. Let d : J x X — R, denote
the distortion function with maximum value d,,.x. The distortion function
naturally extends to vectors as d(y,z) = Zﬁ\;l d(y;, x;).

Let Cy € XY be the code used for compression. The encoder maps a
source sequence Y to an index fy(Y). The index refers to a codeword X €
Cy. Therefore, the number of bits required for the encoder to convey the
index is at most log|Cy|, The decoder reconstructs the codeword X from
the index. Let gy denote the reconstruction function. The rate of such a
scheme is given by &]\(,:N‘ and the resulting average distortion is given by

Dy = JE[A(Y, gn(fn(Y)))]-

41
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Shannon’s rate-distortion theorem [2] characterizes the minimum rate re-
quired to achieve a given distortion.

Theorem 3.1 (Shannon’s Rate-Distortion Theorem [2]). Consider an i.i.d.
source Y with probability distribution Py (y). To achieve an average distortion
D the required rate is at least
R(D) = min I(Y; X). (3.1)
p(y,2):Ep[d(y,2)]<D,p(y)=Py (y)
Moreover, for any R > R(D) there exist a sequence of codes Cy and functions
fn and gy such that |Cxn| < 2NE and the average distortion Dy approaches D.

Let us define the symmetric rate-distortion function.

Definition 3.2 (Symmetric Rate-Distortion). For a random variable Y with
probability distribution Py (y) and a distortion function d : Y x X — R, the
symmetric rate distortion function Rs(D) is defined as

Ry(D) = min I(Y; X). (3.2)

p(y,2)Ep[d(y,2)] <D p(y)=Py (y),p(x)= 13y

In the definition of Rs(D) we have the additional constraint that the in-
duced probability distribution over X must be uniform. Clearly, R(D) >
R(D). The quantity R(D) is similar in spirit to the symmetric capacity of
a channel which is defined as the mutual information between the input and
output of the channel when the input distribution is uniform. The significance
of Rs(D) is that, for any R > R,(D), there exist affine codes with rate at most
R that achieve an average distortion D.

We will restrict our discussion to the case of a binary reconstruction alpha-
bet, i.e., X = {0,1}. Let p*(y, x) be a probability distribution that minimizes
(3.2). From the definition of R,(D), the distribution p*(y,z) is such that its
marginal over Y is Py and its marginal over X is uniform. The conditional
distribution p*(y | z) plays the role of a channel. It is therefore customary to
refer to the distribution p*(y | z) as test channel and denote it by W (y | z).

Example 3.3 (Binary Symmetric Source). Consider a Ber(3) source Y. The
test channel that achieves the rate-distortion bound is the BSC(D). The distri-
bution induced on X by the test channel s Ber(%), which s uniform. There-

fore, Rs(D) = R(D), which is equal to 1 — hyo(D).

In the following, the length of the polar code is always denoted by N.
For the sake of exposition, we use the notation u to denote the row vector
= (ug,...,uny_1) and U to denote the row vector (Up, ..., Uy_1).

3.2 Successive Cancellation Encoder

Let the source be a sequence of i.i.d. realizations of a random variable Y € )
with probability distribution Py. Let W be the test channel that achieves
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Ry(D) for design distortion D. From the Definition 3.2 we conclude the fol-
lowing.

R(D) = I(W), (3.3)
S Wlyla)aly,x) =D, (3.4)
S S Wlle) = Prly). (3.5)

Let us consider using a polar code Cy (F,up) (c.f. Definition 2.7) for source
coding. The frozen set F' as well as the vector ur are known both to the encoder
and the decoder. A source word Y is mapped to a codeword X € Cy(F, ur).
This codeword can be described by the index upe = (X (G5™) ™) pe. Therefore,
the required rate is % Since the decoder knows up in advance, it recovers
the codeword X by performing the operation uGS™.

Let us recall some notation from the previous chapter. Consider the prob-
ability distribution Py gy over the space XV x XN x YV as defined in (2.5),

N—-1
o 1
Prxx(2,9) = ox Laaogny [T Wil (3.6)
S =0
Py(a) PxioEa —
v x(712)

Figure 3.1 provides a pictorial description of the relationship between U, X
and Y. Let us verify that it is a valid probability distribution. Since G5 is
an invertible matrix, the uniform distribution of U over X'V induces a uniform
distribution for X. From property (3.5) it follows that the marginal induced
by the above distribution over the space Y is indeed Hﬁ\:(]l Py (y;), where Py

is the distribution of the source. Recall that W& — YV x X1 denotes
the channel with input u;, output (g, uofl), and transition probabilities given
by

WA @y [w) = Sy Y Wy ). (3.7)

Also recall from (2.12) that

() N—1 _i—1\ _ Wzs;) (y(])Vila Uf)il 10)
Wy (?/0 T ug |1)

Let iy denote NNV i.i.d. realizations of the source Y. Let U(gj, up) denote the
result of the following encoding operation using the code Cxn(F,up). Given 7,
for each ¢ in the range 0 till N — 1:

(i) If i € F, then set 4; = u;.
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codeword source word

Xo
Uo @ @ @ W = Yo
X
F{ U @ +— W ="
X2
U2 @ @ W = Y2
X3
Us @ W — Y3
X4
Uy @ D W = Y
X
index{ Us @ > W = Y5
Xg
Us @ W — Ys
X7
Uz W = Y7
Hy,

Figure 3.1: The probabilistic model used for source coding. The source word Y
is treated as the output of a channel. The code is defined through its frozen set
F ={0,1,2}. The codewords are indexed using UL .

ii) If i € F°, then compute 3% g, a1 and set
N 0

(%)

L

. 0 W.p. 1—%,

U; = 1 +1 N
P T

Note that unlike in channel coding, where we made a hard decision based
on Lg\l,) (MAP rule), u; is chosen randomly with a probability based on Lg\l,).
We refer to this decision rule as randomized rounding. Randomized rounding
as a decimation rule is not new. In [54] it was applied in the context of finding
solutions of a random k-SAT problem.

Why do we use randomized rounding? In simulations, randomized rounding
and the MAP rule perform similarly with a slight performance edge for the
MAP rule. But for the purpose of analysis the randomized rounding rule is
much more convenient. In fact, it is currently not clear if and how the MAP
rule can be analyzed. Note that all of the existing source coding schemes
use the MAP rule. This is most likely the main obstacles to their analysis.
We believe that by combining randomized rounding with existing schemes like
BID it might be possible to analyze the performance of LDGM codes for source
coding.
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LY @aih)

Note that the probability @ =1 can be rewritten as
1"'LN (y,uo )

L9 a7 en Zuy Wh@1E% 0w

L L@ @arhy e Wa@lag hul )
2 Py v (g1, 0,u 7" | )

X Py (ag T ul T  g)

= By, jpi-1y(0] UG )

In words, it is equal to the posterior of U; = 0 given (Y = 3, US" = ait)
under the distribution P.

The decoding, or the reconstruction operation, is given by 7 = 4G5". The
decoder has knowledge of @p (since ip = up) and hence the encoder needs to
convey only the vector (U (i, up))pe to the decoder. This requires |F| bits.

The average distortion incurred by this scheme is given by +E[d(Y, X)],
where the expectation is over the source randomness and the randomness in-
volved in the randomized rounding at the encoder.

For lossy source compression, the SC operation is employed at the encoder
side to map the source vector to a codeword. Therefore, from now onwards
we refer to this operation as SC encoding. The encoding (decoding) task
for source coding is the same as the decoding (encoding) task for channel
coding. Therefore, as shown in the previous chapter, both the operations can
be implemented with complexity O(N log V).

3.3 Polar Codes Achieve the Rate-Distortion
Bound

Let us now show that properly designed polar codes with SC encoding are
optimal.

Theorem 3.4 (Polar Codes Achieve the Symmetric Rate-Distortion Bound).
Consider an i.i.d. sourceY and a distortion function d :)Y x X — R. Fiz a
distortion D and 0 < 3 < % For any rate R > R4(D), there exists a sequence
of polar codes of length N and rate Ry < R, so that under SC encoding using
randomized rounding they achieve expected distortion Dy satisfying

Dy < D+0(2" ™).
The encoding as well as decoding complezity of these codes is O(N log(N)).

Note that the encoding function U(gj, up) is random, i.e., the encoding
function may result in different outputs for the same input. More precisely, in
step i of the encoding process, ¢ € F¢, U; = 0 with probability proportional to



46 Source Coding

the posterior (randomized rounding) PU it (0] ag i5 7). This implies that

the probability of picking a vector 4 ' given ¢ is equal to
07 if ’IALF % Urg,
Hz‘ch PUiIUS’l,Y@z‘ | %717 y), ifip=up.

Therefore, the average (over y and the randomness of the encoder) distortion
for the code Cn(F,up) is given by

w(F.up) = ZPY Z(H Pmimé—%y)) a(y.iy 'G5, (38)

Upc ieFe

where up = up.

We want to show that there exists a set F' of cardinality roughly N(1 —
Ry(D)) and a vector up such that Dy(F,upr) ~ ND. This will show that
polar codes achieve the rate-distortion bound. For the proof it is convenient
not to determine the distortion for a fixed choice of up but to compute the
average distortion over the ensemble Cy (F') (c.f. Definition 2.8) with a uniform
distribution over the codes in the ensemble, i.e., a uniform distribution over
the choices of up. We will show that this average distortion over the ensemble
is roughly ND. This implies that for at least one choice of up the distortion
is as low as ND, leading to the desired result. Later, in Section 3.4, we will
see that for some cases the distortion does not depend on the choice of up. In
this case a convenient choice is to set up to zero.

Let us therefore start by computing the average distortion, call it Dy(F').
We will show that Dy (F') is close to D.

The distortion Dy (F) can be written as

Dy(F)= > %DN(F, up)

upeXIF|
= Z QILF Z Py (y) Z (H P(u; | uf™t, y)> d(y, uGs™)
:ZPY(;Q Z SIF] (H P(u; | u ™, 9) ) a(y, uGS™). (3.9)

Let Qg v denote the distribution defined by Qy (y) = Py(y) and Qg |y defined
by

3 ifi € F,

i—1 =\ __
Qi ={ g L g, e @10

Then (3.9) is equivalent to

Dy(F) = Eqld(Y, UGS")],
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where Eq[] denotes the expectation with respect to the distribution Qp y-.
Similarly, let Ep[-] denote the expectation with respect to the distribution
Py y. We can write Py |y in the form

N-1

PUH?(ﬂ |y) = H PUi\Ug—l,Y(Ui | Ug)_la Y)-
i=0

If we compare () to P we see that they have the same structure except for
the components ¢ € F'. Indeed, in the following lemma we show that the total
variation distance between () and P can be bounded in terms of how much
the posteriors QUi‘U3—17Y and P, UL Ui differ for i € F.

Lemma 3.5 (Bound on the Total Variation Distance). Let F' denote the set
of frozen indices and let the probability distributions Q and P be as defined
above. Then

D10l - P(@.5)| <23 B [)— P uiry (0] U 1,57)”.

> 10| - Plals)

:;‘]ﬁQ(ui|ué_ ) — EPU,W ‘

_;Qj (us | g, 5) = Plus | ug ", 9) -
(gmunuwr)( 11 e l™.))]|

J=i+l

In the last step we have used the following telescoping expansion:

N-1 N-1
A= Y =3 (AN B AN BY) = DT (A - B)AN B
i=0 1=0

where Ai denotes the product Hf:k A; and A{; = 1if 5 < k. For example, if
N = 3, the above expansion is equivalent to
AgA1Ay — BoB1 By =(AgA1 Ay — A1 A By) + (A1 Ay By — Ay By By)
—+ (AQBoBl — BoBlBQ).

Now note that if i € F° then Q(u; |ub *,7) = P(u; |uy *,9), so that these
terms vanish. The above sum therefore reduces to

Z‘Z[ Qui |ug ', y) — P(u; | ug 1’3?)), :

U i€F 1 io1
<l3- (Uzluo ) |




43 Source Coding

(H Plus g™, 9)) I @i 7))

j=i+1

<3 |5 - Pl ,y>)f[:P<uj|ué—1,y>

1€l ﬂé
1 i
< 2Z]EPU\Y’:Q U§ - PUi\Ug—ly(Oon 179)” .
ieF

In the last step the summation over u; gives rise to the factor 2, whereas the
summation over ué_l gives rise to the expectation.

Note that Qy(y) = Py(y) by definition. The claim follows by taking the
expectation over Y. ]

Lemma 3.6 (Distortion under @) versus Distortion under P). Let F' be chosen
such that fori € F

1 o
Ep U§ ~ Py, i1 v (0] Ug—l,Y)” < dy. (3.11)

The average distortion is then bounded by

1 _ 1 -
NEQ [A(Y,UGS™)] < NEp[d(Y, UGS™)] + |F|2dmaxdn

where dyax = Max{yey zeXx} d(y, ).

Proof.
Eold(Y, UGE™)] —Ep[d(Y, UuGs™)]
-3 (« (@(.9) - P(w.p))a(y, uc5")
< Ny Z ]Q(a, 5) — P(a7)

< 2Ndpax ) Ep U— Py, g 5 (0105 1,17)”

ieF
< |F|2Ndypaxy.
U

From Lemma 3.6 we see that the average distortion Dy (F') is upper bounded
by the average distortion with respect to P plus a term which bounds the “dis-
tance” between () and P.

Lemma 3.7 (Distortion under P).

Ep[d(Y,UGS™)] = ND.
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Proof. Let X = UGS"™ and write

E [ YUG®n ZPUyuy y, G®n>

Y,u,T
= Z PXY<£E7§>\PU|XY<E‘J_:7§) d(y, )
7,1,% ~~
{z=uc$™}
=3 Pes(e.9) (5.
Y,T

Note that the unconditional distribution of X is the uniform one and that the
channel between X and Y is memoryless and identical for each component.
Therefore, we can write this expectation as

Ep[d(Y,UGS™")] = N> Px,y(zo, %) d(yo, 7o)

0,0
a 1
N SW e lwo) Ao, w0)
0,90
N,
where (a) follows from the fact that Py x(y|x) = W(y|x). O

This implies that if we use all the variables {U;} to represent the source
word, i.e., if I’ is empty, then the algorithm results in an average distortion
D, as desired. But the rate of such a code would be 1. Fortunately, the rate
problem is easily fixed. If we choose F' to consist of those variables which
are “essentially random,” (i.e., satisfying (3.11)) then there is only a small
distortion penalty (namely, |F'|2dy) to pay with respect to the previous case
and the rate has been decreased to 1 — |F'|/N.

Lemma 3.6 shows that the guiding principle for choosing the set F' is to
include the indices with small dy in (3.11). In the following lemma we find a
sufficient condition, for an index to satisfy (3.11), which is easier to handle.

Lemma 3.8 (Z(W](\;)) Close to 1 is Good). If Z(W](Vi)) > 1—26%, then

1 o
Ep “5 _PUi|U(§_1,Y(O|U8_17Y)’:| < Oy

Proof.

Ep [\/Pu g5 (01U Y ) Py g (11 U5, Y))|

Z ZIYUB 17@)

21—
7
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\/ U”y0|uZ 17§)PU\U”Y(1|UZ )
- Z \/PU3717U17Y uéﬁl’o’g)PUéil,Ui,Y(uf)i 7]-7?])
—_

= 2 ) 2 ol 0.6l 9)

1 1 -
Y z+1

Z PUY 1,].,'”5\;11),?)

z+1

i—1 N-1
E PY\U y|u0 Oauerl)
1+1

WZS

y

> Prio(@lug 1 ulyh)
i+1

The equality (a) follows from the fact that Py (u) = 55 for all u € {0,1}".
Assume now that Z(W{#) > 1 — 26%. Then

1 R _
Ep {5 B \/PUiIUé”Y(O U L Y) Py, i (LI UG Y) | < 0%

Multiplying and dividing the term inside the expectation with

1 i—1 = i—1 =
5 Ponjo O a5 0) Py, gy (L 5),

and upper bounding this term in the denominator with 1, we get
1 i—1 i—1
Ep 4 PUZ-\U};—HY(O | Us aY)PUi|U(§—1,§7(1 Uy, Y)|-
Now, using the equality i —pp = (% —p)?, we get

1 i1 9 2
Ep (5 - PUi\Ugfl,Y«) | U 7Y)> < Oy-

The result now follows by applying the Cauchy-Schwartz inequality. O

We are now ready to prove Theorem 3.4. In order to show that there exists
a polar code which achieves the rate-distortion trade-off, we show that the size
of the set F' can be made arbitrarily close to N(1 — Rs(D)) while keeping the
penalty term |F'|20y arbitrarily small.

Proof of Theorem 3.4:
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1

_NAB .
snve—2 . Consider a polar code

Let g < % be a constant and let dy =
with frozen set Fly,

Fyv={ic{0,....N—1}:Z(W) >1-26}.

For N sufficiently large there exists a 5’ < % such that 262 > 27V * Theo-
rem 3.15 and (3.21) imply that

(3.3)

. [Fn|
im M 1) @ Ry(D), (3.12)

N=2" n—oo
The above equation implies that for any ¢ > 0 and for N sufficiently large
there exists a set Iy such that

F
%Zl—RS(D)—e.

In other words

| Fy|

Ry =1- < Ry(D) +e.

Finally, from Lemma 3.6 we know that
Dy(Fy) < D+ 2|Fy|dmadn < D+ 0(2-N) (3.13)

forany0<ﬁ<%.

Recall that Dy (Fy) is the average of the distortion over all choices of up,,.
Since the average distortion fulfills (3.13) it follows that there must be at least
one choice of up, for which

Dy(Fn,upy) <D+ 0(27(1\[&))

forany0<ﬁ<%.
The complexity of the encoding and decoding algorithms is O(N log(N))
as shown in Chapter 2. O

3.4 Value of Frozen Bits Does Not Matter

In the previous sections we have considered Dy (F'), the distortion if we average
over the code ensemble Cy(F'). For problems with symmetric test channels and
distortion functions, we will now show a stronger result, namely that all choices
for up lead to the same distortion, i.e., Dy (F,up) is independent of up. This
implies that the components belonging to the frozen set F' can be set to any
value. A convenient choice is to set them to 0. In the following let F' be a
fixed set. The results here are independent of the set F'.

Since W is symmetric, Definition 1.1 implies that there exists a permutation
m @Y — Y such that 7, = ;" and W (y|0) = W(m(y)[1). Let mp: Y — Y
denote the identity permutation.
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Definition 3.9 (Symmetric Distortion Function). We say that the distortion
function is symmetric with respect to the permutation = :Y — Y if d(y,0) =

d(m(y), 1).

The permutations {mg, 71} form an Abelian group under function compo-
sition. In the following we treat the set X as a group with the usual XOR
“@7 as the group operation. Then for x € X and y € Y, the operation = -y
defined as = - y = m,(y) forms a group action. Let the distortion function be
symmetric with respect to the permutation 71, i.e., d(y,z) = d(z -y, x ® z) for
zeX.

The group action can be easily extended to vectors as follows. The group
XN consists of {0,1}" and the group operation z; @ z, is defined as (219 ®
290y 21 N-1 D z2.n-1). For z € XN and y € YV, the group action z - 3 is
defined as z- 9 = (20 Yo, - .-, 2y_1 " Yn_1)- The orbit of an element i € YV is
theset {z-y:z € XN}, Tt is well known that the set of orbits form a partition.
Let y{V, e yg denote the orbits of Y.

Example 3.10 (Orbits of the Binary Symmetric Source). If W is a BSC, then
the set Y is equal to {0,1} and the permutation 7, is defined as 7,(y) = z D y.
The set of orbits consists of only the set Y. For the N dimensional case, the
set YV again has only one orbit YV .

Example 3.11 (Orbits of the Binary Erasure Source). If W is a BEC, then
then set Y consists of three elements {0,1,%}. The permutation my is the
identity permutation. The permutation m is defined as m(0) = 1,m (1) =
0,m (%) = . In this case, there are 2 orbits, namely {0,1} and {*}. For
the N dimensional case, the set Y~ has 2N orbits. For every subset A C
{0,..., N — 1}, the orbit Y is defined as

{y:yi==Vie Ay €{0,1} Vi € A°}.
Let W¥ denote the channel W (| 7) = Hi]\:()l W (y;| z;). The symmetry
of the channel W implies the following in the language of group action.
W (7|
Wi (y|

glzez), (3.14)
(z-glae (2(G5")7). (3.15)

Ny
)
I

W N
Wy

|
~
I

Lemma 3.12 (Gauge Transformation). Let g, ' E'y,iv and let j' = z -y for
some z € XN, Letu, @ € XN be such that vy, " = u5 ' @ (2(GY™) )it Then

L9 i_l):{ L@, i G,
Y 5, i (EGE Y,

ISl

0,
1

Proof.
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Y W@ g 0,uy")
Yo N WN(gﬂul_l,l,uﬁll)
(315)ZN1WN(CU|( Ouﬁll)@ (

S W (| (ug ™, 1 uiiyh) & 2(
v IWN(y (W 0@( (G5 V), uly!
Y. v W (' | (W, 1@ (2(G5") )

W(Z (7, u'y 1|0@(5(G®") )
WO e (2G5,

The claim follows by considering the two possible values of (z(GY")™!);. O

Recall that the decision process involves randomized rounding on the basis
of Lg\l,). Consider at first two tuples (7, u ') and (7,45 ') so that their associ-
ated Lg\i,) values are equal; we have seen in the previous lemma that many such
tuples exist. In this case, if both tuples have access to the same source of ran-
domness, we can couple the two instances so that they make the same decision
on U;. An equivalent statement is true in the case when the two tuples have
the same reliability |log(L )(y, ug )| but different signs. In this case there is
a simple coupling that ensures that if for the first tuple the decision is lets say
U; = 0 then for the second tuple it is U; = 1 and vice versa. Hence, if in the
sequel we compare two instances of “compatible” tuples which have access to
the same source of randomness, then we assume exactly this coupling.

Lemma 3.13 (Symmetry and Distortion). Let 4,y € V¥ and i = z -y for
some 2 € XN, Let F C {0,...,N — 1}, and up,u» € X be such that
up = up ® (2(GY™) ™) R, then under the coupling through a common source of
randommness

U(5,ur) = U(g, up) & (2(G5™)7):

Proof. Let @)™, 4" be the outputs of U(j,ur) and U(gj' u'r). We use
induction. Fix 0 <4 < N—1. We assume that for j < ¢, 4; = @, (2(G5")™1);.
This is in particular correct if ¢ = 0, which serves as our anchor

By Lemma 3.12 we conclude that under our coupling the respective deci-
sions are related as 4; = @) @ (2(GS™)71); if i € F°. On the other hand, if
1 € F', then the claim is true by assumption. O

The symmetry property of the distortion function implies

d(y,z) =d(z -y, @ 2). (3.16)

Moreover, from (3.14) we have

ZQNWN ZQNWN 7176 %) = Py(2 7).
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which implies that
Py(y) = Py(y) V5,5 € i (3.17)

it follows that all y belonging to an orbit have the same probability, i.e.,

To every set Y}, associate a vector g, € Vi¥ as its leader. Let B(y) = {z :
y = Z-yr}. The set B(y) may contain more than one element. One can check
that {B(y) : Vy € YN} form a partition of X¥. Moreover,

IB@)| =BV 5.5 €Yy (3.18)
Let yx(Z) = Z - Y. Combining (3.17) with (3.18) implies
> @@ 0G.u) = Y T2 e, 0@ a0, 19

geyy zexN

Let v € X!¥! and let A(v) € XN denote the coset
A@) ={z: (2(G") ) = v}
The set XY can be partitioned as
XN = Uy A(D).
Now we are ready to prove the main result of this section.

Lemma 3.14 (Independence of Average Distortion w.r.t. ug). The average
distortion Dy (F,ur) is independent of the choice of up € {0, 1}F1.

Proof. Let up, v} € {0,1}F1 be two fixed vectors. We will now show that
Dy(F,ur) = Dy(F,uy). Let z,2 € XY be such that z € A(v) and z’ €
AV ® up ® uy). This implies that for any orbit V¥, 4x(2) = (2 ® 2') - jx(Z)
and vy = up ® (2@ 2')(GS™) 1) p. Applying Lemma 3.13, we get

which further implies

Y A=), U((2),ur)G5™) = Y dG(Z), UGn(Z), up)G5™).

zZeA(D) Z' € A(1@ur®uly)
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Hence, the average distortions over the set Vi¥ satisfy

> Py 4@ Uy, ur)GE")

yeyy

3.19 Py e .

o s PO S s, O un 6
2€{0,1}I¥1 ZEA(D)

3.20 P(YN L .

o5 PO S a0, w6
v€{0,1}I71 Z' e A(vDupduf)

PN o )

= Y PO S e 0. ues)
€{0,1}FI z'€ A(v)

= ) P Uy up)G5").
geyy

As mentioned before, the encoding function U (+,-) is not deterministic and
the above equality is valid under the assumption of coupling with a common
source of randomness. Averaging over this common randomness and summing
over all the orbits, we get Dy (F,ur) = Dn(F,uy).

O

3.5 Simulation Results and Discussion

Let us consider how polar codes behave in practice. Consider again the set-
up of Example 3.3. l.e., we consider the BSS and the Hamming distortion
function d(0,1) = d(1,0) = 1 and 4(0,0) = d(1,1) = 0, the rate distortion
function is given by R(D) = 1 — ho(D). The test channel is the BSC(D). As
mentioned in Example 3.3, polar codes achieve the rate-distortion trade-off
for this source. Moreover, since both the channel and the distortion function
satisfy the symmetry criterion, the frozen indices can be fixed to any value.

Recall that the length N of the code is always a power of 2, i.e., N = 2™,
Figure 3.2 shows the performance of the SC encoding algorithm combined with
randomized rounding. As asserted by Theorem 3.4, the points approach the
rate-distortion bound as the blocklength increases.

Let us now discuss the similarities and differences between the polar codes
designed for channel coding and source coding. Consider channel coding for
a B-DMC W and source coding with the same channel W as a test channel.
In both cases, in order to fully specify the code we need to specify the set of
frozen indices. Let F, denote the frozen set for the channel code and F denote
the frozen set for the source code. A

The code construction for both problems requires knowledge of {Z (WJ(\;)) ;
Vi € {0,..., N—1}}. Therefore, the complexity issues discussed for the channel
code construction in Section 2.5.2 apply for source coding as well. The set F7. is
chosen according to {i : Z (W](\;)) > 2"} and the set F, is chosen according
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0.4

0.3

0.2

0.1

0.0 0.2 0.4 0.6 0.8 R
Figure 3.2: The rate-distortion performance for the SC encoding algorithm with
randomized rounding for n = 9,11,13,15, and 17. The rates that we consider
are 0.1,0.2,...,0.9. As the blocklength increases the points move closer to the
rate-distortion bound.

to {i : Z(W](Vi)) > 1—2"M"Y " Therefore, we always have F, C F,. The
polarization of the channel implies that for channel coding we always have
R < I(W) and to source coding we always have R > I(W). In other words,
by adding a few generator vectors we have converted a good channel code into
a good source code. A

In practice we fix a threshold ¢ close to 0 and chose F, as {1 : Z(WJ(\?) >0}
and similarly Fy is defined as {i : Z(WJ(\?) > 1—6}. By varying the value
of § we get the trade-off between rate and probability of error (distortion) for
channel (source) coding.

The role of the encoding and the decoding algorithms for the two problems
are reversed. For channel coding the encoding operation is a simple matrix
multiplication which is in fact the decoding operation for source coding. On
the other hand, the decoding operation for channel coding involves computing
the likelihoods of an SC decoder; this in turn is the same procedure that is
required in the encoding operation of source coding. When making the decision
on bit U; using SC encoding, it is natural to choose that value for U; which
maximizes the posterior. This is what we do for channel decoding and such
a scheme works well in practice for source encoding as well. For the analysis
however it is more convenient to use randomized rounding in source coding.

Recall from our discussion in Section 1.2.2 that in source coding there are
typically many codewords that, if chosen, result in similar distortion. As a
result, the standard message-passing algorithms fail to perform well. We also
mentioned that one way to overcome this problem is to combine message-
passing with decimation. Note that in the SC encoding algorithm we decide
the bits U; in the order 0 to N — 1. Therefore the decimation step is already
incorporated in the algorithm. This is in fact a crucial reason why SC algorithm
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succeeds for source coding. In fact, the SC encoder can be interpreted as
a particular instance of BID where the order of the decimation is fixed in
advance (0,...,N —1). The decimation based on randomized rounding can
be interpreted as choosing one of the candidate codewords at random.

On the other hand, for channel coding there is typically one codeword
(namely the transmitted one) which has a posterior that is significantly larger
than all other codewords. This makes it possible for a greedy message-passing
algorithm to successfully move towards this codeword in small steps, using at
any given moment “local” information provided by the decoder. Therefore in
the case of channel coding, instead of SC decoder, we can run the standard
BP decoder and decide the bits at the end. As we will see in Chapter 6, in fact
BP performs better than SC decoder. However, the analysis of BP decoder is
much more difficult.

3.A Appendix

Consider the random process {W,,;n > 0} as defined in Section 2.3. As men-
tioned there, the relevance of this process is that

]{ie{O,...,Z"—l}:Z(W](Vi)) € (a,b)}}
on

Pr(Z, € (a,b)) = (3.21)

For lossy source coding, the quantity of interest is the rate at which the random
variable Z,, approaches 1 (as compared to 0 for channel coding). Let us now
show the result mirroring Theorem 2.11 for this case.

Theorem 3.15 (Rate of Z,, Approaching 1). Given a B-DMC W, and a
0<8<g,

lim Pr(Z, >1-2"2")=1—-I1(W).

Proof. The random process {Z,,} satisfies

Lem. 3.16

Zno1 > \2Z22—7%F wp. L,
Ty "0 72 w.p. L.
The above statements can be rewritten as
1= 22, < (1- 22 wp. b

DO [ =00 =

1— 722, =1-24<2(1—22) wp.
Let X,, denote X,, =1 — Z2. Then {X,, : n > 0} satisfies

1

Xpi1 < X2 w.p. >
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1
Xnt1 < 2X, w.p. 7

In Chapter 2 we have seen that the process {Z,} converges almost surely
to a random variable Z,, with Pr(Z,, = 0) = I(W) and Pr(Z, =1) =1 —
I(W). This implies that the process { X,,} converges almost surely to a random
variable X such that Pr(X, = 0) = 1 — I(W) and Pr(X = 1) = I(W).
Therefore, the process {X,} satisfies the conditions of Theorem 2.10 with
q=2and Py, =1—I(W). This implies that for any § < 3, the process {X,}
satisfies,
lim Pr(X, <27%")=1-I(W).

n—oo

Using the relation X,, =1 — Z2 > 1 - Z,, we get
lim Pr(1— 2, <272y =1-I(W).

n—00

O

Lemma 3.16 (Lower Bound on Z (W EW5)). Let Wy and Wy be two B-DMCs.
Then

ZWL B Wa) > /Z(Wh)2 + Z(Wy)? — Z(W1)2Z(Wy)2.

Proof. Let Z = Z(W, @ Ws) and Z; = Z(W;). Z. As shown in Lemma 2.15,
Z can be expressed as

AVA

J =

Bue |/l 00+ (4202) - 4.

where [E; denotes the expectation with respect to the probability distribution
P; over Y,

VWily: [0)Wi(y;: [ 1)

and

y\O Wily|1)
Wy|1 Wy|0

The arithmetic-mean geometric-mean inequality implies that A;(y) > 2. There-
fore, for any y; € Vi, Ai(y;)? —4 > 0. Note that the function f(x) = Va2 +a
is convex for a > 0. Applying Jensen’s inequality first with respect to the
expectation E; and then with respect to Ko, we get

22 225, |\ 00D + (Aa(v2) 4
> 22 J(E (40P + (B L)) — 4.
The claim follows by substituting E;[A;(Y;)] = Z% O
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In Chapter 2 we have seen that polar codes provide a low-complexity scheme
to achieve the symmetric capacity of B-DMCs. In Chapter 3 we have seen
that polar codes achieve the symmetric rate-distortion bound for lossy source
compression. The natural question to ask next is whether these codes are also
suitable for problems that involve both quantization as well as error correction.

Perhaps the two most prominent examples in this area are the source cod-
ing problem with side information (Wyner-Ziv problem [55]) and the channel
coding problem with side information (Gelfand-Pinsker problem [56]). As dis-
cussed in [57], these problems can be tackled using nested linear codes. Polar
codes are equipped with such a nested structure and are, hence, natural can-
didates for these problems. We will show that, by taking advantage of this
nested structure, one can construct polar codes that are optimal in both set-
tings (for the binary versions of these problems). Hence, polar codes provide
the first provably optimal low-complexity solution.

Let us quickly review the state-of-the-art schemes for these problems. In
[38] the authors constructed MN codes [21] which have the required nested
structure for both the Wyner-Ziv as well as the Gelfand-Pinsker problem. They
show that these codes achieve the optimum performance under MAP decoding.
How these codes perform under low-complexity message-passing algorithms
is still an open problem. Trellis and turbo-based codes were considered in
(58, 59, 60, 61] for the Wyner-Ziv problem. It was empirically shown that they
achieve good performance with low-complexity message-passing algorithms.
A similar combination was considered in [62, 63, 64] for the Gelfand-Pinsker
problem. Again, empirical results close to the optimum performance were
obtained.

We also consider applications to multi-terminal setups including the Slepian-
Wolf [65] problem, the one-helper problem [66], the multiple access chan-

29
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nel (MAC), and the degraded broadcast channel (DBC). For all the above
problems we show that polar codes achieve optimal performance using low-
complexity encoding and decoding algorithms.

For the sake of clarity we restrict ourselves to the binary versions of the
various problems mentioned above. More precisely, the channel we consider
is the BSC(p), and the source is the BSS. The reconstruction alphabet is also
binary. Let the distortion function be the Hamming distortion function, i.e.,
d(0,1) =4(1,0) = 1 and d(0,0) = d(1,1) = 0. The results of this chapter can
be extended to general B-DMCs.

We start by proving the optimality of polar codes for the Wyner-Ziv prob-
lem (Section 4.1). We then show the optimality for the Gelfand-Pinsker prob-
lem (Section 4.2), the Slepian-Wolf problem (Section 4.3) and the one-helper
problem (Section 4.4). In Section 4.5 we discuss applications to asymmetric
channels, multiple access channels and degraded broadcast channels.

4.1 Woyner-Ziv Problem

Let Y be a BSS and let the decoder have access to a random variable Y’. This
random variable is usually called the side information. We assume that Y’ is
correlated to Y in the following fashion: Y’ =Y + Z, where Z is a Ber(p)
random variable. The task of the encoder is to compress the source Y, call
the result X, such that a decoder with access to (Y’, X) can reconstruct the
source to within a distortion D.

Y X R
> Encoder > Decoder —>

A

Y/

Y

>

Figure 4.1: The Wyner-Ziv problem. The task of the decoder is to reconstruct
the source Y to within a distortion D given (Y, X).

Wyner and Ziv [55] have shown that the rate-distortion curve for this prob-
lem is given by

Lee{ (Rwa(D). D). (0.9}

where Rywz (D) = ha(D % p) — ha(D), l.c.e. denotes the lower convex envelope,
and D xp = D(1 — p) + p(1 — D). Here we focus on achieving the rates
of the form Rwz(D). The remaining rates can be achieved by appropriate
time-sharing with the pair (0, p).

The proof that the Wyner-Ziv rate distortion can be achieved by polar
codes is based on the following nested code construction. Let C, denote the
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polar code Cy(F,,0). Let F. O F, denote another frozen set and let v €
XFAES et €, (v) denote the polar code Cy(Fy, ug, () where ug, () is defined
asup, = 0 and u F\F, = U. This implies that the code C, can be partitioned as
Cs = UsC.(v). The code Cy (the set Fj) is designed to be a good source code
for distortion D. Further, for each v the code C.(v) (the set F.) is designed to
be a good channel code for the BSC(D * p).

Fe
7 % N
—
—— -~
Fs Fe\F

Figure 4.2: A pictorial representation of the subset structure of the frozen sets
F, and F,. Let the line represent the set of indices. The set F is fixed to 0. The
bits belonging to the set F.\F} are transmitted to the decoder.

The encoder maps the source vector Y to a vector U( UR, = 0). By the
definition of F,, the reconstruction word X, given by X = U(Y,up, = 0)GZ",
represents Y with average distortion roughly D.

Rather than sending the whole vector U re to the decoder, the encoder
takes advantage of the fact that the decoder knows Y’ and declares only the
sub-vector V = U r.\F, to the decoder. Therefore, the rate of such a scheme
is ‘FC\FS . The decoder hence knows U £, and wants to find U (or equivalently
X) glven Y’. The problem is therefore equivalent to decoding the codeword
X belonging to Cy(F,, Up,) given the observation Y’. Assume at first that ¥”
is the result of transmitting X over the BSC(D x p). In this case, it is clear
that the decoder can recover X with high probability since F, is chosen to be
the frozen set of a good channel code for the BSC(D * p).

The key observation is that Y is statistically close to the output of X sent
through the BSC(D % p). This claim is made precise in Lemma 4.6, where it
is shown that the distribution of the quantization error Y @ X is close to a
Ber(D) vector with i.i.d. components.

Putting the above ideas together, we get the following result.

Theorem 4.1 (Optimality for the Wyner-Ziv Problem). Let Y be a BSS and
Y’ be a Bernoulli random variable correlated to Y as Y' =Y @® Z, where
Z ~ Ber(p). Fiz the design distortion D, 0 < D < . For any rate R > hy(Dx
p) — ho(D) and any 0 < f < %, there exists a sequence of nested polar codes
of length N with rates Ry < R so that under SC' encoding using randomized
rounding at the encoder and SC decoding at the decoder, they achieve expected
distortion Dy satisfying

Dy < D+0(2~™),
Further the block error probability satisfies
Py < 020,

The encoding as well as decoding complezity of this scheme is O(N log(N)).
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Proof. Let ¢ > 0 and 0 < 3 < 3 be some constants. Let Z](\?)(q) denote

Z(Wﬁ)), with W set to a BSC(q). Let iy = %Q’Wﬁ). Let Fy and F. denote
the sets

F,={i: 20U (D)>1-6%},
Fo={i: Z9(Dxp) > én}.

Theorem 3.15 implies that for N sufficiently large

|FS| €
— > ho(D) — —.
N — (D) 2

Similarly, Theorem 2.11 implies that for N sufficiently large
|F| €
—— < hy(D —.
N > 2(D * p) Ty

It is clear that the BSC(D#p) is degraded with respect to the BSC(D). Indeed,
concatenating a BSC(D) with a BSC(p) results in a BSC(D # p). For small
oy, we have oy < 1 — 6%. Therefore if i € F, then

Lem. 4.7

Sy <1-64<29(D) < ZV(Dxp).

This implies that if ¢« € F§ then i € F,, i.e., Fy C F,.. The bits up, are fixed to
0 and it is known both to the encoder and the decoder.

Consider now the encoding process. We encode the source vector y using
the operation U(gj, up, = 0). We have seen in Chapter 3 that the average
distortion Dy of such a scheme is bounded by

Dy < D+ 2|FJéx < D +0(2-™),
The encoder transmits the vector g, p, to the decoder. The required rate is

_ |FC|_|FS‘

Ry < ho(D *p) — ha(p) + e

It remains to show that at the decoder the block error probability incurred
in decoding X given Y is O(2- "),

Let E denote the quantization error, £ = Y @ X. The observation Y’
available at the decoder can be expressed as

Y=X®E®Z.

Consider the code C.(v) for a given v and transmission over the BSC(Dx*p).
The channel symmetry implies that for every codeword belonging to the code
C.(v) the set of noise vectors that result in an error under SC decoding is the
same. The channel symmetry also implies that this set is independent of v.
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Let us denote this set by & € XN. The block error probability of our scheme
can then be expressed as

Py = E[l ggzee],

where the expectation is over the randomness of the Bernoulli noise Z and
also the quantization error FE.

The exact distribution of the quantization error is not known, but Lemma
4.6 provides a bound on the total variation distance between this distribution
and an ii.d. Ber(D) distribution. Let B denote an i.i.d. Ber(D) vector. Let
Pz and Pj denote the distribution of E and B respectively. Then from Lemma
4.6, we have

Z |Ps(e) — Pg(e)| < 2|F,|on < 02~ (4.1)

Let Pr(B, E) denote the so-called optimal coupling between E and B. le.,
a joint distribution of F and B with marginals equal to Pz and Pz, and
satisfying

r(E # B) Z | P () — Pg(e)]. (4.2)

It is known [67] that such a coupling exists. Let E and B be generated
according to Pr(-,-). Then, the block error probability can be expanded as

Py =E[lgezesyLip—py) + Ell{gezee Li528)]
< Elpezeey] + Ellizznyl-

The first term in the sum refers to the block error probability for the BSC(D
p), which can be bounded as

E[lpozeey) < Y ZY(Dxp) < O(27™), (4.3)

i€Fg
Using (4.1), (4.2) and (4.3) we get
Py < 020,
U

Figure 4.3 shows simulation results for the Wyner-Ziv problem. In these
simulations, we assume that the channel corresponding to the side-information
is the BSC(0.3). As mentioned before, we consider here the performance only
for rate-distortion pairs of the form (Rwz (D), D).



64 Multi-Terminal Scenarios

0.0 0.2 0.4 0.6 0.8 R
Figure 4.3: The Wyner-Ziv function Ry (D) (dashed line). The solid line is the

lower convex envelope of Ry (D) and (0,p = 0.3). The performance curves are
shown for n =9,11,13, and 15.

4.2 Gelfand-Pinsker Problem

The Gelfand-Pinsker problem is a channel coding problem over a channel with
state. The state is known a-causally to the encoder but not known to the
decoder. The problem was studied and its capacity was determined by Gelfand
and Pinsker in [56].

Let us consider the binary version of this problem; it is also referred to as
the information embedding problem. Let S denote a Ber(%) random variable.
The random variable S is the state of a B-DMC. The output of the B-DMC
is given by

Y=XaoSaoZ,

where X is the input and Z is a Ber(p) random variable. The state S is known
to the encoder a-causally but not known to the decoder. The channel input
at the encoder, denoted by X, is constrained to satisfy E[X] < D. In other
words, the encoder operates under the constraint of using at most a fraction
D of ones on average. Without this constraint, the problem is trivial. In this
case the encoder can completely cancel the effect of the state by adding S
to X (S @ X). The resulting channel between the encoder and the decoder
would in this case be the BSC(p). The problem becomes non-trivial however
if we impose the input constraint. The input constraint is similar to the power
constraint for the continuous input case.

The Gelfand-Pinsker rate region for this channel is determined in [68]. The
achievable rate-weight pairs are given by

u.c.e.{(Rgp(D), D), (0, 0)}7

where Rap(D) = ho(D) — ha(p), and u.c.e denotes the upper convex envelope.
Here we focus on achieving the rates of the form Rgp(D). The remaining rates
can be achieved by appropriate time-sharing with the pair (0, 0).
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M
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Figure 4.4: The Gelfand-Pinsker problem. The state S is known to the encoder
a-causally but not known to the decoder. The transmission at the encoder is
constrained to have only a fraction D of ones on average, i.e., E[X] < D.

Similar to the Wyner-Ziv problem, we need a nested code for this problem.
But the roles of the channel and source codes are reversed. Let C. denote
the polar code Cy(F.,0). Let Fy, DO F,. denote another frozen set and let
v € XIF\Fel | Let C,(v) denote the polar code Cx (Fy, up, (0)) with up, (0) defined
as up, = 0 and up,\p, = 0. This implies that the code C. can be partitioned
into Cy(v) for v € XIF\el e C. = UyCy(D). The code C. (the set F,) is
designed to be a good channel code for the BSC(p). Further, for each v, the
code C4(v) (the set Fy) is designed to be a good source code for distortion D.

The encoder uses the bits belonging to the set Fi\F. for transmitting in-
formation. Therefore, the rate of transmission is ‘FS—]W Let V = Up,\r.. The

encoder maps the state vector S to U(S, up,(V)). Let S’ be the reconstruction
vector ' = U(S,up,(V))GS™. The encoder transmits the vector X = S @ S’
through the channel. Since the codes C,(V) are good source codes, the ex-
pected distortion +E[d(S, S")] is close to D (see Lemma 3.14). Therefore, the
average weight of the encoder output X is also close to D and hence it satisfies
the input constraint.

The output at the decoder is the result of sending X @ S through the
BSC(p). By design, X ® S = S and S’ € Cy(F.,0). Since the frozen set
F, is designed to be a good channel code for the BSC(p), the decoder will
successfully decode S’ with high probability. The decoder then recovers the
information bits V from S" as V = (S'"H, ") r\F.-

Here we have slightly simplified the discussion because, as we will see, it is
not possible to find the sets F. and Fj satisfying all the required properties.
More precisely, we cannot show that F. C F;. Figure 4.5 provides a clear
picture of the problem. However, what we can show is that the set F.\F} is
very small. We therefore modify our transmission scheme to account for this

discrepancy. However, the gist of the proof is the same as explained above.
F\Fs Fs

7\
\ 7 N
| | |
N

Fe F\Fe
Figure 4.5: A pictorial representation of the subset structure of the frozen sets
F; and F,. Let the line represent the set of indices. The indices in F,\ F, are used
for transmitting the message. The set F.\ Fy is not empty.
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Theorem 4.2 (Optimality for the Gelfand-Pinsker Problem). Let S be a

symmetric Bernoulli random wvariable. Fix D*, p < D* < % For any rate

R < hao(D*) — ha(p), expected weight D > D* and any 0 < 3 < L, there exists
a sequence of polar codes of length N so that under SC' encoding using random-
1zed rounding at the encoder and SC' decoding at the decoder, the achievable
rate satisfies

Ry > R,
with the expected weight of X, Dy, satisfying
Dy < D.
Further, the block error probability satisfies
Py < 02~ ™).
The encoding as well as decoding complexity of this scheme is O(N log(N)).

Proof. Let € > 0 and 0 < 3 < 3 be some constants. Let Z](\i,)(q) denote

Z(Wﬁ)), with W set to a BSC(q). Let iy = %Q_UVB). Let Fy and F. denote
the sets

Fy={i: 2y(D

DY) > 148}, (4.4)
F,={i: Z{(p) > on

}-
Theorem 3.15 implies that for N sufficiently large

€

|F|
> hy(D*) — —.
N 2(D7) 9

Similarly, Theorem 2.11 implies that for N sufficiently large

|FC| €
Wel 1, <
N = he®)

For the moment, assume that F. C F,. The vector ug,r. is defined by the
message that is transmitted. Therefore, the rate of transmission is

Fs_Fc *
Fd =VFd 5 0%y = haf) — .

The vector S is compressed using the source code with frozen set F,. The
frozen vector up, is defined in two stages. The subvector ug, is fixed to 0 and
is known to both the transmitter and the receiver. The subvector up,r, is
defined by the message being transmitted.

Let S’ be the reconstruction vector that S is mapped to. Lemma 3.14
implies that the average distortion is independent of the value of the frozen
bits. This implies

1

EA(S, 8] < D* + 2| F.Joy < D* + O(27").
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Therefore, a transmitter which sends X = S @ S’ will on average be using
D* + 02~V fraction of 1s. The received vector is given by

Y=XpSaeZ=S5dZ7.

The vector S’ is a codeword of C,, the code designed for the BSC(p) (see (4.5)).
Therefore, the block error probability of the SC decoder in decoding S’ (and
hence V') is bounded as

Py <Y Z0(p) <027 ™).

i€F¢

The above discussion assumes F, C F, which may not be true. Let us
now consider the case when F, Q F,. The indices in F. N F¢ should be fixed
for the channel decoding to succeed and they should be set free for the source
encoding to succeed.

We therefore proceed with the following two phase approach. In the first
phase, the bits belonging to the set F,. N F¢ are set free. Therefore, the source
encoding will be successful. We accumulate the bits belonging to the set
F. N F¢ of many first phase transmissions and send them in the second phase.

In the second phase the transmitter uses a BSC(p) code, i.e., a polar code
with frozen set {i : Z](\? (p) > dn}. Moreover, the decoder cancels the state
noise S completely. Therefore, the block error probability of the second phase
is 02~ )ﬁ). After the decoding the second phase, the decoder has the knowl-
edge of the bits belonging to F.NF¢ for various first phase transmissions. Now
it proceeds with the decoding of the first phase. Therefore for the first phase
also the block error probability is O(2~()").

The second phase does not involve any transmission of information. There-
fore it decreases the rate of transmission. Moreover, the second phase cancels
the state completely and hence uses a fraction % ones on average. Therefore,
for the scheme to approach optimal performance the second phase must be
much smaller than the first phase. Using channel polarization we show that

this is indeed possible. For that purpose, consider the following modified set
Eo={i:Z00p) >1-6%). (4.6)

Since D* > p, BSC(D*) < BSC(p) which in turn implies F, C F.
Theorem 2.11 and Theorem 3.15 together imply that for any n > 0 there
exists Ny such that for N > N, %|FC\FC| < 7. Therefore,

|F.NFe| |F\F.NF¢| |F.NF _|F\F,|
= + < <.
N N N N
=0

Therefore, we require one second phase for every O(%) first phase transmis-
sions. Hence the resulting penalty for both the rate and weight is O(n), which
can be made as small as desired. O
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4.3 Lossless Compression and Slepian-Wolf
Problem

Let us first consider the lossless compression of a Ber(p) source. The lossless
compression problem can be mapped to the channel coding problem over the
BSC(p). The mapping results in the following optimality result.

Theorem 4.3 (Optimality for Lossless Compression). Let X be a Ber(p) ran-
dom variable. For any rate R > hs(p) there ezists a sequence of polar codes
of length N and rate Ry < R so that under SC' decoding at the decoder the
source can be compressed losslessly with rate Ry. The encoding as well as the
decoding complexity of this scheme is O(N log(N)).

Proof. Let € > 0, R = hy(p) + ¢, and 0 < § < . Let = (z9,...,2n_1) be
a sequence of N i.i.d. realizations of the source. Let dy = 2-(N)? et Fyn
denote the set

L
N

Fy={i: Z29(p) > én}.
Theorem 2.11 implies that for N sufficiently large

The compression is done by mapping the vector Z to its syndrome computed
as 5 = (Z(GY") Y ry. The aim of the decoder is to reconstruct z with only
the knowledge of s.

The task of recovering z from § can be formulated as a channel decoding
problem for the BSC(p). Let z be the input of a channel whose output is
always 0. The noise during the transmission, denoted by z, is given by z = ¥
(0 =2z®2). Since 7 is an i.i.d. Ber(p) source, it implies that the noise Z is also
i.i.d. Ber(p) vector. Consider a decoder which knows s. By construction, z €
Cn(Fy,5). Therefore, reconstructing z from 3 = 0 is equivalent to decoding
at the output of the BSC(p).

The above discussion not only maps the source compression problem to
channel decoding, it also provides a decoding algorithm for the former problem.
From the definition of Fl, we know that the SC decoder can perform this
decoding with failure probability at most

Py= ] Zy(n) <02 ™), (4.7)

ieFyg

However, the encoder knows the information seen by the decoder (unlike
channel coding there is no noise involved here). Therefore, the encoder can
replicate the decoding operation and check whether it is successful or not. In
case of failure, the encoder will transmit the source vector z as is without
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compression. We need only one additional bit to specify whether compression
is done or not. Therefore, the required rate satisfies

[Fvl+1 (4D |Fy| +1 _ vy
Ry=""""14Py < = — 1002 ™",
N N i s N ( )
Therefore for N sufficiently large, we have Ry < R.

It now remains to show that the scheme can be implemented with O(N log V)
complexity. The encoding operation can be expressed as

Gy'=a
B(GEm) It (G e T =T e G

The above operation is equivalent to the encoding operation in channel coding
with two additional permutations. Therefore, the encoding can be accom-
plished with complexity O(N log N). The decoding operation is implemented
using the SC decoder, which is also of complexity O(N log N). O

Zero compression error is possible because the encoder knows whether the
decoder can reconstruct the source vector successfully or not. This ability of
the encoder can also be used to decrease the failure probability of the decoder
with only a small loss in rate as follows [69]. In case of failure, the encoder can
retry the compression procedure by using a permutation of the source vector.
This permutation is fixed a priori and is known both to the encoder as well
as the decoder. In order to completely specify the system, the encoder must
inform the decoder which permutation was finally used. This results in a small
loss of rate but it brings down the probability of decoding failure. Note that the
extra number of bits that need to be transmitted grows only logarithmically
with the number of permutations used, but that the error probability decays
exponentially as long as the various permuted source vectors look like inde-
pendent source samples. With this trick one can make the curves essentially
arbitrarily steep with a very small loss in rate.

Pgp IR Pgp TP
107 ¢ e e IR
102 | - 102 |
103 | 103 |
104 | 104 |
0.50 0.55 0.60 R 0.50 0.55 0.60 R

Figure 4.6: Comparison of SC decoding for a Ber(0.11) source with 0,1, and 2
bits for permutations. The performance curves are shown for n = 10 (left) and 11
(right). By increasing the number of permutations the curves can be made steeper
and steeper.
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Rl
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Figure 4.7: Typical rate region for the Slepian-Wolf problem. The corner point
(a) corresponds to the rate pair (1, ha(p)) and the corner point (b) corresponds to
the rate pair (ha(p), 1).

Figure 4.6 shows the performance of polar codes for Ber(0.11) source. The
entropy of this source is close to % We also show the performance curves
with 1 and 2 bits of permutations. We see that by increasing the number of
permutations, the curves can be made steeper.

Let us now move to the Slepian-Wolf problem. Let X and X’ be two BSSs
and let X = X' @ Z, where Z ~ Ber(p). The celebrated result by Slepian
and Wolf [65] shows that the source (X, X’) can be compressed to its entropy
H(X,X') by independently describing X and X’. Recall that the Slepian-Wolf
rate region, denoted by Rgw, is the unbounded polytope

Rsw={(R,R): R>1,R' >1,R+ R > 1+ hy(p)}.
The points (R, R') = (1, ho(p)) and (R, R') = (ha(p), 1) are the corner points.

Theorem 4.4 (Optimality for Slepian-Wolf Problem). Let X and X' be two
symmetric Bernoulli random wvariables such that X = X' ® Z where Z ~
Ber(p). For any rate (R,R') € Rgw and any 0 < [ < %, using polar codes
combined with time-sharing there exists a sequence of polar codes of length N
such that the rates used satisfy Ry < R, R\ < R’ and probability of error

satisfies
Py <0(27"), Py <027,
The encoding as well as decoding complexity of this scheme is O(N log(N)).

Proof. As shown in Figure 4.7, all points of the rate region (shaded) are dom-
inated by at least one convex combination (time-sharing) of the two corner
points. Therefore, achieving the corner points combined with time-sharing
will imply the result. Because of symmetry it suffices to show how to achieve
one such corner point, say (1, ha(p)).

The source X is transmitted as is, i.e, Ry = 1. The compression of X' is
treated as the lossless compression of a Ber(p) source. Let F' denote the frozen
set of a code designed for communication over the BSC(p). The encoder for X’
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computes the syndrome 5 = (Z/(G5™)7!)p and transmits it to the receiver. At
the receiver using 5 and 7, we compute 5 = ((zB7')(GY") Y r = (2(GF") Y.
The resulting problem of estimating z is equivalent to the decoding problem
of lossless compression of a Ber(p) discussed in Theorem 4.3.

Unlike in lossless compression, we cannot achieve zero error probability
because the encoder for the source X’ does not know the information available
at the decoder (the vector z). O

4.4 One-Helper Problem

Let Y be a BSS. We want to reliably transmit Y to the decoder. Let Y’ be
another BSS which is correlated to Y in the following fashion: Y’ =Y & 7,
where Z is a Ber(p) random variable. As shown in Figure 4.8, let Y’ be
available to another terminal which we refer to as helper. As the name suggests,
the role of the helper is to assist the decoder in recovering Y.

Y X R
Encoder

Y
Decoder —>
Z ‘
X R

Y

Helper

Y/

Figure 4.8: The helper transmits quantized version of Y’. The decoder uses the
information from the helper to decode Y reliably.

Let the rates used by the encoder and the helper be R and R’ respectively.
Wymner [66] showed that the achievable rate-distortion tuples (R, R, D) satisfy

{(R,R,D): R> hy(Dxp),R >1—hy(D),D € [0,1/2]}.

For this problem, we require a good channel code at the encoder and a good
source code at the helper.

Theorem 4.5 (Optimality for the One Helper Problem). Let Y be a BSS
and Y’ be a Bernoulli random variable correlated toY asY' =Y ® Z, where
Z ~ Ber(p). Fiz the design distortion D, 0 < D < % For any rate pair
R > hy(Dxp), R > 1—hy(D) and any 0 < § < %, there exist sequences of polar
codes of length N with rates Ry < R and Ry, < R’ so that under syndrome
computation at the encoder, SC' encoding using randomized rounding at the
helper and SC decoding at the decoder, they achieve the block error probability

satisfying
Py < 02",

The encoding as well as decoding complexity of this scheme is O(N log(N)).
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Proof. Let ¢ > 0 and 0 < 3 < 3 be some constants. Let Z](\?)(q) denote

Z(Wﬁ)), with W set to a BSC(q). Let dy = %2’(]\[5). The frozen sets of the
helper and the encoder, namely Fy and Fy, are defined as

Fl, = {i - “’(D) >1- 6%, (4.8)
Theorem 3.15 and Theorem 2.11 imply that for N sufficiently large
F/
|]\1[V| > hy(D) — e, |]\1[V| < hy(D % p) +

The helper compresses the vector Y using the code Cy(F4,0). The helper
transmits (U(Y,up;v = 0))pye to the decoder. The rate of such a scheme is
Ry <1—hy(D)+e.

The encoder transmits the syndrome (Y G5")r, to the decoder. The rate
of this transmission satisfies Ry < ho(D * p) 4+ €. The decoder first constructs
Y’ =U G$™ which is the reconstruction vector of Y. The received vector can
be expressed as

V'=YoY oY )=YOZOE,

where £ = Y’ @ Y" quantization noise.

The remaining task is to decode the codeword Y belonging to the code
Cn(Fn, (YGS™) g, ) from the observation Y”. As shown in the Wyner-Ziv
setting the noise E @ Z is very “close” to Ber(D * p). Using the coupling
argument of Theorem 4.1, we can show that the block error probability satisfies

Py < 02~ W),

4.5 Non-Binary Polar Codes

Polar codes for non-binary, say g-ary, channels were recently constructed by
Arikan and Telatar [70]. These codes achieve the symmetric capacity of the
g-ary DMC. Let X = {0,...,q — 1} be the input of the channel and let W :
X — Y be a ¢-DMC. Then using polar codes and SC decoding, one can achieve
rates close to I(W), where

(ylx)
”/ X O . .
yezym;\’ i) ng W(y|a') (4.10)

In the rest of this section we discuss polar codes for asymmetric channels,
broadcast channels as well as multiple access channels. The reason for grouping
these three problems together with non-binary codes is that we can map all
these problems to the construction of polar codes for appropriately defined
g-ary channels.
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4.5.1 Asymmetric Channels

Consider an asymmetric B-DMC, e.g., the Z-channel. Due to the asymmetry,
the capacity-achieving input distribution is in general not the uniform one.
To be concrete, assume that it is (p(0) = ,p(1) = 2). This causes problems
for any scheme which employs linear codes, since linear codes induce uniform
marginals. To get around this problem, “augment” the channel to a g-ary
input channel by duplicating some of the inputs. For our running example,
Figure 4.9 shows the ternary channel which results when duplicating the input
“1.” Note that the capacity-achieving input distribution for this ternary-input

2
1
le ! o] le 1 1
€ €
0e 1—e€ *0 0e 1—ce€ *0

Figure 4.9: The Z-channel and its corresponding augmented channel with ternary
input alphabet.

channel is the uniform one. Assume that we can construct a ternary polar code
which achieves the symmetric mutual information of this new channel. Then
this gives rise to a capacity-achieving coding scheme for the original binary
Z-channel by mapping the ternary set {0, 1,2} into the binary set {0,1} in
the following way; {1,2} — 1 and 0 — 0.

More generally, by augmenting the input alphabet and constructing a code
for the extended alphabet, we can achieve rates arbitrarily close to the capacity
of a g-ary DMC, assuming only that we know how to achieve the symmetric
mutual information.

A similar remark applies to the setting of source coding. By extending
the reconstruction alphabet if necessary and by using only test channels that
induce a uniform distribution on this extended alphabet one can achieve a
rate-distortion performance arbitrarily close to the Shannon bound, assuming
only that for the uniform case we can get arbitrarily close.

4.5.2 Degraded Broadcast Channels

Consider a multi-terminal scenario with one transmitter and two receivers. Let
the channel between the transmitter and the two receivers be Wi (y; | x) and
Wy(ys | ). Let Wy < W, ie., the channel W, is degraded with respect to Wj.
Such a channel is known as the degraded broadcast channel.

The degradation implies that user 1 can decode whatever user 2 can decode.
Therefore, the information received by user 2 is common for both the users.
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We therefore refer to the rate received by the second user as common rate
and denote it as R.. Since user 1 has a better channel, it is possible to send
additional information to user 1 which user 2 cannot decode. We refer to the
rate of this additional information as private rate and denote it as R,. Note
that the polar code design for R, = 0 is easy. This follows from the fact that
ng\i,) = ng\i,) for all ¢+ and hence the code designed for W5 (the worse channel)
will work for W, (the better channel) as well.
The capacity region for this channel is given by [71, Section 15.6.3]

{(Ry,R.): R, < I(X;Y1|U), R. < I(U; Ya)
Vp(wp(z [W)Wi(y: | 2)Walye |2)}. (4.11)

The random variable U is an auxiliary variable whose cardinality is bounded
by [U| < min{|X|,|)1],|Vs|}. Since we restrict here to X = {0,1}, we have
U] < 2. It is clear that there is a trade-off between the common rate and
the private rate. Figure 4.10 shows the typical capacity region for degraded
broadcast channels. By varying the distributions p(u) and p(x | u), we achieve
different points in this region.

Ry

Figure 4.10: Typical capacity region for a two-user degraded broadcast channel.
Every distribution p(u)p(x | u), corresponds to a point in this region.

For simplicity, let us consider the case where W, and W5 are both BSCs
with flip probability p; < py. The capacity region for this channel is given by
[71, Example 15.6.5]

{(Ry,R.) : R, < ha(a# p1) — ha(p1), Re <1— ho(a*py) Ya€[0,1/2]},
(4.12)

where a xp = a(1 — p) + (1 — a)p. Evaluating (4.11) with U fixed to Ber(3)
and p(z |u) as the transition probability of the BSC(a) Va € [0, 3], covers the
whole capacity region (4.12).

Let X, and X, denote the codewords for the common and the private
message respectively. The transmitter sends X = X. @& X,. The outputs at
the two receivers are

YvIZXc@XpEBZh
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}/QZXC@XI)@Z%

where Z; and Z, are i.i.d. Ber(p;) and Ber(ps) vectors respectively.

Fix an . Let us first assume that the codewords X, are statistically
equivalent to an i.i.d. Ber(a) distribution. Then the channel between the
input X, and the output of user 2, i.e., Y3, is the BSC(a * py). Using polar
codes, we can achieve rates close to 1 — ho(a * pg) for receiver 2. Since Wj is
degraded with respect to W;, X, can be decoded at receiver 1. Therefore a
common rate of 1 — hy(a * py) is achievable.

Since X, is known at receiver 1, its contribution can be removed and hence
the resulting channel for X, is the BSC(p;). The capacity of such a channel
with input weight restricted to « is given by ho(a * p1) — ha(p1). To construct
polar codes with non-uniform marginals (a # %), we use g-ary polar codes
as shown in the previous section. For example, consider @ = % Consider a
channel with input alphabet {—1,0,1}, where —1 plays the role of 0. The
transition probabilities of such a channel are shown in Figure 4.11.

D1 5
1o el e Ly
p1 Y2
p1 P1 X
Oe _ «) e Pl >
b
7 D1
1

Figure 4.11: The BSC and its corresponding augmented channel with ternary
input alphabet {—1,0,1}.

Under the mapping {—1,0} +— 0,1 +— 1, the ternary channel with uniform
distribution over the input would create a Ber(1/3) distribution for the BSC.
The symmetric mutual information for the ternary channel is indeed equal to
ha(1/3 * p1) — ha(p1).

The above scheme is optimal for any two-user degraded broadcast channel
whose capacity region is achieved by evaluating (4.11) with p(x | u) restricted
to BSCs. Similar results can be obtained for more than two users.

4.5.3 Multiple Access Channels

Let us now consider a multi-terminal scenario with two transmitters and one
receiver. Such a channel is called a multiple access channel. Let W : X} x X5 —
Y be the channel between the two transmitters and the receiver. The capacity
region of this channel is given by [71, Theorem 15.3.1]

{(Rl,Rz) . Rl S [(Xl,Y | XQ), R2 S [(XQ,Y ‘ X1>7

Ry + Ry < I(X1, X5;Y) Vp(a1)p(x2)}-
(4.13)
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The achievable rate region for any fixed input distribution p(z;)p(xs) forms a
pentagon. An example of such a region is shown in Figure 4.12. It is sufficient
to provide a scheme to achieve the corner points (a) and (b) (see Figure 4.12).
The remaining rate pairs can be achieved by appropriate time sharing.

(a)

Ry

Figure 4.12: Typical rate region of a two-user multiple access channel for a fixed
input distribution p(z1)p(z2). The corner point (a) corresponds to the rate pair
(I(X1;Y),1(X2;Y | X1)) and the corner point (b) corresponds to the rate pair
(I(X1;Y | X2), I(X2;Y)).

For simplicity let the channel inputs be binary, ie., X} = Xy = {0, 1}.
Fix a probability distribution p(z1)p(xs). Let p(z1) = Ber(a;) and let p(xy) =
Ber(aw). Let us focus on achieving the corner point (a), i.e, Ry = I(X;;Y) and
Ry = I(X5;Y | Xy). This rate pair is achieved by first decoding the codeword
of user 1 (X;), and then decoding the codeword of user 2 (X;). The other
corner point is achieved by reversing the order of decoding. If a; # % or
g F# %, then we use the augmentation technique, as shown in the previous
sections, to create the required non-uniform distribution. Therefore, let us
assume that the codewords X; and X, have marginals Ber(a;) and Ber(as)
respectively.

Let P, denote the Ber(a) distribution. Since,X; is decoded first, the effec-
tive channel between X; and Y is given by

y|$1 ZPOQ sz y|$1,$2)

Therefore, the polar code for user 1 is designed for W;. Note that the term
I(X1;Y) corresponds to the mutual information of Wj.

After decoding X;, we proceed to decode X,. Therefore, X; is now a part
of the output at the decoder and hence the effective channel for user 2 is given

by
Wy, z1 | 22) = Pa, (x1)W (y | 21, z2).

Therefore, the polar code for user 2 is designed for W5. Note that the term
I(X2;Y | X1) corresponds to the mutual information of the channel Wj.

The above mentioned scheme achieves the corner point (a). To achieve the
corner point (b) we use a similar scheme with the roles of user 1 and user 2
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swapped. Since this scheme works for any a; and «s, we can achieve all the
rates belonging to the capacity region (4.13).

For simplicity we have considered binary input channels in the above sce-
narios. However, the arguments can be extended to non-binary channels or
even a combination of both asymmetric and non-binary channels. In theory
we can achieve optimal rates as long as the input distribution that we need
to approximate is a rational number. For irrational numbers we can approach
as close as desired by considering larger and larger q. However, the decod-
ing complexity of g-ary polar codes scales as O(¢?N log N). In practice the
alphabet size can therefore not be chosen too large.

4.A Appendix

The first part of this section deals with the distribution of the quantization
error for source coding. The encoding function for the polar code Cy(F,up),
denoted as U(y, up), is defined in Section 3.2. Let PZ" denote the distribution
of the quantization noise, i.e.,

PEF (7) = E[ﬂ{?@(ﬁ(qu)G;@”):az}L

where the expectation is over the randomness involved in the source and ran-
domized rounding. For a BSS the test channel is the BSC(D), which is sym-
metric and the distortion function is also symmetric. Section 3.4 implies that
the frozen indices can be set to any value. Using similar reasoning as in
Lemma 3.14, we can show that the distribution P." is independent of up.
Combining this with Lemma 3.5, we can bound the distance between P." and
an i.i.d. Ber(D) noise (denoted as Ppy) as follows.

Lemma 4.6 (Distribution of Quantization Error). Let the frozen set F' be
F={i:zwW)>1-2%}.
Then for any up € X171,

> |Per(z) — [ Py (i) < 2|Fow.

Proof. Let v € X!l and let A(v) C XV denote the coset A(v) = {z :
(2(GY™) ™) p = v}. The set XN can be partitioned as

XN = U@eX\F\A(T)).
Consider a vector § € A(v) and set ' = 0. Lemma 3.13 implies that

g U@, up)G5" = 0@ U0, ur ® 0)G5".
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This implies that all vectors belonging to A(v) have the same quantization
error and this error is equal to the error incurred by the all-zero word when
the frozen bits are set to up @ v.

Moreover, the uniform distribution of the source induces a uniform dis-
tribution on the cosets {A(v) : v € XFI}. Therefore, the distribution of
the quantization error P." is equivalent to first picking the coset uniformly
at random (i.e., the blts in F are generated by a Ber(1) distribution) and

then generatmg the error Z according to & = U (0, ur)GS™. In other words,
P (7) = 1;—aeeyQ(u]0) with @ as defined in (3.10). Consider the distribu-
tion Py gy defined in (3.6). Note that since W is the BSC(D), Pg y(7[0) =
| B Pipy(;) and hence the Bernoulli distribution can be expressed as

H Pip)(xi) = ﬂ{f:ac:;@n}PmY(ﬁ 10).

Therefore

2175 @) = [ Pt
—Z\Qulo PU|Y( |O)‘

G)ZQNZW GG ™19 — Pyyy(ae (G(G5) ™) | 9)]
2NZZ|Q — Py y(uly)|

(b)
< 2|F|oy.

The equality (a) follows from the symmetry (arising from the channel sym-
metry of W) of the distributions  and P. The inequality (b) follows from
Lemma 3.5 and Lemma 3.8. O

Lemma 4.7 (Degradation of W](\;)) Let W : X — Y and W : X = Y
be two B-DMCs such that W < W' then for all i, W](\;) = W’g\l,) and hence
ZWY) = Z(W'Y).

Proof. Let the n-bit (N = 2") binary expansion of i be by, ..., b,. Recall from

Section 2.3 that WN = Wa,,..b,) Where

.....

_ S Worebie) B Wy, i e =0,
Witr, b _{ Wiereobie) @ Weor )y i bk =1,

-----

where

W {waw, i =0,
GOy Wew, ifb =1.
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Therefore to show that Wﬁ) < W’ 53’, it is sufficient to show that both & and
® operations preserve degradation. Definition 1.7 implies that there exists a
channel W” : )’ — ) such that

Wylz)= > W o)W (yly). (4.14)
y' ey’
Consider the channel W & W.
(W& W)(yr, y2| =)
= W [ue )W (s 2)

(414) 1
= 520 D Wwmlue oW yilyh) D, Wil |us )W (2] v)

u 3/16)7/ y/QEyl

1
=530 S W @)Wl ue )Wy | y)W (a5,

u o (y yh)EY'?

From Definition 1.7 it follows that WEW < W’'®mW’. Using similar arguments
we can show that W& W < W& W’. The statement about the Bhattacharyya
parameters follows from Lemma 1.8. O

Lemma 4.8 (Inverse of Kronecker Product [72]). Let G be a square matriz and
let G®™ denote the n-th Kronecker product of G. Then (G®™)~1 = (G~1)®".

The proof follows from Corollary 4.2.11 of [72].






Exponent of Polar Codes

In this chapter we consider a generalization of polar codes. The original polar
code construction is based on combining two channels at a time using the
matrix G,

GF“H. (5.1)

It was conjectured in [32] that polarization is a general phenomenon, and
that is not restricted to the particular transformation G5". In this chapter we
prove this conjecture. In particular, we consider transformations of the form
G®™ where G is an ¢ X { matrix for £ > 3 and provide necessary and sufficient
conditions for such Gs to polarize symmetric B-DMCs.

In Chapter 2 we have seen that the matrix G5 results in a block error
probability of 0(2_(N)5) for any fixed 3 < 1. We say that G5 has channel

2
coding exponent % Similarly, in Chapter 3 we have seen that the distortion

approaches the design distortion D as D + O(2-W )ﬁ) for any fixed 3 < %
Therefore, we say that Gy has source coding exponent % We show that this
exponent can be improved by considering larger matrices instead of Gy. In
fact, the exponent can be made arbitrarily close to 1.

The exponent for a given matrix G in the context of channel coding was
analyzed in joint work with Sagoglu and Urbanke in [48]. Here, we concentrate
mainly on the exponent for source coding and only state the results for channel
coding.

The chapter is organized as follows. We first discuss the recursive channel
transform using ¢ x ¢ matrices (Section 5.1). In Section 5.2, we provide neces-
sary conditions for a matrix to be suitable for source coding. In Section 5.3 we
characterize the source coding exponent of a given matrix. We provide similar
results for channel coding in Section 5.4. In Section 5.5 we discuss a duality

81
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relationship between the two exponents. In Section 5.6 we provide bounds on
the best possible exponent for any ¢ x ¢ matrix. Finally in Section 5.7 we give
an explicit construction of a family of matrices, derived from BCH codes, with
exponent approaching 1 for large /.

In the following, we will use C to denote a linear code and dmin(C) to denote
its minimum distance. We let (g1, ..., gx) denote the linear code generated by
the vectors g1, ..., gx. We let dy(a,b) denote the Hamming distance between
binary vectors a and b. We also let dy(a,C) denote the minimum distance
between a vector a and a code C, i.e., dy(a,C) = min.ccdgy(a,c).

5.1 Channel Transform using an ¢ x ¢ Matrix

Let G be an ¢ x ¢ invertible matrix with entries in {0,1}. Consider a random
(-vector US™! that is uniformly distributed over {0,1}¢. Let Xi™' = UG,
where the multiplication is performed over GF(2). Also, let Y;* be the output
of ¢ uses of W when the input is X;'. The channel between U5 and Yy
is defined by the transition probabilities

—1 -1
Wolys ™ Tug™) 2 TTW i o) = T W (i | (uf ' G)a).
i=0 i=0
Uy Xo Myl v,
G
Up—1— X W Yoy

Figure 5.1: One step of the channel combining operation using the matrix G.

Using the chain rule, the mutual information between U5™! and Yy ! can
be expressed as

/-1
LU 5 Yy ™) =D I(Us Yy UG,

1=0

Let Wg(i) t X — Yx X1 denote the channel with input u;, output (y5 ', uj ™)
and transition probabilities

i — i— 1 _ _
Wy b ) = s Y Wyt uf ™). (5.2)
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It is easy to check that I(U; Yy U™ = [(Wé(i)). Moreover, since G is a
bijection, I(US ™ Yai™t) = I(Xé L YZ 1) = ¢I(W). Therefore,

-1

~

I(W) = e1(w). (5.3)

I
=)

i
Let us now consider the recursive channel combining operation using G.

We proceed similar to Section 2.2. Applying n recursions of this construction
combines N = (" channels. Let v}~ be defined as

LD 1)1

it = Uy ) (5.4)

forall 0 < i < ¢ ' —1. For 0 < k < (-1, let UOk denote the subvector
(Vky Vosks - - -5 Umesr) Where mé < j < (m + 1)¢. The channel Wy is defined as

_ k /— _
Wi (yo ' up™ HWN/e y,(mf/ﬁ /el véYk . (5.5)

Figure 5.2 provides a pictorial representation for the recursion (5.5). The
interleaver RZ maps the vector UO & —! to the input of the k-th W/ channel. It

U() I VO VO YO
: G : : Wn/e :
: Vi s )
Up—1 — V-t Ynje—1
\Z
U — - Vi Yiv/e
: G .
Uzp—1 —H Ve : Wiye '
NSRS YZN./E—I
2
UN_¢—2 VN—t—2 Ve YN_¢—2
: G I, : : Wn/e '
Un_1 — N-1 VN_1 YN.—I
Wn

Figure 5.2: Recursive channel combining operation using the matrix G.

can be shown that the recursive combining operation is equivalent to applying
the linear transform G®", ie., X't = U 'G®". Using the chain rule, we

expand the mutual information between Uy ! and YV~ ' as

N-1
IR = S I LU,

1=0
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The term I(U;; Yy ', US™!) corresponds to the channel between U; and the
output (Y;V "1, Ui™"). Let us denote this channel by W](\;) c X — YN x X
The transition probabilities are given by

Wy (o'~ o 1|uz—2lewN g,
'L+1

The following lemma shows the relationship between the channels {W](\;)} and
the channels {W](\;Zg} which is crucial for the analysis later. The proof is similar
to the proof of Lemma 2.3. Recall that v}’ ! is given by (5.4).

Lemma 5.1 (Recursive Relation between WJ(V and W](\;/Z) For0 <i < N/(—1
and 0 < j < (-1,
li+j 4
Wy (! Uf; T wgigy)
Ues1)i—1 f—1

k+1)N/—1  pi (41)i—1
Z HWN/z l(gz\;r/z / vvg,kl (ugﬁ) G)k). (5.6)

Ugitj+1 k=0

For any B-DMC W' : X — Y’ let W/ : X — Y'“ x X! denote a B-DMC
with transition probabilities

-1
— 1 _
Wyl [ us) = Ty SOTTW il ((wHGE)).
ut,, i=0

From the definition it is clear that Wz(i) of (5.2) is equal to W, Applying

the relabeling argument of Section 2.2 we can show that the channel law of

Wﬁf”j ) is equivalent to

li+j i i
WA = (w1,

Using this relation recursively we can express the channel W](Vi) as follows. Let
ly...l, denote the n-digit ¢-ary expansion of ¢ and let Wy, ;. W](\;). Then
W](\;) can be obtained by repeating the following operation,

W[lk]

W(ll,---,lkﬂlk (I1yeeslie—1) (57)

where W, = W,
Recall that in Section 2.3 to analyze the channels {W 2 } we define a ran-

dom variable W,, that is uniformly distributed over the set {Wg(fl 51 (where
¢ = 2 for the case G = G3). The random variable W, for our purpose is defined
through a tree process {W,, : n > 0} with Wy = W and

Wn+1 - Wy[LBn-H} 5
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where {B,;n > 1} is a sequence of i.i.d. random variables defined on a prob-
ability space (2, F,u), and where B, is uniformly distributed over the set
{0,...,¢ — 1}. Defining Fo = {0,Q} and F, = o(By,...,B,) for n > 1, we
augment the above process by the processes {I,, : n > 0} := {I(W,) : n > 0}
and {Z, :n >0} :={Z(W,) :n > 0}.

Using the chain rule (5.3), we can show that the process {I,,} satisfies the
following lemma.

Lemma 5.2 ({I,} is a Martingale). {(1,,F,)} is a bounded martingale and
therefore converges w.p. 1 and in L' to a random variable I,.

The proof is similar to the proof of Lemma 2.5. However, we cannot claim
any such property for the process {Z,}.

5.2 Polarizing Matrices

In this section we show that most matrices result in channel polarization by
applying the recursive operation of the previous section.

Note that for a matrix G the performance is not effected if we permute
the columns since this is equivalent to just relabeling the output. We claim
that any invertible {0, 1} matrix G can be written as a real sum G = P + P,
where P is a permutation matrix, and P’ is a {0, 1} matrix. In other words,
there is a permutation matrix embedded in any invertible {0, 1} matrix. To
see this, consider a bipartite graph whose biadjacency matrix is G. The graph
consists of 2¢ nodes. The /¢ left nodes correspond to the rows of the matrix
and the ¢ right nodes correspond to the columns of the matrix. Connect
left node ¢ to right node j if G;; = 1. The invertibility of G implies that
for every subset of rows R the number of columns which contain non-zero
elements in these rows is at least |R|. Otherwise, there is are |R| rows with
non-zero entries in at most |R| — 1 indices. Therefore, these |R| rows are
linearly dependent. By Hall’s Theorem [73, Theorem 16.4.] this guarantees
that there is a matching between the left and the right nodes of the graph
and this matching represents a permutation. Therefore, for any invertible
matrix G, there exists a column permutation so that all diagonal elements
of the permuted matrix are 1. Therefore, from now on, and without loss of
generality, we assume that that G has 1s on its diagonal.

For k > 1, let W&* : X — Y* denote the B-DMC with transition proba-
bilities

k

. 1

W) =5 Y [IWle). (5.8)
1B Prp=z j=1

In the following lemma we show that for any one to one transform G either

all the channels Wl remain the same or at least one channel transforms as

WE* for some k > 2.
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Lemma 5.3 (Polarizing Matrices). Let W be a B-DMC.

(i) If G is not upper triangular, then there exists an i for which W = W&k
for some k > 2.

(1) If G is upper triangular, then WU =W for all 0 <i < ¢ —1.

Proof. Let H = G~!. The inverse of an upper triangular matrix is also an
upper triangular matrix. Therefore, it is sufficient to prove the above state-
ments for H being upper triangular instead of GG. Let the number of 1s in the
first column of H be k. Clearly W = Wk If k > 2 then H is not upper
triangular and the first claim of the lemma holds. If £ = 1 then zy = uy. One
can then write

WO ) = wzm )

1 - -
=S Rt

-1 1
:(ac0 H)O uO

TO=U 1 — — —
=" o1 W (yo | Uo) Z w* 1@1{ ! | :c‘i 1)-

0—1
(xo H)l u1

Therefore, Y is independent of the inputs to the channels Wl fori =1,...,¢—
1. If Hy; = 0 for ¢« > 1, then uy does not inﬂuence the channels W for i > 1.
This is equivalent to saying that channels W, ... W1 are defined by the
matrix H~Y where H*~) denotes the (£ — ) X (¢ — i) matrix obtained from
H by removmg its first ¢ rows and columns. Now consider the case of Hy; # 0
for some i > 1. Let Hy; = 1. Then

W g uy) = P00 v0) 2 Wy 2.
L@ D)) =uoduy
If ug = 0, then the above channel is equal to the case of Hy; = 0. If ug = 1,
then channel laws for u; = 0 and u; = 1 are simply exchanged. Since both the
inputs are equally likely, we are effectively using the same channel. Therefore,
we can say that channels W, .. W1 are defined by the matrix H*Y.
Applying the same argument to H“~Y and repeating, we see that if H is
upper triangular, then we have W = W for all i. On the other hand, if H is
not upper triangular, then there exists an ¢ for which H“~9 has at least two 1s
in the first column. This in turn implies that W = W®* for some k > 2. O

Lemma 5.4 (I, and Z). If G is not upper triangular, then {I,} converges
almost surely to a random variable I, and {Z,} converges almost surely to a
random variable Z, such that

- 1 wp. I(W), 7 0 wp. I(W),
= 0 wp 1—I1W), 1 wp. 1—1(W).
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Proof. The almost sure convergence of {I,} to a random variable I, follows
from Lemma 5.2. Lemma 5.3 implies that there exists an i € {0,...,¢ — 1}
and k£ > 2 such that for the tree process, we have

1
I(W,11) = [(W®*) with probability at least 7

for some k > 2. Moreover by the convergence in L' of I,,, we have E[|I,,,; —

I,|| — 0. This in turn implies
1
Ell s — L) > EIW,) — (L0VE)] 0, (5.9

It is shown in Lemma 5.37 in the Appendix that for any B-DMC W,,, if I(W,,) €
(0,1 — §) for some § > 0, then there exists an n(d) > 0 such that I(W,,) —
I(W®*) > n(d). Therefore, convergence in (5.9) implies I, € {0,1} w.p. 1.
The claim on the probability distribution of I, follows from the fact that {7}
is a martingale, i.e., Pr(lo = 1) = E[l] = E[ly] = I(W).

For any B-DMC W, Lemma 1.5 implies that when I(W) takes on the
value 0 or 1, Z(W) takes on the value 1 or 0, respectively. This implies that
{Z,} converges almost surely to a random variable Z,, with probabilities as
stated. O

In Chapter 2 we show the convergence of {Z,} by proving that the process
is a super martingale. Such a property is in general difficult to prove for
arbitrary GG. On the other hand, the process {I,} is a martingale for any
invertible matrix (G, which is sufficient to ensure convergence.

We have now shown that channel polarization happens whenever G is not
upper triangular. For these matrices to be suitable for source coding, we still
need to show that when the process {Z,,} approaches 1, it should do so at a
sufficiently fast rate. The following theorem provides a guaranty on the rate
at which {Z,} approaches 1 for any polarizing matrix.

Theorem 5.5 (Universal Bound on Rate of Polarization). Consider a B-DMC

W and an € x € matriz G. If G is not upper triangular, then for any 5 < 1og742’

lim Pr[Z, >1-2""") =1 - 1(W).

Proof Idea: For any invertible matrix it can be shown that Z,,; > Z¢
with probability 1. If G is not upper triangular, then Lemma 5.3 implies that
there is at least one ¢ such that W = W& for some k > 2. From (5.28), we
claim that 1 — 7,1 < (1 — Z2)* < 4(1 — Z,,)* with probability at least 1/¢.
Let X,, =1— Z,. Lemma 5.4 implies that {X,,} almost surely converges to a
random variable { X} such that Pr(X. = 0) = 1 — I(W). The proof then
follows by applying Theorem 5.34 to the process {X,,}. O

Using a similar argument as in Theorem 3.4, we claim that using any
¢ x ¢ matrix that is not upper triangular we can achieve the symmetric rate-
distortion trade-off (c.f. Theorem 3.4), with distortion Dy approaching the
design distortion D as Dy < D + O0(2=N)°), for any 3 < &2,
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5.3 Exponent of Source Coding

In this section we provide a characterization of the exponent of source coding.
Let us first proceed with the definition.

Definition 5.6 (Exponent of Source Coding). For any B-DMC W with 0 <
I(W) < 1, we will say that an ¢ x ¢ matriz G has a source coding exponent

E(G) if
(i) For any fizved 5 < Es(G),

liminf Pr(Z, >1—2""") =1 - I(W).

(ii) For any fived > E4(G),

liminf Pr(Z, <1—2"0") =1.

n—00

The above definition of the exponent provides a meaningful performance
measure of polar codes for source coding using successive cancellation encoding.
Let W be the test channel. For any rate R > (W), there exists a sequence
of polar codes such that for sufficiently large N the expected distortion Dy
satisfies,

Dy < D+2"0

for any f < E4(G). Moreover, the part (ii) of the definition implies that this
is the best possible exponent that we can achieve.

Theorem 5.5 implies that any matrix GG that is not upper triangular is
guaranteed to have an exponent of logTﬂ. We now proceed to find an exact
characterization of E;(G). The quantity E;(G) refers to the rate at which
1— Z,, approaches zero. It turns out that, as we will see later, it is sufficient to
know how 1— Z(W) compares with 1 —Z(W). The following lemma provides

such a relationship which is sufficient to characterize the exponent.

Lemma 5.7 (Bhattacharyya Parameter of W), Consider any B-DMC W
and an ¢ x ¢ matriz G. Let H = G~ and let h; denote the i-th column of H.
Let

Dy = dg(ho,0),
Di:dH(hh(hOy---ahi—l))y Z:]_,,E—]_

]f Dz S Di—h then

(1—Z(W)P <1 - ZWy <221 — Z(W))P:. (5.10)
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Proof. Let y, z,u denote the vectors ye ! g ! uf; ! respectively. Without loss

of generality, we will assume that the Welght of the column h; is equal to
D;. Suppose for a matrix H this property is not satisfied. Then let D; =
dH(hi,Zanjhj) and let H' = [ho,...,hi_1, R}, hir1, ..., he_1] be a matrix
such that h; = h; @ 3_;_; a;h;. This implies that H' = HA for an invertible
upper triangular matrix A. From Lemma 5.39 we claim that Zg (W) =
Z (W), Therefore, we can assume that for the matrix H the weight of the
column h; is equal to D;.

We will first obtain an upper bound on Z (W), which will result in a lower
bound for 1 — Z(W). Let Wd[i] define the channel with input u; and output
y as follows

i, 1 L
Wille) = 5 Y. Wiglo).
i—1 £—1
Uy HUjyq

The channel Wd[i} is degraded with respect tOAVVH W/ (g, uf " | u;), because
the former channel is obtained by ignoring uj, * from the output of the latter.
Then,

Lem 1.8

ZWhh “< zawlhy = Z(W'D)(<)1—(1—Z(W))Di.

Therefore, (1 — Z(W))P: <1 — Z(Wl),
Now, we proceed for the upper bound on 1 — Z (W[i]). We can express
Z(Wl) as

Z(Whl) = QHZ > W(yla) > wigla).

yu() (J:H)O (UB 170) (jH)(i):(uz)_lvl)

Consider a fixed uf ' Let 7y, 91 be two vectors such that (voH)j = (ujh *,0)
and (0 H)y = (uy 1), Let V(y|0) = W(y|0) + W(y|1) and V(y|1) =
W(y|0)—W(y|1) and let C denote the code (zH)) = 0}. Using Lemma 5.35
with z; = Wi(y; | 1)/W(y;]0), we get

2. W@l cqz DR §R4IED)

(@H)j=(ug,0) zect

where the dual code C* is given by Ct = (hy, ..., h;).

A similar expression with vy replaced by v is obtained for the summation
over (zH)j = (uy ', 1). Note that for 0 < j < i, hj -0y = hj -0, = u; and for
J =1, hi-v9g= 0 and h; - v; = 1. Therefore, for any z € C*, if 7 = 22:0 a;h;
with a; = 0 then T - (9o @ v1) =0, and if a; = 1 then T - (vo @) = 1. Let Tj
and 77 denote the terms

To(ug ') = Z (=17 H V(yi| @),

TSl oo
T:z=) ;_jajh;



90 Exponent of Polar Codes

Ti(ug ') = Y. Y Vil

Top—=N—1 )
B:z=) ;_gajhjth

The vectors vy, v1 depend on uo !, Using this notation, we can write
Y. W(yla) =Toluy ")+ Ti(us ),
(@H)i=(u)"t,0)
Y WEle) =Ty ") = Tiuy ).
(i'H)%):(uz)_lvl)

W(y; | ;) > 0 implies Ty > T} and Ty > 0. The cardinality of the dual code
Ct is given by |Ct| = 27*!. Therefore Z (W) can be expressed as

200 = 2 3 ﬁo 2 - Ty ()2
yuo
TEDs
ﬁmzmmwwznzm)
7,ug zect\0 J J

Therefore, we have

2

i i l25)
_Z<W[])§2Z+z Z Hvyj‘(]( Z H VZ 10)? )

gauh zeCct\0 J
= ZH yJIO ( yjlfv])>2
zect\0 ¥ y |O)

For any vector  of weight w we have

Vi [0) (V(y;lz) yJIO AW (y; | )W (y; [ 1)
SIS oy I 0 o)

Jiurj=1

_HZZWK(WWOW%%mJWW

ALz Viy;10)/2

where the last step follows from Jensen’s inequality and 3, V(y;[0) = 2. The
minimum distance of C* is given by

dmin((hg, ..., h;)) = min(dmin(h,;, (ho,. . _1)),dmin(0, (hg, ..., hi_1)))

L h
:min(Di,dmin(<h0,...,hi_1>)) =..-= min {D]} = Dz
j€{0,...,i}

Therefore for € C\0 the weight of 7 is at least D;, which implies

1— Zz(Wlh <2441 — Z(W)H)Pr < 2%+ (1 — Z(W))P:.
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The condition D; < D, is an artifact of our proof technique and we believe
that the result must hold even without such a condition. We will later see that
“good” matrices always satisfy such a property and hence the condition is not
restrictive for finding matrices with large exponent. Combining this lemma
with Theorem 5.34, we characterize the exponent as shown below.

Theorem 5.8 (Exponent of Source Coding). Consider any B-DMC W and
an ¢ x { matriz G. Let H = G~ and let h; denote the i-th column of H. Let

Dy = dy(ho, 0),
Di:dH<hi,<h0,...,hi,1>), 221776—1

If Dz S Di—l; then

/-1
E,(G) = %Zlogz D. (5.11)
=0

Proof Idea: 1f GG is upper triangular, from Lemma 5.3 we know that for
such matrices polarization does not take place and the resulting channels are
the same as the original channels W. Therefore, Definition 5.6 implies that
E;(G) = 0. For such matrices we indeed have D; = 1 for all ¢ and (5.11) implies
also that E4(G) = 0.

Let X,, = 1— Z,. If G is not upper triangular, the process {X,} almost
surely converges to a random variable { X } such that Pr(X., = 0) = 1-I(WW).
The proof of the exponent then follows from Lemma 5.7 and Theorem 5.34. [

5.4 Exponent of Channel Coding

In this section we discuss our results for the exponent of channel coding. These
results are based on joint work in [48]. For the proofs of these results we refer
the interested reader to [48]. The exponent in the context of channel coding
is defined as follows.

Definition 5.9 (Exponent of Channel Coding). For any B-DMC W with
0 < I(W) < 1, we will say that an ¢ x ¢ matrix G has a channel coding
exponent E.(G) if

(i) For any fizved 5 < E.(G),

liminf Pr(Z, < 27°") = I(W).

(ii) For any fived 5 > E.(G),

liminf Pr(Z, > 27") = 1.

n—00
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The definition of E.(G) implies the following. Consider polar code con-
struction using a matrix G with exponent E.(G). For any B-DMC W rate
0 < R < I(W) and f < E(G) using Lemma 2.9 the block error probability
under successive cancellation decoding is bounded as

9" < py < 27"

for any 3, > E.(G) and 3, < E.(G).

Similar to the source coding case, for any matrix GG that is not upper
triangular we can show that E.(G) > 10ng2 [48]. We skip those details here and
move on to the exact characterization of the exponent.

The channel coding exponent E.(G) refers to the rate at which {Z,} ap-
proaches zero. Therefore, in this context it is relevant to know how Z (W)
compares with Z(W).

Lemma 5.10 (Bhattacharyya Parameter of Z1). Consider a B-DMC W and

g0
any ¢ x ¢ matriz G. Let G = [ : ] and

gz;1
Di:dH(gia<gi+17---ag£—1>)7 ’L.ZO,...,E—Q,
Dy £ dH(ge—l,O)-

Then
Z(W)P: < 20 <25 z(w)Pi. (5.12)

Note that unlike in source coding, we do not require any ordering of the
distances D;. Combining Lemma 5.10 with Theorem 5.34 we get the following
result.

Theorem 5.11 (Exponent of Channel Coding). Consider a B-DMC W and
any € x € matriz G. Let {D;} be as defined in the previous lemma. Then

-1
1
E(G) =7 > log, D;. (5.13)
1=0

5.5 Duality of Exponents

In this section we show how to transform a matrix with good channel coding
exponent into a matrix with good source coding exponent. We define the
exponent of a matrix GG, denoted as E(G), and show that finding good matrices
for both source and channel coding problems is equivalent to finding matrices
with large E(G). Let us first proceed with some definitions.



5.5. Duality of Exponents 93

91
Definition 5.12 (Partial Distances). Given an ¢ x { matrizv G = { : ], we

9e
define the partial distances D;, forv=1,...,( as

DiédH(gia<gi+1>---ag€>)v =101,
Dg £ dH(gg,O)

Definition 5.13 (Exponent of a Matrix). Given an ¢ x ¢ matriz G with partial
distances {D;}t_,, we define the exponent of G, denoted by E(GQ), as

4
1
1=1

Example 5.14 (Partial Distances and Exponent). The partial distances of
the matriz

1
F=11
1

— o o
— _ O

are Dy =1,Dy =1, and D3 = 3. The exponent is given by
1 1

The definition of exponent implies that E.(G) = E(G). Let us now define
the transformation G of a matrix G, such that E;(G) = E(G).

Definition 5.15 (Matrix Transformation for Source Coding). For an ¢ x ¢
g1

matriz G = [ : ], let G denote the matriz G = [g;, e ,gﬂ_l.
9e

It is easy to check that the source coding exponent of G is indeed equal
to E(G). Therefore, finding a matrix G with a good channel coding exponent
immediately provides a matrix with the same exponent for source coding and
vice-versa. Hence, finding good matrices for the two problems is equivalent to
finding matrices with large E(G).

Example 5.16. For our running ezample, the matriz F is given by
~1

. 1
F = 0 —
0

— =
—_ O =
_ o O
i
—__ O

If F is used as a channel combining matriz for source coding, then Lemma 5.7
implies that

1 1
E((F) = g(log33 +logs 1+ logsg 1) = 3
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Note that the restriction in Lemma 5.7 on the distances implies that the
above relationship between the exponents is valid only when the partial dis-
tances satisfy D; < D;,;. As shown in Lemma 5.18 this restriction is not
crucial because the best matrices always satisfy this property. In the follow-
ing, at least for the BEC, we show that the restriction can be removed.

For the rest of this section let W be a BEC. Using a duality property for
BEC we show that E.(G) = E,(G) for all G. Since the exponent of channel
coding is characterized without any restriction on the ordering of the distances
{D;}, it implies that, for the BEC the restriction on {D;} in Lemma 5.7 can
be removed. Moreover, note that in all our results the exponent is related only
to the matrix G' and is independent of the channel. This observation strongly
suggests that even for other channels the restriction on the partial distances
can be omitted.

Lemma 5.17 (Duality for the BEC). Let Z](\?(e) = Z(W](Vi)) when W is
a BEC(€) and the channel transform matriz is G. Similarly, let Z](\Z,)(e) =
Z(WJ(\;)), when the channel transform matriz is G. Then

ZO()+ 20"V 1—e) =1.

Proof. For a matrix M = [my,...,my], let MY denote the matrix obtained
by flipping the columns i.e., M" = [my,...,mi]. Let Y be the output of
X = U(G®") through the BEC(€) and similarly let Y’ be the output of X =

UG®" through the BEC(1 — €). Note that Z](\i,)(e) corresponds to the erasure
probability of U; when (Y, U4™!) is known at the decoder. Let g; denote the
j-th row of G®™. Therefore, Z](\?(e) = Pr(U; = | Y) where Y is the output of
X € (i, gis1,---,9gn_1) through the BEC(e).

Note that G = (((GT)F)"1)®" = (((G®")T)F)~1. Therefore X = UG®"
is equivalent to X ((G®")T)¥ = U. Hence

(X((G*) ) =Xgn 15 =TUj.

Note that Z](VN__i_l)(l — €) corresponds to the erasure probability of Uy_; 4
when (Y, U3¥"""?) is known to the decoder. Since BEC(e) is a symmetric B-
DMC, without loss of generality we can assume that U} ~"~* = 0. Therefore,

Z](VN_i_l)(l —¢) = Pr(Xg = *|Y") where Y’ is the output of
Xef{z:agy ,_,=0V0<j<N-—i—2}
={z:2g] =0,Vi+1<j<N-1}
through the BEC(1 — ¢). The claim follows from Lemma 5.41. O
The above lemma implies that for the BEC
Pr(ZP(e) <27y = Pr(1 — Z{0(1 — ¢) < 27V

which further implies that E.(G) = E4(G).
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5.6 Bounds on Exponent

For the matrix G, we have E(G2) = 1. Note that for the case of 2 x 2 matrices,
the only polarizing matrix is GG5. In order to address the question of whether
the exponent can be improved by considering large matrices, we define

E, & E(G). 5.14
0= (@) (5.14)

The maximization problem in (5.14) is not feasible in practice even for
moderate ¢, say ¢ > 10. The following lemma allows to restrict this maximiza-
tion to a smaller set of matrices. Even though the maximization problem still
remains intractable, by working on this restricted set, we obtain lower and
upper bounds on E,.

Lemma 5.18 (Partial Distances Should Decrease). Let G = [g ...g/]". Fix
ke{l,....0} andlet G' = [g] ...g 190 -..g/]" be the matriz obtained from
G by swapping gp and gpi1. Let {D;}o_, and {D.}:_, denote the partial dis-
tances of G and G’ respectively. If Dy, > Dy.1, then

(i) E(G') = E(G),
(ii) Djyy > Dy
Proof. Note first that D; = D! if i ¢ {k,k + 1}. Therefore, to prove the first
claim, it suffices to show that D)D), > D;D;.,. To that end, write
D;€ = dH(gkth <gkugk+27 v 796))7
Dk = dH(gka <gk+1a s 7g€>)a
D;CJrl - dH(gk’ <gk+2a cee 7g€>)a
D1 = du(grs1s (Grv2s - -5 90)),

and observe that D, > Dy, since (g1, ..., ge) is a sub-code of (gr41, - ., ge)-
D;. can be computed as

min{ . min  dy(grs1,¢), min  dg(gre1,c+ gk)}

Ght-25--,9¢) CE(Gr42,-590)

=min{Dyy;, min  dy(gr,c+ grr1)}

CE(Ght25--,90)
= Dk+1,
where the last equality follows from
min  dy(gr, ¢+ gry1) > min dy(gx, c)
CE(Ghy2,--590) CE(Grt1:Gh+25-++90)
= Dy > D1

Therefore, D} D; | > Dy D41, which proves the first claim. The second claim
follows from the inequality D; ., > Dy > Dy = Dy O

Corollary 5.19. In the definition of E, (5.14), the mazimization can be re-
stricted to the matrices G which satisfy D1 < Dy < ... < Djy.
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5.6.1 Lower Bound

The following lemma provides a lower bound on E, by using a Gilbert-Varshamov
type construction.

Lemma 5.20 (Gilbert-Varshamov Bound).

¢
1 .
E, > 7 ; log, D;
where
) D=1/,
D; = max D;Z(,)<2i . (5.15)
— \J
j
Proof. We will construct a matrix G = lg),...,9,]", with partial distances

D; = D;. Let S(c,d) denote the set of binary vectors with Hamming distance
at most d from ¢ € {0,1}, i.e.,

S(c,d) = {x € {0,1}" : dy(x,c) < d}.

To construct the i row of G with partial distance D;, we find a v € {0,1}*
satisfying dg (v, (gis1,...,9¢)) = D; and set g; = v. Such a v satisfies v ¢
S(e,D; — 1) for all ¢ € (gi1,...,g¢) and exists if the sets S(c, D; — 1), ¢ €
(gis1,---,g¢) do not cover {0,1}¢. The latter condition is satisfied if

This is guaranteed by (5.15). O

The solid line in Figure 5.3 shows the lower bound of Lemma 5.20. The
bound exceeds % for ¢ = 85, suggesting that the exponent can be improved by
considering large matrices. In fact, the lower bound tends to 1 when ¢ tends
to infinity.

Lemma 5.21 (Exponent 1 is Achievable). lim, . E, = 1.

Proof. Fix a € (0,3). Let Dron denote the [af]-th distance as defined in
Lemma 5.20. Using Stirling’s approximation for (5.15) it can be easily shown
that

Jim Dyag > lhy ' (),

where hy(-) is the binary entropy function. This is in fact the well-known
asymptotic version of the Gilbert-Varshamov bound.
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0.6

0.57

0.4

0.3

0 8 16 24 32
Figure 5.3: The solid curve shows the lower bound on E, as described by
Lemma 5.20. The dashed curve corresponds to the upper bound on E; according

to Lemma 5.26. The points show the performance of the best matrices obtained
by the procedure described in Section 5.7.

_ Therefore, there exists an {y(a) < oo such that for all £ > {y(a) we have
Dian > 30hy* (). Hence, for £ > lo(a) we can write

l
1 ~
=[al]

1 ~
Z Z(l — a)ﬁlogz D[ag]

1 Chy* ()
> Z(l — a)llog, 22

hy ' (a)

=1l—a+(1—a)log 5
where the first inequality follows from Lemma 5.20, and the second inequality
follows from the fact that D; < D, for all 7. Therefore we obtain
1

ligninng >1—a Vae(0, 5) (5.16)

Also, since D; < ¢ for all 4, we have E, < 1 for all £. Hence,

limsupE, < 1. (5.17)
{—00
Combining (5.16) and (5.17) concludes the proof. O

5.6.2 Upper Bound

Corollary 5.19 says that for any ¢, there exists a matrix with D; < --- < D,
that achieves the exponent E,. Therefore, to obtain upper bounds on E,, it
suffices to bound the exponent achievable by this restricted class of matrices.
The partial distances of these matrices can be bounded easily as shown in the
following lemma.



98 Exponent of Polar Codes

Lemma 5.22 (Upper Bound on Exponent). Let d(n,k) denote the largest
possible minimum distance of a binary code of length n and dimension k. Then,

E, <

|

l
> log,d(6, 0 —i+1).
=1

Proof. Let G be an £ x ¢ matrix with partial distances {D;}{_, such that
E(G) = E;. Corollary 5.19 lets us assume without loss of generality that
D; < D,y for all 2. We therefore obtain

D, = m>1n D; =dmin({gi,...,g0)) < d(l, £ —i+1).
J=1
U

Lemma 5.22 allows us to use existing bounds on the minimum distances of
binary codes to bound E,:

Example 5.23 (Sphere Packing Bound). Applying the sphere packing bound
ford(¢,0 —i+1) in Lemma 5.22, we get

¢
1 3
E, < 7 ;1 log, D, (5.18)

where
D; =max{ D : Z <£> < 271
i N/

Note that for small values of n for which d(n, k) is known for all & < n, the
bound in Lemma 5.22 can be evaluated exactly.

5.6.3 Improved Upper Bound

Bounds given in Section 5.6.2 relate the partial distances {D;} to minimum
distances of linear codes, but are loose since they do not exploit the dependence
among the {D;}. In order to improve the upper bound we use the following
parametrization: Consider an ¢ x ¢ matrix G = [g],...,g,]". Let

T; ={k: gix = 1,95 =0 for all j > i},
Si={k:3j >ist. gjp=1},
and let t; = |T;|.

Example 5.24. For the matrix

F =

__= 0 O
O~ = O
O O = O
OO O =

Ty = {3} and Sy = {1, 2}.
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l

Note that the T; are disjoint and S; = U?ZHlTj. Therefore, |S;| = Zj:i-i-l t;.
Denoting the restriction of g; to the indices in S; by g;g,, we have
where s; = d(g;s,, (9(i+1)8;5 - - - ges;))- By a similar reasoning as in the proof
of Lemma 5.18, it can be shown that there exists a matrix G with

$i < dr(95s;, (9G+1)810 - -+ Ges;)) Vi <,
and
E(G) = E,.

Therefore, for such a matrix G, we have (cf. proof of Lemma 5.22)
Using the structure of the set S;, we can bound s; further.
Lemma 5.25 (Bound on Sub-Distances). s; < LE'J
Proof. We will find a linear combination of {g(+1)s,, - - -, ges, } whose Hamming

distance to g;s, is at most L%J To this end define w = Zf:iﬂ «;g;s,, where
a; € {0,1}. Also define wy = Ef:iﬂ a;g;s;- Noting that the sets Tjs are
C. . ¢
disjoint with U{_;,\T; = S;, we have dy(gis,, w) = > jmi1 du(giry, wry).
We now claim that choosing the o;s in the order a;4q, ..., ap by

argminaje{o,l}dH(giTju Wj—-1Ty + ajngj>7 (521>

we obtain dg(gis;, w) < L‘%"J To see this, note that by definition of the sets
T; we have wr, = wjr,. Also observe that by the rule (5.21) for choosing o,

we have dp(gir,, wjr;) < L‘%"J Thus,

l
dH(QiSp U}) = Z dH(QiTj7 wTj)

j=it+1

¢
= Z dH(ngj7 ijj)

j=i+1

S 12012

j=i+1

0

Combining (5.19), (5.20) and Lemma 5.25, and noting that the invertibility
of G implies > t; = ¢, we obtain the following:
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Lemma 5.26 (Improved Upper Bound).

E, < max Zlogzt + ;)

i= ltz

where

si:min{L1 Z Z tj, 0 — }

Jj=i+1 J=t+1

The bound given in the above lemma is plotted in Figure 5.3. It is seen
that no matrix with exponent greater than % can be found for ¢ < 10.

In addition to providing an upper bound to E;,, Lemma 5.26 narrows down
the search for matrices which achieve E,. In particular, it enables us to list all
sets of possible partial distances with exponents greater than % For 11 </ <
14, an exhaustive search for matrices with a “good” set of partial distances
bounded by Lemma 5.26 (of which there are 285) shows that no matrix with
exponent greater than % exists.

5.7 Construction Using BCH Codes

We will now show how to construct a matrix G of dimension ¢ = 16 with
exponent exceeding % In fact, we will show how to construct the best such
matrix. More generally, we will show how BCH codes give rise to “good
matrices.” Our construction of G consists of taking an ¢ x ¢ binary matrix
whose k last rows form a generator matrix of a k-dimensional BCH code. The
partial distance Dy is then at least as large as the minimum distance of this
k-dimensional code.

To describe the partial distances explicitly we make use of the spectral view
of BCH codes as sub-field sub-codes of Reed-Solomon codes as described in
[74]. We restrict our discussion to BCH codes of length ¢ = 2™ — 1, m € N.

Fix m € N. Partition the set of integers {0,1,...,2™ — 2} into a set C of
chords,

C=Ur72{2% mod (2™ —1):k € N}.
Example 5.27 (Chords for m = 5). For m =5 the list of chords is given by

¢ = {{0},{1,2,4,8,16},{3,6,12,17, 24},
{5,9,10, 18,20}, {7, 14, 19, 25, 28},
{11,13,21, 22,26}, {15, 23, 27,29, 30} }.
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Let C denote the number of chords and assume that the chords are ordered
according to their smallest element as in Example 5.27. Let p(i) denote the
minimal element of chord 7, 1 < i < C and let [(i) denote the number of
elements in chord i. Note that by this convention p(i) is increasing. It is well
known that 1 < [(z) < m and that {(i) must divide m.

Example 5.28 (Chords for m = 5). In Example 5.27 we have C' =7, [(1)

12)=--=UT7)=5=m, p(1) =0, u(2) =1, u(3) =3, p(4) =5, u(d) =
w(6) = 11, pu(7) = 15. 0

Consider a BCH code of length ¢ and dimension chzk [(j) for some k €
{1,...,C}. It is well-known that this code has minimum distance at least
w(k) + 1. Further, the generator matrix of this code is obtained by con-

catenating the generator matrices of two BCH codes of respective dimensions
Zf:kﬂl(j) and (k). This being true for all k € {1,...,C}, it is easy to
see that the generator matrix of the ¢ dimensional (i.e., rate 1) BCH code,
which will be the basis of our construction, has the property that its last
ch:k [(j) rows form the generator matrix of a BCH code with minimum dis-
tance at least (k)4 1. This translates to the following lower bound on partial
distances {D;}: Clearly, D; is at least as large as the minimum distance of

the code generated by the last ¢ — i + 1 rows of the matrix. Therefore, if
S 1) < €=+ 1< 355, 1(j), then
D; > u(k) + 1.

L,

The exponent E associated with these partial design distances can then be
bounded as

C

S 1(0) 1ogy_ (i) + 1). (5.22)

i=1

—2m—1

Example 5.29 (BCH Construction for ¢ = 31). From the list of chords com-
puted in Example 5.27 we obtain

5
E > o logy (246812 16) ~ 0.526433.

An explicit check of the partial distances reveals that the above inequality is in
fact an equality. O

For large m, the bound in (5.22) is not convenient to work with. The
asymptotic behavior of the exponent is however easy to assess by considering
the following bound. Note that no (i) (except for ¢ = 1) can be an even
number since otherwise p(7)/2, being an integer, would be contained in chord
i, a contradiction. It follows that for the smallest exponent all chords (except
chord 1) must be of length m and that u(i) = 2i + 1. This gives rise to the
bound

1
P2 1) log@ — 1) (5.23)
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) (imlog@k) + (2™ — 2 — am)log(2a + 2)) ,

where a = |£=2].
Lemma 5.30 (Exponent of BCH Matrices). Let { = 2™ —1. Let Egcp, denote
the exponent achievable using BCH codes. Then

lim EBCHg =1.
l—00

The proof follows easily by using Stirling’s approximation for (5.23). This
is in fact the best exponent one can hope for (cf. Lemma 5.21). We have also
seen in Example 5.29 that for m = 5 we achieve an exponent strictly above %

Binary BCH codes exist for lengths of the form 2™ — 1. To construct
matrices of other lengths, we use shortening, a standard method to construct
good codes of smaller lengths from an existing code, which we recall here:
Given a code C, fix a symbol, say the first one, and divide the codewords into
two sets of equal size depending on whether the first symbol is a 1 or a 0.
Choose the set having zero in the first symbol and delete this symbol. The
resulting codewords form a linear code with both the length and dimension
decreased by one. The minimum distance of the resulting code is at least as
large as the initial distance. The generator matrix of the resulting code can be
obtained from the original generator matrix by removing a generator vector
having a one in the first symbol, adding this vector to all the remaining vectors
starting with a one and removing the first column.

Now consider an ¢ x ¢ matrix Gy. Find the column j with the longest run
of zeros at the bottom, and let 7 be the last row with a 1 in this column. Then
add the ith row to all the rows with a 1 in the jth column. Finally, remove
the ith row and the jth column to obtain an (¢ — 1) x (¢ — 1) matrix Gy_;.
The matrix G, satisfies the following property.

Lemma 5.31 (Partial Distances after Shortening). Let the partial distances of
Gy be given by {D; < --- < Dy}. Let Gy be the resulting matriz obtained by
applying the above shortening procedure with the ith row and the jth column.
Let the partial distances of Gy—y be {D},..., D, _,}. We have

Dy>D, 1<k<i-—1 (5.24)
Dy =Dy, i<k<(—1. (5.25)

Proof. Let Gy = [g),...,¢/1" and Go_y = [¢}",..., ¢4 4]" Fori < k, g} is
obtained by removing the jth column of g;,1. Since all these rows have a zero
in the jth position their partial distances do not change, which in turn implies
(5.25).

For k < i, note that the minimum distance of the code C' = (g}.,...,g;_1)
is obtained by shortening C = (gj,...,g¢). Therefore, D} > dmin(C’) >
dmin(C) = Dy. O
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Example 5.32 (Shortening of Code). Consider the matriz

_ o O O =
—_ o =) O O

S OO ==

__ 0 O O

—_ = = =

The partial distances of this matriz are {1,2,2,2,4}. According to our proce-
dure, we pick the 3rd column since it has a run of three zeros at the bottom
(which is maximal). We then add the second row to the first row (since it also
has a 1 in the third column). Finally, deleting column 3 and row 2 we obtain

the matrix

_ O O =
—_ O =) O

= =0 O

— = = O

The partial distances of this matriz are {1,2,2,4}.

Example 5.33 (Construction of Code with ¢ = 16). Starting with the 31 x 31
BCH matriz and repeatedly applying the above procedure results in the expo-
nents listed in Table 5.1.

¢ | exponent | ¢ | exponent | ¢ | exponent | ¢ | exponent
31| 0.52643 | 27| 0.50836 |23 | 0.50071 | 19 | 0.48742
30 | 0.52205 | 26 | 0.50470 |22 | 0.49445 | 18 | 0.48968
29 | 0.51710 | 25| 0.50040 |21 | 0.48705 | 17 | 0.49175
28 | 0.51457 | 24| 0.50445 |20 | 0.49659 | 16 | 0.51828

Table 5.1: The best exponents achieved by shortening the BCH matrix of length

31.
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The 16 x 16 matriz having an exponent 0.51828 is

10011100001 111°O0°T1
01 00100101T1T1O0Q0T171
060111110011O01T1T1F®0
06010101101O01O0O0O0¢O00O0
11110000001O01T1O0T1
0010010101 O0O0O01T1O0
001000O0O0OO0O1T1T1TO0O0QO0O®O
06010111001O01T1O0¢010Q0
1110011010O01O01O00O0
10101011101 101°O0°71
11100000O0O0OO0O1TT1TO0T10
1001100001O011O0T1T1
1111101000O01O01O00O0
10101111010O00O0¢0°O0T1
101000010111 11O00
11111111111 11111]

The partial distances of this matriz are {16,8,8,8,8,6,6,4,4,4,4,2,2,2,2 1}.
Using Lemma 5.26 we observe that for the 16 X 16 case there are only 11 other
possible sets of partial distances which have a better exponent than the above
matriz. An exhaustive search for matrices with such sets of partial distances
confirms that no such matrix exists. Hence, the above matriz achieves the best
possible exponent among all 16 x 16 matrices. ]

5.A Appendix

Let us now restate a generalization of Theorem 2.10. This generalization can
be proved using techniques similar to the proof of Theorem 2.10.

Theorem 5.34 (Rate of Convergence [47]). Let {X,, : n > 0} be a positive
random process satisfying

Xo < X < X3 wp. 3,

foralli =0,...,0—1 and some constants ¢; > 0,s; > 0. Let X :=lim, ., X,

exist almost surely and Pr(Xo = 0) = Py. Then for any f < %Zf;é log, si,

lim Pr(X, <277 = P, (5.26)

n—oo
and for any 3 > % Zf;ol log, s;,

lim Pr(X, > 27" =0. (5.27)

n—oo
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Lemma 5.35 (Hartman-Rudolf [75]). For any subset S C {0, 1}* let fs(z1,. .., z;)
denote the function

fs(z1,. => T[="

zeS 1

Letf denote the function

mvi z;
va Zlyeees 2 E H "

zeS 1

Let C denote a linear code and let C+ denote the dual code of C. Let v € {0,1}F
be a vector. Then

k
1 . 1—2 1— 2
T ge e ey - T Il g e e ey 1 i)
fero(= %) \Ci\fcl’ (1+21 1—|—zk> 11;[1( )
Proof. The proof is similar to that of the Mac-Williams identities [75]. U

Lemma 5.36 (Bounds on Z(W®k)). Let W be a B-DMC and let W=F be as
defined in (5.8). Then

ZWE) < (1= Z(W))", (5.28)

Z(W"“)Q > (1 — Z(W)HF, (5.29)

Proof. Let Wy = W&~1 and W, = W. Using Lemma 2.15, we get 1 —

Z(WEk) < (1-Z(WE1))(1—-Z(W)). The proof of (5.28) follows by repeating

this argument. Using similar arguments with Lemma 3.16 we get (5.29). O

Lemma 5.37 (Mutual Information of W&*). For any B-DMC W, if I[[W) €
(0,1 —6) for some 6 > 0, then there exists an n(6) > 0 such that I(W) —
I(WEF) > n(0).

The proof of Lemma 5.37 is in turn based on the following theorem.

Theorem 5.38 (Extremes of Information Combining [76, 77]). Let W be a
symmetric B-DMC. Also let Wskc denote the channel with transition proba-
bilities

k
% 1
Wisc(yr |2) = ok—1 E , H Wascie (yi | i),
J:lf:xl@~~~@ack:x =1

where Wgsc(o) denotes the channel law of BSC(e), with € = hy'(1 — [(W)).
Then, I(W'k) < I(WEE).

Proof of Lemma 5.37: Note that for k > 2,

T(WER) < T(W™2) < (W),
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By Theorem 5.38, for any symmetric B-DMC W, we have I(W%?) < I(WSQC(E)).
A simple computation shows that

I(Wigew) = 1= h(1 — 2¢€).

We can then write
(W) = I(W®) = I(W) = I(Wgg)

= h2(1 — 26@) — hQ(G). (530)
Note that I(W) € (6,1 — 6) implies € € (¢(6), 3 — #(5)) where ¢(d) > 0, which
in turn implies h(1—2¢€)—h(e) > n(d) for some n(d) > 0. The result for general
B-DMC W follows by symmetrizing the channel W as done in Chapter 1 (cf.
Lemma 1.4 and Lemma 1.5). Consider Wy : X — ) where )y = ) x X with
transition probabilities

1

The result follows from the fact that [(W®*) = I(W#k) and W, is a symmetric
B-DMC. 0

Lemma 5.39 (Equivalent Matrices). Let W be a B-DMC and let G and G’
be two matrices, such that G' = AG, where A is an invertible upper triangular
matriz. Let Zg(W™) and Zo (W) denote the resulting Bhattacharyya param-
eters using the matrices G and G' respectively. Then Zg(WW) = Zo, (W) for

alli€{0,...,0—1}.

Proof. Note that an invertible upper triangular matrix has 1 on all its diagonal
entries. Let a;; denote the entry in the i-th row and j-th column of the matrix
A. Let S, denote the set S, = {u; ' : u; = a,ul;; € {0,1}*772} and let
V; = Ej<i QiU . Then,

ZUGE =D Z Wiy 1|uf;—1G'>\/ S Wl b )
ue_1651

uy yo

:% : Z Z Weys " Juf P AG) | YT Whys uf AG)
uo ,yO uf_lesl
Ead > S e, [ Y W4
Lub | ui T E€Som, ul ' €S1g0;

= ZG(WM).

The equality (a) follows from the fact that A is upper triangular and invertible,
i.e., a; =0 for i > j and a; = 1. This implies that (uj 'A)i ™" depends only
on ujy ! and takes all possible values in {0, 1}’. Moreover, if u; ' covers the set
S, then (uftA)! covers the set Syqy,. O
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The following theorem is a restatement of the duality relationship of the
EXIT functions for the BEC.

Theorem 5.40 (Duality of EXIT Function [78]). Let C denote a linear code
and C*+ denote its dual code. Let X¥™' € C be transmitted through the BEC(e)
and the output be Y{**. Similarly let X’iVH € C* be transmitted through the
BEC(1 — €) and the output be Y'\ ™. Then

Pr(Xni1 = | YY) + Pr(Xpy, = =| YY) = L.

The above theorem can be re-written as follows, which is useful for proving
the duality of the exponents.

Lemma 5.41 (Duality Used by Lemma 5.17). Consider a set of N-dimensional
vectors {gi,...,gr}. Let X{¥ € {g1,...,gr) be transmitted through the BEC(¢)
and the output be YN. Let X'Y € (g1,...,gx1)" be transmitted through the
BEC(1 — €) and the output be Y'Y . Then

Pr(Us = +| Y{¥) + Pr(X"{ gl = #|Y'Y) = 1,
where Uy, is the coefficient of gy in the codeword X.

Proof. Let C denote the N + 1 length code

C= <§17"'7§k>7

where §; = (g;,0) for 1 <i <k —1 and gy = (gx, 1). Therefore, Xy, = Uy,
which implies
Pr(Uy = #| V7¥) = Pr(Xys1 = 5 | 17Y).

Now consider the dual code
CL = <§Za cee 7§k>l~

Any codeword X'M ' e ¢t satisfies X') gl =0, ie., X'Vgl + Xy = 0.
Therefore,
Pr(X'\ gl = *|Y"Y) = Pr(Xy,, = *|Y7)).

The claim now follows from Theorem 5.40. O






Extensions and Open
Questions

Let us now discuss some generalizations as well point out what we consider
important open problems. In each of the following cases we do not aim for
completeness but rather we highlight what we consider the essence of the
problem.

We start by discussing the relationship between polar codes and RM codes
in Section 6.1. Using this relationship we characterize the minimum distance
of polar codes and discuss the implication of the minimum distance on the
performance. In Section 6.2 we propose some approaches based on message-
passing algorithms to improve the finite length performance of polar codes.
We then consider the compound capacity of polar codes in Section 6.3. Sec-
tions 6.4, 6.5 and 6.6 are dedicated to open problems. Most of the results of
this chapter have appeared in [79].

6.1 RM Codes as Polar Codes and Some
Consequences

Polar codes constructed using the matrix (G5 can be seen as a generalization of
Reed-Muller (RM) codes. Let us briefly discuss the construction of RM codes.
We follow the lead of [80] in which the Kronecker product is used. RM codes
are specified by the two parameters n and r; the code is denoted by RM(n, r).
An RM(n,r) code has block length 2" and rate 5= > i, (7). The code is
defined through its generator matrix. Compute the Kronecker product G5".
This gives a 2™ x 2" matrix. Label the rows of this matrix as 0,...,2" —1. Let
wt (i) denote the number of ones in the binary expansion of . One can check
that the weight of the ith row of this matrix is equal to 2°*®). The generator

matrix of the code RM(n,r) consists of all the rows of G5 which have weight

109



110 Extensions and Open Questions

at least 2"7". There are exactly > ., (’Z) such rows. An equivalent way of
expressing this is to say that the codewords are of the form 7 = uGS", where
the components u; of @ corresponding to the rows of G5 of weight less than
2" are fixed to 0 and the remaining components contain the “information.”

Recall from Definition 2.7 that a polar code Cy(F),0) consists of codewords
of the form uGY" with up = 0. In other words, the generator matrix of
Cn(F,0) is obtained by choosing the rows {i € F°} of the matrix G¥". The

following lemma follows easily from this definition.

Lemma 6.1 (RM Code as Polar Code). The RM(n,r) code is a polar code
Cn(F,0) with F = {i:wt(i) <n—r}.

6.1.1 Minimum Distance of Polar Code

The following lemma characterizes the minimum distance of a polar code.

Lemma 6.2 (Minimum Distance of Polar Codes). The minimum distance of
a polar code Cn(F,ur) is given by

dopin = min 270
icFe
Proof. Let wy, = mingeywt(i). Clearly, dy,;, cannot be larger than the mini-
mum weight of the rows of the generator matrix. Therefore, d;, < 2%=i». On
the other hand, by adding some extra rows to the generator matrix we cannot
increase the minimum distance. In particular, add all the rows of G5™ with
weight at least 2¥min. This results in the RM(n,n — wpyi,) code. It is well
known that dy,(RM(n,r)) = 2""" [80]. Therefore,

dmin Z dmin(RM(TL, n — wmin)) — 2wmin'
U

We conclude that for any given rate R, if the information bits are picked
according to their weight (RM rule), i.e., if we pick the 2" R vectors of largest
weight, then the resulting code has the largest possible minimum distance.
The following lemma gives a bound on the best possible minimum distance for
any non-zero rate.

Lemma 6.3 (Bound on the Minimum Distance). For any rate R > 0 and any
choice of information bits, the minimum distance of a polar code of length 2"
15 bounded by

n
< 22 C\/ﬁ7

dmin ~

forn > n,(R) and a constant ¢ = ¢(R).
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Proof. Lemma 6.2 implies that d,,;, is maximized by choosing the frozen bits
according to the RM rule. Order the rows according to their weights and
choose the largest weight 2" R rows as the rows of the generator matrix. The
matrix G§" has () rows of weight 2'. Therefore,

n n

k. n n n

inin < 2 .‘Z <Z) <2 RSZ(@)'
i=k+1 i=k

For R > %, more than half of the rows are in the generator matrix. Therefore,

there is at least one row with weight less than or equal to 2/21. This proves

the claim for R > 1. Consider therefore an R in the range (0,1/2]. It is well
known that for A = o(y/nlogn)

((%ﬁ A) _ 2; 25 (14 o(1)).

Let us compute the number of rows with weight in the range [2/21-cv7 22 1+evn]
where ¢ is a strictly positive constant. Neglecting the error term in the above
approximation, we get

[5]4cv/n c/n

£0

i=[5]—cv/n z—fc\/_ 7T_

g —_6_29“ dex = 2™2 < % )

For R > 0, choose ¢ sufficiently large so that 2(1 — (% ) > 1—
Therefore, if we want to choose 2" R information bits, R > 0, at least one row
of the generator matrix has weight in the range [2/21~ Cf, 213 Hcf]. The claim

now follows from Lemma 6.2. O

Theorem 6.4 (Bound on MAP Block Error Probability). Let R > 0 and
8> % be fized. For any symmetric B-DMC W, and N = 2", n > n(3, R, W),
the probability of error for polar coding under MAP decoding at block length N
and rate R satisfies

|3

P(N,R) > 2V

Proof. For a code with minimum distance d,,;,, the block error probability is
lower bounded by 2~ %dmin for some positive constant K, which only depends
on the channel. This is easily seen by considering a genie decoder; the genie
provides the correct value of all bits except those which differ between the
actually transmitted codeword and its minimum distance cousin. Lemma 6.3
implies that for any R > 0, for n large enough, d,,, < %N B for any [ > %
Therefore P,(N, R) > 2=’ for any § > 3 O

This combined with Theorem 2.12, implies that the SC decoder achieves
performance comparable to the MAP decoder in terms of the order of the
exponent.
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6.1.2 Dumer’s Recursive Decoding

A recursive decoding algorithm was considered by Dumer [81, 82] for decoding
RM codes. On close inspection, it turns out that Dumer’s recursive algorithm
is similar to the SC decoder of Arikan. Dumer applied the algorithm to RM
codes and showed that decoding beyond the minimum distance is possible with
high probability.

Recall from the previous section that the RM(n,r) code is a polar code
Cy(F,0) with F' = {i : wt(i) < n —r}. Such a rule indeed maximizes the
minimum distance of the code. Empirically we noticed that (Figure 6.5) the
RM codes perform well under MAP decoding. But their performance under
SC decoding is significantly worse than that of polar codes.

As noted by Dumer, the reason for the bad performance of RM codes under
recursive decoding is due to a few indices that are very weakly protected. The
performance can be significantly improved with only a small loss in rate by
freezing the weak indices. He suggests as an open problem to find a procedure
that identifies the weak indices.

Polar codes can be seen as settling this problem conclusively. The rule
used for choosing the frozen set F' is based on the Bhattacharyya parameters
(discussed in Chapter 2). Hence, unlike the RM codes, this rule is channel
dependent.

6.2 Performance under Belief Propagation

In Chapter 2 we have seen that polar codes achieve the capacity of symmetric
channels under SC decoding with an error probability decaying exponentially
in the square root of the blocklength (for sufficiently large blocklengths). But
Theorem 2.12 does not state what lengths are needed in order to achieve the
promised rapid decay in the error probability nor does it specify the involved
constants. Indeed, for moderate lengths polar codes under SC decoding are
not record breaking. In this section we show various ways to improve the
performance of polar codes by considering belief propagation (BP) decoding.
BP was already used in [83] to compare the performance of polar codes based
on Arikan’s rule and RM rule. For all the simulation points in the plots the
95% confidence intervals are shown. In most cases these confidence intervals
are smaller than the point size and are therefore not visible.

6.2.1 Successive Decoding as a Particular Instance of BP

For communication over a binary erasure channel (BEC) one can easily show
the following.

Lemma 6.5 (SC Decoder as instance of BP Decoder for the BEC). Decoding
the bit U; with the SC decoder is equivalent to applying BP with the knowledge
of Uy, ...,U;_1 and all other bits unknown (and a uniform prior on them).
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We conclude that if we use a standard BP algorithm (such a decoder
has access also to the information provided by the frozen bits belonging to
Uis1,...,Un_1) then its performance is in general superior to that of the SC
decoder. Indeed, it is not hard to construct explicit examples of codewords
and erasure patterns where the BP decoder succeeds but the SC decoder does
not. The inclusion is hence strict. Figure 6.4 shows the simulation results for
the SC, the BP and the MAP decoders when transmission takes place over the
BEC. As we can see from these simulation results, the performance of the BP
decoder lies roughly half way between that of the SC decoder and that of the
MAP decoder.

For the BEC the scheduling of the individual messages is irrelevant to the
performance as long as each edge is updated repeatedly until a fixed point
has been reached. For general B-DMCs the performance relies heavily on
the specific schedule. We found empirically that a good performance can be
achieved by the following schedule. Update the messages of each of the n
sections of the trellis from right to left and then from left to right and so on.
Each section consists of a collection of Z shaped subgraphs. We first update the

Pg RN Pg
T 10}
102F 102}
1073t 1073}
10 10
035 040 045 R 035 040 045 R
Pp T 71" Pp
10t} 10 F
102} e 102f
103} 108+
10741 1074}
035 040 045 R 035 040 045 R

Figure 6.1: Comparison of (i) SC and (ii) BP decoder in terms of block error
probability, when transmission takes place over the BAWGNC(o = 0.97865). The
performance curves are shown for n = 10 (top left), 11 (top right), 12 (bottom
left), and 13 (bottom right).

lower horizontal edge, then the diagonal edge, and, finally, the upper horizontal
edge of each of these Z sections. In this schedule the information is spread
from the variables belonging to one level to its neighboring level. Figure 6.1
shows the simulation results for the SC decoder and the BP decoder over the
binary input additive white Gaussian noise channel (BAWGNC) of capacity
%. Again, we can see a marked improvement of the BP decoder over the SC
decoder.
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6.2.2 Overcomplete Representation: Redundant Trellises

For the polar code of length 23 the trellis shown in Figure 2.6 is one of many
possible representations. One can check that the trellises shown in Figure 6.2
also represent the same code. In fact, for a code of block length 2", there

NI
N T INN
SSS8

0\"\0

ﬁ

—~
o
Na?

(b) ()

Figure 6.2: The factor graph (a) is the original factor graph shown in Figure 2.6.
The factor graphs (b) and (c) are obtained by cyclic shifts of the 3 sections of the
factor graph (a).

exist n! different representations obtained by different permutations of the n
layers of connections. Therefore, we can connect the vectors  and « with any
number of these representations and this results in an overcomplete represen-
tation (similar to the concept used when computing the stopping redundancy
of a code [84]). For example, the three trellises shown in Figure 6.2 can be
connected as shown in the following figure.

Figure 6.3: The three lines represent the three trellises on Figure 6.2.

For the BEC any such overcomplete representation only improves the per-
formance of the BP decoder [84]. Further, the decoding complexity scales
linearly with the number of different representations used. Keeping the com-
plexity in mind, instead of considering all the n! factorial trellises, we use only
the n trellises obtained by cyclic shifts (e.g., see Figure 6.2). The complexity of
this algorithm is O(N(log N)?) as compared to O(N log N) if we use only one
trellis. The performance of the BP decoder is improved significantly by using
this overcomplete representation as shown in Figure 6.4. We leave a systematic
investigation of good schedules and choices of overcomplete representations for
general symmetric channels as an interesting open problem.
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Figure 6.4: Comparison of (i) SC, (ii) BP, (iii) BP with multiple trellises, and
(iv) MAP in terms of block error probability, when transmission takes place over
the BEC(2). The performance curves are shown for n = 10 (top left), 11 (top
right), 12 (bottom left), 13 (bottom right).

6.2.3 Choice of Frozen Bits

For the BP or MAP decoding algorithm the choice of frozen bits as given by
Arikan is not necessarily optimal. In the case of MAP decoding we observe (see
Figure 6.5) that the performance is significantly improved by picking the frozen
bits according to the RM rule. This is not a coincidence; d,;, is maximized
for this choice. This suggests that there might be a rule for picking the frozen
indices which is optimal for BP decoding. It is an interesting open question
to find such a rule.

Ps Pr
107t f 107t
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Figure 6.5: Comparison of block error probability curves under MAP decoding
between codes picked according to Arikan's rule and the RM rule. The performance
curves are shown for n = 10 (left) and 11 (right). The RM rule performs much
better than Arikan’s rule.
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6.3 Compound Channel

Consider a communication scenario where the transmitter and the receiver do
not know the channel. The only knowledge they have is the set of channels to
which the channel belongs. Let W be a set of channels. The compound ca-
pacity of W is defined as the rate that can be reliably transmitted irrespective
of the channel that is used. The compound capacity is given by [85]

C(W) = max inf Ip(W),
P wew

where Ip(WW) denotes the mutual information between the input and out of
W with the input distribution being P. Note that the compound capacity of
W can be smaller than the infimum of the capacity of the individual channels
in W, because the capacity achieving distribution for the individual channels
might be different. If the capacity achieving distribution is the same for all
channels in W, then the compound capacity is equal to the infimum of the
individual capacities.

The question we are interested in is whether it is possible to achieve the
compound capacity using polar codes and SC decoding. We assume that the
receiver is aware of the channel. In practice this assumption is true most of
the times, because the receiver can learn the channel law by using some pilot
symbols at the beginning of the communication. For simplicity let W be a set
of symmetric B-DMCs. Therefore the compound capacity of W is equal to the
infimum of the capacities of the individual channels.

In the following we provide simple bounds which shows that polar codes
cannot achieve the compound capacity using SC decoding. For further details
please refer to [86].

Theorem 6.6 (Compound Capacity of Polar Codes). Let W denote a set of

B-DMCs. Let W](Vi) be the channel defined in Chapter 2. Let Cpsc(W) denote
the compound capacity achieved by polar codes using SC decoding. For any
N =2",

N-1

E : : (4)
<
Cp,gc(W) ~ — W}reli\/ [(WN ),
N-1
: (4)
> — .
Cp,sc(W) = ?0 W}Tg/v(l Z(Wy")

It can be shown that the bounds are monotonic in N. The polarization
phenomenon implies that both bounds converge to the same value as N — oc.
Note that if the channels in the set WV are degraded, then the infimum is always
obtained by the worst channel and hence the compound capacity is equal to
the capacity of the worst channel.

Example 6.7 (Compound Capacity for BEC(0.5) and BSC(0.11002)). Let
W = {BEC(0.5), BSC(0.11002)}. The compound capacity of W is 5. Using

2
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Theorem 6.6, we obtain the following bounds on the compound capacity of polar
codes using SC' decoding.

n=0| 1 | 2 | 3 | 4 | 5 | 6
0.5000 | 0.4818 | 0.4818 | 0.4818 | 0.4818 | 0.4817 | 0.4816
0.3742 | 0.4073 | 0.4266 | 0.4402 | 0.4491 | 0.4558 | 0.4609

These results suggest that the numerical value of Cp go(BSC(0.11002), BEC(0.5))
s somewhere close to 0.4816.

Similar bounds can be derived for source coding. Let us state some inter-
esting open questions. In Chapter 5, we have considered polar codes based on
general matrices GG in order to improve the exponent. But perhaps this gen-
eralization is also useful in order to increase the compound capacity of polar
codes. It is also interesting to inquire why polar codes are sub-optimal with
respect to the compound capacity. Is this due to the codes themselves or is it
a result of the sub-optimality of the decoding algorithm.

6.4 Non-Binary Polar Codes

One of the most important generalizations is the construction of non-binary
polar codes. Polar codes for g-ary channels were constructed when ¢ is either a
prime or a power of prime in [70]. These codes achieve the symmetric mutual
information (4.10) for the g-ary channel. Therefore, the open problem here is
the construction of polar codes for any g-ary (not necessarily prime or power
of prime) B-DMC.

Non-binary codes play an important role in source coding too. Here, the
test channel is a ¢-DMC which implies that the reconstruction alphabet is ¢-
ary. Let W : X — ), where X = {0,...,q— 1} is the reconstruction alphabet
and ) is the source alphabet. Let d : ) x X — R™ be the distortion function.
The symmetric rate-distortion trade-off for g-ary sources is given by

Ry(D) = min I(Y; X). (6.1)

p(y):Ep[d(y,)]<D.,p(y)=Py (y),p(z)=%

The other open problem is the construction of non-binary codes for g-ary
sources. For binary sources we have seen that we can achieve the symmetric
rate-distortion bound and there is good reason to believe that an equivalent
result holds for g-ary sources.

We have seen in Section 4.5 that achieving capacity for asymmetric chan-
nels, degraded broadcast channels as well as multiple access channels can all
be mapped to achieving symmetric mutual information for ¢-ary channels.
Using similar reasoning we can show that achieving Shannon’s rate-distortion
bound for asymmetric sources can be mapped to achieving the symmetric
rate-distortion trade-off for non-binary sources.
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6.5 Matrices with Large Exponent

One approach to improve the performance of polar codes was the generaliza-
tion of Chapter 5. There we constructed polar codes using larger matrices,
instead of Gy = [1?]. The performance measure that we considered was the
rate of decay of the probability of error, which we referred to as the exponent.
We showed that one has to consider large matrices, ¢ > 15, to improve the ex-
ponent. We provided an explicit family of matrices based on BCH codes which
achieves the best exponent for ¢ = 16. An interesting theoretical question is
to find matrices that achieve the best possible exponent for any /.

Even though it is discouraging that the exponent cannot be improved by
using small, lets say ¢ = 3,4 matrices, we should take these results with a grain
of salt. The exponent is concerned with the asymptotic performance and it
may not imply that a code with a larger exponent has a better performance
for practical lengths. Hence, it is interesting to explore whether the exponent
provides a qualitative measure at smaller lengths.

6.6 Complexity Versus Gap

We have seen that the complexity of encoding and decoding algorithms for
polar codes scale as O(N log(N)). How does the complexity grow as a function
of the gap to the capacity or the rate-distortion bound? This is a much more
subtle question.

To see what is involved in belng able to answer this question, consider
the Bhattacharyya constants Z\ 2 Z(W{). Let Z\? denote a re-ordering of

these values in an increasing order, i.e., Z](V) < Z](\Z,H), , =0,...,N —2. Define
-1 ' N—-1 '
S MO = S V- )
7=0 j=N—i

For the channel coding problem we then get an upper bound on the block
error probability Py as a function the rate R of the form

P

(Py, R) = (my. 57).
On the other hand, for the source coding problem, we get an upper bound on
the distortion Dy as a function of the rate of the form

(@ *

(Dn,R) = (D + My, —).
N

Now, if we knew the distribution of Z](\?s it would allow us to determine the
rate-error probability and the rate-distortion performance achievable for this
coding scheme for any given length. The complexity per bit is always ©(log N).
Unfortunately, the computation of the quantities mgv and M z(v) is likely to be

a very challenging problem.



Exchange of Limits

The preceding part of this thesis was concerned with polar codes. We now
move on to a different topic. This is the first of two standalone chapters
dealing with graphical models in communications. In this chapter, we discuss
an important problem in the analysis of message passing decoders for low-
density parity-check (LDPC) codes. We discuss only the main ideas behind
the proofs but skip the details. For the complete proofs please refer to [87].

7.1 Introduction

Consider transmission over a binary-input memoryless output-symmetric (BMS)
channel using a low-density parity-check (LDPC) code and decoding via a
message-passing (MP) algorithm. We refer the reader to [51] for an introduc-
tion to the standard notation and an overview of the known results. It is well
known that, for good choices of the degree distribution and the MP decoder,
one can achieve rates close to the capacity of the channel with low decoding
complexity [31].

The standard analysis of iterative decoding systems assumes that the block-
length n is large (tending to infinity) and that a fixed number of iterations is
performed. As a consequence, when decoding a given bit, the output of the de-
coder only depends on a fixed-size local neighborhood of this bit and this local
neighborhood is tree-like. This local tree property implies that the messages
arriving at nodes are conditionally independent, significantly simplifying the
analysis. To determine the performance in this setting, we track the evolution
of the message-densities as a function of the iteration. This process is called
density evolution (DE). Denote the bit error probability of a code G after ¢
iterations by P,(G, €, ¢), where € is the channel parameter. Then DE computes
limy_oo E[P(G, €, £)]. If we now perform more and more iterations then we
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get a limiting performance corresponding to

ZIH& ]\}iir})OE[Pb(G,e,E)]. (7.1)
It is known that not all computation graphs of depth ¢ can be trees unless
¢ < clog(N), where ¢ is a constant that only depends on the degree distri-
bution. For a (di,d;)-regular degree distribution pair a valid choice of ¢ is
c(dy,dy) = m, [88]. In practice, this condition is rarely fulfilled;
standard blocklengths measure only in the hundreds or thousands but the
number of iterations that have been observed to be useful in practice can
easily exceed one hundred.
Consider therefore the situation where we fix the blocklength but let the
number of iterations tend to infinity, i.e., we consider the limit lim,_., E[P,(G, €, £)].

Now take the blocklength to infinity, i.e., consider

]\}iir;ogllrgo E[Py(G, ¢, £)]. (7.2)

What can we say about (7.2) and its relationship to (7.1)7

Consider the belief propagation (BP) algorithm. It was shown by McEliece,
Rodemich, and Cheng [89] that one can construct specific graphs and noise
realizations so that the messages on a specific edge either show a chaotic be-
havior or converge to limit cycles. In particular, this means that the messages
do not converge as a function of the iteration. For a fixed length and a discrete
channel, the number of graphs and noise realizations is finite. Therefore, if for
a single graph and noise realization the messages do not converge as a function
of ¢, then it is likely that also lim, ., E[P,(G, ¢, ¢)] does not exist (unless by
some miracle the various non-converging parts cancel). Let us therefore con-
sider limsup,_ . E[P(G, ¢, ¢)] and liminf, . E[P,(G, ¢, £)]. What happens if
we increase the blocklength and consider limy o limsup,_, . E[P,(G, €, ¢)] and
limy oo liminf,_, o E[Py(G, €, £)]?

The empirical observations strongly suggest that the exchange of limits is
valid for all channel parameters e, i.e.,

lim limsup E[BP,(G, ¢, ¢)] = lim liminf E[F,(G,¢,¢)] = lim lim E[B(G, ¢, ¢)].

N—oo  yp_ N—oo f(—o0 l—o00 N—o0

However, in the following we limit our discussion to channel parameters e for
which the DE limit (7.1) goes to zero. In this case DE promises bit error
probabilities that tend to zero.

Instead of considering the simple exchange of limits one can consider joint
limits where the iteration is an arbitrary but increasing function of the block-
length, i.e., one can consider limy_.o, E[B5(G, ¢, ¢(N))]. Although our argu-
ments extend to this case, for the sake of simplicity we restrict ourselves to
the standard exchange of limits discussed above. In the same spirit, although
some of the techniques and statements we discuss extend directly to the irreg-
ular case, in order to keep the exposition simple we restrict our discussion to
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the regular ensemble LDPC(/NV, d;,d,). All the difficulties encountered in the
analysis are already contained in this case.

Let us proceed with a few definitions. Consider a MP algorithm with
message alphabet M. Assume that the algorithm is symmetric in the sense of
[51][Definition 4.81, p. 210], so that for the purpose of analysis it is sufficient
to restrict our attention to the all-one codeword assumption.

The tools we develop can be applied to a variety of MP decoders. To be
concrete, we discuss below a few examples. In the following, by reliability of
a message p we mean its absolute value |u|. This means that the message —pu
and p have the same reliability.

Definition 7.1 (Bounded MS and BP Decoders). The bounded min-sum
(MS(M)) decoder and the bounded belief propagation (BP(M)) decoder, both
with parameter M € R, are identical to the standard min-sum and belief
propagation decoder except that the reliability of the messages emitted by the
check nodes is bounded to M before the messages are forwarded to the variable
nodes.

As another standard example we consider transmission over the BSC(e)
and decoding via the so-called Gallager Algorithm B (GalB).

Definition 7.2 (Gallager Algorithm B). Messages are elements of {£1}. The
initial messages from the variable nodes to the check nodes are the values re-
cetved via the channel. The decoding process proceeds in iterations with the
following processing rules:

Check-Node Processing: At a check node the outgoing message along a
particular edge s the product of the incoming messages along all the
remaining edges.

Variable-Node Processing: At a variable node the outgoing message along
a particular edge is equal to the majority vote on the set of other incoming
messages and the received value. Ties are resolved randomly.

Before moving on to the main statement we review some results about
expansion properties of random bipartite graphs that we need for our analysis.
The analysis itself is split into two categories based on the degrees of the
variable nodes. Section 7.3 deals with large variable degrees and Section 7.4

deals with small ones. We end the chapter by discussing some extensions
(Section 7.5).

7.2 Expansion

Burshtein and Miller realized that one can use expansion arguments to show
that MP algorithms have a fixed error correcting radius [90]. Although their
results can be applied directly to our problem, we get stronger statements by
using the expansion in a different manner.
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The advantage of using expansion is that the argument applies to a wide
variety of decoders and ensembles. On the negative side, the argument can
only be applied to ensembles with large left degree. Why do we need large left
degrees to prove the result? There are two reasons why a message emitted by a
variable node can be bad (where bad in the present context means incorrect).
This can be due to the received value, or it can be due to a large number of bad
incoming messages. If the degree of the variable node is large then the received
value plays only a minor role (think of a node of degree 1000; in this case the
received value has only a limited influence on the outgoing message and this
message is mostly determined by the 999 incoming messages). Suppose that
the left degree is large and ignore therefore for a moment the received message.
In this case large expansion helps for the following reason.

Consider a fixed iteration ¢. Let B, denote the set of bad variable nodes
in iteration ¢ (the set of variable nodes that emit bad messages in iteration ¢).
Perform one further round of MP. In the next iteration only check nodes that
are connected to By can send bad messages. Therefore, for a variable to belong
to Byi1, it must be connected to a large number of bad check nodes, and hence
must share many check-node neighbors with variables in B,. Suppose that B,
and By, are sufficiently small for expansion to be valid on their union and
that the graph has large expansion. Then the number of common check-node
neighbors of B, and By, cannot be too large (since otherwise the expansion
would be violated). This limits the maximum relative size of By, with respect
to By. In other words, once By has reached a sufficiently small size (so that the
expansion arguments can be applied), the number of errors quickly converges
to zero with further iterations. In order to achieve good bounds the above
argument has to be refined, but it does contain the basic idea of why large
expansion helps.

On the other hand, if variable nodes have small degrees, then the received
values play a dominant role and can no longer be ignored. As a consequence,
for small degrees expansion arguments no longer suffice by themselves.

Definition 7.3 (Expansion). Let G be an element from LDPC(N,d;,d;).

1) Left Ezpander: The graph G is a (di,d, a,7) left expander if for every
subset V of at most alN variable nodes, the size of the set of check nodes that
are connected to V is at least y|V|d;.

2) Right Ezpander: Let M = Ng—i, denote the number of check nodes. The
graph G is a (di, dy, o, 7y) right expander if for every subset C of at most aM
check nodes, the size of the set of variable nodes that are connected to C is at
least |C|d,.

Why are we using expansion arguments if we are interested in standard
LDPC ensembles? It is well known that such codes are good expanders with
high probability [90].

Theorem 7.4 (Expansion of Random Graphs [90]). Let G be chosen uniformly
at random from LDPC(n,d1,d;). Let amayx be the positive solution of the equa-
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tion

d; —1 d
1 r

Let X(d;,d;,a,7y) = {G € LDPC(n,d1,d;) : G € (dy,dy, o, 7) left expander}.
Ifv<1-— d—ll then auax s strictly positive and for 0 < a < Quax

P{G € X(dy,dy, ,7)} > 1 — O(N~(@=1=1), (7.3)

Let M = N%. We get the equivalent result for right expanders by exchanging
the roles of d1 and d, as well as N and M.

In the proofs we also use the following concentration theorem.

Theorem 7.5 (Concentration Theorem [51, p. 222]). Let G, chosen uniformly
at random from LDPC(N, X, p), be used for transmission over a BMS(¢) chan-
nel. Assume that the decoder performs { rounds of message-passing decoding
and let PMP(G,¢,0) denote the resulting bit error probability. Then, for any
given § > 0, there exists an o > 0, a = a(\, p, d), such that

P{|P)"" (G, e, 0) — Erppovag [P (G e, 0)] | > 0} < e V.

7.3 Case of Large Variable Degree

Let us now show that for codes with sufficient expansion the exchange of limits
is indeed valid below the DE decoding threshold. The key to what follows is
to find a proper definition of a “good” pair of message subsets.

Definition 7.6 (Good Message Subsets). For a fized (dy, d,)-reqular ensemble
and a fized MP decoder, let 3, 0 < f < 1, be such that f(d; — 1) € N. A4
“good” pair of subsets of M of “strength” [ is a pair of subsets (Gy,G.) so
that

e if at least 3(dy — 1) of the (dy — 1) incoming messages at a variable node
belong to G, then the outgoing message on the remaining edge is in G,

e if all the (4, — 1) incoming messages at a check node belong to G. then
the outgoing message on the remaining edge s in G,

e if at least 5(dy — 1) + 1 of all 4y incoming messages belong to G, then
the variable s decoded correctly

We denote the probability of the bad message set M\Gy after { iterations of
DE by plt)
Y Ppaa-
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Theorem 7.7 (Expansion and Bit Error Probability). Consider an LDPC
(N,dy,d,) ensemble, transmission over a family of BMS(e) channels, and a
symmetric MP decoder. Assume that this combination has a threshold under
DE, call it éMP. Let 3 be the strength of the good message subset. If 3 < 1 and
if for some € < €M we have limsup,_. pgﬁbd =0 then

]\;1_1;%0 liin sup Erppovaan [Py (G, €, 0)] = 0. (7.4)
Proof. Here is the idea of the proof: we first run the MP algorithm for a fixed
number of iterations such that the bit error probability is sufficiently small, say
p. If the length N is sufficiently large then we can use DE to gauge the number
of required iterations. Then, using the expansion properties of the graph, we
show that the probability of error stays close to p for any number of further
iterations. In particular, we show that the error probability never exceeds cp,
where ¢ is a constant, which only depends on the degree distribution and (.
Since p can be chosen arbitrarily small, the claim follows.

Here is the fine print. Define

e

Let 0 < o < Qpax(7y), where amax(7y) is the function defined in Theorem 7.4.
Let p = w and let /(p) be the number of iterations such that p](oé(g)) <

p. Since pg:zl) = 0 and p > 0 this is possible. Let P,(G,E, ¢) denote the fraction
of messages belonging to the bad set for a given code G and noise realization E
after ¢ iterations. Let () denote the space of code and noise realizations. Let
A C Q) denote the subset

A={(G,E) C Q| F(G,E ((p)) < 2p}. (7.6)
From (the Concentration) Theorem 7.5 we know that
P{(G,E) & A} < 2¢ NV (7.7)

for some strictly positive constant K = K(dy,d,,p). In words, for most (suffi-
ciently large) graphs and noise realizations the error probability after a fixed
number of iterations behaves close to the asymptotic ensemble. We now show
that once the error probability is sufficiently small it never increases substan-
tially thereafter if the graph is an expander, regardless of how many iterations
we still perform.

Let Vi C [n] be the initial set of bad variable nodes. More precisely, Vj is
the set of all variable nodes that are bad in the ¢(p)-th iteration. Consider a
variable node and a fixed edge e connected to it: the outgoing message along
e is determined by the received value as well as by the (d; — 1) incoming
messages along the other (d; — 1) edges. Recall that if 5(d; — 1) of those
messages are good then the outgoing message along edge e is good. Therefore,
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if a variable node has 3(d; — 1) + 1 good incoming messages, then all outgoing
messages are good. We conclude that for a variable node to be bad at least
d; — 3(dy — 1) incoming messages must be bad. Therefore, it should connect
to at least d; — #(d; — 1) bad check nodes. Recall that 2pN is number of bad
messages in the ¢(p)-th iteration from check to variable nodes. Therefore,

2
< L
d; — f(d1 — 1)
As a worst case we assume that all its outgoing edges are bad. Let the set
of check nodes connected to V) be Cy. These are the only check nodes that

potentially can send bad messages in the next iteration. Therefore, we call Cj
the initial set of bad check nodes. Clearly,

|Col < da|Vol. (7.9)

Vo

N (7.8)

We want to count the number of bad variables that are created in any of
the future iterations. For convenience, once a variable becomes bad we will
consider it to be bad for all future iterations. This implies that the set of bad
variables is non-decreasing.

Let us now bound the number of bad variable nodes by the following pro-
cess. The process proceeds in discrete steps. Let V;, C; denote the set of bad
variable and check nodes at the beginning of time ¢. At step t, consider the
set of variables that are not contained in V; but that are connected to at least
d; — ((d; — 1) check nodes in C; (the set of “bad” check nodes). If at time
t no such variable exists stop the process. Otherwise, choose one such vari-
able at random and add it to V;. This gives us the set V;;;. We also add
all neighbors of this variable to ;. This gives us the set C},;. By this we
are adding the variable nodes that can potentially become bad and the check
nodes that can potentially send bad messages to V; and C; respectively. As
discussed above, for a good variable to become bad it must be connected to
at least d; — (d; — 1) check nodes that are connected to bad variable nodes.
Therefore, at most F(d; — 1) new check nodes are added in each step. Hence,
if the process continues then

Vil = Vil + 1, (7.10)

Cea| < [Cf + B(dr — 1). (7.11)
By assumption, the graph is an element of X'(dy,d,,«,7). Initially we have
Vol < dlfﬁQ(’;ﬁl)N = ;‘(Eidlljﬁl()éll:g))]\f < aN. Therefore, as long as |V;| < aN,

yd1 [Vi] < |Cl, (7.12)

since C; contains all neighbors of V;. Let T denote the stopping time of the
process, i.e., the smallest time at which no new variable can be added to V;.
We will now show that the stopping time is finite. We have

(7.10)

(7. (7.11)
Y ([Vol + ) =" 7yd1|V{]

12) (7.9)
< |G| < |Gl +t68(dr = 1) < dif Vol +t6(dy — 1).
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: N |Voldy (1—7)
Solving for t this gives us T' < ,@’Tmll). Therefore,
Voldi (1 — (7.8) 2
Vil < RBUZ0) ) P N_aN,  (113)
vd1 — B(dr — 1) vd1 — B(dr — 1)

The whole derivation so far was based on the assumption that |V;| < an for
0 <t <T. But as we can see from the above equation, this condition is indeed
satisfied (|V;] is non-decreasing and |Vy| < alV).

Putting all these things together, we get

E[PM" (G, €, 0)] =E[P)'"(G,E, €)(Licryea; + Licrygay)]
<E[P}"(G,E, ) Lycryea Licer(aaamy]+

Apply limsup,_, ., on both sides of the inequality. According to (7.13) the first
term on the RHS is bounded by a. For the second term, since v < 1 — d—ll, we

know from Theorem 7.4 that it is upper bounded by O(n~(“0=7=1) For the
third term we know from (7.7) that it is bounded by 2¢KNP* for some strictly
positive constant K = K(d;,d,,p). Therefore, if we subsequently apply the
limit limsupy_, ., then we get

lim sup lim sup E[PMY (G, ¢, £)] < a.

N—oo {—o0

Since this conclusion is valid for any 0 < a < qpay, it follows that

lim limsup E[PMY (G, ¢, £)] = 0.

N—oo  y 0o
]

The proof idea is somewhat different from the one used in [90]. We first
perform a small number of iterations to bring the error probability down to
a small value. But rather than asking that the error probability decreases to
zero by performing a sufficient number of further iterations, we only require
that it stays small. The payoff for this less stringent requirement is that the
necessary conditions are less stringent as well. The following theorem is very
much in the spirit of [90].

Theorem 7.8 (Expansion and Block Error Probability). Consider an LDPC
(N,dy,dy) ensemble, transmission over a family of BMS(e) channels, and a
symmetric MP decoder. Assume that this combination has a threshold under
DE, call it €M, Let 3 be the strength of the good message subset. If 3 < 9=2

d;—1

and if for some € < M we have limsup,_, pgfz)d =0 then

lim limsup Ezppova.a) [Ph (G, € 0)] = 0. (7.14)

N—oo  y00o
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As in Theorem 7.7 we first perform a fixed number of iterations to bring
down the bit error probability below a desired level. We then use Theorem 7.9,
a modified version of a theorem by Burshtein and Miller [90], to show that for
a graph with sufficient expansion the MP algorithm decodes the whole block
correctly once the bit error probability is sufficiently small.

Theorem 7.9 ([90]). Consider a (dy, dy, v, 7y)-left expander. Assume that 0 <
B<1,8(1-1)€N, and 322 < 2vy—1. Let Ng < °-N. If at some iteration
¢ the number of bad variable nodes is less than Ny then the MP algorithm will
decode successfully.

Discussion: Theorem 7.8 has a stronger implication (the block error prob-
ability tends to zero as a function of the iteration, assuming the bit error
probability has reached a sufficiently small value) than Theorem 7.7 (here
we are only guaranteed that the bit error probability stays small once it has
reached a sufficiently small value). But it also requires a stronger condition.

Let us now apply the previous theorems to some examples.

Example 7.10 (BSC and GalB Algorithm). For this algorithm M = {—1,+1}.
Pick G, = G. = {+1}. Assume that the received (via the channel) value is
incorrect. In this case at least [(dy — 1)/2] 4+ 1 of the (dy — 1) incoming mes-
sages should be good to ensure that the outgoing message is good and at least
[(d1 — 1)/2] + 2 of the &1 incoming messages should be good to ensure that
the variable is decoded correctly. Therefore, 3 = %. If the probability
of the bad message set goes to 0 in the DE limit, then from Theorem 7.7 the
limits can be exchanged if d —1 > 1+ [(dy — 1)/2], i.e., for dy > 5 and from
Theorem 7.8, the block error probability goes to zero if dy—2 > 1+[(dy—1)/2],
i.e., fordy > 1.

The key to applying expansion arguments to decoders with a continuous
alphabet is to ensure that the received values are no longer dominant once DE
has reached small error probabilities. This can be achieved by ensuring that
the input alphabet is smaller than the message alphabet. Let us give a few
examples here.

Example 7.11 (MS(5) Decoder). Consider the (d; > 5,d,) ensemble and fix
M = 5. Let the channel log likelihoods belong to [—1,1]. It is easy to check
that in this case we can choose G, = G = [4,5] and that it has strength § < 3.
Therefore, if the probability of the bad message set goes to 0 under DE, then
according to Theorem 7.7 the limits can be exchanged. If instead we consider
(dy > 7,d;) then § < % Hence, according to Theorem 7.8 the block error
probability tends to 0.

Example 7.12 (BP(10) Decoder). Let d; = 5 and d, = 6 and fix M = 10.
Let the channel log likelihoods belong to [—1,1]. We claim that in this case the
message subset pair G, = [9,10], Ge = [16,41] is good with strength § = 3.
This can be seen as follows: If all the incoming messages to a check node belong
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to G, then the outgoing message is at least 14.39, which is mapped down to 10.
Suppose that at a variable node at least 3(= B(dy — 1)) out of the 4 incoming
messages belong to G,. In this case the reliability of the outgoing message is
at least 16 = 3 x 9 — 10 — 1. The maximum reliability is 41. Moreover, if
all the incoming messages belong to G, then the variable is decoded correctly.
Therefore if the probability of outgoing messages from check nodes being in
[9,10] goes to 1 in the DE limit then from Theorem 7.7, the limits can be
exchanged.

It is clear that Theorems 7.7 and 7.8 apply to an infinite variety of decoders.
But in all these cases the required variable node degrees are rather large. In
the next section we discuss an alternative method which can sometimes be
applied to ensembles with small variable-node degrees.

7.4 Case of Small Variable Degree

As we have mentioned before, if the left degree is small then the received value
retains a large influence on emitted messages regardless of the number of iter-
ations. In this case expansion arguments no longer suffice to prove the desired
result. Although the results below can be extended to more general scenar-
ios, we limit the subsequent discussion to the Gallager decoding algorithm B
(GalB). All the complications are already present for this case.

Lemma 7.13 (Exchange of Limits for GalB and ¢ > 3). Consider transmission
over the BSC(e) using random elements from the (d, d,)-regular ensemble and
decoding by the GalB algorithm. If € < €“C4B then

lim limsup E[RC5(G, e, 0)] =

N—oo  y0o

where €*9B s the smallest parameter € for which a solution to the following

fized point equation exists in (0, €].
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2

where y = (1 — x)%=~1,

Discussion: Note that the threshold €““2® introduced in the preceding
lemma is in general smaller than the DE threshold ¢“*®, although not much
smaller for large values of d, (see Tables 7.1 and 7.2). The extension of the
result to channel values all the way up to the DE threshold €%2'B is a challenging
open problem.
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d, | rate 6Sha 6GaLlB 6LGalB
410.25 ~ 0.2145 | = 0.1068 | ~ 0.0847
5104 ~ 0.1461 | = 0.06119 | =~ 0.0506
6|0.5 ~ 0.11002 | = 0.0394 | ~ 0.0336
7105714 | = 0.08766 | ~ 0.02751 | ~ 0.02398
8 10.625 | ~0.07245 | ~ 0.02027 | ~ 0.01795
910.667 | ~0.06141 | ~ 0.01554 | ~ 0.01395
10 | 0.7 ~ 0.05324 | = 0.01229 | =~ 0.01115

Table 7.1: Threshold values for some degree distributions with d; = 3.

d, | rate (Sha (GalB (LGalB
51 0.2 ~ (0.1461 ~ 0.0464 | ~ 0.0399
6 | 0.333 ~ 0.11002 | = 0.0292 | =~ 0.0258
7 10.4286 | =~ 0.08766 | ~ 0.0200 | ~ 0.018
8105 ~ 0.07245 | = 0.0146 | ~ 0.0133
91 0.556 ~ 0.06141 | =~ 0.0111 | = 0.0102

10 | 0.6 ~ 0.05324 | =~ 0.0087 | ~ 0.0081

Table 7.2: Threshold values for some degree distributions with d; = 4.

In what follows we mainly discuss the case of the GalB algorithm and
d; = 3. Fix 0 < e < ¥94B We prove that for every a > 0 there exists
an N(a,€) so that limsup,_ . E[PF*B(G, ¢, ¢)] < a for N > N(a,¢). The
proof proceeds in two phases akin to the proof for large degrees. However, the
ideas are quite different because as mentioned before, expansion arguments by
themselves do not work for small degrees.

We proceed by a sequence of simplifications for the algorithm, ensuring
in each step that the modified algorithm is an upper bound on the original
algorithm.

Linearized Gal B

Without loss of generality we can assume that the all-one codeword was sent.
Therefore, the message 1 signifies in the sequel a correct message, whereas —1
implies that the message is incorrect. The analysis is simplified considerably
by linearizing the decoding algorithm in the following way.

Definition 7.14 (Linearized GalB). The linearized GalB decoder, denoted by
LGalB, is defined as follows: at the variable node the computation rule is same
as that of the GalB decoder. At the check node the outgoing message is the
minimum of the incoming messages.

Discussion: The LGalB is not a practical decoding algorithm but rather a
convenient device for analysis; it is understood that we assume that the all-
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one codeword was transmitted and that quantities like the error probability
refer to the variables decoded as —1. With some abuse of terminology, we
nevertheless refer to it as a decoder.

The LGalB decoder is monotone also with respect to the incoming messages
at check nodes. Moreover, it satisfies the following property.

Lemma 7.15 (LGalB is Upper Bound on GalB). For any graph G, any noise
realization E, any starting set of “bad” edges, and any ¢, we have PS*B(G,E, () <
PLGAB(G E, (), where P.(G,E,{) denotes the fraction of erroneous messages af-
ter { iterations of decoding.

From the above lemma it suffices to prove the exchange of limits for the
linearized algorithm. Note that ¢*“2!® as defined in Lemma 7.13 is the thresh-
old of the LGalB algorithm. We will prove that for every 0 < e < %28 and
every a > 0 there exists an N(a,¢) so that limsup,_, . E[PFB(G €, ()] <
for N > N(a,¢€). As we will see later, the monotonicity property of LGalB
considerably simplifies the analysis. But the price paid for the simplification
is that the technique works only for € < e“G#B which is slightly smaller than
the DE threshold.

Marking Process

The marking process allows us (i) to consider an asynchronous version of LGalB
(i.e., the schedule of the computation is no longer important) and (ii) ensures
that we are dealing with a monotone increasing function.

More precisely, we split the process into two phases: we start with LGalB
for ¢(p) iterations to get the error probability below p; we then continue the
marking process associated with an infinite number of further iterations of
LGalB. This means that we mark any variable that is bad in at least one
iteration ¢ > {(p). Clearly, the union of all variables that are bad at at least
one point in time ¢ > ¢(p) is an upper bound on the maximum number of
variables that are bad at any specific instance in time.

The standard schedule of the LGalB is parallel, i.e., all incoming messages
(at either variable or check nodes) are processed at the same time. This is the
natural schedule for an actual implementation. For the purpose of analysis it
is convenient to consider an asynchronous schedule.

Here is how the general asynchronous marking process proceeds. We are
given a graph G and a noise realization E. We are also given a set of marked
edges. These marked edges are directed, from variable node to check node.
At the start of the process mark the variable nodes that are connected to the
marked edges. Declare all other variables and edges as unmarked. Unmarked
edges do not have a direction. The process proceeds in discrete steps. At each
step we pick a marked edge and we perform the processing described below.
We continue until no more marked edges are left. Here are the processing
rules:

If the marked edge e goes from variable to check:
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e Let ¢ be the check node connected to e. Declare e to be unmarked but
mark all other edges connected to c; orient these marked edges from
check to variable;

If the marked edge e goes from check to variable:

e Let v be the connected variable node. If v has a good associated channel
realization and v is unmarked then mark v and declare e to be unmarked.

e Let v be the connected variable node. If v has an associated bad chan-
nel realization or if v has an associated good channel realization but is
marked: (1) mark v and all its outgoing edges; (ii) orient the edges from
variable to check; (iii) unmark e.

Let M(G,E,S) denote the set of marked variables assuming that we start
with the set of marked edges S and that we run the asynchronous marking
process. Let M(G,E,S) = |M(G,E,S)|. As a special case, let M(G,E, ¢) denote
the set of marked variables at the end of the process assuming that the initial
set of marked edges is the set of bad edges after ¢ rounds of LGalB. As before,
M(G,E, () = [M(G,E, ?)]|.

It is not hard to see that for any ¢ > ¢, PLG¥B(G ¢ ¢) < M(G,E,(')/N:
for ¢ = ¢’ both processes start with the same set of bad edges and both are
operating on the same graph and noise realization. At the check-node side
the processing rules are identical. At the variable-node side both processes
also behave in the same way if they encounter a variable node with a bad
channel realization. The difference lies in the behavior when they encounter
a variable node with a good channel realization. In such a case the outgoing
message for the LGalB is bad only if there are two bad messages entering at
the same time instance. The asynchronous marking process algorithm declares
the outgoing message to be bad if there are two incoming bad messages, even
if the two messages might correspond to different time instants as measured
by the parallel schedule. We conclude that for ¢/ € N

lim sup E[PF9*B (G, ¢, £)] <

1 /
mst FEM(GE ()] (7.16)

Witness

It remains to bound E[M(G,E,¢)]. The difficulty in analyzing the marking
process lies in the fact that after ¢(p) iterations the set of starting edges for
the marking process depends on the noise realization as well as the graph. Our
aim therefore is to reduce this correlated case to the uncorrelated case by a
sequence of transformations. As a first step we show how to get rid of the
correlation with respect to the noise realization.

Consider a fixed graph G. Assume that we have performed ¢ iterations
of LGalB. For each edge e that is bad in the /-th iteration we construct a
“witness.” A witness for e is a subset of the computation tree of height ¢
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for e consisting of paths that carry bad messages. We construct the witness
recursively starting with e. Orient e from check node to variable node. At any
point in time while constructing the witness associated to e we have a partial
witness that is a tree with oriented edges. The initial such partial witness is
e. One step in the construction consists of taking a leaf edge of the partial
witness and to “grow it out” according to the following rules.

If an edge enters a variable node that has an incorrect received value then
add the smallest (according to some fixed but arbitrary order on the set of
edges) edge that carries an incorrect incoming message to the witness and
continue the process along this edge. The added edge is directed from variable
node to check node. If an edge enters a variable node that has a correct received
value then add both incoming edges to the witness and follow the process along
both edges. (Note that in this case both of these edges must have carried bad
messages.) Again, both of these edges are directed from variable to check node.
If an edge enters a check node then choose the smallest incoming edge that
carries an incorrect message and add it to the witness. Continue the process
along this edge. The added edge is directed from check to variable node.
Continue the process until depth ¢. Fig. 7.1 shows an example for d; = 3,
d; = 4, and ¢ = 2. Denote the union of all witnesses for all edges that are bad

Figure 7.1: Construction of the witness for a bad edge. The dark variables
represent channel errors. The part of the tree with dark edges represents the
witness. The thick edges, including both dark and gray, represent the bad messages
in the past iterations.

in the ¢-th iteration by W(G,E, ¢). We simply call it the witness. The witness
is a part of the graph that on its own explains why the set of bad edges after
¢ iterations is bad.

How large is W? The larger ¢, the fewer bad edges we expect to see in
iteration . On the other hand, the size of the witness for each bad edge grows
as a function of /. Fortunately one can show that the first effect dominates
and that the size of the witness vanishes as a function of the iteration number.

Lemma 7.16 (Size of Witness). Consider the (3,d;)-reqular ensemble. For
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LGalB
0<e<e"™®”

1
]\}LIHOO NEHW(G? E, E)H - Oﬁ(l)'
Why do we construct a witness? It is intuitive that if we keep the witness
fixed but randomize the structure as well as the received values on the remain-
der of the graph then the situation should only get worse: already the witness
itself explains all the bad messages and hence any further bad channel values
can only create more bad messages. In the next two sections we show that
under some suitable technical conditions this intuition is indeed correct.

Randomization

A witness W consists of two parts, (i) the graph structure of W and (ii) the
channel realizations of the variables in WW. By some abuse of notation we
write W also if we refer only to the graph structure or only to the channel
realizations.

Fix a graph G and a witness W, W C G. Let &)y denote the set of all
error realizations E that give rise to W, i.e., W(G,E,¢) = W. Clearly, for all
E € & we must have W C E. In words, on the set of variables fixed by the
witness the errors are fixed by the witness itself. Therefore, the various E that
create this witness differ only on G\W. As a convention, we define &y = 0 if
W ¢ G.

Let &,y denote the set of projections of &)y onto the variables in G\W.
Let E' € &,y. Think of E' as an element of {0, 1HEWI where 0 denotes a
correct received value and 1 denotes an incorrect received value. In this way,
Ekyy is a subset of {0, 1}EWVI,

This is important: &)y, has structure. We claim that, if E' € &, then
&y also contains EL, i.e., it contains all elements of {0, 1} that are smaller
than E' with respect to the natural partial order on {0, 1}/, More precisely,
if the noise realization E' € &, gives rise to the witness VW then converting
any incorrect received value in E’ to a correct one will also give rise to WW. The
proof of the following lemma relies heavily on this property. By some abuse of
notation, let M(G,E, W), be the marking process with the edges in W as the
initial set of bad edges.

Lemma 7.17 (Channel Randomization). Fiz G and let W C G. Let Eg|]
denote the expectation with respect to the channel realizations E' in G\W. Then

Ee [M(G, (W, E) W) ligee; 3] < Eg[M(6, W, E), W)Ex [1{zee;,,}]-

Discussion: Lemma 7.17 has the following important operational signif-
icance. If we divide both sides by Eg[l{weg ], the left-hand side is the
expectation of marked variables, where the expectation is computed over all
those channel realizations that give rise to the given witness W, whereas the
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right-hand side gives the expectation over all channel realizations (outside the
witness) regardless whether they give rise to W or not. Clearly, the right-
hand side is much easier to compute, since the channel is now independent
of W. The lemma states that, if we assume that the channel outside W is
independently chosen then we get an upper bound on the size of the marked
variables.

We can now upper bound the right-hand side of (7.16) as follows.

Lemma 7.18 (Markov Inequality). Consider the (d; = 3, d;)-regular ensemble
and transmission over the BSC(e€). Let (G,E) be chosen uniformly at random.

Let £ € N and 6 > 0 so that E[|W(G,E, ()|] < 6>N. Then

E[M(GEO] < > Y P{GIP{Ew}Ex[M(G, (W,E),W)] + ON.

W:W|<ON G

Back to Expansion

Now where we have randomized the channel values we can use expansion ar-
guments to deal with the dependence on the graph. The basic idea is sim-
ple. Assume that the neighborhood of initially bad edges (at the start of the
marking process) is perfectly tree-like. This means that two bad edges never
converge on the same variable node in their future. In this case the only bad
messages emitted by a variable node are due to bad received values, but these
received values can be thought of being chosen independently from the rest of
the process. It follows that the whole marking process can be modeled as a
birth and death process. When we grow out an edge then with probability € we
encounter a variable with a bad received value. In this case, the variable emits
bad messages along its two outgoing edges and those in return each create
d, — 1 bad outgoing messages at the output of their connected check nodes. In
other words, with probability ¢ one bad edge is transformed to 2(d, — 1) bad
edges. With probability 1 — e the process along the particular edge dies. By
the stability condition of the LGalB decoder 2(d, — 1)e““B < 1. We conclude
that the expected number of newly generated children is strictly less than 1
for € < 928 Therefore the corresponding birth and death process dies with
probability 1.

Since in general the expansion of the local neighborhood is not perfectly
tree-like, using the expansion on the check node side, the above argument has
to be extended to account for this. But the gist of the argument remains the
same.

Lemma 7.19 (Upper Bound). Fiz G and W such that W C G and G is a

(d1,d;, o, y)-right expander, with v > 1 — 25?3;—11)' If W| < caN for some

¢ = c(dy,dy, €,7) then

. 1 / dl
—Eg < a—.
lim NIEE [M(G, W,E"),W)] < ag

N—oo T
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Putting It All Together

We are now ready to prove Lemma 7.13 using the results developed in the
previous sections.

Proof of Lemma 7.13. Recall that we consider a (d; = 3,d,)-regular en-
semble and that 0 < e < “C8B_ Tet ap.(7) be the constant defined in
Theorem 7.4. Note that ama.x(7y) is strictly positive since ¢ is strictly posi-
tive. Choose 0 < o < amax(7y). Let X(di,ds, a,y) denote the set of graphs
{G € LDPC(N,d;,d,) : G € (d1,dy, @, y) right expander}. From Theorem 7.4
we know that

P{C ¢ X} = on(1). (7.17)

Let ¢ = ¢(dy,dy, €, 0) be the coefficient appearing in Lemma 7.19 and define
0 = co. From Lemma 7.16 we know that there exists an iteration ¢ such that

lim iEHW(G B0 < %eﬂ. (7.18)

N—oo IV

Let N(6) be such that for N > N(0), E[[W(G,E, ()|] < 6?N.
Using Lemma 7.18, and splitting the expectation over X and its comple-
ment, we get

EM(GEN < > Y P{GIP{Ew}Be [M(G, (W, E), W)+

W W|<ON G:GEX

> P{GYP{Eew B [M(G, (W, E'),W)] + ON.

Wi W|<ON G:GZX

Consider the first term. From Lemma 7.19 we know that
d
Eg [M(G, (W,E),W)] < ad—lN + o(N). (7.19)

Consider the second term. Bound the expectation by N and remove the re-
striction on the size of the witness. This gives the bound

> ) P{GIP{&w}N.

W G:GgX

Switch the two summations and use the fact that, for a given G, each E real-
ization maps to only one WW. We get

SoP{e) Y P{Ew)= Y P{a}=Peg )

G:GgX WIWCG G:GEX

(7.17)

on(1).  (7.20)
From (7.19) and (7.20) we conclude that for N > N(0),
%E[M(G < S0 ]P’{G}]P’{SGW}<a— +ox(D) +ca

Wi W|<ON G:GEX
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< (ﬁ + c) a+on(1).

dr
If we now let N tend to infinity then we get

1 d
lim sup lim sup E[PF“*B (G, ¢, £)] <limsup NE[M(G, E /()] < <d—1 + c) a.

N—oo {—o00 N—oco r

Since this conclusion is valid for any 0 < o < aypax(7y) it follows that

lim limsup E[PFB(G, ¢, £)] = 0. O

N—oo  y0o

7.5 Extensions

The proofs can be extended to other decoders. For a given MP decoder, the
idea is to define an appropriate linearized version of the decoder (LMP) and
go through the whole machinery as done for the GalB.

For example, consider the MS(M) decoder and transmission over the BSC(e).
The channel realizations are mapped to {£1}. Let M € N, the message al-
phabet is M = {—M,..., M}. For transmission of the all-one codeword, the
linearized version of the decoder (LMS(M)) is defined as in Definition 7.14:
i.e., at the check node the outgoing message is the minimum of the incoming
messages and the variable node rule is unchanged.

One can check that the LMS algorithm defined above is monotonic with
respect to the input log-likelihoods at both the variable and check nodes and
the number of errors in the MS decoder can be upper bounded by the errors
of the LMS decoder.

Lemma 7.20 (MS(M) Decoder, BSC and d; > 3). Consider an LDPC
(N,dy,d;) ensemble and transmission over the BSC(e). Let ¢¥M5 be the chan-

nel parameter below which pg})} = 1. If e < €"M5 then

]&i_r)noo 111;1 sup E[PM5(G, ¢, )] = 0.
Example 7.21 (MS(2) and BSC). Consider communication using an LDPC
(N, 3,6) code over the BSC(e) and decoding using the MS(2) algorithm. For
this setup, the DE threshold is 0.063. The linearized decoder of this algorithm
has pgﬁ) =1 for e < 0.031. Therefore, from Lemma 7.20 the limits can be
exchanged below e.

Similar results can be obtained for the BP(M) decoder, and channels with
continuous outputs. But the analysis of these decoders is more complicated
because we have to deal with densities of messages.

Here, we only considered channel parameters below the DE threshold. But
the regime above this threshold is equally interesting. One important applica-
tion of proving the exchange of limits in this regime is the finite-length analysis
via a scaling approach [91] since the computation of the scaling parameters
heavily depends on the fact that this exchange is permissible.



Capacity of CDMA

We now get to the second topic in graphical models. In this chapter we consider
communication using a code division multiple access (CDMA) system with
binary inputs. As in the previous chapter, we discuss only the main ideas of
the proofs. The details can be found in [92].

8.1 Introduction

Code Division Multiple Access (CDMA) has been a successful scheme for re-
liable communication between multiple users and a common receiver. The
scheme consists of K users modulating their information symbols by a signa-
ture sequence (spreading sequence) of length N and transmitting the resulting
signal. The number N is sometimes referred to as the spreading gain or the
number of chips per sequence. The receiver obtains the sum of all transmitted
signals and the noise which is assumed to be white and Gaussian (AWGN).

The capacity region for continuous inputs with input power constraints
and optimal decoding has been characterized in [49]. There it is shown that
the achievable rates depend only on the correlation matrix of the spreading
coefficients. If the spreading sequences are not orthogonal then the complexity
of optimum detectors scales exponentially with the number of users. Therefore,
in practice low-complexity linear detectors [93] are considered.

Random spreading sequences were considered in the literature, because it
allows to obtain nice analytic formulas for various quantities of interest in the
large system limit (K — oo, N — o0, % = [3), see [94, 95, 96]. It also provides
qualitative insights to the problem. In practice too it is reasonable to assume
random spreading. It models the scenario where the spreading sequences are
pseudo-noise sequences having length much larger than the symbol intervals.
Then the spreading sequence corresponding to each symbol interval behaves

137



138 Capacity of CDMA

as a randomly chosen sequence. Random spreading also models the scenario
where the signal is distorted by channel fading. In [95] and [96], the authors
considered random spreading and analyzed the spectral efficiency, defined as
the bits per chip that can be reliably transmitted, for these detectors. In the
large-system limit they obtained analytical formulas for the spectral efficiency
and showed that it concentrates with respect to the randomness in the spread-
ing sequences. These results follow from the known spectrum of large random
covariance matrices. We can say that the system is reasonably well understood
for Gaussian inputs.

In practice however, the input of the user is restricted to a constellation,
say PAM or QAM. Not much is known in this case. A notable exception is
the spectral efficiency for binary input in the case of high SNR [97]. The
main reason for this disparity in understanding is that the random matrix
tools which played a central role in the analysis for Gaussian inputs are not
applicable here.

The work of Tanaka [98] is a breakthrough in the analysis of binary input
CDMA system. Using the non-rigorous “replica method”, developed for an-
alyzing random spin systems in statistical mechanics, Tanaka computed the
spectral efficiency for both optimal and sub-optimal detectors and also com-
puted the bit error rate (BER) for uncoded transmission. The analysis is
extended in [99] to include the case of unequal powers and other constella-
tions. The replica method, though non-rigorous, is believed to yield exact
results for some models in statistical mechanics [100], known an mean-field
models. The CDMA system can be viewed as one such model and hence the
conjectures are believed to be true. Some evidence to this belief is given by
Montanari and Tse [101]. Using tools developed for sparse graph codes, they
compute the spectral efficiency for some range of 3 and the formulas obtained
match with the conjectured formula of Tanaka.

In this chapter we prove various results for the binary input CDMA sys-
tems. Our approach is based on rigorous mathematical tools developed in
statistical mechanics. Our main result is an upper bound on the spectral
efficiency which matches with the conjecture of Tanaka and hence believed
to be tight. In the process we show that the spectral efficiency concentrates
around its average. We also show that the spectral efficiency is independent of
the spreading sequence distribution. Although these methods work for other
constellations including Gaussian inputs, we restrict our discussion to binary
inputs for the sake of clarity.

In Section 8.2 we introduce the statistical mechanics tool that we use along
with an example. We discuss the communication set-up and its formulation
as a statistical mechanics problem in Section 8.3. In Section 8.4 we discuss
Tanaka’s conjecture on the spectral efficiency. Our results, along with the
proof ideas, follow in the later sections. In Section 8.5 we provide concentra-
tion results for the spectral efficiency. We show that the spectral efficiency is
independent of the spreading sequence distribution in Section 8.6. Section 8.7
provides an upper bound on the spectral efficiency for all values of 5. We end
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this chapter with some extensions in Section 8.9.

8.2 Statistical Mechanics Approach

There is a natural connection between various communication systems and
statistical mechanics of random spin systems, stemming from the fact that
often in both systems there is a large number of degrees of freedom (bits or
spins), interacting in a random environment. So far, there have been applica-
tions of two important but somewhat complementary approaches of statistical
mechanics of random systems.

The first one is the very important but mathematically non-rigorous replica
method. The merit of this approach is that it allows one to obtain explicit
formulas for quantities of interest such as, conditional entropy, or error proba-
bility. The replica method has been applied to many scenarios in communica-
tion including channel and source coding using sparse graph codes, multiuser
settings like broadcast channel (see for example [102], [103], [104]) and the case
of interest here [98]: randomly spread CDMA with binary inputs.

The second type of approach aims at a rigorous understanding of the replica
formulas and has its origins in methods stemming from mathematical physics
(see [105, 106, 107]). For systems whose underlying degrees of freedom have
Gaussian distribution (Gaussian input symbols or Gaussian spins in continuous
spin systems) random matrix methods can successfully be employed. However
when the degrees of freedom are binary (binary information symbols or Ising
spins) these seem to fail. Fortunately in the later case, the recently developed
interpolation method by Guerra has had a lot of success.

As a pedagogical example, let us consider the well studied Sherrington-
Kirkpatrick (SK) model in statistical mechanics. Guerra’s interpolation method
was originally developed for this model. The system consists of N spins de-
noted by x; taking values in {£1}. The system can therefore lie in 2V possible
states. To every state T we associate a Hamiltonian or energy function, de-
noted by H(Z). One of the main postulates of statistical mechanics is that,
when the system is in equilibrium, the probability that it lies in a particular

state is proportional to e®® .2 Therefore the probability is given by
(@)
Pr(state of the system is z) = —

where Z is the normalization factor Z = 37 .y~ @ The quantity Z is
called the partition function which is in turn used to define the free energy of

'Let us point out that, as it will be shown later in this chapter, the interpolation method
can also serve as an alternative to random matrix theory for Gaussian inputs.

2In statistical mechanics it is more natural to consider e %) where § plays the role
of inverse temperature. Here, with some abuse of notation we include the negative sign in
our definition of Hamiltonian. Moreover, since the precise value of 3 is not important for
our discussion, we set § = 1.
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the system as follows. The free energy denoted by F is defined as

1
F=—logZ.
N g
Many physical properties of a system like its internal energy, specific heat, and
magnetization can be expressed in terms of free energy. Therefore, computing
the free energy has been a central topic in statistical mechanics.
For the SK model the Hamiltonian is a random function given by

1
Hz) = ——— JZZL'ZI‘,
) = S s
where J;; ~ N (0, J). The randomness is used to model the impurities in the
system. The partition function depends on {.J;;}. Therefore let us denote it
by Z({Ji;}). The free energy is then given by

F()) = 1o Z((,)).

The free energy defined above is a random quantity due to the randomness
in {J;;}. Let F(N) denote the free energy averaged over the randomness in
{Jij}, i.e.,

F(N) = Epp [F {5 1)]-

The regime of interest is the limit of large number of spins N — oo, known in
the literature as thermodynamic limit.

A common assumption in statistical mechanics is that the free energy of the
random system is self-averaging. In other words, the free energy concentrates
around its expectation. Therefore, much of the work in statistical mechanics
is concentrated on computing the average free energy in the thermodynamic
limit. Computing limy_.., F(/N) is not an easy task. The difficulty arises from
the fact that we need to compute the expectation of the logarithm of a sum
of coupled random variables (¢#(®)).

Parisi [108] developed a sequence of approximations for the free energy
using the replica method. According to the replica prediction, the free energy
for J <1 is given by?

lim F(N) = min {J{(l—m)2+/+oolog(2cosh(sz))Dz}, (8.1)

N—oco me(0,1] oo

_z2
— e 2

where Dz = N dz. We refer the reader to the book by Mézard, Parisi, and

Virasoro [109] for the details of the remarkable replica method.
The rigorous justification of Parisi’s free energy remained an open problem
for at least two decades until the invention of the interpolation method. The

3The solution for J > 1 is much more subtle and complicated. We do not need discuss
this result here.



8.2. Statistical Mechanics Approach 141

basic idea of the interpolation method is to study a system which interpolates
between the original system and a simpler one. The simpler system is usually
guessed from the solution of the replica method.

For the SK model, the Hamiltonian of the interpolated system is given as
follows. For any t € [0,1] and m € [0, 1], let H;(Z) denote the “interpolated”
Hamiltonian defined as

1
H(Z) = _ﬂﬁ Z Jijrir; — V1 — tz JiT;, (8.2)

1<j %

where J; ~ N (0, Jm). Let the corresponding free energy be denoted by F;. It
is given by

1 _
Fi=~E [log zm: ]

where the expectation is over both {J;;} and {J;}. Note that F; = F(IV), the
free energy of the original system. As t is varied from 1 to 0 the Hamiltonian
H;(Z) interpolates between the original Hamiltonian and a simpler one. The
Hamiltonian Hy(x) consists of only single spin terms and hence it can be easily
shown to be

—+00

Fo= %E[IOgH Z e"hxi] :/ log(2 cosh(Jmz))Dz.

i we{£1} —0

The free energy Fy is equal to the integral term in (8.1). This is not a
coincidence. On the other hand, the Hamiltonian H,(Z) is chosen intentionally
to result in this free energy at ¢ = 0. Using the fundamental theorem of
calculus, we can express F; as

1
dF;
Fi1=F dt—-.
1 0+ /0 I
Therefore, to compute Fi it is sufficient to know the derivative of F;. The
derivative can be expressed as
dF,  J?
— ="(1-m)*-R(t
where R(t) is a complicated quantity. Estimating R(t) is as difficult as the
original task. But the beauty of the interpolation method is that, after some
clever manipulations one can show that R(t) is the square of another real
quantity and hence R(t) > 0. Therefore, the free energy can be bounded as

F< ﬁ24j2 (1—m)*+ /+OO log(2 cosh(pm)z) Dz,

(e 9]

for any m € [0, 1] which matches with the expression in (8.1). Later, Guerra
extended this idea to obtain a sequence of bounds for the free energy that
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match with the conjectured free energy of Parisi [108] for all values of f.
Talagrand [110] extended the technique in an intelligent way to obtain lower
bounds as well and thus proving the long standing conjecture of Parisi. The
interpolation method is very powerful tool. In [106, 107] it has been used to
show the concentration of the free energy and also to show the existence of the
thermodynamic limit of the free energy.

So far in communications, the interpolation method has been developed
only for sparse graph codes (LDPC and LDGM) over binary input symmetric
channels [111, 112, 113]. We develop the interpolation method for the random
CDMA system with binary inputs. The situation is qualitatively different
than the ones mentioned above in that the “underlying graph” is complete
and the structure of the interaction between the degrees of freedom are more
complicated.

8.3 Communication Setup

The system consists of K users sending binary information symbols x), € {1},
to a common receiver. The user k has a random signature sequence s, =
(S1ky ony SNk)T, where the components s;, are i.i.d. realizations of a random
variable S. The random variable S is assumed to be symmetric, i.e., ps(s) =
ps(—s). For each time division (or chip interval) i = 1,...; N the received
signal y; is given by

K
1
Yi = —F= SikT + ony,
gD

where n; are i.i.d. realizations of A(0,1). Therefore, the noise power is 0.
The variance of S is assumed to be 1 and the scaling factor 1/v/N is introduced
so that the power (per symbol) of each user is normalized to 1.

In the sequel we write s for the NV x K matrix (s;), S for the corresponding
random matrix. We use Z to denote the vector (z1,...,7x)" and X to denote
the vector of random variables (Xi,..., Xg)'. Similarly, ¥ and Y denote
the N dimensional vectors (y1,...,yy)' and (Yi,...,Yy)' respectively. Let
px(Z) = [ [, pr(zk) denote the input distribution. The quantity of interest is

=— max I(X,;Y )
O = R i, (T 19 w0

in the large-system limit, i.e., K — 400 with % = [ fixed. It is easy to
show that the maximum is obtained for X; ~ Ber(1) [92]. We refer to Cy as
the capacity of the CDMA system. The spectral efficiency is related to the
capacity as %C’K.

Let us give a couple of reasons that justify the expectation over the spread-
ing sequences. In the case where the spreading sequences are much longer than
the symbol interval, i.e., they span many symbols, then the average over the
spreading sequences can be interpreted as the average over time. Hence, the
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expectation gives the ergodic capacity. In the case where the same spread-
ing sequence is used for every symbol, the average is still justified due to the
concentration of the capacity around its average (see Section 8.5).

Let us now collect a few formulas that will be useful in the sequel. Fix s
and consider the probability distribution

= . PX@) [ -1 2
p(z|y,s) = 700.9) exp(—5 5y — N7zsz|”) (8.4)
with the normalization factor
L NS a2
2(Gs) = 3 pxl@)e mli-yhut (8.5)

In the language of statistical mechanics, the bits x; play the role of spins.
The Hamiltonian for the state Z is given by H(Z) = —55 |y — N~—2sZ||2. The
random variables S and the Gaussian noise play the role of {J;;} for the SK-
model. The normalization factor (8.5) can be interpreted as the partition
function. In view of this it is not surprising that the free energy

1

f(g7 S) = ?IHZ(:&,S) (86>

plays a crucial role. One can easily show [92] that the free energy is related to
the mutual information as

1 1

?T(X;?\S:S)Z—ﬁ—Ews[f(Y,S)]- (8.7)
Therefore .
Ckx = _% - EY,S[f(Yv S)]? (88)

where px(Z) = 5x.

8.4 Tanaka’s Conjecture

In this section let us restrict the input distribution to be uniform, i.e., px(z) =
QLK. Using the replica method, Tanaka conjectured that the capacity of the

CDMA system is given by

lim Cx = mi .
Jim Cx = min crs(m), (8.9)

where the “replica symmetric capacity functional” is given by

crs(m) = %(1 +m) — % In \o? — +OO Dz1In(cosh(VAz 4+ \)). (8.10)
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The parameter X is defined by

_ ! (8.11)
- o2+ (1 —m) '
22
and Dz is the standard Gaussian measure Dz = ©—=dz. For a Gaussian

¥

random variable Z and any differentiable function f, using integration by
parts, one can show that

+oo +o00
/ 2f(2)Dz = f'(2)D-z.

00 _
Using this formula it is easy to show that the minimizer in (8.9) must satisfy
the fixed point condition

+oo
m= Dztanh(VAz + ). (8.12)

—00

>
>

(@) @ () @

Figure 8.1: An illustration of the behavior of solutions of (8.12). The figure (a)
shows the behavior for 3 < (s (no phase transition), where (8.12) has only one
solution for every . The figure (b) corresponds to [ > [; (phase transition),
where (8.12) has multiple solutions between the two dashed lines.

The work of Montanari and Tse [101] provides strong support to the con-
jecture at least in a regime of § without phase transitions. More precisely,
the proof is valid for § < [, where (3, is the maximal value of 3 such that
the solution of (8.12) remains unique for all o € [0,00) (see Figure 8.4). The
authors first solve the case of sparse signature sequence in the limit K — oo.
Then the dense signature sequence (which is of interest here) is recovered by
exchanging the K — oo and sparse — dense limits.

Tanaka also conjectured that the capacity in the large system limit is in-
dependent of the spreading sequence distribution, as long as the distributions
are symmetric with equal second moment and finite fourth moment.

8.5 Concentration of Capacity

In the case of a Gaussian input signal, the concentration can be deduced
from general theorems on the concentration of the spectral density for random
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matrices. But this approach breaks down for binary inputs. Using other
techniques we obtain two concentration results.

For compactness let us first introduce the following notation. Let o(X;Y |s) =
I(X,Y |S =s). We will treat 2(X;Y |s) as a function of s. Then 2(X;Y |S
arandom variable depending on S whose expectation is given by Eg[1(X;Y |

I(X;Y|S).

) is
S)| =

Theorem 8.1 (Gaussian Spreading Sequences). Consider a CDMA system
with binary inputs and let the spreading distribution be the standard Gaussian
distribution. Given € > 0, there exists an integer K1 = O(|Ine¢|) independent

of px, such that for all K > Kj,
P(X: V| §) — Esh(X; V| 8)]| > ek] < 3K,
where a(B,0,€) > 0 and is independent of K.

To prove this theorem we use powerful probabilistic tools developed by
Ledoux and Talagrand for Lipschitz functions of many Gaussian random vari-
ables [100].

Unfortunately the same tools do not apply directly to the case of other
spreading sequences. However in this case the following weaker result can be
obtained.

Theorem 8.2 (General Spreading Sequence). Consider a CDMA system with
binary inputs and let the spreading sequence distribution be symmetric with
finite fourth moment. There exists an integer K1 independent of px, such that
for all K > K,

P(X:Y | S) — Esfu(X:Y | 8)]| > K] < —;2
€
where a(3,0) > 0 and is independent of K.

To prove such estimates it is enough (by Chebycheff) to control second
moments. For the proof we use another interpolation technique developed by
Pastur, Shcherbina and Tirozzi [114, 115]. Since the concentration proofs are
mainly technical we direct the reader to [92] for their proofs.

8.6 Independence of Capacity with respect to
the Spreading Sequence Distribution

The replica method leads to the same formula for the capacity for all symmetric
spreading sequence distributions with equal second moment and finite fourth
moment. Here we rigorously show a result of that flavor for the following class
of distributions.

Class A. The distribution pg(s) is symmetric

ps(s) = ps(—s)
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and has a rapidly decaying tail. More precisely, there exist positive constants
sg and A such that Vs > s

Pr(S > s) < e A

In particular, the Gaussian and binary cases are included in this class, and
also any compactly supported distribution. We believe that a better approx-
imation of some of the error terms in our proofs would widen the class of
distributions to the one predicted by replica method.

Theorem 8.3 (Independence of Capacity with respect to Spreading Sequence
Distribution). Consider a CDMA system with binary inputs. Let Cx denote
the capacity for a spreading sequence distribution belonging to Class A. Let
CY. denote the capacity for Gaussian spreading sequence distribution having
the same second moment. Then

The proof is based on an interpolation between appropriately chosen sys-
tems. Let {r;} denote the spreading sequence realizations of distribution
belonging to class A and let {s;} denote the spreading sequences generated
from Gaussian distribution. The idea is to interpolate between the two systems
using spreading sequences of the form

vi(t) = Virg + V1 —tsg,  0<t<1.

Let v(t) denote the matrix with entries v;;(¢). By the fundamental theorem
of calculus the capacities are related by

Cic ~ Ok = EnlC(R)] - Bs[C(8)] = [ dtBviolC(V(0)

The proof follows by showing that the term in the integral vanishes in the large
user limit. For the details of the proof please refer to [92].

8.7 Tight Upper Bound on the Capacity

Our main result is that Tanaka’s formula (8.10) is an upper bound to the
capacity for all values of .

Theorem 8.4 (Upper Bound on Capacity). Consider a CDMA system with
binary inputs and let the spreading sequence distribution belong to Class A. Let
Ck denote its capacity. Then

Igiinoo Ck < mrél[i({ll} crs(m), (8.13)

where crs(m) is given by (8.10).
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To be precise the left hand side must be lim sup instead of lim. However,
in the next section, we show that this limit exists which allows us to replace
the lim sup with lim.

Combining the above theorem with an inequality in Montanari and Tse
[101], one can deduce that the equality holds for some regime of noise smaller
than a critical value for all 3. This value corresponds to the threshold for
belief propagation decoding. Note that this equality is valid even if (3 is such
that there is a phase transition (the fixed point equation (8.12) has many
solutions), whereas in [101] the equality holds for values of 3 for which the
phase transition does not occur.

Since the proof is rather complicated we give the main ideas in an informal
way. The integral term in (8.10) suggests that we can replace the original sys-
tem with a simpler system where the user bits are sent through K independent
Gaussian channels given by

1
/
Yp = T + \/ka, (8.14)
where Wy, ~ N (0,1) and X is an effective SNR. Of course this argument is a
bit naive because this effective system does not account for the extra terms in
(8.10), but it has the merit of identifying the correct interpolation.

We introduce an interpolating parameter ¢ € [0, 1] such that the indepen-
dent Gaussian channels correspond to t = 0 and the original CDMA system
corresponds to ¢ = 1 (see Figure 8.7) It is convenient to denote the SNR of
the original Gaussian channel as B (that is B = 0~2). Then (8.11) becomes

B
A= :
14+ GB(1 —m)
We introduce two interpolating SNR functions A(t) and B(t) such that

A0) =X, B(0)=0, and A(1)=0, B(1) =B, (8.15)

and
B(t) B B
1+ pB(t)(1—m) AW = 1+ 08B(1—m)

The meaning of (8.16) is the following. In the interpolating t-system the effec-
tive SNR seen by each user has an effective --CDMA part and an independent
channel part A(t) chosen such that the total SNR is fixed to the effective SNR
of the CDMA system. There is a whole class of interpolating functions satisfy-
ing the above conditions but it turns out that we do not need to specify them
more precisely except for the fact that B(t) is increasing, A(f) is decreasing
and with continuous first derivatives. Subsequent calculations are independent
of the particular choices of functions.

The parameter m is to be considered as fixed to any arbitrary value in
[0,1]. All the subsequent calculations are independent of its value, which is to
be optimized to tighten the final bound.

(8.16)
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Figure 8.2: The information bits x; are transmitted through the normal CDMA
channel with variance % and through individual Gaussian channels with noise
1

At

We now have two sets of channel outputs y (from the CDMA with noise
variance B(t)™') and ¢’ (from the independent channels with noise variance
A(t)™1) and the interpolating communication system has a posterior distribu-
tion

2-K B(t) 1 A(t)
. 7.8) = ———— g — N"2sz||? = 22|y — 7|2 1
nlelg7.8) = s exp( 5 llg=N"2szP = ==y~ ), (8.17)

where Z; is the normalizing constant. The mutual information I,(X;Y,Y’|S)
corresponds to the distribution pg(7°)ps(s)p:(7, 7' | 7°,s), where

1 B(t) |- _1 A1)~ -
-0 15N zsx°||2—%ny/—x0n2,

T80 = T (e R

(8.18)
and px(2°) = 27X by assumption.
Let (—); denote the expectation with respect to (8.18), i.e., for any function
9(z°, )
(9(2°,2))e = > 9(2°, 2)pu(2,2° | 5,7, 9).

20z

Let fi(y,y',s) = %ln Zi(9,Y',s), be the free energy of the interpolating
system. The free energy of the original CDMA system E[f(Y,S)] can be
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expressed as

EL/(Y,8)) = 5 +B{A(Y, V",8))

The interpolation method suggests to compute E[f;(Y,Y”,S)] through

1
o o d o
BIA(Y. Y, 8) = LAY, V', 8)) + [ ZELA(Y. Y, S)dr
0

If we proceed in this manner, it turns out that we need a concentration result on

.. « . . 9 _ 1 K 0 .
empirical average of the “magnetization”, m; = & >, #}2;. More precisely,
we require a self-averaging result of the form

A}iinooEﬂml — E{my)|)¢ = 0.

Proving such a result is not easy. To overcome this difficulty we consider a
slightly perturbed system.

Consider a slightly more general interpolation system where the perturba-
tion term

K K K
ha(Z) = Vu ) hprg+ud  afm, —Vu |y (8.19)
k=1 k=1 k=1

is added in the exponent of the measure (8.17). Here hy are realizations of
Hy, ~ N(0,1). For the moment u > 0 is arbitrary but in the sequel we will
take u — 0.

_ 2—K
ul® _7 _/7 h7 = 7
Py, Y s) Zsu(5, 7/ Dy 8)
B(t), _ 1 _ At), ., _ _
exp (=23 1 = sl = 22— ol + (o))

with the obvious normalization factor Z;, (4, %, h,s). We define the new in-
terpolated free energy

1

ft,u(ga @/, }_l,S) - ?ln Zt,u(ga g/v }_l,S). (821)

For this perturbed system we can show the following concentration result.
Let (—);, denote the expectation with respect to the interpolating distribution

pt,u(fa jo“ja gla Ba S)'

Theorem 8.5 (Concentration of Magnetization). Fiz any e > 0. For Lebesgue
almost every u > e,

1
lim th(‘ml — E<m1>t,u|>t7u =0.

N—oo 0
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The proof of this theorem is quite involved and we the direct interested
reader to [92]. Observe that the theorem is not proved for every u and espe-
cially not for u = 0 which is the original CDMA system.

From now on, for pedagogic reasons we drop the arguments of the function
f whenever it is clear from the subscripts. For t = 1 and u = 0 we recover the
original free energy,

E[/(V,8)] = 5 +Elfid

while for ¢ = 0 and v = 0, the statistical sums decouple and we have the
explicit result?
1 oo
Elfoo] = —% — A+ DzIn(2 cosh(\/Xz + ) (8.22)

where E denotes the appropriate collective expectation over random objects.
Using |h,(Z)| < 2y/ud", |hi| + Ku it easily follows that

E[ftu] = Elfroll < 2vuE[| Hi[] + u. (8.23)

The continuity with respect to u is uniform in K and this implies that we can
compute E[f) o] = limg_, o0 lim, o E[f1 ] by taking the limit

i s B

By the fundamental theorem of calculus,

E[fy.] = Elfo.] + /0 At B f) (8.24)

Our task is now reduced to estimating
1
lim lim dt— [ frul-

u—0 K—+o0 0

After lengthy calculations and using the concentration result of Theo-
rem 8.5, we arrive at the expression

B'(t)E(1 — my)¢, B B'(t)E(1 —mq)
20+ (1 —m)B(t)? 2(1+4 BBHE(l —mi)iw)

We add and subtract the term % In(1 + GB(1 —m)) from (8.24) and use
the integral representation

1 B'(t)(1—-m
—In(1+ 4B(1 - CAOIC )
23 25 i BB1)(1—m)
4it is also straightforward to compute the full u dependence and see that it is O(y/u),
uniformly in K

d
%E[ft“] = +on(1). (8.25)
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to obtain

E[fl,u] = E[fO,u] T 9n ln< + ﬁB<1 - m))

20
1 d B'(t)(1 —m)
+/0 dt(EE[ftvu] T+ BB = m)))'

We now substitute the expression (8.25) for the derivative. After careful ma-
nipulations, a remarkable algebra occurs and the integrand becomes

B(t)(1—m)
21+ BBO(T—m))’

R(t) +

with

) BB B E(m, — m);..)?
R = 50 B0 = m)P( + BBOE( =i > "

So the integral has a positive contribution fol dtR(t) > 0 plus a computable

contribution equal to % = 2(1 —m). Finally, thanks to (8.22), we
have
Ly = [ Deneosh(VAz 4 X)) - - — (14 9B - m)
5 wl=f z1In(2 cos z 25 2ﬁn
Y 1
2+ m) +/ R(t)dt + on(1) + O(v/a) (8.26)
0

where for a.e u > ¢, limy_,o on(1) = 0. We take first the limit N — oo, then
u — € (along some appropriate sequence) and then ¢ — 0 to obtain a formula
for the free energy where the only non-explicit contribution is fol dtR(t). Since
this is positive for all m, we obtain a lower bound on the free energy which is
equivalent to the announced upper bound on the capacity.

8.8 Existence of the Limit

Using the interpolation method we can also show that the large system limit
of C'x exists.

Theorem 8.6 (Existence of the Limit). Consider a CDMA with binary inputs
and let the spreading sequence distribution belong to Class A. Let Cy denote
its capacity. Then

lim Ck exists. (8.27)

—00

Note that it is sufficient to prove the above theorem for Gaussian spreading
sequences. The general case then follows from Theorem 8.3.
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The relation between the free energy and the capacity in (8.8) implies
that it is sufficient to show the existence of limit for the average free energy
Frx = E[f(Y,S)]. The idea is to use Fekete’s lemma which states that if a
sequence {a,} is super additive, i.e., Gpin > apm + a, then lim, . % exists.
The relevant sequence for us is { K Fk}. The aim is therefore to show that
KJTK ZKlle*FKQfKQ fOIK:K1+K2.

As in the previous sections, working directly with the CDMA system is
difficult and hence we perturb the Hamiltonian with h,(Z) as defined in (8.19).
Let us express the Hamiltonian as

1 1

H,(2) = = 55lln + \/—Ns(a_:o —T)|” + hu(z). (8.28)
The expression follows by replacing 4 = n + sz°, where z° is the transmitted
vector. Let us define the corresponding partition function as Z, and the free
energy as Fy(u) = %E[ln Z,). The original free energy is obtained by substi-
tuting u = 0, i.e., Fx = Fk(0). From the uniform continuity of Fx(u), it is
sufficient to show the convergence of Fx (u) for some u close to zero. Even this
turns out to be difficult and what we can show is the existence of the limit
[ Fr(u)du for any a > € > 0. However this is sufficient for us due to the

following: from the continuity of the free energy with u (8.23) we have

2e 2¢
| Frtw) = oW < Fi < [ Filw) + 100V
Since the limit of the integral exists, we have

| lim sup Fp — lilr(ninf}"ﬂ < |O(1)|v/e.
K—oco — 00
This € can be made as small as desired and hence the theorem follows.

Let K = K; + K, and let Ny = L%J,NQ = L%j The last assumption can
be removed by considering their integer parts. For simplicity, let us assume
that %, % € N. We split the N x K dimensional spreading matrix s in to
two parts of dimension N; x K and N, x K and denote these matrices by s, s9
respectively. Let ti,ty be two spreading matrices with dimensions N; x K;
and Ny x K. All the entries of these matrices are distributed as N(0, 1)
and the noise is Gaussian with variance o?. Similarly split the noise vector
n = (ny,ny) where n; is of length N; and z = (71, Z2) where z; is of length
K;. Similarly split the transmitted vector z° = (z9,79) Let us consider the

following Hamiltonian:

~ |y
Hiu(T) = — @Ilm + ﬁsl(f’fg —T)+
N

L
— 5l + (@ - 7) +

VN
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For a moment neglect the h,(Z) part of the Hamiltonian and consider the
remaining part. At t = 1, we get the Hamiltonian corresponding to an N x K
CDMA system with spreading matrix [5}]. At ¢ = 0 we get the Hamiltonian
corresponding to two independent CDMA systems with spreading matrices t;
of dimensions N; x K;. As before we perturb the Hamiltonian with h,(Z) so
that we can use the concentration results for the magnetization.

Let Z;, be the partition function with this Hamiltonian and the cor-
responding average free energy is given by ¢, = %E[ln Zi4). Note that
910 = Fr(u) and go, = 52 Fk, (u) + 52 Fi,(u). From the fundamental theo-
rem of calculus,

d

1
"= o = gy udt. 8.29
Gru = Yo, +/0 s (8.29)

After some calculus we can show that for a > ¢ > 0,

a 1 d
/ / © guadtdu+ 0re(1) < 0 (8.30)
€ 0

Therefore,

/gl,udquoK(l)S/ Go,udu

which implies

a K a K a
/ fK(u)du+oK(1)§fl / ]—"Kl(u)dujt% / Fre,(w)du.

This in turn implies that limg o [ Fg (u)du exists.

8.9 Extensions

The interpolation method that we have developed can be extended to many
other cases in a straightforward manner to obtain upper bounds on the respec-
tive capacities. These include the case of users with unequal powers, colored
noise as well as users with Gaussian input distribution. Other cases which we
do not discuss here, but the methods are valid include non-binary constella-
tions and complex channels. Our methods combined with the interpolation of
Montanari [111] would result in bounds for CDMA with LDPC coded commu-
nication.

8.9.1 Unequal Powers
Let the power of the k-th user be Py, i.e.,

K
1
Yi = —F— Sikﬁkxk + ony,
>
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with normalized average power % > P, = 1. We assume that the empirical
distribution of the P, tends to a distribution and denote the corresponding
expectation by Ep[—].

The interpolation method can be applied as before. We interpolate between
the original system and a decoupled one where

L
VA

The SNRs for the t-CDMA, namely A(¢) and B(t) are related as in (8.15). The
perturbation term in the Hamiltonian is given by

K K K
h,(z) = \/ﬂth\/Fkxk + uZPk:chk - \/EZ || /P
k=1 k=1 k=1

Wi

The whole analysis can again be performed in exactly the same manner with
the proviso that the “magnetization” is defined as m; = % > Pk:chk. Then
we can deduce the upper bound (8.13) on the capacity with

+o0o

1
crs(m) = —Ep{ Dz1In(cosh(v Pz + P)\)} + é(1 +m) — — In Ao®.

2 213

—00

8.9.2 Colored Noise

Now consider the scenario where

1 K
Yi = —= D SikTk + N,
s

with colored noise of finite memory. More precisely we assume that the the
covariance matrix E[N;N;| = C(t,j) (depends on |i — j|) is circulant as N —
+00 and has well defined (real) Fourier transform (the noise spectrum) C(w).
The covariance matrix is real symmetric and thus can be diagonalized by an
orthogonal matrix: I' = OCO? with OO = OTO = 1. As N — +oo the
eigenvalues are well approximated by 7, = C (27%). Multiplying the received
signal by I'""20 the input-output relation becomes

K
1
y; — \/—N Ztikxk + n;,

k=1

where
yi=(720p)  ta="08)s,  nj=(20n).

The new noise vector N’ is white with unit variance, but the spreading matrix
is now correlated as
E[TiTj] = 6:j0m; -



8.9. Extensions 155

One may guess that this time the interpolation is done between the true system
and the decoupled channels

/
yk; :$k+ Wk,

1
\/Xcol

where this time

)\ B /27rd_w B
T Jo 2mC(w) + BB(L—m)

Note that C'(w) = 1 when the noise is white and we get back the A defined in
(8.11). The interpolating system has the same posterior as in (8.20) but with
Aeot(t) and B(t) related by

27 d_w B(t) B 21 d_w B
/0 21 C(w) + BB(t)(1 —m)  enlt) = /0 21 C(w) + BB(1 —m)

Continuing with the interpolation method for this system, in place of (8.25)
we get

N N
1 BI 1—m1 tu B/ 1_m1>tu
N q Z e +on(1)

N = 2(yn + ﬁ I + BB JE(L — ma)i)
/2” do  B'OE(Q—mi) /2” dw B'()E(1 — my)t.
o 2m2(S(w)+ BB —-m))* Sy 272(S(w)+ BBE)EN —mi)iw)

This finally leads to the bound on capacity with,

+00 )\
crs(m) = — DzIn(cosh(v/ Acorz+Acot)) + ;Ol (I+m)
1 [ dw C(w)

~

— —1 .
+25 0o 21 C(w)+B(1—m)

8.9.3 Gaussian Input

In the case of continuous inputs (z € R), the Y _in (8.5) is replaced by [ dz.
The capacity is maximized by a Gaussian prior,

[El
px(z) = 2m)P (8.31)

and one can express it in terms of a determinant involving the correlation
matrix of the spreading sequences. Using the exact spectral measure given by
random matrix theory Shamai and Verdu [95] obtained the rigorous result

1 1
lim CK 25 log(l + 0'72 - ZQ(Jizuﬁ))

K—oo
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1 1 -2
+ 5 log(1 +023 — ZQ(JJ,@) - % (8.32)

where

Qx,2) = (\/x(1+\/5)2+1— \/x<1_\/;>2+1)2

On the other hand Tanaka applied the formal replica method to this case and
obtained (8.9) with

1 1 A
crs(m) = 3 log(14+ \) — 37 log A\o? — 5(1 —m) (8.33)

where A = (6% + 3(1 — m))~!'. The maximizer satisfies
m=—" (8.34)

Solving (8.34) we obtain m = %Q(U_Q, () and substituting this in (8.33) gives
the equality between (8.32) and (8.33). So at least for the case of Gaussian
inputs we are already assured that the replica method finds the correct solu-
tion.

The interpolation is done as explained in section 8.7 except that (8.17)
is multiplied by the Gaussian distribution (8.31). In (8.18) we also have to
include this Gaussian factor and the sum over z; is replaced by an integral.
The main difference is that now the expectation E is also with respect to the
Gaussian vector 3. The interpolation method gives an upper bound on the
capacity

lim Cx < min crg(m
K—oco K_me[O,l} RS( )’

where crg(m) is the same as in (8.33). This provides an evidence that the
bounds obtained by our method are tight.
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