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Résumé

Tous les résultats de ce travail concernent les p-groupes finis, où p est un nom-
bre premier arbitraire. Le premier chapitre traite de classifications de certaines
classes de p-groupes de classe 2. Il n’y a pas de résultats significativement
nouveau dans ce chapitre, qui sert essentiellement d’introduction à la suite du
travail. Cependant, l’approche “géométrique” que nous présentons diffère de
l’approche standard, et cela plus particulièrement dans le cas des p-groupes
de classe 2 avec centre cyclique. Cette “géométrie” se révèle toutefois parti-
culièrement utile pour la description des groupes d’automorphismes, qui fait
l’objet du Chapitre 3.

Les résultats obtenus au Chapitre 2 sont de nature géométrique, puisqu’ils
concernent l’étude des intervalles supérieurs dans l’ensemble ordonné Ap(P ),
lorsque P est un p-groupe. Grâce aux travaux de Bouc et Thévenaz [8], nous
savons déjà que l’ensemble ordonnéAp(P )≥2 a le type d’homotopie d’un bouquet
de sphères. A la Section 2.4, nous obtenons une borne supérieure, dépendant
uniquement de l’ordre du groupe, pour la dimension des sphères présentes dans
le type d’homotopie de l’ensemble ordonné Ap(P )≥2. Plus précisément, nous
montrons que si P est un p-groupe d’ordre pn, alors H̃k(Ap(P )≥2) = 0 lorsque
k ≥ "n−1

2 #. Dans cette même section, nous donnons de plus une caractérisation
des p-groupes pour lesquels cette borne est atteinte.

Les résultats principaux de la Section 2.3 sont des valeurs numériques pour le
nombre de sphères apparaissant dans le type d’homotopie de l’ensemble ordonné
Ap(P )≥2 et leur dimension, lorsque P est un p-groupe dont le sous-groupe dérivé
est cyclique.

En nous appuyant sur les résultats de la Section 2.3, nous déterminons
à la Section 2.5 pour lesquels des p-groupes avec sous-groupe dérivé cyclique
l’ensemble ordonné Ap(P ) est homotopiquement Cohen-Macaulay.

La Section 2.7 est une tentative de généralisation des travaux de Bouc et
Thévenaz [8] concernant le type d’homotopie de l’ensemble ordonné Ap(P )≥2.
Comme résultat principal de cette section, nous montrons l’existence d’une
suite spectrale E1

rs convergeant vers H̃r+s(Ap(P )>Z), pour n’importe quel sous-
groupe Z ∈ Ap(P ). En guise d’exemple, nous montrons par ailleurs comment
cette suite spectrale peut être utilisée pour retrouver les résultats de Bouc et
Thévenaz.

A la Section 2.8, nous donnons des contre-exemples à certains résultats de Fu-
magalli [12]. Comme principale conséquence, la question de savoir si l’ensemble
ordonné Ap(G) a le type d’homotopie d’un bouquet de sphères lorsque G est
résoluble, semble rester une question ouverte.

Les résultats obtenus au Chapitre 3 sont de nature plus algébrique et con-
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cernent les groupes d’automorphismes de p-groupes. Le résultat principal de
ce chapitre est une description de Aut(P ), lorsque P est un p-groupe d’un des
deux types suivants:

(I) p-groupes avec un sous-groupe de Frattini cyclique (p ≥ 2).

(II) p-groupes de classe 2 avec centre cyclique et dont le quotient par le centre
est homocyclique (p impair).

Mots clés: Groupes finis, Ensembles ordonnés, Posets, Complexes de sous-
groupes, Intervalles supérieurs, Automorphismes.
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Abstract

All the results in this work concern (finite) p-groups. Chapter 1 is concerned
with classifications of some classes of p-groups of class 2 and there are no partic-
ularly new results in this chapter, which serves more as an introductory chapter.
The “geometric” method we use for these classifications differs however from the
standard approach, especially for p-groups of class 2 with cyclic center, and can
be of some interest in this situation. This “geometry” will for instance, prove to
be particularly useful for the description of the automorphism groups performed
in Chapter 3. Our main results can be found in chapters 2 and Chapter 3.

The results of Chapter 2 have a geometric flavour and concern the study
of upper intervals in the poset Ap(P ) for p-groups P . We already know from
work of Bouc and Thévenaz [8], that Ap(P )≥2 is always homotopy equivalent
to a wedge of spheres. The first main result in Section 2.4, is a sharp upper
bound, depending only on the order of the group, to the dimension of the spheres
occurring in Ap(P )≥2. More precisely, we show that if P has order pn, then
H̃k(Ap(P )≥2) = 0 if k ≥ "n−1

2 #. The second main result in this section is a
characterization of the p-groups for which this bound is reached.

The main results in Section 2.3 are numerical values for the number of the
spheres occurring in Ap(P )≥2 and their dimension, when P is a p-group with
a cyclic derived subgroup. Using these calculations, we determine precisely
in Section 2.5, for which p-groups with a cyclic center, the poset Ap(P ) is
homotopically Cohen-Macaulay.

Section 2.7 is an attempt to generalize the work of Bouc and Thévenaz
[8]. The main result of this section is a spectral sequence E1

rs converging to
H̃r+s(Ap(P )>Z), for any Z ∈ Ap(P ). We show also that this spectral sequence
can be used to recover Bouc and Thévenaz’s results [8].

In Section 2.8, we give counterexamples to results of Fumagalli [12]. As an
important consequence, Fumagalli’s claim that Ap(G) is homotopy equivalent
to a wedge of spheres, for solvable groups G, seems to remain an open question.

The results of Chapter 3 are more algebraic and concern automorphism
groups of p-groups. The main result is a description of Aut(P ), when P is any
group in one of the following two classes:

(I) p-groups with a cyclic Frattini subgroup.

(II) odd order p-groups of class 2 such that the quotient by the center is
homocyclic.

Keywords: Finite groups, Posets, Subgroup complexes, Upper intervals,
Automorphisms.
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ciements des personnes qui ont contribué d’une manière ou d’une autre à la
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ont été particulièrement utiles pour détecter une faute dans la version initiale
du Chapitre 3.

Ces années de travail auraient pu manquer de saveur sans la présence de nom-
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dédié à la mémoire de Michel Matthey.

5





Contents

Introduction 9

1 Classifications 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Preliminaries on p-groups . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Classification of p-groups with a cyclic Frattini subgroup . . . . . 20
1.4 Classification of odd order p-groups of class 2 with a cyclic center 37

2 Subgroup complexes 53
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Preliminaries on posets . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 The poset Ap(P )≥2 . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4 Maximal Dimension of spheres . . . . . . . . . . . . . . . . . . . 75
2.5 Cohen-Macaulay property . . . . . . . . . . . . . . . . . . . . . . 79
2.6 Homology with non-constant coefficients . . . . . . . . . . . . . . 89
2.7 A spectral sequence for upper intervals . . . . . . . . . . . . . . . 92
2.8 Fiber theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 Automorphisms 117
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . 118
3.3 Automorphisms of direct products of groups . . . . . . . . . . . . 121
3.4 Automorphisms of p-groups with cyclic Frattini subgroup . . . . 122
3.5 Automorphisms of p-groups of class 2 with cyclic center . . . . . 148

A Alternating forms 159

B A note on the orthogonal group O(2! + 1, 2) 165

7





Introduction

With no surprise, the purpose of this introduction is to give an outline of the
content of this work. We have chosen however to give detailed introductions at
the beginning of each chapter and for this reason we will stay at a very general
level for the present introduction.

Let us give here two words of warning. Firstly, this work takes place in
the study of finite groups and even if some of the following considerations may
be valid for infinite groups, we will not consider them. From now on “group”
always has to be understood as “finite group”. Secondly, throughout this work,
p will always denote a prime number. In general, p may be even, but there will
be however some situations in which we will have to assume that p is odd. In
this case, this will be explicitly written at the beginning of the corresponding
section.

The importance of group theory in mathematics as well as in other scientific
disciplines suffers no contradiction. Anyone with basic notions in group theory
is certainly aware that p-groups in turn play a central role in the study of
finite groups. The role of extraspecial p-groups in representation theory and
cohomology of groups is perhaps less known. It may well be that the reader
does not even know what an extraspecial p-group is. He will hopefully have
the occasion to fill in this gap in his knowledge by reading this work. The
reader already familiar with extraspecial p-groups can refer to the introduction
of Benson and Carlson’s paper [3] for references to theorems and problems whose
resolution depends heavily on the extraspecial case.

One of the interesting features of extraspecial p-groups is that their central
quotient, that is, the quotient of the group by its center, has the structure of a
vector space over the field Fp with p elements, and carries a natural geometry
coming from the commutators and the p-th powers of elements of the group.
The word “geometry” refers here to a symplectic or orthogonal geometry. The
impatient reader is referred to the introduction of Chapter 1 for more details.
For the others, let us just say that this geometry can be used effectively to
gain many informations on the group itself. It is, for instance, possible to use
this geometry to classify extraspecial p-groups. In another direction, Winter
showed in [32] how to compute the automorphism groups of extraspecial p-
groups, mainly in term of subgroups of symplectic or orthogonal groups.

There are other groups for which such a geometry can be defined and one of
the main purposes of Chapter 1 is to review and generalize these constructions
mainly for the following two classes of groups:

(I) p-groups with a cyclic and central Frattini subgroup.

(II) p-groups of class 2 with a cyclic center and a homocyclic central quotient.
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Introduction

Similarly to the case of extraspecial p-groups, these groups are determined by
the geometry carried by their central quotient. Note however that for the p-
groups in (II), we leave the setting of vector spaces and have to consider free
modules over rings Z/pmZ instead. An other purpose of Chapter 1 is to give
classifications in some classes of p-groups of class 2, including (I) and (II).

The first part of Section 1.3 is dedicated to the classification of the p-groups
in (I), that is, with a cyclic and central Frattini subgroup. Without too much
additional work, this classification can be used to classify all p-groups with a
cyclic (not necessarily central) Frattini subgroup. This is done in a second part
of Section 1.3.

We begin Section 1.4 with the construction of the geometry on the central
quotient of any p-group of class 2 with a cyclic center (note that we don’t require
the central quotient to be homocyclic). As a second step, we use this geometry
to classify the p-groups in (II), that is, with homocyclic central quotient. As
a third and last step, we show how this can be used to classify all p-groups of
class 2 with a cyclic center. For all this, we will however assume that p is odd
and we end up Section 1.4 with remarks on the case p = 2.

All the classifications obtained in Chapter 1 have been known for a long time,
although the original proofs rely generally on a different approach. The interest
of Chapter 1 lies thus in the method, that uses as much as possible the geometry
on the central quotient, rather than in the results obtained. This method can
be considered to be relatively standard for p-groups with a cyclic and central
Frattini subgroup, but as far as we know, it has not been used previously for
p-groups of class 2 with cyclic center. It is in this latter context that our work
has the most interest and this for the following two reasons. Firstly, this throws
some light on the classification, especially in the case of a homocyclic central
quotient. Secondly, this will also allow us to describe the automorphism groups
of p-groups of class 2 with a cyclic center and a homocyclic central quotient, at
least for p odd.

The second chapter is concerned with what was initially the main topic of
this thesis, namely the study of subgroup complexes, that is, simplicial complexes
arising from partially ordered sets (poset for short) consisting of subgroups of
a given group, ordered by inclusion. The study of subgroup complexes seems
to go back to Brown [10], who introduced the poset Sp(G) of all non-trivial
p-subgroups of a given group G for a fixed prime p. A great impulsion was
given shortly afterwards by Quillen in [23], where he introduces in particular
the poset Ap(G) of all non-trivial elementary abelian subgroups of the group
G. Since then, many other subgroup complexes have been defined and studied
and one of these, namely the poset Ap(P )≥2, has proved to be of particular
interest in representation theory and more precisely for the study of endotrivial
modules. As the notation suggests, this poset Ap(P )≥2 is defined as the poset
of all elementary abelian p-subgroups of P of rank at least 2. For more on
subgroup complexes, the reader can refer to [31] or [2, Chapter 6].

A great part of Chapter 2 is concerned with the study of the posets Ap(P )≥2.
In [8], Bouc and Thévenaz showed that this poset is homotopy equivalent to
a wedge of spheres. In Section 2.3, we will use Bouc and Thévenaz’s work
to compute explicitly the number and the dimension of the spheres occurring
in the homotopy type of Ap(P )≥2, when P is a p-group with cyclic derived
subgroup. This can be easily reduced to the case of p-groups with a cyclic
Frattini subgroup, and the classifications obtained in Chapter 1 will thus prove
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especially useful in this context.
In Section 2.5, we consider all p-groups with a cyclic derived subgroup and

determine precisely for which of these groups the poset Ap(P )≥2 is homotopi-
cally Cohen-Macaulay.

Section 2.4 contains three general results on the maximal dimension that
a sphere occurring in Ap(P )≥2 may have. More precisely, the first result is
an upper bound, depending on the order of the group P , for the homological
dimension of Ap(P )≥2. In the two other results, we show that this bound can be
reached and give information on the p-groups for which this bound is reached.

Another part of Chapter 2 is concerned with upper intervals in Ap(P ),
namely the posets Ap(P )>A consisting of all elementary abelian subgroups of P
strictly containing some fixed elementary abelian subgroup A ∈ Ap(P ). These
posets are studied in Section 2.7, where our purpose is to generalize the work
of Bouc and Thévenaz by using a spectral sequence introduced by Quillen in
[23]. The terms appearing in this spectral sequence are homology groups with
non-constant coefficients and Section 2.6 is here to recall the definition of these
groups. We derive also in Section 2.6 another spectral sequence given in terms
of standard homology groups and converging to the homology groups with non-
constant coefficients. With all this put together, we can derive a spectral se-
quence E1

rs converging to the homology groups of Ap(P )>A. The terms of this
spectral sequence are given mostly as upper intervals in Ap(P )>A. There are
however, in addition to the problem of handling differentials, some terms that
we are not able to describe reasonably well, unless in some special situations.

We end up Chapter 2 with Section 2.8, in which we give some considerations
concerning the work of Fumagalli on the posets Ap(G) for solvable groups G. He
claims in [12], that for a solvable group G, the poset Ap(G) is always homotopy
equivalent to a wedge of spheres. His proof relies however on a result that turns
out to be false. The main purpose of Section 2.8 is to give counterexamples to
this particular result and to show how this affects the rest of Fumagalli’s paper.

The third and last chapter is concerned with the study of automorphism
groups of some p-groups of class 2. We will first expand Winter’s work, in
order to describe the automorphism groups of p-groups with a cyclic and central
Frattini subgroup. We can then use these results to describe the automorphism
groups of all p-groups with a cyclic Frattini subgroup. We end up Chapter 3
with the description of automorphism groups of odd order p-groups of class 2
with a cyclic center and a homocyclic central quotient.

In addition to these three chapters, the reader will find also two appendices.
The first one contains a brief survey of non-degenerate alternating forms on
vector spaces over the field Fp and generalizations to the setting of Z/pmZ-
modules.

In Chapter 3, we make use, at a certain point, of a particular property of
the orthogonal group O(2n+1, 2). We have not been able to find this property,
nor a proof of it, anywhere else. We have thus included a proof of this property
in this work and this is the content of our second appendix.
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Chapter 1

Classifications

In this chapter we classify some classes of p-groups of class 2. Our first main
result is a classification of p-groups with cyclic Frattini subgroup. Our second
main result is a classification of p-groups of class 2 with cyclic center and such
that the quotient group P/Z(P ) is homocyclic. For p odd, we will also show
some results when P/Z(P ) is not homocyclic. The real interest of this chapter
does not lie in the results, which have been known for a long time, but rather
in the method which uses as much linear algebra as possible. This allows us to
give a uniform and conceptual treatment of these various classifications. This
will be of particular interest in the study of automorphism groups that we will
perform in Chapter 3.

1.1 Introduction

If G is a group, we will denote indistinctively G′ or [G, G] its derived subgroup,
that is, the subgroup of G generated by all the commutators [x, y] = xyx−1y−1

for x, y ∈ G. If z is an element of the center Z(G) of G, then one has rather
directly that [xz, y] = [x, y] = [x, yz]. For any central subgroup H of G, there
is thus a well-defined map

b : G/H ×G/H → G′,

given by b(x, y) = [x, y], where we use · to denote the class of an element of G
in G/H. It follows directly from the definition that b(x, x) = 1 for all x ∈ G,
and if b(x, y) = 1 for all y ∈ G/Z(G), then x ∈ Z(G).

We suppose from now on that G′ is contained in H, so that in particular G′

as well as G/H are abelian groups. We also have that G′ ≤ Z(G) and an easy
calculation shows that

b(x1x2, y) = b(x1, y)b(x2, y), for all x1, x2, y ∈ G;
b(x, y1y2) = b(x, y1)b(x, y2), for all x, y1, y2 ∈ G.

If we denote G′ and G/H additively, we can rewrite the above information

13



Chapter 1. Classifications

in the following way:

b(v, v) = 0, for all v ∈ G/H. (1.1)
If b(v, w) = 0 for all w ∈ G/H, then v ∈ Z(G)/H. (1.2)

b(v1 + v2, w) = b(v1, w) + b(v2, w), for all v1, v2, w ∈ G/H. (1.3)
b(v, w1 + w2) = b(v, w1) + b(v, w2), for all v, w1, w2 ∈ G/H. (1.4)

These equations show that, in some sense, b is a bilinear alternating form on
V = G/H with V ⊥ = Z(G)/H. But for this to be precise, one needs to have a
compatible linear structure on G/H and G′, namely G′ should be isomorphic to
some ring R and G/H should be an R-module. The first reasonable situation
that comes in mind is the setting of vector spaces, that is, G′ would be isomor-
phic to some field F and G/H would have the structure of an F-vector space.
Let us give an example to illustrate how such a situation can happen.

Example 1.1.1. Let p be a prime and suppose that G = P is a non-abelian
p-group with cyclic center and that H = Φ(P ) is contained in Z(P ). Here Φ(P )
denotes the Frattini subgroup of P , that is, the subgroup of P generated by
all commutators and p-th powers in P . In this situation, the quotient group
V = P/Φ(P ) is abelian and has exponent p, hence can be viewed as a vector
space over the field Fp with p elements. We will show in Section 1.3 that
under these assumptions we have furthermore that P ′ has order p, hence can be
identified with the field Fp once a generator is chosen. With these identifications,
the map b : V × V → Fp can be seen as an alternating form, in the usual sense,
on the Fp-vector space V with V ⊥ = Z(P )/Φ(P ).

The theory of alternating forms is rather standard, at least for vector spaces,
so that once b is seen to be an alternating form, a lot of information is available
on the group G/H and this information can be lifted to G. One of the aims of
this chapter is to show how this map b can be used to gain information on the
structure of the group. We will in particular show how it can be used to classify
some classes of p-groups.

Section 1.3 is dedicated to p-groups with a cyclic Frattini subgroup. The
main result of this section is a classification of these groups. As a first step, we
will consider the p-groups of Example 1.1.1, that is, p-groups with a cyclic center
and a central Frattini subgroup. For such groups, that we will call from now on
quasi-extraspecial p-groups, we will make more precise the construction of the
alternating form b on P/Φ(P ). We will also define a map ϕ : V → Fp induced
by taking p-th powers. We will show that this map is linear, unless p = 2 and
|Φ(P )| = 2 in which case ϕ will be a quadratic form with polar form given by
the alternating form b induced by the commutators. Dealing with commutators
in P is done via the alternating form b and p-th powers are controlled via the
map ϕ. This will allow us to describe and classify quasi-extraspecial p-groups.

As a second step, we will consider p-groups with a cyclic and central Frattini
subgroup, but this time the center is not supposed to be cyclic anymore. We
will show that these groups are direct products of a quasi-extraspecial p-group
with an elementary abelian p-group. This gives a classification of p-groups with
a cyclic and central Frattini subgroup, and it remains to consider p-groups with
a Frattini subgroup cyclic but not central. This will be done in a second part
of Section 1.3 and we will see that this situation can happen only for p = 2.

14



1.2 Preliminaries on p-groups

Putting all the results together gives a classification of all p-groups with a cyclic
Frattini subgroup.

In Section 1.4, we will see that the situation is relatively similar for odd
order p-groups P of class 2 with a cyclic center and such that the abelian group
P/Z(P ) is homocyclic of type pm, for some m ≥ 1. In this situation, the
quotient group V = P/Z(P ) can be viewed as a regular alternating space over
the ring Z/pmZ. Taking pm-th powers induces a linear map on V and this will
allow us to give a complete description of these groups. We will go then a step
further and give a description of all odd order p-groups of class 2 with a cyclic
center. In Section 1.4, we will focus mainly on the case p odd, but we will also
give some results when p = 2, especially in the homocyclic case.

1.2 Preliminaries on p-groups

In this section we review some basic definitions and results in finite group theory.
We assume that the reader already has a basic knowledge of group theory and
this section is here to stress some facts that will be important in this work. For
more details, the reader can refer to standard textbooks such as [14], [1], or
[26] and [27]. In all cases, the reader is advised to read at least the results on
commutators and especially Lemma 1.2.1 and Lemma 1.2.2.

Abelian p-groups and rank

We will denote by Ck a cyclic group of order k. Recall that if P is an abelian
p-group there exists an integer n ≥ 1 and integers e1, . . . , en with ei ≥ 1 such
that P is isomorphic to the direct product of the cyclic groups Cpei . The integer
n and the integers ei are uniquely determined up to isomorphism and we say
that P has type (pe1 , . . . , pen). An abelian p-group is homocylic of type pe if
ei = e for all i = 1, . . . , n.

If an abelian group E is homocyclic of type p, then E is called elementary
abelian. A p-group E is elementary abelian if and only if E is abelian and has
exponent p. It is important to remind that such a group can always be seen as
a vector space over the field Fp with p elements (see [14, Theorem 1.3.2]).

Let E be an elementary abelian p-group. The rank of E is the integer rk(E)
defined as the dimension of E as a vector space over Fp. For an arbitrary group
G, the p-rank of G is defined as the maximum of the rank of E, as E ranges
over all elementary abelian p-subgroups of G. If G is an arbitrary group we will
denote rp(G) the p-rank of G. However, if P is a p-group, we will preferably
use the notation rk(P ) for the p-rank of P .

Commutators

Let G be a (finite) group. We will denote by Z(G) its center and recall from the
introduction that we denote by G′ as well as [G, G] its derived subgroup, that
is, the subgroup of G generated by all commutators [x, y] = xyx−1y

−1. When
the commutators are central, they satisfy very useful properties that we will
often use implicitly in the remainder of this work. In the course of a proof, if
an argument involving commutators is not clear for the reader, he should refer
first to the two following lemmas.
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Chapter 1. Classifications

Lemma 1.2.1. If G is a group with G′ ≤ Z(G), then

a) [x1x2, y] = [x1, y][x2, y], for all x1, x2, y ∈ G;

b) [x, y1y2] = [x, y1][x, y2], for all x, y1, y2 ∈ G.

Proof. Part a) follows from the following elementary calculation and part b) is
proved similarly.

[x1x2, y] = x1x2yx−1
2 x−1

1 y−1 = x1(x2yx−1
2 y−1)yx−1

1 y−1 = [x1, y][x2, y].

Lemma 1.2.2. Let G be a group and let x, y ∈ G such that [x, y] commutes
with x and y. Then

a) [x, y]k = [xk, y] = [x, yk];

b) (xy)k = xkyk[y, x] 1
2 k(k−1), for all k ∈ Z.

Proof. See Lemma 2.2.2 in [14].

Frattini subgroup

Let p be an arbitrary prime and let P be a p-group. For n ≥ 1, we denote by
Ωn(P ) the subgroup generated by all elements of order at most pn. We denote
by !n(P ) the subgroup generated by all pn-th powers of elements of P .

For an arbitrary group G, the Frattini subgroup Φ(G) of G is defined as
the intersection of all maximal subgroups of G. For a p-group P , there is a
more accurate characterization of the Frattini subgroup that we will take as
a definition, namely it is the smallest normal subgroup of P with elementary
abelian quotient.

Definition 1.2.3. The Frattini subgroup Φ(P ) of a p-group P is the subgroup
generated by [P, P ] and !1(P ).

We would like to point out some elementary facts concerning these subgroups
that we will sometimes use implicitly.

Remark 1.2.4.

a) If H is one of the subgroups Z(P ), Φ(P ), [P, P ], Ωn(P ) or !n(P ), then H
is characteristic in P , and in particular, H ∩ Z(P ) )= 1 if H )= 1.

b) If a subgroup H of a p-group P contains P ′, then H is normal in P . Conse-
quently, all subgroups of P containing Φ(P ) are normal in P .

c) If P is a p-group and Φ(P ) is maximal in P , then P is cyclic.
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1.2 Preliminaries on p-groups

Central products

Let G1 and G2 be groups and let Z1, respectively Z2, be a central subgroup
of G1, resp. G2. Suppose that the two subgroups Z1 and Z2 are isomorphic.
Given an isomorphism θ : Z1 → Z2, one can form the central product G1 ∗G2 of
G1 and G2 with respect to Z1, Z2 and θ. More precisely, G1 ∗G2 is defined as
the quotient of G1 × G2 by the normal subgroup

{
(z1, θ(z1)−1) | z1 ∈ Z1

}
(see

for example Section 2.5 in [14] for more details). It is important to note that,
contrary to what the notation suggests, the group G1∗G2 depends on the choice
of the subgroups Z1, Z2 and on the choice of the isomorphism between them.

In this work, we will only encounter central products on groups with cyclic
center and in this situation, the central subgroups are completely determined by
their order. Therefore, if G1 and G2 have cyclic center, we will write G1 ∗

Cr

G2 for

the central product of G1 and G2 relatively to the unique subgroups of Z(G1)
and Z(G2) of order r. Of course, for this definition to be complete we need to
make explicit the chosen isomorphism. However, there are situations in which
the central product does not depend on the chosen isomorphism.

Lemma 1.2.5. Let G1, G2 be groups and let Z1, respectively Z2, be a central
subgroup of G1, resp. G2. Suppose that Z1 and Z2 are isomorphic and suppose
that any automorphism of Z1 is the restriction of an automorphism of the whole
group G1. Then the central products G1 ∗ G2 relatively to any isomorphism
between Z1 and Z2 are all isomorphic.

The central product is symmetric, that is, G1 ∗G2 is canonically isomorphic
to G2 ∗ G1. It satisfies also some condition of associativity. Let G1, G2, G3 be
groups with subgroups Z1 ≤ Z(G1), Z ′

2, Z
′′
2 ≤ Z(G2) and Z3 ≤ G3 and such

that Z1
∼= Z ′

2 and Z ′′
2
∼= Z3. The subgroup Z ′′

2 can be identified canonically
with a central subgroup in the central product (G1 ∗G2) with respect to Z1 and
Z ′

2. The subgroup Z3 is thus isomorphic to a central subgroup of G1 ∗G2 and
one can form the central product (G1 ∗G2) ∗G3. In a similar manner, one can
form also the central product G1 ∗ (G2 ∗ G3) and it turns out that these two
groups are isomorphic. As a consequence, the parentheses can be omitted in
this situation.

Let G be a group and Z a central subgroup of G. One can form the central
product G ∗G with respect to the identity on Z. For ! > 1, we will denote G∗!

the central product G∗(!−1) ∗ G with the convention that G∗1 = G and G∗0 is
the trivial group.

Semi-direct product

If G is a group and A is a subgroup of the automorphism group Aut(G) of G,
one can form the semi-direct product G " A of A acting on G. Both G and A
can be identified with subgroups of G " A and we will use the convention that
under these identifications aga−1 = a(g) for all a ∈ A and g ∈ G.

If α is an automorphism of G of some order k, we will denote G "α Ck the
semi-direct product of the subgroup of Aut(G) generated by α acting on G.
When this leads to no confusion, we will sometimes omit the subscript α.

In this work, many groups will be described as semi-direct products, so let us
recall next some standard results on automorphism groups, especially for cyclic
p-groups.
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Chapter 1. Classifications

Automorphisms of p-groups

If E is an elementary abelian p-group, then the automorphism group of the group
E is the same as the group of all invertible linear transformations of E viewed
as an Fp-vector space. If n denotes the rank of E, then Aut(E) can be identified
with the group GLn(Fp). For cyclic p-groups, the following information on the
structure of the automorphism groups is available.

Lemma 1.2.6. Let P = 〈x〉 be a cyclic p-group of order pm+1, m ≥ 1.

a) If p = 2 and m = 1, then Aut(P ) is cyclic of order 2 generated by x .→ x−1.

b) If p = 2 and m > 1, then Aut(P ) is an abelian 2-group of type (2m−1, 2)
with basis x .→ x5 and x .→ x−1.

c) If p is odd, Aut(P ) is cyclic of order pm(p − 1) and a Sylow p-subgroup of
Aut(P ) is cyclic with generator x .→ x1+p.

Proof. See for example Lemma 5.4.1 in [14].

Corollary 1.2.7. Let P = 〈x〉 be a cyclic p-group of order pm+1, m ≥ 1, and
let A = Aut(P ).

a) If p = 2 and m > 1, then Ω1(A) is elementary abelian of rank 2 with basis
given by x .→ x1+2m

and x .→ x−1.

b) If p is odd and Sp is the Sylow p-subgroup of A, then Ω1(Sp) is cyclic of
order p and generated by x .→ x1+pm

.

Proof. See for example Corollary 5.4.2 in [14].

Some standard p-groups

We recall finally notation and definitions of some p-groups that will appear
constantly in this work. Recall first that if p is a prime, there are exactly two
non-abelian p-groups of order p3. When p = 2, they are the dihedral group D8

and the quaternion group Q8. When p is odd, we will denote by Xp3 , respectively
X−

p3 , the non-abelian group of order p3 and exponent p, resp. p2. The group Xp3

can be defined as the group U3(Fp) of all upper triangular matrices with entries
1 on the diagonal. The group X−

p3 can be defined as the semi-direct product of
a cyclic group of order p acting on a cyclic group of order p2 with generator y,
with respect to the automorphism sending y to y1+p.

We will call Xp3 and D8 extraspecial groups of type I. The groups X−
p3 and

Q8 will be called extraspecial groups of type II. These groups have the following
presentations:

Xp3 = 〈x, y |xp = yp = 1, [x, y]p = 1, [x, [x, y]] = [y, [x, y]] = 1〉.

X−
p3 = 〈x, y |xp = 1, yp = [x, y], [x, y]p = 1, [x, [x, y]] = [y, [x, y]] = 1〉.

D8 = 〈x, y |x2 = y2 = 1, [x, y]2 = 1, [x, [x, y]] = [y, [x, y]] = 1〉.
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1.2 Preliminaries on p-groups

Q8 = 〈x, y |x2 = y2 = [x, y], [x, y]2 = 1, [x, [x, y]] = [y, [x, y]] = 1〉.

For m > 1, we will denote respectively by D2m+2 , SD2m+2 and Q2m+2 the
dihedral, semi-dihedral and quaternion group of order 2m+2. These groups have
the following presentations:

D2m+2 = 〈x, y |x2 = y2m+1
= 1, [x, y] = y−2〉.

SD2m+2 = 〈x, y |x2 = y2m+1
= 1, [x, y] = y−2+2m

〉.

Q2m+2 = 〈x, y |x4 = 1, y2m

= x2, [x, y] = y−2〉.

Note that [x, y] = y−2 means that x acts on y as the automorphism sending y
to y−1. Similarly, [x, y] = y−2+2m

means that x acts on y as the automorphism
sending y to y−1+2m

.
For an arbitrary prime p and m > 1, we denote Mpm+2 the semi-direct

product of a cyclic group of order p acting on a cyclic group of order pm+1

generated by y, with respect to the automorphism sending y to y1+pm

. This
group has the following presentation:

Mpm+2 = 〈x, y |xp = ypm+1
= 1, [x, y] = ypm

〉.

Remark 1.2.8.

a) In the above notation, the index, namely p3, 8, 2m+2 or p2m+2 , represents
the order of the group and the parameter m, which equals 1 by convention
when the group has order 8 or p3, is the p-valuation of the order of the
Frattini subgroup.

b) The definition of the group Mpm+2 also makes sense for m = 1 and we draw
the attention of the reader to the fact that Mp3 is the group X−

p3 when p is
odd, whereas M23 is isomorphic to D8.

c) For m > 1, the group Q2m+2 is sometimes called the generalized quaternion
group of order 2m+2. To make the text more readable, we have chosen not
to use the adjective “generalized”.

To close these preliminaries, we give a last result that concerns p-groups
containing a maximal cyclic subgroup. For the proof, the reader can refer to
[14, Theorem 5.4.4].

Lemma 1.2.9. Let P be a non-abelian p-group of order pm+2, m ≥ 1, which
contains a cyclic subgroup of order pm+1. Then

a) If p is odd and m = 1, then P is isomorphic to X−
p3 .

b) If p is odd and m > 1, then P is isomorphic to Mpm+2 .

c) If p = 2 and m = 1, then P is isomorphic to D8 or Q8.

d) If p = 2 and m > 1, then P is isomorphic to M2m+2 , D2m+2 , Q2m+2 or
SD2m+2 .
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Chapter 1. Classifications

1.3 Classification of p-groups with a cyclic Frat-
tini subgroup

Definitions and first properties

To begin this section, we recall some more or less known facts concerning the
special case of p-groups with Frattini subgroup of order p. This allows us to
make a quick tour of some terminology that can be found in the literature and
to introduce some notation that we will use throughout this text.

If P is a non-abelian p-group with Z(P ) = Φ(P ) of order p, then it is stan-
dard to call P an extraspecial p-group. It is well known that an extraspecial
p-group has order p2!+1 for some ! ≥ 1, and that there are exactly two non-
isomorphic extraspecial p-groups of the same order. When p is odd, these two
groups are determined by their exponent and we will denote by Xp2!+1 , respec-
tively X−

p2!+1 , the extraspecial p-group of order p2!+1 and exponent p, resp. p2.
We make two small remarks to show how these groups can be obtained from
what we already know. The reader can take this as a definition.
Remark 1.3.1.

a) The group Xp2!+1 is isomorphic to a central product (Xp3)∗! and the group
X−

p2!+1 is isomorphic to a central product (Xp3)∗(!−1) ∗X−
p3 , where Xp3 and

X−
p3 are the two non-abelian p-groups of order p3 defined previously.

b) It can be useful to think of the group Xp2!+1 as the subgroup P of U!+2(Fp)
consisting of matrices of the following form:





1 ∗ · · · ∗
. . . 0

...

0
. . . ∗

1





To connect this definition with the preceding remark, let I denote the identity
matrix and let eij be the elementary matrix with 1 in the (i, j)-th entry and
0 elsewhere. For 1 < j < ! + 2, let Hj be the subgroup of P generated by
I + e1,j and I + ej,!+2. For 1 < j, k < !+2, an elementary calculation shows
that

[I + e1,j , I + ek,!+2] = I + δj,ke1,!+2.

Similarly,

[I + e1,j , I + e1,!+2] = [I + e!+2,k, I + e1,!+2] = 0, for 1 < j, k < ! + 2.

As a consequence, for all 1 < j < ! + 2, the center of Hj is generated by
I + e1,!+2, the group Hj is isomorphic to Xp3 and Hj commutes with Hk for
all k )= j. It follows that P = H1 ∗ · · · ∗H!, hence is a central product of !
copies of the group Xp3 .

c) If P is the group Xp3 or the group X−
p3 , then any automorphism of Z(P ) is

the restriction of an automorphism of the whole group P , so that the central
products (Xp3)∗! and (Xp3)∗(!−1) ∗X−

p3 do not depend on how the amalga-
mation is made along the centers. Let us show briefly how an automorphism
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of the center can be extended to an automorphism of P . If P is the group
Xp3 , then P is generated by two elements x and y of order p and the center
of P is generated by z = [x, y]. An automorphism α of Z(P ) is given by
α(z) = zk, for some k prime to p. The automorphism α can be extended to
an automorphism α̃ of P by defining α̃ on the generators of P by

α̃(x) = xk and α̃(y) = y.

An easy calculation shows that all the relations defining P are preserved, so
that α̃ extends to a endomorphism of P . This endomorphism is also bijective,
since k is prime to p.

When p = 2, the two extraspecial 2-groups of order 22!+1 are the two groups
D∗!

8 and D∗(!−1)
8 ∗Q8. To be coherent with our previous notation, we will denote

these two groups respectively by X22!+1 and X−
22!+1 .

For any prime number p ≥ 2, we will refer to Xp2!+1 , respectively X−
p2!+1 , as

the extraspecial p-group of type I, respectively type II, and order p2!+1.
A non-abelian p-group with a Frattini subgroup cyclic of order p and with

a center cyclic of order p2 is often referred to as an almost extraspecial p-group.
These groups arise as the central product of an extraspecial p-group of type I
and a cyclic group of order p2.

The non-abelian p-groups with a Frattini subgroup of order p have been
called generalized extraspecial by Stancu [25]. However, it seems that this ter-
minology has not been used elsewhere for the moment. In [25], Stancu shows
that these groups are direct products of an elementary abelian p-group with
either an extraspecial p-group, or an almost extraspecial p-group.

For the more general case of p-groups with a Frattini subgroup cyclic but
with arbitrary order, one has the two following terminologies.

A p-group is said to be of symplectic type if it has no non-cyclic characteristic
abelian subgroups. Such groups can be written as a central product X ∗S where
either X is extraspecial, or X = 1, and either S is cyclic, or S is dihedral, semi-
dihedral or quaternion, and of order 2m+2 with m > 1.

Newman introduced in [21] the class of JN2-groups (“just nilpotent-of-class-
2 groups”). These groups may be infinite, but when finite they correspond to
p-groups with cyclic center and central Frattini subgroup. In his paper, Newman
gives a classification of these groups, based on the non-degenerate alternating
form induced by commutators. We will use the same method in this section,
but we will consider in addition the linear form induced by taking p-th powers.

The classification in the general case of p-groups with a cyclic Frattini sub-
group can be found in a paper by Berger, Kovács and Newman [4]. The proof
in the case of a central Frattini subgroup is left to the reader and the authors
concentrate on the case of a non-central Frattini subgroup.

As the title says, the aim of this section is to classify p-groups with a cyclic
Frattini subgroup. The above discussion shows that this classification can al-
ready be found in the literature. Our motivation for this section is that we
would like to give the most uniform and conceptual treatment possible for these
various classifications. For this, we will use the non-degenerate alternating form
induced by commutators and the linear form induced by taking p-th powers.
This method will have the following two advantages. The first one is that this
method can be generalized rather easily for odd order p-groups of class 2 with

21



Chapter 1. Classifications

a cyclic center and this will be done in Section 1.4. The second one is that it
makes it possible to describe reasonably well the automorphism groups of some
of these groups and this will be done in Chapter 3.

We go on now with some preliminary results and reductions. The following
lemma shows that we can easily assume that the center itself is cyclic and this
will greatly simplify many arguments.

Lemma 1.3.2. If P is a non-abelian p-group with a cyclic Frattini subgroup,
then P = Q× E, where E is elementary abelian and Q is non-trivial with both
Φ(Q) and Z(Q) cyclic.

Proof. Let Z denote the elementary abelian subgroup Ω1(Z(P )). Since P is not
abelian, we have that Φ(P ) is non-trivial, so that Φ(P ) ∩ Z(P ) )= 1, and hence
also Φ(P ) ∩ Z )= 1. Furthermore, Φ(P ) ∩ Z has order p, since Φ(P ) is cyclic.
The group Z is elementary abelian, so that we can choose a complement E to
Φ(P ) ∩ Z in Z, that is,

Z = (Φ(P ) ∩ Z)× E. (1.5)

Since P/Φ(P ) is elementary abelian, we can find a complement Q/Φ(P ) to
Φ(P )Z/Φ(P ) in P/Φ(P ), that is,

P/Φ(P ) = Q/Φ(P )× Φ(P )Z/Φ(P ). (1.6)

We show now that P = Q×E and that Q has the desired properties. Note that
(1.6) implies that the group P is generated by Q and Φ(P )Z. But Q contains
Φ(P ) and Z itself is generated by E and a subgroup of Φ(P ). Hence, P is
generated by Q and E.

Furthermore, (1.6) implies that Q∩E is contained in Q∩Φ(P )Z = Φ(P ), but
also Q∩E is contained in E, so that Q∩E is contained in Q∩ (Φ(P )∩E) = 1.
We have thus that P is generated by Q and E and that Q ∩ E = 1, hence
P = Q× E, since E is central.

Now, Q/Φ(P ) is elementary abelian, so that Φ(Q) is contained in Φ(P ),
hence is cyclic. Furthermore, Ω1(Z(P )) = Ω1(Z(Q)) × E, so that Ω1(Z(Q)) is
cyclic of order p. It follows that Z(Q) is cyclic and the lemma is proved.

Not surprisingly, we will have to make a distinction between the case p = 2
and the case p odd. This can be seen in the following Proposition 1.3.5, but let
us give first with two elementary, still very useful, lemmas.

Lemma 1.3.3. Let P be a non-abelian p-group. If Φ(P ) is cyclic and central,
then P ′ has order p.

Proof. As P ′ is non-trivial, since P is non-abelian, and contained in the cyclic
group Φ(P ), it suffices to show that every element of P ′ has order p. Since
P ′ ≤ Φ(P ) ≤ Z(P ), Lemma 1.2.2 shows that

[x, y]p = [xp, y], for all x, y ∈ P.

On the other hand, we have [xp, y] = 1, since xp ∈ Φ(P ) ≤ Z(P ), hence
[x, y]p = 1 for all x, y ∈ P , and the lemma is proved.
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Lemma 1.3.4. Let P be a p-group. If !1(P ) is cyclic, then there exists u ∈ P
such that !1(P ) = 〈up〉.

Proof. Since xp is obviously in !1(P ), we have 〈xp〉 ≤ !1(P ) for all x ∈ P . If
all the subgroups 〈xp〉 are strictly contained in !1(P ), then all the elements xp,
for x ∈ P , are contained in the unique maximal subgroup of the cyclic group
!1(P ). Hence, !1(P ) = 〈xp|x ∈ P 〉 < !1(P ), which is a contradiction. There
exists thus u ∈ P such that 〈up〉 = !1(P ).

The proof of the following result can be found along the lines of [4, Theo-
rem 2]. We include it here for the convenience of the reader, but also because
it contains many arguments that we will use constantly in this work.

Proposition 1.3.5. Let p be an odd prime and P a non-abelian p-group. If
Φ(P ) is cyclic, then Φ(P ) is central.

Proof. We prove this proposition by induction on n, where pn = |P |. Note that
since P is non-abelian, we must have n ≥ 3. If n = 3, then we must have
|Φ(P )| = p, otherwise P would be abelian. It follows immediately that Φ(P ) is
central.

Suppose now n > 3 and let C0 denote the centralizer of Φ(P ) in P . Note
that Φ(P ), being cyclic hence abelian, is contained in C0. The p-group P
acts on its normal subgroup Φ(P ) by conjugation and this induces an injective
homomorphism

P/C0 ↪→ Aut(Φ(P )).

The quotient group P/C0 is an elementary abelian p-group, since C0 contains
Φ(P ). Since p is assumed to be odd, the automorphism group of the cyclic
p-group Φ(P ) has a cyclic Sylow p-subgroup. Therefore, P/C0 has order at
most p.

If C0 = P we are done, and we suppose from now on that C0 has index p
in P . In particular, Φ(P ) is strictly contained in C0, otherwise P would be
abelian. Furthermore, C0/Φ(P ) is obviously elementary abelian, so that we can
then choose a subgroup U of C0 containing Φ(P ) and such that |U : Φ(P )| = p.
Remark that U is abelian (it contains Φ(P ) as a maximal central subgroup) and
normal in P (it contains P ′).

Suppose first that there exists such a subgroup U which is cyclic. Now let
x ∈ P and consider its action on U by conjugation. Since xp ∈ Φ(P ), then xp

acts trivially on U . It follows that x acts as an automorphism of order 1 or p
on the cyclic group U . But then x must act trivially on the subgroup of index
p in U , namely Φ(P ). It follows that Φ(P ) is in the center of P .

We suppose now that Φ(P ) is not contained in any cyclic subgroup of P .
Remark that in this case we have Φ(P ) = [P, P ]. We would have otherwise
Φ(P ) = !1(P ) and Φ(P ) would be strictly contained in a cyclic subgroup of P
by Lemma 1.3.4.

We can thus decompose U as U = A×Φ(P ), with A cyclic of order p. Since
A is not contained in Φ(P ), there exists a maximal subgroup L of P which does
not contain A. Let Z = Ω1(Φ(P )) be the unique cyclic subgroup of order p in
Φ(P ).

The subgroups L/Z and AZ/Z intersect trivially and are both normal in
P/Z, since L is maximal in P and AZ is actually Ω1(U). Furthermore, we can
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see that these two groups are abelian. This is clear for AZ/Z which is cyclic
of order p. Now, L < P and Φ(L) ≤ Φ(P ), so that applying the induction
hypothesis to L gives that Φ(L) is central in L. If L is not abelian, it follows
then from Lemma 1.3.3 that [L,L] has order p. If L is abelian, then [L,L] = 1.
In both cases [L,L] ≤ Z, showing that L/Z is abelian.

As a consequence, P/Z is the direct product of the two abelian groups L/Z
and AZ/Z, so that P/Z is actually abelian. Therefore Z = [P, P ] and then
Φ(P ) = [P, P ] has order p, hence is central, and the proposition is proved.

Remark 1.3.6. Considering dihedral groups of order 2m+2 with m > 1, one can
see that the above proposition does not hold when p = 2.

The p-groups with a cyclic and central Frattini subgroup carry a natural
geometry coming from the commutators. This, together with Lemma 1.3.2,
motivates the following definition.

Definition 1.3.7. A non-abelian p-group P is called quasi-extraspecial if Z(P )
is cyclic and Φ(P ) is central.

Lemma 1.3.2 says in particular that any p-group with a cyclic and central
Frattini subgroup is the direct product of a quasi-extraspecial p-group and an
elementary abelian p-group. Proposition 1.3.5 shows furthermore that all odd
order p-groups with a cyclic Frattini subgroup are direct products of a quasi-
extraspecial p-group and an elementary abelian p-group.

Example 1.3.8.

a) Almost extraspecial p-groups are quasi-extraspecial and more generally, cen-
tral products of the form Xp2!+1 ∗ Cpm , for !,m ≥ 1, are quasi-extraspecial.

b) Central products of the form Xp2!+1 ∗ Mpm+2 , for ! ≥ 0 and m ≥ 1, are
quasi-extraspecial.

c) Generalized extraspecial p-groups are direct products of a quasi-extraspecial
p-group with an elementary abelian p-group.

d) For p odd, non-abelian p-groups of symplectic type are quasi-extraspecial.
Note however that there are 2-groups of symplectic type that are not quasi-
extraspecial. Consider for example the groups D2m+2 , SD2m+2 and Q2m+2 ,
all with m > 1.

The alternating form

We will consider that the reader already has a basic knowledge of the theory
of alternating forms over vector spaces. Apart from the definitions, we will not
use more than the standard result giving the existence of a symplectic basis
when the form is non-degenerate. The reader will find some more details in
Appendix A.

Let P be a quasi-extraspecial p-group and let

b : P/Φ(P )× P/Φ(P ) → [P, P ],

be defined by b(x, y) = [x, y].
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Lemma 1.3.9. The map b is well-defined and satisfies the following properties.

a) b(x1x2, y) = b(x1, y)b(x2, y) and b(x, y1y2) = b(x, y1)b(x, y2).

b) b(xk, y) = (b(x, y))k = b(x, yk).

c) b(x, x) = 1.

Proof. Let z ∈ Φ(P ). As Φ(P ) ≤ Z(P ), we have [xz, y] = [x, y] = [x, yz] and
thus b is well-defined. Part a) and part b) follow from Lemma 1.2.1 and Lemma
1.2.2 respectively. Part c) is clear since [x, x] = 1 for all x ∈ G.

The quotient V = P/Φ(P ) is elementary abelian, hence can be viewed as a
vector space over Fp. Since Φ(P ) is cyclic and central in P by definition, we
have from Lemma 1.3.3 that P ′ has order p. Once a generator of P ′ is chosen,
the group P ′ can then be identified with the field Fp. With these identifications,
V = P/Φ(P ) is a vector space over Fp and the map b takes its value in Fp.

Corollary 1.3.10. The map b is an alternating form on the Fp-vector space
V = P/Φ(P ). Moreover, V ⊥ = Z(P )/Φ(P ).

Proof. It follows from Lemma 1.3.9 that b is an alternating form. Furthermore,
b(x, y) = 1 if and only if [x, y] = 1. It follows that x ∈ V ⊥ if and only if
x ∈ Z(P ). Therefore, V ⊥ = Z(P )/Φ(P ).

Corollary 1.3.11. If P is a quasi-extraspecial p-group, then the quotient group
P/Z(P ), viewed as an Fp-vector space, is a non-degenerate alternating space.

As a consequence, P/Z(P ) has order p2! for some ! ≥ 1, and lifting to P the
elements of a symplectic basis of P/Z(P ) gives a set of elements x1, x2, . . . , x!, y!

of P satisfying the following conditions.

P = 〈Z(P ), xi, yi, i = 1, . . . , !〉. (1.7)
[xi, yi] = [xj , yj ], for all 1 ≤ i, j ≤ !. (1.8)

[xi, xj ] = [xi, yj ] = [yi, yj ] = 1, for all 1 ≤ i )= j ≤ !. (1.9)

Definition 1.3.12. Let P be a quasi-extraspecial p-group. A symplectic set of
generators for P is a choice of generators {xi, yj : 1 ≤ i ≤ !} of P satisfying the
three above conditions (1.7), (1.8) and (1.9). The elements xi, yi, 1 ≤ i ≤ ! will
be called symplectic generators of P .

Remark 1.3.13. If P is quasi-extraspecial and z denotes any element of order p
of Z(P ), then the symplectic generators can be chosen such that [xi, yi] = z for
all i = 1, . . . , !. This is because the isomorphism between P ′ and Fp is given by
an arbitrary choice of a generator of P ′.
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The linear form

Let P be a quasi-extraspecial p-group with |Φ(P )| = pm. We consider now
the map induced by taking p-th powers. We begin with the most natural and
standard case of a Frattini subgroup cyclic of order p, that is m = 1. In
this situation, one has to treat separately the case p = 2 and the case p odd.
Surprisingly, this distinction disappears totally when m > 1. This will become
clear in what follows.

Let us suppose first that m = 1 and let ψ : P/Φ(P ) → Φ(P ) be the map
given by ψ(x) = xp. Note that ψ is well defined since Φ(P ) is cyclic of order p.

Lemma 1.3.14.

a) For p odd, ψ(xy) = ψ(x)ψ(y).

b) If p = 2, ψ(xy) = ψ(x)ψ(y)[x, y].

Proof. One the one hand, we have that P ′ is contained in Φ(P ) which is cyclic of
order p, so that [x, y]p = 1 for all x, y ∈ P . On the other hand, for all x, y ∈ P ,
Lemma 1.2.2 gives

(xy)p = [y, x]
1
2 p(p−1)xpyp. (1.10)

When p is odd, p−1 is even and thus [y, x] 1
2 p(p−1) = ([x, y]p)

p−1
2 = 1. When

p = 2, the equality (1.10) becomes

(xy)2 = [x, y]x2y2 = x2y2[y, x] = x2y2[x, y].

Lemma 1.3.15.

a) For p odd, ψ is a linear form on P/Φ(P ).

b) For p = 2, ψ is a quadratic form on P/Φ(P ) whose polar form is the alter-
nating form b induced by the commutators.

We return now to the general situation m ≥ 1. Recall that Z(P ) is cyclic,
so that in particular the quotient group Z(P )/!1(Z(P )) is cyclic of order p.
Furthermore, since Φ(P ) is contained in Z(P ), we have xp ∈ Z(P ) for all x ∈ P ,
so that we can define a map

ϕ : P/Φ(P ) → Z(P )/!1(Z(P )),

by ϕ(x) = π(xp), where π is the quotient map Z(P ) → Z(P )/!1(Z(P )). The
following lemma shows that this map is always linear when Z(P ) has order at
least p2. We will see after this lemma what happens when Z(P ) has order p.

Lemma 1.3.16. The map ϕ is well defined. Furthermore, if Z(P ) has order
at least p2, then ϕ is linear.

Proof. For x ∈ P and z ∈ Φ(P ) ≤ Z(P ) we have (xz)p = xpzp. The map ϕ is
thus well-defined, since zp ∈ !1(Z(P )).

When p is odd, we have (xy)p = xpyp, and thus ϕ(xy) = ϕ(x)ϕ(y). When
p = 2, we have (xy)2 = x2y2[x, y]. But since [P, P ] has order 2, it is contained
in !1(Z(P )), and thus also ϕ(xy) = ϕ(x)ϕ(y).
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1.3 Classification of p-groups with a cyclic Frattini subgroup

When Φ(P ) has order p we have defined two maps on P/Φ(P ). Note that in
this situation Z(P ) has order at most p2. The next lemma shows that the two
maps ϕ and ψ coincide if and only if Z(P ) has order p. If Z(P ) has order p2,
then we obtain that ϕ is linear for p odd and quadratic for p = 2.

Lemma 1.3.17. Suppose that Φ(P ) has order p.

a) If Z(P ) has order p, then ϕ = ψ.

b) If Z(P ) has order p2, then ϕ = 0 and ψ )= 0.

Proof. If Z(P ) has order p, then Φ(P ) = Z(P ) = Z(P )/!1(Z(P )) and the two
maps are equal by definition. If Z(P ) has order p2, then Φ(P ) = !1(Z(P )), so
that ϕ = 0. But if z is a generator of Z(P ), then zp is a non-trivial element of
Φ(P ), so that ψ(z) )= 0.

Classification of p-groups with a cyclic and central Frattini
subgroup

We recall first the classification of p-groups with Frattini subgroup of order p.
This can be found for example in [25] and we include the proof for the sake of
completeness and to allow the reader to become familiar with the arguments.

Proposition 1.3.18. Let p be an odd prime and let P be a non-abelian p-group
with a Frattini subgroup of order p. Then P/Z(P ) has order p2!, for some ! ≥ 1,
and P is isomorphic to one of the following groups:

1. E ×X∗!
p3 ,

2. E × (X∗(!−1)
p3 ∗X−

p3),

3. E × (X∗!
p3 ∗ Cp2),

where E is elementary abelian of rank rk(Z(P ))− 1.

Proof. Thanks to Lemma 1.3.2, we may suppose that Z(P ) is cyclic. Let z be
a generator of Z(P ). Since Z(P ) is cyclic and all p-th powers are in Φ(P ), we
have that Z(P )/Φ(P ) has order at most p. We let w = zp if Φ(P ) < Z(P ) and
w = z otherwise. In both cases w is a generator of Φ(P ) = P ′ and this defines
an isomorphism between Φ(P ), resp. P ′, and the field Fp.

Recall that the Fp-vector space V = P/Φ(P ) is endowed with the alternating
form b : V × V → P ′ ∼= Fp induced by commutators and V ⊥ = Z(P )/Φ(P ).
Let ψ : V → Φ(P ) ∼= Fp be the linear map induced by taking p-th powers in P .

Suppose first that Z(P ) = Φ(P ), so that V ⊥ = 0 and hence b is non-
degenerate. In particular, P/Φ(P ) has order p2! for some ! ≥ 1, and P has a
symplectic set of generators {xi, yj | i = 1, · · · , !} satisfying

[xi, yi] = w, for all 1 ≤ i ≤ !,

[xi, xj ] = [xi, yj ] = [yi, yj ] = 1, for all 1 ≤ i )= j ≤ !.
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If ψ = 0, the generators xi, yi all have order p and P is isomorphic to a central
product (Xp3)∗!, that is P is extraspecial of type I.

If ψ )= 0, then the symplectic generators can be chosen such that all but
one, say y!, have order p and yp

! = w (see Proposition A.0.12). In this case,
P is the central product of the subgroup generated by the elements xi, yi for
1 ≤ i ≤ !− 1, which is isomorphic to X∗(!−1)

p3 , with the subgroup generated by
x! and y!, which is isomorphic to X−

p3 . Therefore P is extraspecial of type II in
this case.

Suppose from now on that Φ(P ) < Z(P ), so that in particular Z(P ) is cyclic
of order p2. It follows that V ⊥ = Z(P )/Φ(P ) has dimension 1 over Fp and the
class z of z modulo Φ(P ) is a basis element of V ⊥. Note that by our choice of
the generator of Φ(P ), we have that ψ(z) = 1.

Since ψ is a non-zero linear form, the subspace W = kerψ has codimension
1 in V . Furthermore, the restriction of ψ to V ⊥ is not zero, since ψ(z) = 1. It
follows that W is a complement to V ⊥ in V , i.e. V = W ⊕V ⊥. The alternating
form b is non-degenerate on W , so that we can then choose a symplectic basis
e1, f1, · · · , e!, f! of W . Since W = kerψ by definition, we have ψ(ei) = ψ(fi) = 0
for all i = 1, . . . , !. We can take now representatives of the elements of the
symplectic basis and we see that P is a central product of ! copies of Xp3 with
a cyclic group of order p2, namely Z(P ).

Remark 1.3.19. It follows from Proposition 1.3.18 that a non-abelian p-group P
with a Frattini subgroup of order p is uniquely defined by its order, its exponent,
the order of P/Z(P ) and the order of Z(P ).

Proposition 1.3.20. Let P be a non-abelian 2-group with a Frattini subgroup
of order 2. Then P/Z(P ) has order 22!, for some ! ≥ 1, and P is isomorphic
to one of the following groups:

1. E ×D∗!
8 ,

2. E × (D∗(!−1)
8 ∗Q8),

3. E × (D∗!
8 ∗ C4),

where E is elementary abelian of rank rk(Z(P ))− 1.

Proof. By Lemma 1.3.2, we may assume that P has a cyclic center. Recall
that V = P/Φ(P ) is endowed with a quadratic form q : V → Φ(P ) induced
by the map sending any x ∈ P to x2 ∈ Φ(P ). The polar form of q is the
alternating form b induced by commutators. We mainly have to show that q is
non-degenerate. The proposition will then follow directly from the classification
of non-degenerate quadratic forms on F2-vector spaces (see Proposition A.0.20).
Suppose thus that x ∈ P is such that [x, y] = 1 = x2, for all y ∈ P . This implies
in particular that x is an element of order 2 of Z(P ). Hence x ∈ Φ(P ) since
Z(P ) is cyclic and the proposition is proved.

Remark 1.3.21. In view of our convention that D8 = X23 and Q8 = X−
23 , we

could have given a single statement for p odd and p = 2. This statement would
be exactly Proposition 1.3.18 but with the assumption that p is an arbitrary
prime. Because of the difference in the proofs, the use of a linear form for p odd
and a quadratic form for p = 2, we have preferred to give separate statements.
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Proposition 1.3.18 and Proposition 1.3.20 give in particular a classification of
the quasi-extraspecial p-groups having a Frattini subgroup of order p (this is the
case E = 1 in the two above propositions). In order to obtain the classification of
all quasi-extraspecial p-groups, it remains to consider the case when the Frattini
subgroup has order at least p2, and this is done in the following proposition. It
has to be noted that now the proof works with absolutely no distinction between
the two cases p odd and p = 2.

Proposition 1.3.22. Let p be an arbitrary prime. Let P be a quasi-extraspecial
p-group with |Φ(P )| = pm and suppose m > 1. Then P/Z(P ) has order p2!, for
some ! ≥ 1, and Z(P ) has order pr with r ∈ {m,m + 1}. Moreover,

1. If |Z(P )| = pm+1, then P is isomorphic to Xp2!+1 ∗ Cpm+1 .

2. If |Z(P )| = pm, then P is isomorphic to Xp2!−1 ∗Mpm+2 .

Proof. Since P is quasi-extraspecial, it has a cyclic center which contains Φ(P ).
Let c be a generator of Z(P ). We must have cp ∈ Φ(P ), so that Φ(P ) has
index at most p in the cyclic group Z(P ). It follows that either Z(P ) = Φ(P ),
in which case Z(P ) has order pm, or Φ(P ) is maximal in Z(P ), in which case
Z(P ) has order pm+1. This proves our assertion on the order of Z(P ).

Let z = cpr−1
be a generator of the unique subgroup of order p in Z(P ).

Since Φ(P ) is central, we have from Lemma 1.3.3 that P ′ has order p and hence
P ′ = 〈z〉.

Let V = P/Z(P ). Recall that taking p-th powers of elements of P induces
a linear form ϕ : V → Z(P )/!1(Z(P )). Furthermore, this linear form is zero if
Φ(P ) is strictly contained in Z(P ), i.e. if Z(P ) has order pm+1, and is non-zero
if Φ(P ) = Z(P ), i.e. Z(P ) has order pm. Recall also that V is a non-degenerate
alternating space with respect to the form b : V × V → Fp

∼= 〈z〉 induced by
commutators. As a first consequence, V has even dimension over Fp, say 2! for
some ! ≥ 1. It follows, in particular, that V = P/Z(P ) has order p2! and this
proves our assertion on the order of P/Z(P ).

The vector space V = P/Z(P ) admits a symplectic basis e1, f1, . . . , e!, f!

such that ϕ(ei) = ϕ(fi) = ϕ(e!) = 0, for i = 1, . . . , !−1, and ϕ(f!) = 1 if ϕ )= 0.
Let x1, y1, . . . , x!, y! be representatives in P of the elements of this symplectic
basis. These elements together with the generator of Z(P ) generate the group
P and satisfy the following conditions:

[xi, xj ] = [xi, yj ] = [yi, yj ] = 1, for all 1 ≤ i )= j,≤ !. (1.11)
[xi, yi] = z, for all i = 1, . . . , !. (1.12)

Assertion 1. If ϕ = 0, the representatives x1, y1, . . . , x!, y! can be chosen such
that they satisfy the following additional condition:

xp
i = yp

i = 1, for all i = 1, . . . , !. (1.13)

The condition ϕ(ei) = 0 implies that xp
i is in !1(Z(P )) =< cp >, so that

xp
i = (cp)ki . In particular, (xic−ki)p = 1. For i = 1, . . . , !, let x′i = xic−ki ,

so that x′i ∈ xiZ(P ) and (x′i)p = 1. With the same argument, we can find
y′i ∈ yiZ(P ), with (y′i)p = 1. The elements x′1, y

′
1, . . . , x

′
!, y

′
! satisfy the required

condition and still satisfy conditions (1.11) and (1.12) above. This proves As-
sertion 1.
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Assertion 2. If ϕ )= 0, the representatives x1, y1, . . . , x!, y! can be chosen such
that the satisfy the following two additional conditions:

xp
i = yp

i = 1, for all i = 1, . . . , !− 1. (1.14)

xp
! = 1 and ypm

! = [x!, y!]. (1.15)

If ϕ is non-zero, the symplectic basis e1, f1, . . . , e!, f! can be chosen such
that ϕ(ei) = ϕ(fi) = ϕ(e!) = 0 for i = 1, . . . , ! − 1, and ϕ(f!) = 1. With an
argument similar to the one used in the proof of the previous assertion, we may
suppose that xp

i = yp
i = xp

! = 1 for i = 1, . . . , ! − 1. The condition ϕ(f!) = 1
implies that (y!)p = c1+pk, for some k and in particular, ypm

! = z = [x!, y!].
This proves Assertion 2.

If ϕ = 0, the three conditions (1.11), (1.12) and (1.13) show that the sub-
group X generated by x1, y1, . . . , x!, y! is extraspecial of type I. In this case,
P = XZ(P ) and X ∩ Z(P ) = Z(X), so that P = X ∗ Z(P ) and hence P is
isomorphic to X+

p2l+1 ∗ Cpm+1 .
If ϕ )= 0, the conditions (1.11) and (1.12) together with the conditions (1.14)

and (1.15) show that P is a central product of the subgroup generated by
x1, y1, . . . , x!−1, y!−1, which is extraspecial of type I, and the subgroup gen-
erated by x!, y!, which is isomorphic to Mpm+2 . We obtain thus that P is a
central product Xp2!−1 ∗Mpm+2 .

Remark 1.3.23. This classification, with a similar approach, already appears
in a paper by Newman [21]. The main difference is that Newmann does not
consider p-th powers as a linear form. As can be seen in [21], the linear form
is not of particular importance for this classification. It brings at most more
conceptuality and clarify some of the arguments. The usefulness of the linear
form will however become more evident in the determination of automorphism
groups of quasi-extraspecial p-groups performed in Chapter 3.

It can be deduced from Proposition 1.3.22 that quasi-extraspecial p-groups
with a Frattini subgroup of order at least p2 are determined, up to isomorphism,
by their order, the order of the Frattini subgroup and the rank of the central
quotient. This is the content of the following corollary.

Corollary 1.3.24. Let ! ≥ 1 and m > 1. Up to isomorphism, there exists a
unique quasi-extraspecial p-group P of a given order and such that Φ(P ) = pm

and P/Z(P ) has rank 2!.

Remark 1.3.25. The previous corollary is not true for m = 1, since the groups
X−

p3 and Xp3 are not isomorphic.

Recall from Lemma 1.3.2 that p-groups with cyclic and central Frattini sub-
group are obtained as direct products of a quasi-extraspecial p-group with an
elementary abelian p-group. This, together with the above propositions, shows
the following general theorem classifying all p-groups with a cyclic and central
Frattini subgroup.
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Theorem 1.3.26. Let p be a prime and let P be a non-abelian p-group with
a cyclic and central Frattini subgroup. Let |Φ(P )| = pm, then |P/Z(P )| = p2!,
for some ! ≥ 1, and P is isomorphic to a direct product E × Q, where E is
elementary abelian of rank rk(Z(P ))− 1 and Q satisfies the following:

a) If p is odd, then Q is isomorphic to one of the following groups:

(i) X∗!
p3 ;

(ii) X∗(!−1)
p3 ∗X−

p3 ;

(iii) X∗!
p3 ∗ Cpm+1 , with m ≥ 1;

(iv) X∗(!−1)
p3 ∗Mpm+2 , with m > 1.

b) If p = 2, then Q is isomorphic to one of the following groups:

(i) D∗!
8 ;

(ii) D∗(!−1)
8 ∗Q8;

(iii) D∗!
8 ∗ C2m+1 , with m ≥ 1;

(iv) D∗(!−1)
8 ∗M2m+2 , with m > 1.

Remark 1.3.27.

a) This classification can be deduced from the more general classification of
p-groups with cyclic Frattini subgroup performed by Berger, Kovács and
Newman in [4]. The part of their proof that we are concerned with here,
namely the case of a central and cyclic Frattini subgroup, is however left to
the reader in [4].

b) As noted in [4], when p is odd, the condition Z(Φ(P )) cyclic implies that
Φ(P ) is cyclic. This result is originally due to Hobby [17] (see also (4.2) in
Suzuki [27]). The classification above is then a classification of all odd order
p-groups such that Z(Φ(P )) is cyclic.

Classification of 2-groups with a non-central cyclic Frattini
subgroup

Contrary to the case p odd, there exist 2-groups with a non-central cyclic Frattini
subgroup. Classical examples are the dihedral groups D2m+2 , the semi-dihedral
groups SD2m+2 and the quaternion groups Q2m+2 , all for m > 1. Two more
examples are the groups D+

2m+3 and Q+
2m+3 that will be defined below (see also

[4] for the original definitions and notation).
Recall that for m > 1, the automorphism group of C2m+1 contains a unique

elementary abelian subgroup of rank 2.

Definition 1.3.28. For m > 1, the group D+
2m+3 is defined as the semi-direct

product C2m+1 " (C2 × C2) with respect to the action given by the canonical
inclusion C2 × C2 ↪→ Aut(C2m+1).

31



Chapter 1. Classifications

The group D+
2m+3 has the following presentation:

D+
2m+3 = 〈a, b, u | a2 = b2 = u2m+1

= 1, [a, b] = 1, [a, u] = u2m

, [b, u] = u−2〉.
(1.16)

Lemma 1.3.29. Let m > 1 and let b, u be generators of the group Q2m+2 with
b of order 4, u of order 2m+1 and such that bub−1 = u−1. The homomorphism
α induced by u .→ u1+2m

and b .→ b is an automorphism of Q2m+2 of order 2.

Proof. It is not difficult to see that α preserves the order of the generators and
the relations between them. It can be thus extended to an automorphism of
Q2m+2 . It is then easy to check that α2 is the identity.

Definition 1.3.30. For m > 1, the group Q+
2m+3 is defined as the semi-direct

product Q2m+2 " C2 with respect to the action given by the automorphism α of
Lemma 1.3.29.

The group Q+
2m+3 has the following presentation:

Q+
2m+3 = 〈a, b, u | a2 = u2m+1

= 1, b2 = u2m

, [a, b] = 1, [a, u] = u2m

, [b, u] = u−2〉.
(1.17)

Let us make some small remarks on the structure of these groups.

Remark 1.3.31.

a) In the two presentations above, the commutator relations can be written
as aua−1 = u1+2m

and bub−1 = u−1. It follows also that ab acts on u as
(ab)u(ab)−1 = u−1+2m

. These are the three possible actions of order 2 on
the generator of a cyclic group of order 2m+1.

b) As for D+
2m+3 , the group Q+

2m+3 is an extension of C2×C2 by C2m under the
faithful action, but in this case the extension does not split.

c) The quotient D+
2m+3/〈u〉 is elementary abelian of rank 2. The group D+

2m+3

has thus three maximal subgroups. The maximal subgroup 〈a, u〉 is isomor-
phic to M2m+2 , the subgroup 〈ab, u〉 is isomorphic to SD2m+2 and the sub-
group 〈b, u〉 is isomorphic to D2m+2 . Their intersection is the cyclic subgroup
〈u〉 of order 2m+1. These subgroups are visually depicted in Figure 1.1.

d) The group Q+
2m+3 has three maximal subgroups, namely 〈a, u〉 = M2m+2 ,

〈ab, u〉 = SD2m+2 and 〈b, u〉 = Q2m+2 . These subgroups are visually depicted
in Figure 1.2.

e) The element ab has order 2 in D+
2m+3 . It follows that the non-central elements

of order 2 in the maximal subgroup 〈ab, u〉 = SD2m+2 are those of the form
abuk with k even. The elements of the form abuj with j odd have order 4. In
the case of the group Q+

2m+3 the element ab has order 4, so that the elements
abui have order 2 if i is odd and order 4 if i is even. It may be useful to keep
this difference in mind when working with the elements of these groups.

f) In what follows, these groups will appear as an extension of the maximal
subgroup M2m+2 .
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D+
2m+3

!!!!!!!!!

"""""""""

D2m+2

"""""""""
M2m+2 SD2m+2

##########

C2m+1

Figure 1.1: Maximal subgroups of D+
2m+3

Q+
2m+3

!!!!!!!!!

"""""""""

Q2m+2

"""""""""
M2m+2 SD2m+2

##########

C2m+1

Figure 1.2: Maximal subgroups of Q+
2m+3

Of course, these two groups satisfy the desired conditions on the Frattini
subgroup.

Lemma 1.3.32. Let P be the group D+
2m+3 or Q+

2m+3 for some m > 1. Then
P has order 2m+3 and Φ(P ) is cyclic of order 2m, but is not central in P .

Proof. This is clear from the above presentations that Φ(P ) is generated by
u2, so is cyclic of order 2m. But the generator b acts non-trivially on u2 since
bu2b−1 = u−2 and m > 1.

Let P be a 2-group with a non-central cyclic Frattini subgroup. The de-
termination of the structure of P goes as follows. First, we will show that the
centralizer C0 of Φ(P ) in P is maximal in P . Since Φ(P ) is obviously central in
its centralizer, we obtain that C0 is a 2-group with a cyclic and central Frattini
subgroup. The group P has thus a maximal subgroup C0 that can be described
reasonably well thanks to the classification obtained previously. It remains then
to describe how an element outside of C0 acts on C0.

Lemma 1.3.33. If P is a 2-group with Φ(P ) cyclic, there exists u ∈ P such
that Φ(P ) =

〈
u2

〉
.

Proof. Since P/!1(P ) has exponent 2, hence is also abelian, we have that
Φ(P ) ≤ !1(P ). The reverse inclusion holds trivially, so that Φ(P ) = !1(P )
is cyclic. The lemma follows now from Lemma 1.3.4.

Lemma 1.3.34. If P is a 2-group with Φ(P ) cyclic, then |P : CP (Φ(P ))| ≤ 2.
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Proof. It is clear if Φ(P ) is central in P , so suppose that CP (Φ(P )) is strictly
contained in P . In particular, if |Φ(P )| = 2m, then m > 1.

Let u ∈ P such that Φ(P ) =
〈
u2

〉
, the subgroup U = 〈u〉 is cyclic of order

2m+1 and contains Φ(P ), hence is normal in P . Furthermore, we have the
following inclusions of subgroups of P :

Φ(P ) ≤ U ≤ CP (U) ≤ CP (Φ(P )) < P.

In particular, P/CP (U) is an elementary abelian 2-group and the action of P
on U by conjugation induces an injective homomorphism P/CP (U) → Aut(U).
The characterization of the automorphism group of a cyclic 2-group implies that
|P/CP (U)| ≤ 4.

If |P/CP (U)| = 4, there must exist x ∈ P such that xux−1 = u1+2m

. But
then, xu2x−1 = u2, hence x ∈ CP (Φ(P )). But x )∈ CP (U), so that the following
inclusions are strict:

CP (U) < CP (Φ(P )) < P.

Since |P : CP (U)| = 4, we must have |P : CP (Φ(P ))| = 2. If |P : CP (U)| = 2,
the same conclusion holds trivially and the lemma is proved.

Lemma 1.3.35. Let P be a 2-group with a non-central cyclic Frattini subgroup.
Let C0 = CP (Φ(P )), then Φ(C0) = Φ(P ) and Φ(C0) is central in C0.

Proof. Let U = 〈u〉, where u ∈ P is such that Φ(P ) =
〈
u2

〉
. Since U ≤ C0,

we have u2 ∈ Φ(C0), and thus Φ(P ) ≤ Φ(C0). The inclusion Φ(C0) ≤ Φ(P )
is trivially true, so that Φ(C0) = Φ(P ). It is then clear that Φ(C0) is central
in C0.

Proposition 1.3.36. Let P be a 2-group with Φ(P ) cyclic of order 2m and not
central in P . Let Z = Ω1(Φ(P )), there exists two subgroups Q and S of P such
that

a) P = Q ∗
Z

S ,

b) Φ(Q) = Z is cyclic of order 2,

c) S is either dihedral, semi-dihedral or quaternion and of order 2m+2, or iso-
morphic to D+

2m+3 or Q+
2m+3 .

Proof. By the classification of 2-groups with a cyclic and central Frattini sub-
group, the subgroup C0 = CP (Φ(P )) can be written as E × (D ∗M), with E
elementary abelian, D isomorphic to D∗!

8 and M is either cyclic of order 2m+1,
or isomorphic to M2m+2 .

We choose b )∈ C0 and let S be the subgroup generated by M and b. As
a first step, we will describe the possible structure of this subgroup S. Recall
from Lemma 1.3.35 that Φ(P ) = Φ(C0). It follows in particular that Φ(P ) is
contained in M . As a consequence, we have that M is normal in P , hence in S.
Furthermore M has index 2 in S, since b2 ∈ Φ(P ) ≤ M .

If M is cyclic, then S has a maximal cyclic subgroup. Furthermore Φ(P ) is
not central in S by the choice of b. This, together with Lemma 1.2.9 classifying
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p-groups with a maximal cyclic subgroup, shows that S is either dihedral, semi-
dihedral or quaternion.

Suppose now that M is isomorphic to M2m+2 and let u, a be generators of M
such that a has order 2, u has order 2m+1 and aua−1 = u1+2m

. The subgroup
S is generated by a, u and the element b )∈ C0. Furthermore, the subgroup
generated by u is normal in P , since it contains Φ(P ) = 〈u2〉.

The element b does not centralize Φ(P ) = 〈u2〉 and acts on the cyclic 2-group
U = 〈u〉 as an automorphism of order 2, since b2 ∈ Φ(P ) ≤ U . It follows that b
acts on u either by bub−1 = u−1, or by bub−1 = u−1+2m

. If bub−1 = u−1+2m

,
we replace b by ba, so that we may assume that bub−1 = u−1.

Remark that on the one hand, we have b2 ∈ Φ(P ) on which b acts by taking
the inverse and on the other hand, b acts trivially on b2. It follows that b2 has
order at most 2, hence b has order 2 or 4.

We have already seen that M = 〈u, a〉 is a normal subgroup of P . We
consider now the action of b on M . Let z = u2m

, the subgroup Ω1(M) = 〈z, a〉
is characteristic in M , hence normal in P . The same holds for Ω1(Z(M)) = 〈z〉.
Therefore, we have either that b acts trivially on a, or that bab−1 = za. If
bab−1 = za = u2m

a, we replace b by bu−1, in order to have that b and a
commute. Remark that this does not change the action of b on u, nor the order
of b. We have thus that the subgroup S is generated by a, b and u, with u of
order 2m+1, a of order 2, aua−1 = u1+2m

, bub−1 = u−1, [a, b] = 1 and b has
order at most 4. This shows that S is isomorphic to D+

2m+3 or Q+
2m+3 , depending

on the order of b.
To summarize, we have thus showed that S is either dihedral, semi-dihedral,

quaternion and of order 2m+2 (case M cyclic), or isomorphic to D+
2m+3 or Q+

2m+3

(case M isomorphic to M2m+2). The next step is to decompose P as a central
product P = Q ∗ S.

The group P is generated by the subgroup E × D and the subgroup S.
Furthermore, S∩C0 = M , so that (E×D)∩S = (E×D)∩M = 〈z〉 is cyclic of
order 2. However, these two subgroups E×D and S may not commute, since 〈b〉
does not necessarily commute with (E×D). Note however that E×D commutes
with the subgroup M , by the choice of the decomposition of C0. We show now
how the subgroups E and D have to be modified so that they commute with S.

Let e1, . . . , et be linearly independent generators of the elementary abelian
group E. Let H be the subgroup generated by Φ(P ) and b. The subgroup
H is normal in P , since H contains Φ(P ), and the subgroup E acts on H as
automorphisms of order 1 or 2 fixing Φ(P ). For any i = 1, . . . , t, we have thus
that either ei and b commute, or eibe

−1
i = u2m

= zb. Let w = u2m−1
be one of

the elements of order 4 in 〈u〉. Since bub−1 = u−1, we have wbw−1 = bz. For
i = 1, . . . , t, let

fi =

{
ei if [ei, b] = 1.

eiw otherwise .

Remark that now fibf
−1
i = b, for all i = 1, . . . , t. Since w is centralized by E,

we have [ei, ej ] = [fi, fj ] = 1 for 1 ≤ i, j ≤ t. Since w2 = z, we have either
f2

i = 1 or f2
i = z, for i = 1, . . . , t. It follows that the subgroup E0 generated by

these elements fi, i = 1, . . . , t, is abelian with Φ(E0) ≤ 〈z〉. Since w is central
in M and is centralized by E0, we have that E0 commutes with S.

Let x1, y1, . . . , x!, y! be symplectic generators of the subgroup D such that
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[xi, yi] = z. With an argument similar to the one performed for the subgroup
E, we can modify the generators of D by the element w, if needed, in such a
way that D commutes with 〈b〉 and hence with S. We denote D0 the subgroup
obtained from D after eventual modification of the generators xi, yi, i = 1, . . . , !.
Since w is centralized by D, we have Φ(D0) = 〈z〉 and by construction D0

commutes with S.
Denote by Q the subgroup generated by E0 and D0. Since E0 and D0

commute with S, we have that P is a central product P = Q ∗ S. Since E0 and
D0 commute and Φ(E0) = Φ(D0) = 〈z〉, we have also that Φ(Q) = 〈z〉 and the
proposition is proved.

We can now state and prove our second main result towards the classification
of p-groups with a cyclic Frattini subgroup. The original result, with a different
approach, is due to Berger, Kovács and Newman [4].

Theorem 1.3.37. Let P be a 2-group with a cyclic and non-central Frattini
subgroup and let 2m = |Φ(P )|. Then m > 1 and P is isomorphic to a product
E × (D∗!

8 ∗ H), where E is elementary abelian, ! ≥ 0 and H is a non-trivial
group isomorphic to one of the following groups:

D2m+2 , Q2m+2 , SD2m+2 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D
+
2m+3 , Q

+
2m+3orD

+
2m+3 ∗ C4.

(1.18)

Proof. Since Φ(P ) is normal in P , we have Φ(P )∩Z(P ) )= 1. Since Φ(P ) is not
central by assumption, we have |Φ(P )| > 2 and hence m > 1.

Let Z = Ω1(Φ(P )). By the preceding proposition, we know that P is a
central product Q ∗

Z
S, with |Φ(Q)| = 2. It follows from Proposition 1.3.20 that

Q is isomorphic to one of the following groups:

E ×D∗!
8 ,

E × (D∗!
8 ∗ C4),

E × (D∗!−1
8 ∗Q8),

where E is elementary abelian. The group S is either dihedral, semi-dihedral,
quaternion and of order 2m+2, or isomorphic to D+

2m+3 or Q+
2m+3 . These five

cases will be denoted by d, s,q,d+ and q+ respectively.
We have thus that P is a central product P = E × (D∗!

8 ∗ R ∗ S), where R
is either D8, C4, or Q8. These three cases will be denoted respectively by D,
C, and Q. We write T for the subgroup R ∗ S and we will write T = D ∗ d if
R = D8 and S = D2m+2 . The other cases are written similarly. We have thus
that P = E × (D∗!−1

8 ∗ T ), and it remains to identify all the possible choices
for T . For this, it is enough to see when two different central product R ∗S are
isomorphic, when R and S are chosen in their respective list.

For example, the case T = D ∗ d is isomorphic to the case T = Q ∗ d, since
Q8 ∗D2m+2 ∼= D8 ∗D2m+2 . In this case, we obtain P = E × (D∗!

8 ∗D2m+2). The
theorem follows now from the following identifications.

• D∗d is isomorphic to Q∗d, since D8 ∗D2m+2 ∼= Q8 ∗D2m+2 . In this case,
P = E × (D∗!

8 ∗D2m+2).
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1.4 Classification of odd order p-groups of class 2 with a cyclic center

• D ∗q is isomorphic to Q ∗q, since D8 ∗Q2m+2 ∼= Q8 ∗Q2m+2 . In this case,
P = E × (D∗!

8 ∗Q2m+2).

• D ∗ s is isomorphic to Q ∗ s, since D8 ∗ SD2m+2 ∼= Q8 ∗ SD2m+2 . In this
case, P = E × (D∗!

8 ∗ SD2m+2).

• C ∗d is isomorphic to C ∗q, since Q2m+2 ∗C4
∼= D2m+2 ∗C4. In this case,

P = E × (D∗!
8 ∗D2m+2 ∗ C4).

• In the case C ∗ s, then P = E × (D∗!
8 ∗ SD2m+2 ∗ C4).

• D ∗ d+ is isomorphic to Q ∗ q+, since D8 ∗D+
2m+3

∼= Q8 ∗Q+
2m+3 . In this

case, P = E × (D∗!
8 ∗D+

2m+3).

• D ∗ q+ is isomorphic to Q ∗ d+, since D8 ∗Q+
2m+3

∼= Q8 ∗D+
2m+3 . In this

case, P = E × (D∗!
8 ∗Q+

2m+3).

• C ∗ d+ is isomorphic to C ∗ q+, since C4 ∗D+
2m+3

∼= C4 ∗ Q+
2m+3 . In this

case, P = E × (D∗!
8 ∗D+

2m+3 ∗ C4).

Remark 1.3.38. If P is a 2-group with a cyclic and non-central Frattini subgroup,
then Theorem 1.3.37 says that P = E × (D∗!

8 ∗H), with E elementary abelian,
! ≥ 0 and H is one of the groups in the list (1.18). It is not difficult to see that
two groups in the list (1.18) are never isomorphic and that, up to isomorphism,
P is determined by the rank of E, the integer ! and the subgroup H.

1.4 Classification of odd order p-groups of class
2 with a cyclic center

Throughout this section, p always denotes an odd prime number. Note that
we will however make additional remarks for the case p = 2 at the end of this
section.

In this section, we give results towards the classification of p-groups of class 2
with a cyclic center. A decomposition of these groups as central products of
2-generator groups was given by other means by Brady, Bryce and Cossey [9].
The isomorphism problem for these groups was solved by Leong in [19] for p
odd, and in [20] for p = 2. When p is odd, we will recover their results by
expanding the method used in Section 1.3.

If P is a p-group of class 2 with a cyclic center, then in particular P ′ is cyclic,
say of order pm, and the choice of a generator gives an isomorphism between
P ′ and the ring R = Z/pmZ. If V denotes the quotient group P/Z(P ), the
commutators induce a map

b : V × V → R,

and this map satisfies conditions of bilinearity (1.3) and (1.4), alternation (1.1)
and regularity (1.2). To begin, we will consider the case where V is a free R-
module, that is the abelian group P/Z(P ) is homocyclic of type pm. In this
situation, there exists a symplectic basis on V and we will see furthermore that
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taking pm-th powers in P induces a linear form on V . The classification of
these groups will follow from general results on alternating free modules over
Z/pmZ. These results are very similar to the usual results for vector spaces and
the reader is referred to Appendix A for the details.

In a second part, we will see that any p-group of class 2 with a cyclic center
can be decomposed as a central product P = Z(P ) ∗ Q1 ∗ · · · ∗ Qt, where, for
each k, Qk is a p-group of class 2 with a cyclic center and such that the quotient
Qk/Z(Qk) is homocylic of type pmk , for some mk ≥ 1. By the first part, the
structure of these groups Qk is known and this gives a decomposition of P . We
will see how a canonical decomposition can be deduced from this one.

The homocyclic case

Recall that p is an odd prime number. We fix a p-group P of class 2 with a
cyclic center and such that the quotient group P/Z(P ) is homocyclic of type
pm. Remark that for m = 1, the p-group P has a cyclic center and a central
Frattini subgroup, hence is quasi-extraspecial in our terminology. The methods
used in Section 1.3 generalize rather easily for m > 1. The following two results
correspond respectively to Lemma 1.3.3 and Lemma 1.2.2 when specialized to
m = 1.

Lemma 1.4.1. The central quotient P/Z(P ) has exponent pm if and only if P ′

has order pm.

Proof. Let pa denote the exponent of P/Z(P ) and let pm = |P ′|. We have to
show that a = m. Since P ′ ≤ Z(P ), we have [x, y]k = [xk, y], for all k ∈ Z and
x, y ∈ P . In particular, [x, y]p

a

= [xpa

, y] = 1, since xpa ∈ Z(P ), so that m ≤ a.
Let x ∈ P such that xZ(P ) has order pa in P/Z(P ). We have 1 = [x, y]p

m

=
[xpm

, y], for all y ∈ P , so that xpm ∈ Z(P ) and hence m ≥ a.

Lemma 1.4.2. For all x, y ∈ P , we have

(xy)pm

= xpm

ypm

.

Proof. Since P ′ ≤ Z(P ), we have

(xy)pm

= [y, x]
pm(pm−1)

2 xpm

ypm

.

Since p is odd and P ′ has order pm, then [y, x]
pm(pm−1)

2 = 1.

We give now two examples of p-groups of class 2 with a homocyclic quotient
group P/Z(P ). These groups will be building blocks for all p-groups with this
property. The first example is a generalization of extraspecial p-groups of type I.

Definition 1.4.3. For ! ≥ 1 and m ≥ 1, we define X2!+1(pm) as the subgroup
of U!+2(Z/pmZ) given by matrices of the form





1 ∗ · · · ∗
. . . 0

...

0
. . . ∗

1




.
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1.4 Classification of odd order p-groups of class 2 with a cyclic center

When ! = 1, the group X3(pm) has the following presentation

X3(pm) = 〈x, y |xpm

= ypm

= 1, [x, y]p
m

= 1, [x, [x, y]] = [y, [x, y]] = 1〉

Remark 1.4.4. When m = 1, X2!+1(p) is the extraspecial group of type I and
order p2!+1. This motivates our notation, since then Xp2!+1 = X2!+1(p).

The next lemma shows that these groups X3(pm) have (at least) the desired
properties, namely, they have a cyclic center and the quotient by the center is
a homocyclic abelian group.

Lemma 1.4.5. If P = X2!+1(pm), then

a) Z(P ) = P ′ and is cyclic of order pm,

b) !m(P ) = {1},

c) P/Z(P ) is isomorphic to a direct product (Cpm)2!,

d) P has order pm(2!+1),

e) P is isomorphic to a central product of ! copies of X3(pm).

Proof. Let ei,j be the elementary matrix with 1 in the (i, j)-th entry and 0
elsewhere. We remark that for i )= j, we have (I + ei,j)m = I + mei,j , so
that the group P is generated by all the matrices I + e1,j and I + ek,!+2, with
1 < j ≤ ! + 2 and 1 ≤ k < ! + 2. For 1 < j, k < ! + 2, an elementary calculation
shows that

[I + e1,j , I + ek,!+2] = I + δj,ke1,!+2. (1.19)

Similarly,

[I + e1,j , I + e1,!+2] = [I + e!+2,k, I + e1,!+2] = 0, for 1 < j, k < ! + 2. (1.20)

It follows that I + e1,!+2 is central and all commutators between the generators
of P are central. As a consequence, Z(P ) = P ′ = 〈I + e1,!+2〉. It follows from
Lemma 1.4.2 that !m(P ) = 1 and using Lemma 1.4.1, we see that P/Z(P ) is
homocyclic of type pm.

For 1 < j < ! + 2 the subgroup Hj generated by I + e1,j and I + ej,!+2 is
isomorphic to X3(pm) with Z(Hj) = Z(P ). It follows from (1.19) and (1.20),
that P decomposes as a central product P = H1 ∗ · · · ∗H!.

Remark 1.4.6. The amalgamation in X3(pm)∗! is made along the center of the
groups X3(pm). Let us see briefly that this amalgamation is independent of
the chosen isomorphism. If P is the group X3(pm), then any automorphism of
Z(P ) sends the generator z of Z(P ) to zk for some k prime to p. Similarly to
what we made for extraspecial p-groups, we can extend this automorphism to
the whole group P by defining x .→ xk and y .→ y.

As a second example, we will define generalizations of the groups Mpm+2 .
We will define these groups as semi-direct products and for this, we will need
the automorphism given by the following lemma.
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Lemma 1.4.7. Let m ≥ 1 and s ≥ 0 be such that m ≥ s, and let P be the
central product Cpm+s ∗

Cps
Cpm . Denote by y, respectively z, a generator of Cpm+s ,

respectively Cpm . The map α : P → P defined by α(z) = z and α(y) = yz is an
automorphism of P of order pm.

Proof. Since z and y commute, y and yz have the same order and ypm

= (yz)pm

.
The map α can thus be extended to an endomorphism of P . It is clear that α
is surjective, so that α is a well-defined automorphism of P .

Since αpk

(y) = yzpk

, then αpk

y = y if and only if k ≥ m. Hence, α has
order pm.

Definition 1.4.8. Let m ≥ 1. For s ≤ m, we define M(m, s) as the semi-
direct product (Cpm+s ∗

Cps
Cpm) "

α
Cpm , where α is the automorphism defined

in Lemma 1.4.7. For s ≥ m, we define M(m, s) as the semi-direct product
Cpm+s "Cpm , with respect to the automorphism sending a generator y of Cpm+s

to y1+ps

.

The group M(m, s) has the following presentations. If s ≤ m, then

M(m, s) = 〈x, y |xpm

= ypm+s

= 1, ypm

= [x, y]p
m−s

, [x, [x, y]] = [y, [x, y]] = 1〉

= 〈x, y, z |xpm

= zpm

= 1, ypm

= zpm−s

, z = [x, y], [x, z] = [y, z] = 1〉,

and if s ≥ m, then

M(m, s) = 〈x, y |xpm

= ypm+s

= 1, yps

= [x, y]〉

= 〈x, y, z |xpm

= ypm+s

= 1, z = ypm

, [x, y] = zps−m

〉.

Remark 1.4.9.

a) If s = m, then Cpm+s ∗
Cps

Cpm = Cpm+s and the two definitions coincide.

b) Let P = M(m, s) with either s ≤ m, or s ≥ m. In both cases, m is the
p-valuation of the order of P ′ and we will see in Lemma 1.4.10 that s is the
p-valuation of the order of the cyclic group !m(P ).

c) When m = 1, the group M(1, s) is isomorphic to the group Mps+2 that
appeared in previous Section 1.3.

d) If s = 0, then M(m, 0) = X3(pm).

e) We don’t want to use a notation of the form Mr(pm) for some index r,
because one would maybe expect then the order of this group to be pmr.
But we will see in the next lemma that the order of the groups M(m, s) are
really different whether s is less or greater than m. Our notation doesn’t
correspond nicely with our previous notation for m = 1, but it seems to us
that it is less confusing this way.
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Lemma 1.4.10. If P = M(m, s), then

a) P/Z(P ) is isomorphic to Cpm × Cpm ,

b) !m(P ) is cyclic of order ps,

c) P ′ is cyclic of order pm,

d) Z(P ) is cyclic of order pmax{m,s},

e) P has order p2m+max{m,s}.

Proof. We keep the notation as in the above presentations. If s ≤ m, then Z(P )
is generated by [x, y], hence has order pm. If s ≥ m, then Z(P ) is generated by
ypm

, hence has order ps. The other properties follow easily.

In Figure 1.3 and Figure 1.4, we have shown some of the subgroups of the
group M(m, s). The letters x and y refer to the above presentations and we
have labelled (some of) the edges with the p-valuation of the indices.

M(m, s)

$$
$$

$$
$$

$$
$$

$$
$

%%
%%

%

Z(P )〈y〉

$$
$$

$
%%

%%
%

〈y〉
m

$$
$$

$
Z(P ) = P ′

m−s %%
%%

%

!m(P )
s

$$
$$

$$

〈x〉

m

%%
%%

%%
%%

%%
%%

%%
%

1

Figure 1.3: Some of the structure of the group M(m, s) for s ≤ m

M(m, s)
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$$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$

%%
%%

%

〈y〉
m

$$
$$

$

Z(P ) = !m(P )
s−m

$$
$$

$

P ′

m

$$
$$

$$
〈x〉

m %%
%%

%%

1

Figure 1.4: Some of the structure of the group M(m, s) for s ≥ m
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Recall that, for m ≥ 1 and s ≥ 0, the center of M(m, s) has order pmax{m,s}.
For r ≥ 0, we can then form the central product M(m, s) ∗ Cpm+r , where the
amalgamation is performed over the largest central subgroup possible. It may
well be that different choices of the values of m, r and s give isomorphic groups
M(m, s) ∗ Cpm+r . This is the content of the following lemma.

Lemma 1.4.11. Let P = M(m, s)∗Cpm+r , with m ≥ 1, s ≥ 0 and r ≥ 0. Then
one of the following situations arises.

a) m + r ≤ max {m, s}, and then P is isomorphic to M(m, s).

b) 0 < r and s ≤ r, and then P is isomorphic to X3(pm) ∗ Cpm+r .

c) 0 < r < s < m + r, and then P = M(m, s) ∗ Cpm+r .

Furthermore, under the given conditions, no two of these groups are isomorphic.

Proof. If r = 0, then m + r = m ≤ max {m, s}, so that m, r and s satisfy the
condition of a). From now on, we suppose r > 0.

If s ≤ m, then s < m + r and we have either s ≤ r, in which case the
conditions of b) are satisfied, or r < s, in which case 0 < r < s < m+ r, so that
the conditions of c) are satisfied.

If s ≥ m, then either m+r ≥ s = max {m, s} (conditions of a)), or s < m+r.
In this second case, we have either s ≤ r (conditions of b)), or r < s (conditions
of c)).

In all cases, m, r and s satisfy one of the three conditions. It remains to
show, for each of these conditions, that P is isomorphic to the corresponding
group.

If m + r ≤ max {m, s}, the whole group Cpm+r is amalgamated along the
center of M(m, s), so that P ∼= M(m, s). It follows from Lemma 1.4.10 that in
this situation, Z(P ) has order pmax{m,s} and |!m(P )| has order ps.

Suppose now r > 0 and r ≥ s. The condition s ≤ r implies in particular
s < m + r, so that the amalgamation is performed along the subgroup of order
pmax{m,s}. Let y be a generator of M(m, s) of order pm+s. One the one hand,
we have that ypm

is in the center of M(m, s) and has order ps. On the other
hand, if z is a generator of the subgroup Cpm+r , then zpm+r−s

has order ps (note
that m + r − s > 0). Because of the way the amalgamation is performed, we
have that ypm

and zpm+r−s

lie in a common subgroup of order ps. It follows
that ypm

= (zpm+r−s

)k, for some k prime to p. But since s ≤ r, we also have
(zpm+r−s

)k = (zkpr−s

)pm

. Now letting y′ = yz−kpr−s

, we have

(y′)pm

= (yz−kpr−s

)pm

= ypm

(zpm+r−s

)−k = 1.

If we replace y by y′, we may assume that ypm

= 1, so that P = X3(pm) ∗
Cpm+r . Because of the way the amalgamation is performed, we have that Z(P )
is generated by z, i.e. Z(P ) has order pm+r. In the group X3(pm) ∗Cpm+r , the
subgroup !m(P ) is generated by zpm

, hence is cyclic of order pr.
Suppose finally 0 < r < s < m + r. The center of M(m, s) is wholly

amalgamated in the subgroup Cpm+r , hence Z(P ) = Cpm+r . Let z be a generator
of the subgroup Cpm+r and let y be a generator of M(m, s) of order pm+s. The
subgroup !m(P ) is generated by ypm

, which has order ps, and zpm

, which has
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1.4 Classification of odd order p-groups of class 2 with a cyclic center

order pr. Since s > r, the subgroup !m(P ) is then generated by ypm

, hence is
cyclic of order ps.

It is enough to compare the order of the center and of !m(P ) in each of
the three cases to show that these groups are non-isomorphic under the given
conditions.

Recall that p is an odd prime and that P is a p-group of class 2 with a cyclic
center. We also have, by assumption, that the quotient group L = P/Z(P ) is
homocyclic of type pm. If R denotes the ring Z/pmZ, then L is a free R-module
and the choice of a generator u of P ′ induces an isomorphism P ′ ∼= R. The
commutators induce a regular alternating form

b : L× L → R,

so that L is a regular alternating space over R = Z/pmZ. We have that Z(P )
is cyclic and contains P ′, hence Z(P ) has order pm+r for some r ≥ 0. Let z
be a generator of Z(P ) such that zpr

= u. Taking pm-th powers induces a
well-defined map

ϕ : L → Z(P )/!m(Z(P )).

The quotient group Z(P )/!m(Z(P )) is cyclic of order pm and there is an iso-
morphism Z(P )/!m(Z(P )) ∼= R, sending the class of z to 1 ∈ R. If we identify
the quotient Z(P )/!m(Z(P )) with R, then we can see ϕ as a map

ϕ : L → R,

and Lemma 1.4.2 shows that ϕ is linear. With these information, we are now
in position to state the following proposition, classifying odd order p-groups of
class 2 with a cyclic center and whose quotient by the center is homocyclic.

Proposition 1.4.12. Let p be an odd prime and let P be a non-abelian p-group
of class 2 with a cyclic center and suppose that P/Z(P ) is homocyclic of type
pm with m ≥ 1. Let ps be the order of !m(P ). Then P/Z(P ) has order p2!m,
for some ! ≥ 1 and P is isomorphic to one of the following groups:

1. P = X2!+1(pm).

2. P = X2!+1(pm) ∗ Cpm+r with r ≥ 1.

3. P = X2!−1(pm) ∗M(m, s) for some s ≥ 1.

4. P = X2!−1(pm) ∗M(m, s) ∗ Cpm+r with 1 ≤ r < s < m + r.

Furthermore, under the given conditions, no two of these groups are isomorphic.

Proof. Let |Z(P )| = pm+r. We have just seen that the commutators induce
a regular alternating form b on L = P/Z(P ), which is a free module over
R = Z/pmZ. Taking pm-th powers in turn induces a linear map ϕ : L → R.
Lifting to P the elements of a symplectic basis given by Lemma A.0.15 shows
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that P is generated by the generator z of Z(P ) and elements x1, y1, . . . , x!, y!

satisfying

[xi, yi] = zpr

, (1.21)
[xi, yj ] = [xi, xj ] = [yi, yj ] = 1, for i )= j, (1.22)

xpm

j , ypm

j , xpm

! ∈ !m(Z(P )), for all j = 1, . . . , !− 1, (1.23)

ypm

! ∈ zpa

!m(Z(P )), for some 0 ≤ a ≤ m. (1.24)

The subgroup !m(Z(P )) is generated by zpm

, so that xpm

! = zkpm

for some
k. If we replace x! by x!z−k, we see that we can assume that xpm

! = 1. A
similar argument shows that we can also assume that xpm

i = ypm

i = 1, for all
i = 1, . . . , !− 1, and that ypm

! = zpa

.
Let X denote the subgroup of P generated by the elements xj , yj , for j =

1, · · · , !− 1. Let also M denote the subgroup generated by x! and y!. In view
of what preceeds, P is a central product P = X ∗M ∗ Z(P ), the subgroup X
is isomorphic to X2(!−1)+1(pm) and the subgroup M is isomorphic to M(m, s′),
where s′ = m + r − a. Furthermore, M ∗ Z(P ) is then isomorphic to a central
product M(m, s′) ∗ Cpm+r .

Suppose first a = m. In this situation, ypm

! is in the subgroup generated by
zpm

, so that we may assume that ypm

! = 1. The subgroup M is thus isomorphic
to X3(pm).

If we have in additition that r = 0, then we have also s′ = r = 0 and
hence m + r = m ≤ max {m, s′} = m. It follows then from Lemma 1.4.11, that
M ∗Z(P ) isomorphic to X3(pm), and hence P is isomorphic to X2!+1(pm). This
is the first case of our statement. In this case, Z(P ) = P ′ has order pm and
!m(P ) is trivial, so that in particular s′ = s = 0.

If r > 0, then M ∗ Z(P ) is isomorphic to X3(pm) ∗Cpm+r , with m + r > m.
It follows that P = X2!+1(pm) ∗ Cpm+r , with r ≥ 1. This is the second case
of our statement. In this case, Z(P ) has order pm+r, with m + r > m, and
!m(P ) has order pr, with r > 0. In particular, s = r by the definition of s and
s′ = m + r − a = r, since a = m, so that also s′ = s.

Suppose from now on that a < m. If, in addition, m+r ≤ max {m, s′}, then
M ∗ Z(P ) = M(m, s′) ∗ Cpm+r is isomorphic to M(m, s′), by Lemma 1.4.11.
This is the third case of our statement. In this case, P = X ∗ (M ∗ Z(P )) is
isomorphic to X2!−1(pm) ∗M(m, s′). In particular, Z(P ) has order pmax{m,s′}
and !m(P ) has order ps′ , so that also s′ = s.

Remark that a < m implies in particular s′ = m + r − a > r, so that if
m + r > max {m, s′}, then it follows from Lemma 1.4.11, that P is isomorphic
to X2!−1(pm) ∗M(m, s′) ∗ Cpm+r , with 0 < r < s′ < m + r. This is the fourth
case in our statement. In this case, Z(P ) has order pm+r and !m(P ) has order
ps′ , so that also s′ = s.

By considering the order of the subgroups Z(P ) and !m(P ) in the four
cases, it is not difficult to see that these four groups are non-isomorphic under
the given conditions.

Remark 1.4.13. If m = 1, then M(m, s) = M(1, s) = Mps+2 and there are no
choices of s such that 1 ≤ r < s < m + r. It follows that the fourth case of the
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1.4 Classification of odd order p-groups of class 2 with a cyclic center

above proposition does not arise and we recover then the classification of odd
order p-groups with a cyclic center and a central Frattini subgroup.

The general case

Recall that p is an odd prime and let P be a p-group of class 2 with a cyclic
center (with P/Z(P ) not necessarily homocyclic). Let pm = |P ′|, it follows from
Lemma 1.4.1 that P/Z(P ) has exponent pm. In particular, if R denotes the ring
Z/pmZ, then P ′ can be identified with R, and M = P/Z(P ) can be seen as an
R-module. As usual, the commutators induce a regular alternating form

b : M ×M → R.

For mi ≤ m, let τi : Z/pmiZ → Z/pmZ be the canonical injection given by
multiplication by pm−mi . Following Proposition A.0.16, we have that M can
be decomposed as an orthogonal sum M = (M1, b1)⊕ · · ·⊕ (Mt, bt), where each
(Mi, bi) is a regular alternating space over some ring Z/pmiZ and the restriction
bMi of b to Mi is equal to τibi. The meaning of this last condition should become
clear in the course of the proof of the following proposition.

Proposition 1.4.14. Let p be an odd prime and let P be a non-abelian p-group
of class 2 with a cyclic center. Let pm = |P ′| and pm+r = |Z(P )|. Then P is
a central product P = Q1 ∗ · · · ∗ Qt ∗ Z(P ), where each quotient Qi/Z(Qi) is
homocyclic of type pmi . Furthermore, for each i = 1, . . . , t, there exists !i ≥ 1
such that Qi is isomorphic either to X2!i+1(pmi), or to X2!i−1(pmi)∗M(mi, si)
with 0 < m + r −mi < si < m + r.

Proof. Keeping the notation as above, we let Si/Z(P ) = Mi. The decomposition
of M as the orthogonal sum

⊕
Mi implies that P decomposes as a central

product P = S1∗· · ·∗St. Note that this implies in particular that Z(Si) = Z(P ).
Since Mi is free over Z/pmiZ, we have that Si/Z(P ) = Si/Z(Si) is homocylic
of type pmi .

The map b induced by commutators restricts to Mi giving an alternating
form

bMi : Mi ×Mi → P ′ ∼= Z/pmZ.

Unless if mi = m, the pair (Mi, bMi) is not an alternating space. However, it
follows from Lemma 1.4.1, that [Si, Si] has order pmi , i.e. is the cyclic subgroup
of Z(P ) of order pmi .

If z is a generator of Z(P ), then u = zpr

is a generator of P ′ and upm−mi

is a generator of [Si, Si]. This induces an isomorphism [Si, Si] ∼= Z/pmiZ and
taking commutators in Si induces then an alternating form

b′i : Mi ×Mi → Z/pmiZ ∼= 〈upm−mi 〉.

The condition bMi = τibi implies that [x, y] = (upm−mi )bi(x,y), for all x, y ∈ Si.
We have therefore that b′i = bi and thus b′i is regular.
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Chapter 1. Classifications

We have thus obtained subgroups S1, . . . , St of P satisfying the following
conditions

1. P = S1 ∗ · · · ∗ St.

2. Z(Si) = Z(P ).

3. Mi = Si/Z(Si) is a free Z/pmiZ-module endowed with the non-degenerate
alternating form bi : Mi ×Mi → Z/pmiZ ∼= 〈upm−mi 〉 induced by taking
commutators in Si.

Remark that Z(Si) has order pm+r and [Si, Si] has order pmi . It follows that
Z(Si) has order pmi+ri , where ri = m+ r−mi. Proposition 1.4.12 implies thus
that the subgroup Si can be written as Si = Qi ∗Z(P ), where Qi is isomorphic
either to X2!i+1(pm), or to a central product X2!i−1(pmi) ∗M(mi, si) with the
conditions 0 < ri = m+ r−mi < si < m+ r. The proposition follows now from
the equality

(Q1 ∗ Z(P )) ∗ · · · ∗ (Qt ∗ Z(P )) = Q1 ∗ · · · ∗Qt ∗ Z(P ).

Corollary 1.4.15. Let p be an odd prime and let P be a non-abelian p-group
of class 2 with a cyclic center. Let pm = |P ′| and pm+r = |Z(P )|. Then P is
isomorphic to a central product

X2!α1+1(pmα1 ) ∗ · · · ∗X2!αh
+1(pmαh ) ∗M(mβ1 , sβ1) ∗ · · · ∗M(mβk , sβk) ∗Cpm+r

where h, k ≥ 0 with (h, k) )= (0, 0), !αi > 0 and the following conditions are
satisfied:

1. mα1 > · · · > mαh > 0.

2. mβ1 > · · · > mβk > 0.

3. m = max{mα1 ,mβ1}.

4. 0 < m + r −mβj < sβj < m + r.

We briefly explain the meaning of the various conditions in the previous
corollary. The condition (h, k) )= (0, 0) ensures that P is not abelian. The first
two conditions in the list just say that we have chosen to order the factors of the
central product. Since P ′ is generated by the derived subgroups of the factors of
the central product, we must have that at least one of the factors has a derived
subgroup of order pm. But the order of the derived subgroup of a factor is the
corresponding mαi or mβj . Because of the ordering this must be mα1 or mβ1 .

The fourth condition of the list, namely 0 < m + r −mβj < sβj < m + r,
ensures that we cannot use the center to modify the order of the generators of
the group M(mβj , sβj ). It may however be possible to modify these generators
with an element of one of the other factors of the central product. There are
thus no reasons for this decomposition to be canonical in the sense that a p-
group may have several such decompositions. We would like to give an overview
of how this isomorphism problem can be solved. This is done essentially in the
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1.4 Classification of odd order p-groups of class 2 with a cyclic center

following lemma. The proof consists in modifying generators in a way similar
(but more complicated) to what we have performed in Lemma 1.4.11. In what
follows, the central products are always performed over the largest subgroup
possible.

Lemma 1.4.16. Let m1, s1,m2, s2 such that m1 ≥ m2 > 0 and s1, s2 ≥ 0.

a) If m1 ≥ m2 + s2 then M(m1, s1) ∗M(m2, s2) ∼= M(m1, s1) ∗X3(pm2).

b) If s1 ≥ s2 then M(m1, s1) ∗M(m2, s2) ∼= M(m1, s1) ∗X3(pm2).

c) If m2 + s2 ≥ m1 + s1 then M(m1, s1) ∗M(m2, s2) ∼= X3(pm1) ∗M(m2, s2).

Proof. For i = 1, 2, let Mi be the group M(mi, si) and let xi, yi be generators
of Mi with xi of order pmi and yi of order pmi+si . Denote by Q the central
product Q = M1 ∗M2 = M(m1, s1) ∗M(m2, s2).

Recall that, for i = 1, 2, the center of Mi = M(mi, si) has order pmax{mi,si}.
Because of the way the amalgamation is performed, it follows that ypk

i is in
M1 ∩ M2, if the order of ypk

i is at most min
{
pmax{m1,s1}, pmax{m2,s2}

}
. The

same holds for elements of the form [xi, yi]p
k

.
Suppose first m1 ≥ m2 + s2. This implies in particular m1 ≥ s2 and since

m1 ≥ m2, the cyclic subgroups of order ps2 in Z(M1) and Z(M2) are amalga-
mated in M1 ∩ M2. It follows that the element ypm2

2 is in M1 ∩ M2, since it
has order ps2 and is in Z(M2). The element u = [x1, y1]p

m1−(m2+s2)
has order

pm2+s2 and is in Z(M1), hence upm2 has order ps2 and is in M1 ∩M2. We have
thus

ypm2

2 = (upm2 )k = ukpm2
,

for some k prime to p. If we set y′2 = y2u−k, then (y′2)pm2 = 1, so that 〈x2, y′2〉
is isomorphic to X3(pm2). Since u is central in M1 and hence in Q, we have
now Q = M1 ∗ 〈x2, y′2〉 = M(m1, s1) ∗X3(pm2).

Suppose now s1 ≥ s2. Since m1 ≥ m2 by assumption, we have in particular
that the intersection M1 ∩ M2 has order pmax{m2,s2}. The element ypm2

2 has
order ps2 and is in Z(M2), hence is in M1 ∩M2. Since m1 ≥ m2 and s1 ≥ s2,
we have m1 + s1 ≥ m2 + s2 and we let

u = yp(m1+s1)−(m2+s2)

1 .

The element upm2 = yp(m1+s1)−s2

1 has order ps2 and is in Z(M1) since we have
m1 + (s1 − s2) ≥ m1, and hence upm2 is in M1 ∩M2. We have thus

ypm2

2 = (upm2 )k = ukpm2
,

for some k prime to p. If we set

y′2 = y2u
−k = y2y

−kp(m1+s1)−(m2+s2)

1 ,

then (y′2)pm2 = 1. Remark that [x2, y′2] = [x2, y2], since y1 centralizes x2. We
have also [y1, y′2] = [y1, y2] = 1, but we don’t have necessarily that [x1, y′2] is
trivial. Since y2 commutes with both x1 and u, we have

[x1, y
′
2] = [x1, y2u

−k] = [x1, u
−k] = [x1, y1]−kp(m1+s1)−(m2+s2)

.
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If (m1 + s1)− (m2 + s2) ≥ m1, i.e. m2 + s2 ≤ s1, then [x1, y′2] = 1, since [x1, y1]
has order pm1 . In this case, Q = M1 ∗ 〈x2, y′2〉 ∼= M(m1, s1) ∗X3(pm2).

If (m1 + s1) − (m2 + s2) < m1, i.e. m2 + s2 > s1, we show how to modify
x1 to recover a central decomposition of Q. Since k is prime to p, we have
that [x1, y1]−kp(m1+s1)−(m2−s2)

has order p(m2+s2)−s1 and is in M1 ∩ M2, since
m2 + (s2 − s1) ≤ m2. There exists thus r such that

[x1, y1]−kp(m1+s1)−(m2−s2)
= [x2, y2]r.

We let
x′1 = x1x

−r
2 ,

and we obtain [x′1, y′2] = 1. If we let M ′
1 = 〈x′1, y1〉 and M ′

2 = 〈x2, y′2〉, we have
then Q = M ′

1 ∗M ′
2 and M ′

2 is isomorphic to X3(pm2), so that Q = M(m1, s1) ∗
X3(pm2).

Suppose finally m2 + s2 ≥ m1 + s1. Remark that since m1 ≥ m2, we have
in particular s1 ≤ s2. It follows that the subgroups of order ps1 of Z(M1) and
Z(M2) are amalgamated in M1 ∩M2. The element ypm1

1 has order ps1 and is in
Z(M1), hence in M1 ∩M2.

Let u = yp(m2+s2)−(m1+s1)

2 , the element upm1=yp(m2+s2)−s1
2 has order ps1 and

is in Z(M2), since m2 + (s2 − s1) ≥ m2, hence is in M1 ∩M2. We have thus

ypm1

1 = (upm1 )k = ukpm1
,

for some k prime to p. If we set

y′1 = y1u
−k = y1y

−kp(m2+s2)−(m1+s1)

2 ,

then (y′1)pm1 = 1. Remark that [x1, y′1] = [x1, y1] and [y2, y1] = 1. Furthermore,
we have

[x2, y
′
1] = [x2, y1u

−k] = [x2, y2]−kp(m2+s2)−(m1+s1)
.

If (m2+s2)−(m1+s1) ≥ m2, i.e. s2 ≥ (m1+s1), then [x2, y′1] = 1, since [x2, y2]
has order pm2 . In this case, we have Q = 〈x1, y′1〉 ∗M2

∼= X3(pm1) ∗M(m2, s2).
If (m2 + s2) − (m1 + s1) < m2, i.e. s2 < (m1 + s1), then the element

[x2, y2]−kp(m2+s2)−(m1+s1)
has order p(m1−s1)−s2 , since k is prime to p. Since

(m1 + s1)− s2 ≤ m2 ≤ m1, there exists r such that

[x2, y2]−kp(m2+s2)−(m1+s1)
= [x1, y1]r.

We let
x′2 = x2x

−r
1 ,

so that [x′1, y′2] = 1. We have this way that Q = 〈x1, y′1〉 ∗ 〈x′2y2〉 is isomorphic
to X3(pm1) ∗M(m2, s2) and the lemma is proved.

Putting together Corollary 1.4.15 and Lemma 1.4.16 we obtain the following
theorem, due originally to [9] and [19] but with a different approach.

Theorem 1.4.17. Let p be an odd prime. If P is a p-group of class 2 with a
cyclic center, then P is isomorphic to a central product

X2!α1+1(pmα1 ) ∗ · · · ∗X2!αr +1(pmαr ) ∗M(mβ1 , sβ1) ∗ · · · ∗M(mβt , sβt) ∗ Cpn

with !αi > 0 and the following conditions:
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1. mα1 > mα2 > . . . > mαr > 0;

2. n > mβ1 > mβ2 > . . . > mβr ;

3. mβ1 + sβ1 > mβ2 + sβ2 > . . . > mβt + sβt > n;

4. mβt + sβt > mβ1

5. n > sβt > sβt−1 > . . . > sβ1 > 0.

Furthermore each P has a unique such decomposition satisfying the given con-
ditions.

The existence of the decomposition follows from the previous decomposition
obtained in 1.4.15 to which we apply Lemma 1.4.16. This lemma should already
give a good idea to the reader on why this decomposition is unique and we will
not say more on the proof of this fact. For a detailed proof the reader can refer
to the work of Leong [19]. Since we don’t use the same notation as Leong , let
us just mention that our group M(m, s) is equal to the group Q(α, β) of Leong
by setting α = m + s and β = m.

Additional remarks

Our first remark concerns the importance of the assumption that Z(P ) is cyclic
in the above classification. Let Q be a p-group of class 2 with cyclic derived
subgroup. If A is an abelian p-group, then the group P = Q × A has class 2,
P ′ = Q′ and Z(P ) = Z(Q)×A. In some sense, one can always “add” an abelian
p-group to the center. But contrary to the case of p-groups with cyclic Frattini
subgroup, the reverse operation is not always possible. This can be seen in the
following example.

Example 1.4.18. Let H = Cp2 × Cp3 × Cp with generators y of order p2, r of
order p3 and s of order p. The group H has an automorphism α of order p2

which fixes r and s and sends y to rpsy. Let P be the semi-direct product of a
cyclic group of order p2 generated by x acting on H with respect to α. It is not
difficult to see that P ′ is cyclic of order p2 and generated by rps and that Z(P )
is abelian of type (p3, p) generated by r and s.

Suppose that P can be written as a direct product P = Q × A with A
abelian and Z(Q) cyclic. One the one hand P ′ ≤ Q′ ≤ Q, but on the other
hand P ′ is central in P , so that P ′ ≤ Z(Q). In particular, |Z(Q)| ≥ p2 and
since Z(P ) = Z(Q)×A has type (p3, p) we have that Z(Q) is cyclic of order p3

and A is cyclic of order p. Now, this means that there exists z ∈ Z(Q) ≤ Z(P )
such that zp = rps. But this is a contradiction, since in Z(P ) all p-th powers
lie in the subgroup generated by r.

Our second remark concerns the case p = 2. We give first the analogue of
Lemma 1.4.1 and Lemma 1.4.2 for p = 2. The proof of Lemma 1.4.1 works for
p = 2 with no restriction, so that we obtain the following lemma.

Lemma 1.4.19. If P is a 2-group of class 2 with cyclic center, then P/Z(P )
has exponent 2m if and only if P ′ has order 2m.
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Lemma 1.4.20. Let P be a 2-group of class 2 with cyclic center and |P ′| = 2m.
Then for all x, y ∈ P ,

(xy)2
m

= [x, y]2
m−1

x2m

y2m

.

Proof. Since P ′ ≤ Z(P ), we have

(xy)2
m

= [y, x]
2m(2m−1)

2 x2m

y2m

= [x, y]2
m−1

x2m

y2m

.

Suppose that P is a 2-group of class 2 with cyclic center and such that
V = P/Z(P ) is homocyclic of type 2m. Let ϕ be the map

ϕ : V → Z(P )/!m(Z(P )) ∼= Z/2mZ

induced by taking 2m-th powers. Lemma 1.4.20 shows that the map ϕ will not be
linear in general, because of the term [x, y]2

m−1
. But for x, y ∈ P , this element

[x, y]2
m−1

is in the unique subgroup of order 2 of Z(P ), hence is contained in
!m(Z(P )) at the condition that Z(P ) has order strictly greater than 2m, i.e. if
P ′ is strictly contained in Z(P ). This proves the following lemma.

Lemma 1.4.21. If P ′ is strictly contained in Z(P ), then ϕ is linear.

Similarly to the case p odd, we can define the groups X3(2m) by

X3(2m) = 〈x, y |x2m

= y2m

= 1, [x, y]2
m

= 1, [x, [x, y]] = [y, [x, y]] = 1〉.

We define also the groups M(m, s) by

a) If s ≤ m, then

M(m, s) = 〈x, y |x2m

= y2m+s

= 1, y2m

= [x, y]2
m−s

, [x, [x, y]] = [y, [x, y]] = 1〉.

b) If s ≥ m, then

M(m, s) = 〈x, y |x2m

= y2m+s

= 1, y2s

= [x, y]〉.

The group X2!+1(2m) is then defined as the central product of ! copies of the
group X3(2m). The following result follows now from the general results on
linear form on alternating free Z/2mZ-modules (see Lemma A.0.15). The proof
is similar to the case p odd.

Proposition 1.4.22. Let P be a 2-group of class 2 with a cyclic center and
such that P/Z(P ) is homocyclic of type 2m, for some m ≥ 1. We assume that
P ′ is strictly contained in Z(P ) and let 2s = |!m(P )|. Then P is isomorphic
to a central product X2!+1(2m) ∗ S, where S is either cyclic of order 2m+r with
r ≥ 1, isomorphic to M(m, s) with s > m, or isomorphic to M(m, s) ∗ C2m+r

for some 1 < r < s < m + r.
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When P ′ is equal to Z(P ), then the map ϕ is not linear anymore. This is
not even a quadratic form on the ring Z/2mZ, since ϕ(k ·v) = k ·ϕ(v). However,
the map induced by the commutators is still a non-degenerate alternating form
on V = P/Z(P ). In particular, we can lift to P the elements of a symplectic
basis and then the order of the elements can be modified directly in the group.
We introduce one more 2-group of class 2,

Q(m) = 〈x, y |x2m+1
= 1, x2m

= y2m

= [x, y]2
m−1

, [x, [x, y]] = [y, [x, y]] = 1〉.

For m = 1, Q(1) is the quaternion group of order 8.

Proposition 1.4.23. Let P be a 2-group of class 2 with cyclic center and such
that P/Z(P ) is homocyclic of type 2m. Assume also that P ′ = Z(P ). Then
P is isomorphic to a central product X2!+1(2m) ∗ S, where S is either trivial,
isomorphic to M(m, s) for some 1 ≤ s ≤ m, or isomorphic to the group Q(m).

Proof. Let e1, f1, . . . , e!, f! be a symplectic basis of P/Z(P ). Let xi, respectively
yi, be a representative of ei, resp. fi. If x2m

i = y2m

i = 1 for all i = 1, . . . , !,
then P is isomorphic to X2!+1(2m). Suppose now that there exists k such that
x2m

k )= 1 or y2
m

k )= 1. Without loss of generality, we may assume that y2m

! )= 1
and that y2m

! has maximal order among the set
{
x2m

i , y2m

i , i = 1, . . . , !
}
.

In particular, x2m

! and the elements x2m

j , y2m

j , for 1 ≤ j ≤ ! − 1 are all
contained in the subgroup generated by y2m

! . It follows in particular that x2m

1 =
yk2m

! , for some k ≥ 0. If we let x′1 = x1y
−k
! and x′! = x!y

−k
1 , then (x′1)2

m

= 1
and the commuting relations are preserved. We may thus assume that x2m

1 = 1.
A similar argument for the other elements xj , yj , 1 ≤ j ≤ !−1, show that we can
assume that x2m

j = y2m

j = 1, for all j = 1, . . . , !− 1. In particular, the subgroup
of P generated by these elements xj , yj , for 1 ≤ j ≤ ! − 1, is isomorphic to
X2(!−1)+1(2m).

If x2m

! is contained in the subgroup generated by the element (y2m

! )2, then
x2m

! = (y2m+1

! )k, for some k ≥ 0. It follows from Lemma 1.4.20 that

(y−2k
! x!)2

m

= y−k2m+1

! x2m

! [y−2k
! , x!]2

m−1
= [y−2k

! , x!]2
m−1

= [y−k
! , x!]2

m

= 1.

Replacing, if needed, x! by y−2k
! x!, we may assume that x2m

! = 1. In this
situation, the subgroup 〈y!, x!〉 is isomorphic to M(m, s), where 2s is the order
of y2m

! .
Suppose finally that y2m

! and x2m

! generate the same subgroup of Z(P ). We
may assume that y2m

! = x2m

! and now

(y−1
! x!) = y−2m

! x2m

! [y−1
! , x!]2

m−1
= [y!, x!]2

m−1
.

Replacing x! by y−1
! x!, we may assume that x2m

! has order 2. If y2m

! has order
strictly greater than 2, then we can apply the previous change on x! in order to
have x2m

! = 1. If y2m

! has order 2, then the subgroup 〈y!, x!〉 is isomorphic to
the group Q(m) and the proposition is proved.

Remark 1.4.24. The more general classification of 2-groups of class 2 and cyclic
center can be found in [9] and [19].

51





Chapter 2

Subgroup complexes

In this chapter, we give various results on upper intervals in the poset Ap(P )
when P is a p-group. In Section 2.3, we determine exactly the homotopy type
of Ap(P )≥2, when P is a p-group with a cyclic derived subgroup. We also
determine for which of these groups, the poset Ap(P ) is homotopically Cohen-
Macaulay (see Section 2.5). We give in Section 2.4 a sharp upper bound, de-
pending on the order of the group P , for the homological dimension of Ap(P )≥2.
We give also a characterization of the groups for which this bound is reached.
In Section 2.7, we derive, for any Z ∈ Ap(P ), a spectral sequence E1

rs converg-
ing to H̃r+s(Ap(P ))>Z . In Section 2.8, we give counterexamples to results of
Fumagalli [12] and show some of their consequences.

2.1 Introduction

If G is a group, it is standard to denote by Sp(G) the partially ordered set (poset
for short) of all non-trivial p-subgroups of G ordered by inclusion. This poset
was introduced by Brown in [10]. Three years after Brown’s paper, Quillen
showed in [23] that the poset Sp(G) is homotopy equivalent to the poset Ap(G)
of non-trivial elementary abelian p-subgroups of G, also ordered by inclusion.
He began in this paper a systematic study of the topological properties ofAp(G).
Despite the work of Quillen and others after him, there are still many questions
concerning the homotopy type of Ap(G). A major one, attributed to Thévenaz
by Pulkus and Welker in [22], is whether Ap(G) is homotopy equivalent to a
wedge of spheres. A negative answer was given by Shareshian in [24], where
he shows that H̃2(A3(S13)) is not torsion-free (note however that a part of
this proof relies on computer calculations). In [12], Fumagalli claimed that the
answer is positive if the group G is solvable. Unfortunately, his proof relies on a
result that turns out to be false. We will come back to this later in Section 2.8.
As a consequence, the following question seems to remain opened.

Question 2.1.1. If G is solvable, does Ap(G) have the homotopy type of a
wedge of spheres ?

In [22], Pulkus and Welker showed that for solvable groups G the study of
Ap(G) can be reduced to the study of upper intervals Ap(CG(A))>A. According
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to [22], the homotopy type of these upper intervals is not clear, even for p-
groups. A first result in this direction has been given by Bouc and Thévenaz
in [8], where they study the poset Ap(P )≥2 of all elementary abelian subgroups
of P of rank at least 2. They show that for any p-group P , the poset Ap(P )≥2

has the homotopy type of a wedge of spheres. It is related to upper intervals
by the following: For A ∈ Ap(P ) with |A| = p there is a homotopy equivalence
Ap(P )≥2 1 Ap(CP (A))≥2 (see Lemma 2.3.1 and Lemma 2.3.3). Knowing that
Ap(P )≥2 has the homotopy type of a wedge of spheres, one can ask more precise
questions on the dimension of these spheres. Computer calculations led Bouc
and Thévenaz to raise the following questions.

Question 2.1.2 (Bouc, Thévenaz). Let P be a p-group. Do the spheres occur-
ring in Ap(P )≥2 all have the same dimension if p is odd ? Does one get only
two consecutive dimensions if p = 2?

In Section 2.3 we will show that p-groups with a cyclic derived subgroup
give a partial answer to this question. For this, we will use a result of Bouc and
Thévenaz that allows recursive computations of the homotopy type of posets
of the form Ap(P )≥2. Of course, the dimension of the spheres occurring in
Ap(P )≥2 is at most the dimension of the complex Ap(P )≥2, that is, rk(P )− 2.
In Section 2.4 we will give a sharper bound, depending on the order of the group.
We will show that there are p-groups for which this bound is reached and we
will also give some information on these p-groups.

The structure of upper intervals in Ap(G) is also important to determine
whether the poset Ap(G) is homotopy Cohen-Macaulay (hCM for short). Recall
that a poset P is hCM if it is spherical of dimension d = dimP and the link
of each k simplex in P is (d − k − 1)-spherical. For the poset Ap(G) it is
equivalent to require that Ap(G) is spherical of dimension rp(G)−1 and for any
B ∈ Ap(G) the poset Ap(G)>B is spherical of dimension rp(G)− rp(B)− 1 (see
[23, Proposition 10.1]).

In Section 2.5, we will determine for which of the p-groups with cyclic derived
subgroup the poset Ap(P ) is hCM. Thanks to work of Quillen these informations
can be lifted to p-nilpotent groups. More precisely, Quillen has shown for a p-
nilpotent group G with P = G/Op′(G) that Ap(G) is hCM if Ap(P ) is.

In Section 2.7, we will try to generalize the work of Bouc and Thévenaz for
upper intervals Ap(P )>A, when A has rank at least 2. Their method can be
generalized but only for very particular cases. To tackle the problem in general,
we make use of a spectral sequence introduced by Quillen in [23]. For a poset
map f : P → Q, this spectral sequence has the following form:

E2
rs = Hr

(
Q, q .→ Hs(f−1

≤q )
)
⇒ Hr+s(P)

As the notation q .→ Hs(f−1
≤q ) suggests, the homology groups occurring in the

E2-page of the spectral sequence are not usual homology groups with a con-
stant abelian group as coefficients. Before going on with the applications of this
spectral sequence, we recall in Section 2.6 the definition of homology with non-
constant coefficients and we derive a spectral sequence given in term of standard
homology groups converging to homology groups with non-constant coefficients.
We apply these results in Section 2.7 and derive another spectral sequence con-
verging to the homology groups of Ap(P )>A. However, this spectral sequence
doesn’t seem to be very convenient for calculations or to obtain general results.
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In Section 2.8, we will come back to Fumagalli’s claim that Ap(G) has the
homotopy type of a wedge of spheres when G is solvable. We will exhibit
counterexamples to a fiber theorem [12, Corollary 5] on which the proof of his
general result relies. We will also show how this affects the rest of his paper.

2.2 Preliminaries on posets

We recall here some definitions and notation in the topic of partially ordered
sets (posets for short). All posets are supposed to be finite. The reader can
refer to Quillen’s paper [23] or to Wachs’ survey on topology of posets [30] for
more details.

We will mostly use script letters like P or Q to denote an arbitrary poset.
For a poset P, we will use the same letter to denote its order complex, that is the
(abstract) simplicial complex whose vertices are the elements of P and whose
faces are the chains of elements of P. The order complex of P has a geometric
realization, that we still denote P, which is in particular a topological space.
If we say that a poset P has a certain topological property, we mean that the
geometric realization of the order complex of P has this property.

Recall that a poset is bounded if it has a unique maximum element, called
the top element, and a unique minimum element, called the bottom element.
The top element is usually denoted by 1̂ and the bottom element by 0̂. If P is
a poset, one can add a bottom element 0̂ and a top element 1̂ to P and define
the bounded extension P̂ = P ∪

{
0̂, 1̂

}
.

We will say that P is a discrete poset if the (partial) order on P is given
by the identity, i.e. for x, x′ ∈ P, one has x ≤ x′ if and only if x = x′. There
is thus no order relation between two distinct elements of P and the geometric
realization of P is a disjoint union of points, hence has the homotopy type of a
wedge of spheres of dimension 0.

Height, intervals and rank

For an element x of a poset P we denote by P≤x the subposet of P defined by

P≤x = {x′ ∈ P |x′ ≤ x}.

We also define P<x as the subposet

P<p = {x′ ∈ P |x′ < x}.

The posets P≥x and P>x are defined similarly. For x1 < x2, the closed interval
[x1, x2] is the poset P≥x1 ∩P≤x2 and the open interval (x1, x2) is P>x1 ∩P<x2 .

A k-chain of a poset P is a totally ordered subset c = {x0 < x1 < · · · < xk}
of P. The integer k is called the length of the chain c and is denoted by l(c).
We make the convention that the empty set is a chain of dimension −1. We
also define l(P) to be the maximum of {l(c) | c is a chain of P}. Since l(P) is
equal to the dimension of the order complex of P we will frequently call l(P)
the dimension of P.

For an element x of a poset P, we denote by hP(x) the height of x in P
defined by hP(x) = l(P≤x). If the poset P is clear in the context, we will
sometimes omit the subscript and write simply h(x) instead of hP(x).
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If P is a bounded poset, we define the rank of x ∈ P by r(x) = l([0̂, x]). For
a subset R ⊆ {0, . . . , l(P)− 1}, we define the rank-selected subposet

PR = {x ∈ P | r(x) ∈ R} .

We will denote by P≥r the rank-selected poset corresponding to [r, . . . , l(P )−1],
that is

P≥r = {x ∈ P | r(x) ≥ r} .

Poset maps and fibers

Let P and Q be posets. A poset map f : P → Q is an order-preserving map,
that is, f(x) ≤ f(x′) if x ≤ x′.

Definition 2.2.1. If f : P → Q is a poset map, the fiber above an element
q ∈ Q is the subposet of P defined by

f−1
≤q = {x ∈ P | f(x) ≤ q} .

Recall that a poset f : P → Q induces a natural map between the geometric
realization of P and Q.

Lemma 2.2.2. If f, g : P → Q are poset maps such that f(x) ≤ g(x) for all
x ∈ P, then the induced maps are homotopic.

Proof. See 1.3 in Quillen’s paper [23].

The following lemma, due to Quillen, has proved especially useful in the
study of topology of posets and is often referred to as the “Quillen fiber lemma”.

Lemma 2.2.3 (“Quillen fiber lemma”). If f : P → Q is a poset map such that
f−1
≤q is contractible for all q ∈ Q, then f is a homotopy equivalence.

Proof. See [23] or [29].

Contractibility, sphericity and hCM property

Definition 2.2.4. A poset P is conically contractible if there is a poset map
f : P → P and an element x0 ∈ P such that

x ≤ f(x) ≥ x0, for all x ∈ P.

Recall that for two elements x, y of a poset P, the join x ∨ y of x and y in
P is an element of P greater than or equal to both x and y that is less than
all other such elements. This element x ∨ y may not exist, but if it exists it is
unique.

Definition 2.2.5. An element x0 ∈ P is a conjunctive element if for each x ∈ P
the join x ∨ x0 exists in P.
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The following result follows from Lemma 2.2.2 and the fact that the geomet-
ric realization of a poset with a top element is a cone, hence is contractible.

Lemma 2.2.6. If a poset P is conically contractible or has a conjunctive ele-
ment, then P is contractible.

Definition 2.2.7. A poset P is k-spherical, or spherical of dimension k, if it
has the homotopy type of a wedge of spheres of dimension k. The poset P is
spherical of maximal dimension if it is dimP-spherical.

Remark 2.2.8. Note that in our definition of a k-spherical poset, we don’t require
k to be equal to the dimension of the poset.

Definition 2.2.9. Let P be a poset with bounded extension P̂ := P ∪ {0, 1}.
The poset P is homotopically Cohen-Macaulay, hCM for short, if for all x′ < x in
P̂ the interval (x′, x) is homotopy equivalent to a wedge of spheres of dimension
h(x)− h(x′)− 2.

Remark 2.2.10. The height of an element x of P is different, depending on
whether x is considered as an element in P or P̂. Because of the presence
of the bottom element, the height of x in P is one less that its height in P̂.
However, the dimension of the open intervals in the previous definition, namely
h(x′)− h(x)− 2 is the same in P and P̂.

Proposition 2.2.11 (Corollary 9.7 in [23]). Let f : P → Q be a strictly increas-
ing poset map, that is x′ < x implies f(x′) < f(x). If Q is hCM of dimension d
and f−1

≤q is hCM of dimension h(q) for all q ∈ Q, then P is hCM of dimension
d.

Homology

For any poset P and any integer k ≥ −1, the reduced chain space C̃k(P) is
the free abelian group generated by the k-chains of P . Note that since we
consider the empty set as a chain of dimension −1, we have C−1(P) = Z. We
set C̃−2(P) = 0 and for k ≥ −1, the boundary map ∂k : C̃k(P) → C̃k−1(P) is
defined by

∂k(x0 < · · · < xk) =
k∑

i=0

(−1)i(x0 < · · · < x̂i < · · · < xk),

where ·̂ denotes deletion. We have ∂k−1∂k = 0 and the reduced homology groups
H̃k(P) of P are defined as the homology groups of the complex (C̃k(P), ∂k).

Remark 2.2.12. Note that one has in particular

H̃k(∅) =

{
Z if k = −1.

0 else.

If P is not empty, then H̃−1(P) = 0.
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The (non-reduced) homology groups Hk(P) of P are defined as the homology
groups of the complex (Ck(P), ∂k), where C−1(P) = 0 and Ck(P) = C̃k(P) for
k ≥ 0. The boundary map is defined as above.

Remark 2.2.13. For k ≥ 1, one has Hk(P) = H̃k(P).

Definition 2.2.14. The suspension of a poset P is the poset ΣP = P∪{o1, o2},
where o1 and o2 are smaller than every element of P but there is no order relation
between o1 and o2.

Remark 2.2.15. In the particular case P = ∅, one has that Σ∅ is is a discrete
poset consisting of two points.

The geometric realization of ΣP is the usual suspension of the geometric
realization of P. One has in particular the following lemma.

Lemma 2.2.16. For k ≥ 0, there is an isomorphism H̃k(ΣP) ∼= H̃k−1(P).

2.3 The poset Ap(P )≥2

Introduction

We begin this section by recalling two general elementary facts.

Lemma 2.3.1. If P is a p-group, then

a) Ap(P ) = Ap(Ω1(P )),

b) Ap(P )>A = Ap(CP (A))>A for any A ∈ Ap(P ).

Proof. Part a) follows from the fact that any B ∈ Ap(P ) has exponent p and
part b) comes from the fact that any B ∈ Ap(P )>A centralizes A.

Remark 2.3.2. Part a) of the previous lemma allows one to make the assumption
that P is generated by elements of order p. Part b) allows one to make the
assumption that A is central in P .

The following lemma shows the relation between upper intervals and rank-
selected posets in Ap(P ).

Lemma 2.3.3. Let P be a p-group and A ∈ Ap(P ). If A is central in P , the
inclusion Ap(P )>A ↪→ Ap(P )≥rk(A)+1 is a homotopy equivalence.

Proof. The homotopy inverse is the map Ap(P )≥rk(A)+1 → Ap(P )>A given by
B .→ BA for all B ∈ Ap(P )≥rk(A)+1.

Remark 2.3.4. This lemma shows that upper intervals can always be seen as
rank-selected posets, but the converse is not true in general. Consider for ex-
ample the poset Ap(P )≥3 for P = Xp5 . Since P has rank 3, the poset Ap(P )≥3

is the discrete poset consisting of all elementary abelian subgroups of rank 3.
If A ∈ Ap(P ) has rank 3, then Ap(P )>A is empty. If A does not contain
Z(P ) then Ap(P )>A is conically contractible via B ≤ BZ(P ) ≥ AZ(P ). If A
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contains Z(P ) and has rank 2, then Ap(P )>A is the discrete poset of all ele-
mentary abelian subgroups of rank 3 containing A. It is not difficult to see that
the number of points in Ap(P )≥3 and Ap(P )>A is different, so that they are
not homotopy equivalent. We will see later in this section that Ap(P )>Z(P ) is a
(non-empty) wedge of spheres of dimension 1, hence cannot be homotopy equiv-
alent to Ap(P )≥3. All this shows that the subposet Ap(P )≥3 is not homotopy
equivalent to any of the upper intervals of Ap(P ).

Remark 2.3.5. If A has order p and A is central in P , then the previous lemma
shows that the two posets Ap(P )>A and Ap(P )≥2 are homotopy equivalent.
We will alternatively consider one or the other depending on which is more
convenient and we may sometimes pass from one to the other without any
warning.

The posets of the form Ap(P )≥2 have been studied by Bouc and Thévenaz in
[8]. They have shown in particular a wedge decomposition formula that allows
recursive calculations. As a corollary, they obtain that for any p-group P the
poset Ap(P )≥2 has the homotopy type of a wedge of spheres.

In this section, we will use this formula to compute explicitly the homotopy
type of Ap(P )≥2 for all p-groups with cyclic derived subgroup. The results of
these calculations can be found in Table 2.1 on page 74.

The Bouc-Thévenaz Wedge Decomposition Formula

The following proposition is a slight generalization of the original result of Bouc
and Thévenaz concerning Ap(P )≥2. We present here a very similar but some-
what shorter proof using a homotopy complementation formula that we state
first.

Lemma 2.3.6 (Homotopy complementation formula). Let P be a poset and let
M be a subset of P consisting of minimal elements of P. If the poset P = P−M
is contractible, then

P 1
∨

x∈M
Σ lkP(x).

Proof. See for example Corollary 2.3 in [6].

Proposition 2.3.7. Let Z be a central elementary abelian subgroup of a p-group
P . Suppose that P contains a normal subgroup E0 ∈ Ap(P )>Z with |E0 : Z| = p
and such that M := CP (E0) has index p in P . Then,

Ap(P )>Z 1
∨

F∈F
ΣAp(CM (F ))>Z , (2.1)

where F = {F ∈ Ap(P )>Z

∣∣ F ∩M = Z}.

Proof. Let T be the poset Ap(P )>Z − F and B ∈ T . Since B )∈ F , we have
B∩M > Z and the following sequence of inequalities in T shows that the poset
T is contractible:

B ≥ B ∩M ≤ (B ∩M)E0 ≥ E0.
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Since |P : M | = p, we have |B : B∩M | = p, so that B∩M > Z if rk(B/Z) ≥ 2.
It follows that the set F consists of minimal elements of Ap(P )>Z .

It follows now from the homotopy complementation formula that there is a
homotopy equivalence

Ap(P )>Z 1
∨

F∈F
Σ lkT (F ).

Furthermore, lkT (F ) = Ap(P )>F , so that it remains to show that Ap(P )>F is
homotopy equivalent to Ap(CM (F ))>Z .

Remark that for B ∈ Ap(P )>F , we have B ∩ M > Z since |P : M | = p
and B ∩M ≤ B centralizes F . It follows that we can then define a poset map
g : Ap(P )>F → Ap(CM (F ))>Z by g(B) = B ∩M . On the other hand, we have
F ∩M = Z, so that EF > F for any E ∈ Ap(P )>F . We can thus define a poset
map q : Ap(CM (F ))>Z → Ap(P )>F by q(E) = EF .

For any B ∈ Ap(P )>F , we have qg(B) = q(B∩M) = (B∩M)F ≤ B and for
any E ∈ Ap(CM (F ))>Z , we have gq(E) = (EF ) ∩M ≥ E. It follows now from
Lemma 2.2.2 that Ap(P )>F is homotopy equivalent to Ap(CM (F ))>Z .

The main difficulty is that such a subgroup E0 with these properties may not
exist. If Z is not maximal in Ap(P ), then the next lemma shows that, at least
when p is odd, one of the elementary abelian subgroups covering Z is normal
in P . The problem here is that the index of the centralizer of E in P may be
strictly greater than p.

Lemma 2.3.8 (Hobby). Let p be an odd prime and let Z be an elementary
abelian subgroup of a p-group P . If Z is normal in P and Z is not maximal
among elementary abelian subgroups of P , then there exists a normal elementary
abelian subgroup E of P such that |E : Z| = p.

Proof. See Lemma 1 in [17].

When A has order p, we obtain the original result of Bouc and Thévenaz as
a corollary of Proposition 2.3.7.

Corollary 2.3.9 (Bouc, Thévenaz). Let P be a p-group with cyclic center and
let Z = Ω1(Z(P )). Suppose that P contains a normal elementary abelian sub-
group E0 of rank 2. Then

Ap(P )≥2 1
∨

F∈F
ΣAp(CM (F ))≥2, (2.2)

where F = {F ∈ Ap(P )>Z

∣∣ M ∩ F = Z}.

Proof. Since Z(P ) is cyclic, the subgroup Z = Ω1(Z(P )) has order p. The
normal subgroup E0 contains Z and considering the action of P on E0 by
conjugation, one sees that |P : CP (E0)| = p. The result follows now directly
from Proposition 2.3.7.

Remark 2.3.10. We will refer to corollary 2.3.9 as the Bouc-Thévenaz Wedge
Decomposition Formula and we will also refer to Proposition 2.3.7 as the gen-
eralized Bouc-Thévenaz Wedge Decomposition Formula.
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The following is a homological version of the Bouc-Thévenaz Wedge Decom-
position Formula.

Corollary 2.3.11. Let P be a p-group with cyclic center and let Z = Ω1(Z(P )).
Suppose that P contains a normal elementary abelian subgroup E0 of rank 2.
Then for each k ≥ 0

H̃k(Ap(P )≥2) ∼=
⊕

F∈F
H̃k−1(Ap(CM (F ))≥2), (2.3)

where F = {F ∈ Ap(P )≥2

∣∣ M ∩ F = Z}.

Lemma 2.3.12. If P is a p-group with no noncyclic abelian normal subgroups,
then either P is cyclic, or p = 2 and P is isomorphic to D2m+2 , m > 1, Q2m+2 ,
m ≥ 1, or SD2m+2 , m > 1.

Proof. See for example Theorem 5.4.10 in [14].

The proof of the following result is due to Bouc and Thévenaz [8]. We have
included their proof for sake of completeness.

Proposition 2.3.13 (Bouc, Thévenaz). For any p-group P , the poset Ap(P )≥2

has the homotopy type of a wedge of spheres.

Proof. If the center of P is not cyclic, then Ω1(Z(P )) is a conjunctive element in
the poset Ap(P )≥2 which is then contractible. Otherwise, if P does not contain
a normal elementary abelian subgroup of rank 2, then P is one of the groups
given in Lemma 2.3.12. For these particular groups, the poset Ap(P )≥2 is easily
seen to be homotopy equivalent to a wedge of spheres. The result follows now
from a recursive use of Corollary 2.3.9.

Computations for p-groups with a cyclic derived subgroup

What follows is a partial answer to Question 2.1.2 concerning the dimension of
spheres occurring in the homotopy type of Ap(P )≥2. We will show that p-groups
with cyclic derived subgroup give a partial positive answer to this question.

As a first step, we can make the following reductions. Let P be a p-group
with cyclic derived subgroup. If Z(P ) is not cyclic, then Ω1(Z(P )) is a conjunc-
tive element in Ap(P )≥2, so that Ap(P )≥2 is contractible. Recall that we may
also suppose P = Ω1(P ), that is, P is generated by elements of order p. But
then P/P ′ is also generated by elements of order p, hence must be elementary
abelian. It follows that P ′ = Φ(P ), hence we may assume that Φ(P ) is cyclic.

We can thus restrict our attention to p-groups generated by elements of order
p such that Φ(P ) and Z(P ) are cyclic. When p is odd, Theorem 1.3.26 implies
that these assumptions are only satisfied if P is extraspecial of type I. We will
treat this case as a first example.
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Example 2.3.14. Let p be an odd prime and suppose that P = Xp2!+1 is
extraspecial of type I. For such a group, the homotopy type of Ap(P )>Z(P ) 1
Ap(P )≥2 has been determined by Quillen [23] and his argument goes as follows.

Recall that P/Z(P ) is endowed with a non-degenerate alternating form in-
duced by commutators. It follows by the definition of the alternating form that
a subgroup H of P strictly containing Z(P ) is abelian if and only if the corre-
sponding subspace H/Z is non-trivial totally isotropic. Since P has exponent
p, the poset Ap(P )>Z(P ) is thus isomorphic to the poset of non-trivial totally
isotropic subspaces in P/Z(P ). This poset in turn is homotopy equivalent to
the building of a symplectic group. The Solomon-Tits theorem implies now
that Ap(P )>Z(P ) has the homotopy type of a wedge of spheres p!2 spheres of
dimension !− 1.

The result of the preceding example is stated in the following lemma. We
would like however to give an alternative proof of it using the Bouc-Thévenaz
Wedge Decomposition Formula. This proof will serve as a prototype for all
other computations in this section.

Lemma 2.3.15. Let p be an odd prime. If P = Xp2!+1 with ! ≥ 1, then
Ap(P )≥2 has the homotopy type of a wedge of p!2 spheres of dimension !− 1.

Proof. Suppose first that ! = 1, so that P = Xp3 . In this situation, Ap(P )>Z(P )

is isomorphic to the poset of all non-trivial proper subspaces of P/Z(P ). It
follows at once that Ap(P )>Z(P ) is a discrete poset consisting of p + 1 points,
hence has the homotopy type of a wedge of p spheres of dimension 0.

Suppose now ! > 1 and let z be a generator of Z(P ). Recall that we can
choose symplectic generators x1, y1, . . . , x!, y! of P such that [xi, yi] = z and
xp

i = yp
i = 1 for all i = 1, . . . , !. Let E0 be the elementary abelian subgroup

of rank 2 generated by z and y1. Then E0 is normal in P (it contains P ′) and
M = CP (E0) is generated by E0 and all other generators except x1, that is

M = 〈z, y1, x2, y2, . . . , x!, y!〉.

The Bouc-Thévenaz Wedge Decomposition Formula gives then

Ap(P )>Z(P ) 1
∨

F∈F
ΣAp(CM (F ))>Z(P ), (2.4)

where F = {F ∈ Ap(P )>Z(P )

∣∣ F ∩M = Z(P )}. Remark that F corresponds
bijectively to the set of all 1-dimensional complements of M/Z(P ) in P/Z(P ),
so that |F| = p2!−1. A subgroup F ∈ F is generated by z and an element of
the form x1yk

1x with 0 ≤ k < p and x ∈ 〈x2, y2, . . . , x!, y!〉. Without any loss of
generality, we may assume x = x2.

We claim that CM (F ) is extraspecial of type I and order p2(!−1)+1. To see
this, we show that CM (F ) is equal to the subgroup K of P defined by

K = 〈x2, y
−1
1 y2, x3, y3, . . . , x!, y!〉.

Except possibly for y2y
−1
1 , it is clear that these elements are in CM (F ). But

since the commutators are central, we also have

[x1y
k
1x2, y2y

−1
1 ] = [x1, y1]−1[x2, y2] = z−1z = 1.
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2.3 The poset Ap(P )≥2

Furthermore, the subgroup generated by x2 and y−1
1 y2 is isomorphic to Xp3

since y1 commutes with both x2 and y2. It follows then that K is extraspecial
of type I and order p2(!−1)+1.

Since F is a normal elementary abelian subgroup of P of rank 2, we have
|P : CP (F )| = p. Furthermore, |P : M | = p and Cp(F ) )= M since y1 ∈ M but
y1 )∈ CP (F ). It follows that CM (F ) = CP (F )∩M has index p in M , hence has
index p2 in P . Therefore, CM (F ) has order p2!−1 and this shows that K and
CM (F ) have the same order, hence K = CM (F ).

By a recursive argument we have now for any F ∈ F that Ap(CM (F ))>Z(P )

has the homotopy type of a wedge of p(!−1)2 spheres of dimension !−2. Putting
this information in equation (2.4), we see that Ap(P )>Z(P ) has the homotopy
type of p2!−1 ·p(!−1)2 = p!2 spheres of dimension !−1 (the dimension is increased
by the suspension) and the lemma is proved.

The following proposition follows now immediately from the previous lemma
and the reductions made before. Note that this result closes the discussion for
p odd.

Proposition 2.3.16. Let p be an odd prime. If P is a p-group with a cyclic
derived subgroup, then Ap(P )≥2 is contractible, unless Ω1(P ) is extraspecial of
type I, say Ω1(P ) = Xp2!+1 , in which case Ap(P )≥2 is homotopy equivalent to
a wedge of p!2 spheres of dimension !− 1.

When p = 2 the situation is more complicated. However, in similarity with
the case p odd, an argument using buildings and the Solomon-Tits theorem can
be used when Φ(P ) has order 2. As for p odd, we will give a proof avoiding
buildings and based on the Bouc-Thévenaz Wedge Decomposition Formula. The
proofs are similar to the case p odd, but we have to be more careful with the
order of the elements.

Lemma 2.3.17.

a) If P = D∗!
8 with ! ≥ 1, then Ap(P )≥2 has the homotopy type of a wedge of

2!(!−1) spheres of dimension !− 1.

b) If P = D∗!
8 ∗C4 with ! ≥ 0, then Ap(P )≥2 has the homotopy type of a wedge

of 2!2 spheres of dimension !− 1.

c) If P = D∗!
8 ∗Q8 with ! ≥ 0, then Ap(P )≥2 has the homotopy type of a wedge

of 2!(!+1) spheres of dimension !− 1.

Proof.

a) If P = D8, then Ap(P )>Z(P ) is easily seen to consist of 2 points, hence
Ap(P )>Z(P ) has the homotopy type of a sphere of dimension 0. Suppose
now that P = D∗!

8 with ! > 1. Let z be a generator of Z(P ) and let
x1, y1, . . . , x!, y! be symplectic generators of P all of order 2 and such that
[xi, yi] = z. Let E0 be the elementary abelian subgroup of P of rank 2
generated by z and y1. It is clear that E0 is normal in P and M = CP (E0)
is generated by E0 and all other generators of P except x1, that is

M = 〈z, y1, x2, y2, . . . , x!, y!〉.
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The Bouc-Thévenaz Wedge Decomposition Formula gives then

Ap(P )>Z(P ) 1
∨

F∈F
ΣAp(CM (F ))>Z(P ), (2.5)

where F = {F ∈ Ap(P )>Z(P )

∣∣ F ∩ M = Z(P )}. A subgroup F ∈ F is
generated by z and an element x1yk

1x with k ∈ {0, 1} and x is in the subgroup
D generated by the xj , yj for j = 2, . . . , !. Note that this subgroup D is
isomorphic to D∗(!−1)

8 . Since F ∈ F is elementary abelian, we must have

1 = (x1y
k
1x)2 = zkx2.

We have therefore k = 0 if x2 = 1 and we have k = 1 if x2 = z. Any element
x ∈ D defines thus a subgroup F (x) in F by F (x) = 〈z, x1yk

1x〉 where k is
chosen such that k = 1 if x2 = z and k = 0 otherwise. Furthermore, two
elements of D define the same subgroup in F if and only if they differ by
an element of Z(P ). The subgroups in F correspond then bijectively with
D/Z(D), hence F has cardinality 22(!−1).

If F = 〈z, x1yk
1x〉 ∈ F , then we claim that CM (F ) is isomorphic to D∗(!−1)

8 .
Suppose first that k = 0. Without loss of generality we may assume that
x = x2 or x = 1. In this case, the centralizer of F in M is easily seen to be
generated by x2, y1y2, respectively x2, y2 if x = 1, and the elements xj , yj

for 3 ≤ j ≤ !. It follows that CM (F ) is isomorphic to D∗(!−1)
8 .

If k = 1, we may suppose without loss of generality that x = x2y2. In this
case, the centralizer of F in M is generated by x2y2, y2y1 and the elements
xj , yj for 3 ≤ j ≤ !. In this case also CM (F ) is isomorphic to D∗(!−1)

8 and
our claim is proved.
We have then that Ap(D∗!

8 )≥2 has the homotopy type of a wedge of 22(!−1)

copies of the suspension of Ap(D
∗(!−1)
8 )≥2. The result follows now by an

induction argument.

b) Let P = D8 ∗ C4. A close look at the elements of order 2 in P shows that
Ap(P )>Z(P ) consists of three isolated points, hence has the homotopy type of
a wedge of 2 spheres of dimension 0. Suppose now ! > 1 and P = D∗!

8 ∗ C4.
Let c be a generator of Z(P ) and let z = c2. We can choose symplectic
generators x1, y1, . . . , x!, y! of D∗!

8 all of order 2 and such that [xi, yi] = z.
Let E0 be the normal subgroup of P generated by z and y1. As before, let
M = CP (E0) and F = {F ∈ Ap(P )>Z(P )

∣∣ F ∩ M = Z(P )}. A subgroup
F ∈ F is generated by z and an element x1yk

1xct with k, t ∈ {0, 1} and x is
in the subgroup D generated by the elements xj , yj with 2 ≤ j ≤ !. Since F
is elementary abelian, we have

1 = (x1y
k
1xct)2 = zkx2zt

Therefore, k = t if x2 = 1, and k )= t if x2 = z. An element x ∈ D with
x2 = 1 defines thus two subgroups 〈z, x1y1xc〉 and 〈z, x1x〉 in F . If x2 = z,
then x defines two subgroups 〈z, x1y1x〉 and 〈z, x1xc〉 in F . It follows that
F has cardinality 2 · 22(!−1) = 22!−1.
Let F = 〈z, x1yk

1xct〉 ∈ F . If k = t, we may assume without loss of generality
that x = x2 or x = 1. Then CM (F ) is generated by x2, y2y1, respectively
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x2, y2 if x = 1, c and the generators xj , yj for j = 3, . . . , !. If k )= t, then we
may assume that x = x2y2 and CM (F ) is then generated by x2y2, y2y1, c and
the generators xj , yj for j = 3, . . . , !. In both cases, CM (F ) is isomorphic to
D∗(!−1)

8 ∗ C4.

It follows that Ap(D∗!
8 ∗ C4)≥2 has the homotopy type of a wedge of 22!−1

copies of the suspension of Ap(D
∗(!−1)
8 ∗ C4)≥2. The result follows by an

induction argument.

c) If P = Q8, then Ap(P )≥2 is empty, hence is a sphere of dimension −1.
Suppose now ! ≥ 1 and P = D∗!

8 ∗ Q8. Let z be a generator of Z(P ) and
let x1, y1, . . . , x!, y! be symplectic generators of D∗!

8 all of order 2 such that
[xi, yi] = z. As before, we let E0 = 〈z, y1〉 and M = CP (E0). A subgroup
F ∈ F = {F ∈ Ap(P )>Z(P )

∣∣ F ∩M = Z(P )} is generated by z and element
x1yk

1xs with k ∈ {0, 1}, x is in the subgroup D generated by x2, y2, . . . , x!, y!

and s is in the subgroup Q8. Since F is elementary abelian we have

1 = (x1y
k
1xs)2 = zkx2s2.

We have thus

k =

{
0 if either x2 = 1 = s2, or x2 = z = s2.

1 if either x2 = 1 and s2 = z, or x2 = z and s2 = 1.

The subgroup F is thus determined by the choice of an element x ∈ D and
an element s ∈ Q8, both modulo Z(P ). It follows that F has cardinality 22!.

If F = 〈z, x1x〉 with x2 = 1, then we may assume without loss of gener-
ality that x = x2 or x = 1. In this case CM (F ) is generated by x2, y1y2,
respectively x2, y2 if x = 1, Q8 and the generators xj , yj for j = 3, . . . , !.

If F = 〈z, x1y1x〉 with x2 = z, then we may assume that x = x2y2. In
this case CM (F ) is generated by x2y2, y2y1, Q8 and the generators xj , yj for
j = 3, . . . , !.

If F = 〈z, x1y1xs〉 with s2 = z, then we may assume that x = x2 or x = 1.
There exists an element s′ ∈ Q8 such that [s, s′] = z and CM (F ) is generated
by x2, y2y1, respectively x2, y2 if x = 1, s,s′y1 and the generators xj , yj for
j = 3, . . . , !.

If F = 〈z, x1xs〉 with s2 = z, then we may assume that x = x2y2 and CM (F )
is generated by x2y2, y1y2, s,s′y1, where s′ ∈ Q8 is such that [s, s′] = z, and
the generators xj , yj for j = 3, . . . , !.

In all cases, the centralizer CM (F ) is isomorphic to D∗(!−1)
8 ∗Q8. It follows

that Ap(D∗!
8 ∗ Q8)≥2 has the homotopy type of a wedge of 22! copies of

the suspension of Ap(D
∗(!−1)
8 ∗ Q8)≥2. The result follows by an induction

argument.

Recall that P is assumed to be a 2-group with a cyclic Frattini subgroup and
a cyclic center. If |Φ(P )| > 2 , it follows from the classification theorems 1.3.26
and 1.3.37, that P is isomorphic to D∗!

8 ∗ S, where ! ≥ 0 and S is one of
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the following groups: C2m+1 , M2m+2 , D2m+2 , SD2m+2 , Q2m+2 , D+
2m+3 , Q+

2m+3 ,
D+

2m+3 ∗ C4, D2m+2 ∗ C4, SD2m+2 ∗ C4 all with m > 1 .
The computation of the homotopy type of Ap(P )≥2 can be made by a case

by case study. When the Frattini subgroup is central, the result is almost
immediate.

Lemma 2.3.18. If P = D∗!
8 ∗C2m+1 with ! ≥ 0 and m > 1, then Ap(P )≥2 has

the homotopy type of a wedge of 2!2 spheres of dimension !− 1.

Proof. If ! = 0, i.e P is cyclic, the result is clear. Otherwise, we have that
Ω1(P ) = D∗!

8 ∗ C4 and the result follows from the preceding lemma.

Lemma 2.3.19. If P = D∗!
8 ∗M2m+2 with ! ≥ 0 and m > 1, then Ap(P )≥2 is

contractible.

Proof. If ! = 0, i.e. P = M2m+2 , there is only one elementary abelian subgroup
of rank 2 in P , so that Ap(P )≥2 is contractible in this case. If ! ≥ 1, the result
follows directly from the fact that the center of Ω1(P ) = (D∗!

8 ∗C4)×C2 is not
cyclic.

It remains then to treat the following cases:

D2m+2 , SD2m+2 , Q2m+2 , D+
2m+3 , Q

+
2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D

+
2m+3 ∗ C4

(2.6)
Let P be a 2-group of the form D∗!

8 ∗S with ! ≥ 0 and S is one of the group
in the list (2.6). The method to determine the homotopy type of Ap(P )≥2 goes
as follows. Let z be a generator of the unique subgroup of order 2 of Z(P ) and
let x1, y1, . . . , x!, y! be symplectic generators of the subgroup D∗!

8 all of order
2 and such that [xi, yi] = z for all i = 1, . . . , !. We would like to apply the
Bouc-Thévenaz Wedge Decomposition Formula:

Ap(P )≥2 1
∨

F∈F
ΣAp(CM (F ))≥2.

We choose E0 to be the normal subgroup of P generated by z and y1. The
centralizer M of E0 in P is generated by z, y1, x2, y2, . . . , x!, y! and S. A sub-
group F in F = {F ∈ Ap(P )>Z(P )

∣∣ F ∩ M = Z(P )} is generated by z and
an element g = x1yk

1xs with k ∈ {0, 1}, x is in the subgroup D generated by
xj , yj for 2 ≤ j ≤ ! and s is in S. Since F is elementary abelian, we have
1 = g2 = zkx2s2. As a consequence, s must have order at most 4. Now, if we
are given an element x in D and an element s in S of order at most 4, then we
can define a subgroup F (x, s) in F by F (x, s) = 〈z, x1yk

1xs〉 where k is chosen
such that k = 1 if x2s2 = z and k = 0 if x2s2 = 1. If x′ ∈ D and s′ ∈ S
with s′ of order at most 4, then F (x, s) = F (x′, s′) if and only if xs = x′s′ or
xs = x′s′z. It follows that x = x′ or x = x′z and s = s′ or s = s′z. There are
thus 4 different pairs (x, s) that define the same subgroup in F . This allows us
to determine the number of subgroups in F .

If c denotes the number of element of S of order at most 4, then

|F| = 1
4
c · 22(l−1)+1 (2.7)
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If F = 〈z, x1yk
1xs〉 is in F then CM (F ) is the centralizer in M of the element

x1yk
1xs. To apply the Bouc-Thévenaz Wedge Decomposition Formula, we need

to determine now exactly these centralizers. This is what we are going to do in
what follows. In the following proofs, we will keep the notation as above.

Lemma 2.3.20. Let P = D2m+2 with m ≥ 1. Then Ap(P )≥2 has the homotopy
type of a wedge of 2m − 1 spheres of dimension 0.

Proof. The elementary abelian subgroups of D2m+2 have order at most 4. Fur-
thermore, D2m+2 has a unique cyclic subgroup of order 4 containing the center
and all other subgroups of order 4 containing the center are elementary abelian.
It follows that Ap(P )≥2 consists of 2

m

isolated points, hence has the homotopy
type of a wedge of 2m − 1 spheres of dimension 0.

Lemma 2.3.21. If P = D∗!
8 ∗D2m+2 with m > 1 and ! ≥ 1, then Ap(P )≥2 has

the homotopy type of a wedge of 2!
2

(2m−1(2! + 1)− 1) spheres of dimension !.

Proof. We keep the notation as above and in particular here S = D2m+2 . Let
a, u be generators of S with a of order 2, u of order 2m+1 and aua−1 = u−1.
The elements of order 2 in S are those of the form aui with i = 0, . . . , 2m+1− 1
and there are two elements of order 4, namely w = u2m−1

and w−1 = wz.
Suppose first that ! = 1 and let F ∈ F . In this case, F is generated by z

and an element g = x1yk
1s with s ∈ S.

If s = 1 or s = z, then CM (F ) = S. If s = w or s = w−1, then CM (F )
is generated by u and y1a, hence is isomorphic to D2m+2 . If s )= z and s
has order 2, we may assume without loss of generality that s = a. But then
CM (F ) is generated by a and y1w, hence is isomorphic to D8. There are thus
two subgroups in F with a centralizer in M isomorphic to D2m+2 , namely the
subgroups 〈z, x1〉 and 〈z, x1y1w〉. And there are 2m subgroups in F with cen-
tralizer in M isomorphic to D8, namely the subgroups of the form 〈z, aui〉 with
i ≥ 0. It follows then from the Bouc-Thévenaz Wedge Decomposition Formula
that Ap(D8 ∗D2m+2)≥2 has the homotopy type of the wedge of 2 copies of the
suspension of Ap(D2m+2)≥2 and 2m copies of the suspension of Ap(D8)≥2. By
Lemma 2.3.17 and Lemma 2.3.20, we obtain that Ap(D8 ∗ D2m+2)≥2 has the
homotopy type of 2(2m − 1) + 2m = 2(2m−1(2 + 1)− 1) spheres of dimension 1.

Suppose now ! > 1 and let F = 〈z, g〉 ∈ F with g = x1yk
1xs. If x )= z and

x has order 2 we may suppose without loss of generality that x = x2 and if x
has order 4 we may suppose that x = x2y2. If x )= z and x )= 1, we may thus
suppose that x = x2yε

2 for some ε ∈ {0, 1}.
Suppose first that x )= 1 and s has order 4. We may assume that s = w

and we claim that the centralizer in M of g = x1yk
1x2yε

2w is generated by the
following elements:

xj , yj , for 3 ≤ j ≤ l, (2.8)
x2y

ε
2, y1y2, (2.9)

y1a, u. (2.10)

These elements all lie in M which is the subgroup generated by all generators
of P except x1 and easy but technical calculations show that they centralize g.

67



Chapter 2. Subgroup complexes

If h = yβ1
1 xα2

2 yβ2
2 · · ·xαl

! yβ!

! aγuδ is an element of M with β1,αj ,βj , γ, δ ∈ {0, 1},
then

hgh−1 = (yβ1
1 x1y

−β1
1 )yk

1 (yβ2
2 x2y

−β2
2 )(xα2

2 yε
2x
−α2
2 )(aγwa−γ)

= (zβ1x1)yk
1 (zβ2x2)(zα2εyε

2)(z
γw)

= gzβ1+β2+α2ε+γ

If h centralizes g, then β1 = β2 + α2ε + γ + 2µ for some µ ≥ 0 and h can be
rewritten

h = (x2y
ε
2)

α2(y1y2)β2+α2ε(y1a)γxα3
3 · · · yβ!

! uδ

and our claim is proved.
The subgroup generated by x2yε

2 and y1y2 is isomorphic to D8, since their
commutator is z and y1y2 has order 2. The subgroup generated by u and y1a
is easily seen to be isomorphic to D2m+2 . It follows that CM (F ) is isomorphic
to D∗(!−1)

8 ∗D2m+2 . It is not difficult to adapt the above argument when x or s

is central and in these cases also CM (F ) is isomorphic to D∗(!−1)
8 ∗D2m+2 .

Suppose now that s )= z and s has order 2. Without loss of generality, we
may suppose that s = a. In this situation, the centralizer in M of g = x1yk

1x2yε
2a

is generated by the following elements

xj , yj , for 3 ≤ j ≤ l, (2.11)
x2y

ε
2, y1y2, (2.12)

a, y1w. (2.13)

It is not difficult to see that these elements centralize g and an argument as
before shows that these elements actually generate CM (g). The subgroup gen-
erated by a and y1w is isomorphic to D8, so that this time CM (F ) is isomorphic
to D∗!

8 . As before, this remains true if x = 1 or x = z.
Let us summarize the situation. We have seen that the choice of a pair

(x, s) with s = 1, s = z or s of order 4 gives a subgroup F in F with CM (F )
isomorphic to D∗(!−1)

8 ∗D2m+2 . There are 22(l−1)+1 · 4 such pairs, hence 22!−1

subgroups in F have a centralizer isomorphic to D∗(!−1)
8 ∗D2m+2 .

The choice of a pair (x, s) with s )= z and s of order 2 gives a subgroup F in
F with CM (F ) isomorphic to D∗!

8 . There are 22(!−1)+1 · 2m+1 such pairs, hence
22(!−1)+m subgroups in F have a centralizer in M isomorphic to D∗!

8 .
The dimension and the number of spheres in Ap(P )≥2 can now be computed

by a recursive use of the Bouc-Thévenaz wedge decomposition, together with
the results of Lemma 2.3.17.

The proofs in the other cases are relatively similar, so that we will give less
details from now on.

Lemma 2.3.22. Let P = SD2m+2 with m > 1, then Ap(P )≥2 has the homotopy
type of a wedge of 2m−1 − 1 spheres of dimension 0.

Proof. Let a, u be generators of P such that u has order 2m+1, a has order 2
and aua−1 = u−1+2m

. The center of P is generated by z = u2m

. The elements
of the form aui have order 2 if i is even and 4 if i is odd. It follows that P
has 2m elements of order 2 distinct from z. It follows that Ap(P )≥2 consists of
2m−1 isolated points and the lemma is proved.

68



2.3 The poset Ap(P )≥2

Lemma 2.3.23. Let P = D∗!
8 ∗ SD2m+2 with ! ≥ 1 and m > 1, then Ap(P )≥2

has the homotopy type of a wedge of 2!2(2m−2(2! +1)− 1) spheres of dimension
! and 2!2(2m−2(2! − 1)) spheres of dimension !− 1.

Proof. With our above notation, S = SD2m+2 . Let a, u be generators of SD2m+2

with u of order 2m+1, a of order 2 and aua−1 = u−1+2m

. Let F = 〈z, g〉 ∈ F
with g = x1yk

1xs. The elements of S of the form aui with i even have order 2.
The elements of the form aui with i odd and the elements w = u2m−1

and w−1

are the elements of order 4 of S.
If x )= 1 and x )= z, we may assume that x = x2yε

2. Suppose first that s has
order 4. Without loss of generality we may assume s = au or s = w. If s = w,
then CM (F ) is generated by the following elements:

xj , yj , for 3 ≤ j ≤ l, (2.14)
x2y

ε
2, y1y2, (2.15)

y1a, u. (2.16)

Note that the subgroup generated by u and y1a is isomorphic to SD2m+2 . If
s = au, then CM (F ) is generated by the following elements:

xj , yj , for 3 ≤ j ≤ l, (2.17)
x2y

ε
2, y1y2, (2.18)

au,wy1. (2.19)

The subgroup generated by au and wy1 is isomorphic to Q8, since both gener-
ators have order 4 and their commutator equals z.

Suppose now that s )= z, s )= 1 and s has order 2. Without loss of generality,
we may suppose that s = a. The centralizer of M in F is then generated by the
following elements:

xj , yj , for 3 ≤ j ≤ l, (2.20)
x2y

ε
2, y1y2, (2.21)

a, y1w. (2.22)

The subgroup generated by a and y1w is isomorphic to D8.
There are 22!−1(2m−1 + 1) subgroups in F and among them 22!−1 have a

centralizer in M isomorphic to D∗!−1
8 ∗ SD2m+2 , 22!+m−3 have a centralizer in

M isomorphic to D∗!−1
8 ∗D8 and 22!+m−3 have a centralizer in M isomorphic

to D∗!−1
8 ∗ Q8. The lemma follows from a recursive use of the Bouc-Thévenaz

Wedge Decomposition Formula, as well as Lemma 2.3.17.

Lemma 2.3.24. Let P = Q2m+2 with m ≥ 1, then Ap(P )≥2 has the homotopy
type of a sphere of dimension −1.

Proof. Recall that the subgroup Q2m+2 has no non-cyclic abelian subgroups (see
[14, Theorem 5.4.10]), hence Ap(P )≥2 is empty.
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Lemma 2.3.25. Let P = D∗!
8 ∗Q2m+2 with ! ≥ 1 and m > 1. Then Ap(P )≥2

has the homotopy type of a wedge of 2!2(2m−1(2!− 1)+1) spheres of dimension
!− 1.

Proof. Let F = 〈z, g〉 ∈ F with g = x1yk
1xs with s ∈ S = Q2m+2 . Let b, u be

generators of S with u of order 2m+1 and b of order 4 with bub−1 = u−1. Let
also w = u2m−1

. If s = z or s = 1, then CM (F ) is isomorphic to D∗(!−1)
8 ∗Q2m+2 .

If s = w or s = w−1 = wz, then CM (F ) is generated by the following elements

xj , yj , for 3 ≤ j ≤ l, (2.23)
x2y

ε
2, y1y2, (2.24)

y1b, u. (2.25)

The subgroup generated by u and y1b is isomorphic to Q2m+2 . Suppose now
that s has order 4, but s )= w and s )= w−1. We may assume that s = b and
then CM (F ) is generated by the following elements:

xj , yj , for 3 ≤ j ≤ l, (2.26)
x2y

ε
2, y1y2, (2.27)

b, y1w (2.28)

The subgroup generated by b and y1w is isomorphic to Q8, hence CM (F ) is
isomorphic to D∗(!−1)

8 ∗Q8.
We have now 22!−1 subgroups in F with a centralizer in M isomorphic to

D∗!−1
8 ∗Q2m+2 and 22!+m−2 subgroups in F with a centralizer in M isomorphic

to D∗!−1
8 ∗ Q8. As usual, the lemma follows now from a recursive use of the

Bouc-Thévenaz Wedge Decomposition Formula, as well as Lemma 2.3.17.

For the remaining cases, we will choose a more appropriate normal subgroup
E0 to simplify the calculations. The method remains the same.

Lemma 2.3.26. Let P = D+
2m+3 with m > 1, then Ap(P )≥2 has the homotopy

type of a wedge of 2m−1 spheres of dimension 0.

Proof. Let a, b, u be generators of P with a, b of order 2, u of order 2m+1,
[a, b] = 1, aua−1 = u1+2m

and bub−1 = u−1. Let w = u2m−1
and z = w2 = u2m

.
Let E0 be the normal subgroup of P generated by a and z. The centralizer
M of E0 in P is generated by a, b and u2. If F is a subgroup in F = {F ∈
Ap(P )>Z(P )

∣∣ F ∩ M = Z(P )}, then F is generated by z and an element g of
the form g = biajuk for some i, j ∈ {0, 1} and 0 ≤ k ≤ 2m+1 − 1 with k odd.
Since F is elementary abelian, we have g2 = 1, hence g has the form ukb with k
odd. The centralizer in M of such an element is the cyclic subgroup of order 4
generated by aw. There are thus 2m−1 subgroups F in F all with a centralizer
in M cyclic of order 4. The results follows then from the Bouc-Thévenaz Wedge
Decomposition Formula.

Lemma 2.3.27. Let P = D∗!
8 ∗D+

2m+3 with ! ≥ 1 and m > 1. Then Ap(P )≥2

has the homotopy type of a wedge of 2(!+1)2+m−2 spheres of dimension !.
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Proof. Let a, b, u be generators of D+
2m+3 with a, b of order 2, u of order 2m+1,

[a, b] = 1, aua−1 = u1+2m

and bub−1 = u−1. Let w = u2m−1
and z = w2 = u2m

.
Let E0 be the normal subgroup of P generated by a and z and let M be the
centralizer of E0 in P . We have

M = 〈x1, y1, . . . , x!, y!, a, b, u2〉.

A subgroup F ∈ F =
{
F ∈ Ap(P )>Z(P ) |F ∩M = Z(P )

}
is generated by z and

an element g = xaibjuk of order 2 and with k odd. Remark that the element
auk with k odd have order 2m+1, so that we can restrict to the following cases.

If g = bu, then then CM (F ) is generated by all the xi, yi and the elements
aw. It follows that CM (F ) is isomorphic to D∗!

8 ∗ C4.
If g = x1bu, then CM (F ) is generated by xj , yj with j )= 1 and the elements

x1,y1w and aw. It follows that CM (F ) is isomorphic to D∗!
8 ∗ C4.

If g = x1y1abu, then CM (F ) is generated by xj , yj with j )= 1 and the
elements x1a,y1a and aw. It follows that CM (F ) is isomorphic to D∗!

8 ∗ C4.
There are thus 22!+m−1 subgroups in F all with centralizer in M isomorphic

to D∗!
8 ∗C4. The result follows now from the Bouc-Thévenaz Wedge Decompo-

sition Formula together with Lemma 2.3.17.

Lemma 2.3.28. Let P = Q+
2m+3 with m > 1. Then Ap(P )≥2 has the homotopy

type of a wedge of 2m−1 spheres of dimension 0.

Proof. Let a, b, u be generators of P with a of order 2, b of order 4 and u of order
2m+1 and with [a, b] = 1, aua−1 = u1+2m

and bub−1 = u−1. The elementary
abelian subgroups of rank 2 in P containing Z(P ) are generated by z = u2m

and either a or an element abui with i odd. No two of these elements commute,
so that Ap(P )>Z(P ) is a wedge of 2m−1 spheres of dimension 0.

Lemma 2.3.29. Let P = D∗!
8 ∗Q+

2m+3 with ! ≥ 1 and m > 1. Then Ap(P )≥2

has the homotopy type of a wedge of 2(!+1)2+m−2 spheres of dimension !.

Proof. Let a, b, u be generators of Q+
2m+3 , where a has order 2, u has order

2m+1, b has order 4 with b2 = u2m

, and where [a, b] = 1, aua−1 = u1+2m

and
bub−1 = u−1. Let w = u2m−1

and z = b2 = w2 = u2m

. Let E0 be the normal
subgroup of P generated by a and z and let M be the centralizer of E0 in P .
We have

M = 〈x1, y1, . . . , x!, y!, a, b, u2〉.

A subgroup F ∈ F =
{
F ∈ Ap(P )>Z(P ) |F ∩M = Z(P )

}
is generated by z

and an element g = xaibjuk of order 2 and with k odd. We can thus restrict to
the following cases.

If g = x1y1bu, then CM (F ) is generated by xj , yj with j )= 1 and the elements
x1a,y1a and aw. It follows that CM (F ) is isomorphic to D∗!

8 ∗ C4.
If g = abu, then CM (F ) is generated by xj , yj with j = 1, . . . , !, and the

element aw. It follows that CM (F ) is isomorphic to D∗!
8 ∗ C4.

If g = x1abu, then CM (F ) is generated by xj , yj with j )= 1 and the elements
x1a,y1a and aw. It follows that CM (F ) is isomorphic to D∗!

8 ∗ C4.
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There are thus 22!+m−1 subgroups in F all with centralizer isomorphic to
D∗!

8 ∗C4. The result follows now from the Bouc-Thévenaz Wedge Decomposition
Formula together with Lemma 2.3.17.

Lemma 2.3.30. Let P = D∗!
8 ∗D2m+2 ∗C4 with ! ≥ 0 and m > 1, then Ap(P )≥2

has the homotopy type of a wedge of 2(!+1)2+m−1 spheres of dimension !.

Proof. Let u, v be generators of D2m+2 with u of order 2m+1, a of order 2 and
aua−1 = u−1. Let w = u2m−1

and z = w2 = u2m

. Let c be a generator of the
subgroup C4 and let E0 be the subgroup generated by z and wc. The centralizer
M of E0 in P has the following generators:

M = 〈x1, y1, . . . , x!, y!, u, c〉.

A subgroup F in F is generated by z and an element g = xaukcl with x in the
subgroup D∗!

8 . Each of these subgroups is obtained by choosing k and x and
by letting l = 1 if x has order 4. There are thus 22!+m such subgroups. To
determine the centralizer, we may assume without loss of generality that x = 1
or x = x!yε

! with ε ∈ {0, 1}. The centralizer of g in M is generated by c and
the following elements:

xj , yj for j = 1, . . . , !− 1,

x!y
ε
! , y!w if x )= 1 respectively x!, y! if x = 1,

The subgroup generated by x!yε
! and y!w may be replaced by the subgroup

generated by x!yε
! and y!wc so that it is isomorphic to D8. This shows that the

centralizer of F in M is isomorphic to D∗!
8 ∗ C4. The lemma follows now from

the Bouc-Thévenaz Wedge Decomposition Formula and Lemma 2.3.17.

The proof in the case P = D∗!
8 ∗SD2m+2 ∗C4 is very similar to the previous

one, so that we will not include it.

Lemma 2.3.31. Let P = D∗!
8 ∗ SD2m+2 ∗ C4 with ! ≥ 0 and m > 1, then

Ap(P )≥2 has the homotopy type of a wedge of 2(!+1)2+m−1 spheres of dimension
!.

Lemma 2.3.32. Let P = D∗!
8 ∗D+

2m+3 ∗C4 with ! ≥ 0 and m > 1, then Ap(P )≥2

is contractible.

Proof. Let a, b, u be generators of the subgroup D+
2m+3 with a, b of order 2, u of

order 2m+1, [a, b] = 1, aua−1 = u1+2m

and bub−1 = u−1. Let w = u2m−1
and

z = w2 = u2m

. Let c be the generator of the subgroup C4 and let E0 be the
normal subgroup of P generated by z and wc. The centralizer M of E0 in P
has the following generators

M = 〈x1, y1, . . . , x!, y!, u, a, c〉.

A subgroup F in F is generated by z and an element g = xakbuict. If i is
even, then a centralizes g and if i is odd, then wac centralizes g. But these
two elements are central in M , hence CM (F ) has a central elementary abelian
subgroup of rank 2. It follows that Ap(CM (F ))≥2 is contractible for all F ∈ F .
The lemma follows from the Bouc-Thévenaz Wedge Decomposition Formula.
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Let ! ≥ 1 and m > 1. In the table 2.1 located on page 74, the reader will
find the number and dimension of spheres occurring in the poset Ap(P )≥2 for
any non-abelian p-group P with Z(P ) and Φ(P ) cyclic of order pm. For some
(small) values of ! and m, these numerical results have been verified using the
programming language GAP [13].

As a corollary to all these computations, we obtain that p-groups with cyclic
derived subgroup give a positive answer to the Question 2.1.2 raised by Bouc
and Thévenaz.

Corollary 2.3.33. Let P be a p-group with cyclic derived subgroup. Then

a) If p is odd Ap(P )≥2 is homotopy equivalent to a wedge of spheres of the same
dimension.

b) If p = 2, then Ap(P )≥2 is homotopy equivalent to a wedge of spheres of the
same dimension, or of two consecutive dimensions.
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P Ap(P )≥2

Xp2!+1 p!2 spheres of dimension !− 1

Xp2(!−1)+1 ∗X−
p3 contractible

Xp2!+1 ∗ Cpm p!2 spheres of dimension !− 1

Xp2(!−1)+1 ∗Mpm+2 contractible

D∗!
8 2!(!−1) spheres of dimension !− 1

D∗!
8 ∗ C4 2!2 spheres of dimension !− 1

D∗(!−1)
8 ∗Q8 2!(!−1) spheres of dimension !− 2

D∗!
8 ∗ C2m+1 2!2 spheres of dimension !− 1

D∗(!−1)
8 ∗M2m+2 contractible

D∗(!−1)
8 ∗D2m+2 2(!−1)2(2m−1(2(!−1) + 1) − 1) spheres of dimension

!− 1

D∗(!−1)
8 ∗ SD2m+2 2(!−1)2(2m−2(2(!−1)+1)−1) spheres of dimension !−1

and 2(!−1)2(2m−2(2(!−1) − 1)) spheres of dimension
!− 2

D∗(!−1)
8 ∗Q2m+2 2(!−1)2(2m−1(2(!−1) − 1) + 1) spheres of dimension

!− 2

D∗(!−1)
8 ∗D2m+2 ∗C4 2!2+m−1 spheres of dimension !− 1

D∗(!−1)
8 ∗SD2m+2∗C4 2!2+m−1 spheres of dimension !− 1

D∗(!−1)
8 ∗D+

2m+3 2!2+m−2 spheres of dimension !− 1

D∗(!−1)
8 ∗Q+

2m+3 2!2+m−2 spheres of dimension !− 1

D∗(!−1)
8 ∗D+

2m+3 ∗C4 contractible

Table 2.1: Homotopy type of Ap(P )≥2 for p-groups P with Z(P ) and Φ(P )
cyclic. In this table, ! ≥ 1 and m > 1.
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2.4 Maximal Dimension of spheres

We have seen, that for a p-group P , the poset Ap(P )≥2 is homotopy equivalent
to a wedge of spheres. The dimension of these spheres cannot be greater than
the dimension of the simplicial complex Ap(P )≥2. In this section, we will give
a sharper bound on the dimension of the spheres depending on the order of the
group. More precisely, we show that if P has order pn, then there are no spheres
in dimension greater than or equal to "n−1

2 #. If n = 2! + 1 is odd, this implies
that the maximal dimension of the spheres is ! − 1 and we show furthermore
that a p-group of order p2!+1 has spheres in dimension !− 1 if and only if P is
extraspecial of type I. When n is even we obtain a similar, but weaker result.
More precisely, if P has order p! and H̃!−2(Ap(P )≥2) )= 0, then P has a maximal
subgroup extraspecial of type I.

Lemma 2.4.1. Let P be a p-group with Z = Ω1(Z(P )) of order p and let
E,F ∈ Ap(P )>Z with E,F of rank 2, E normal in P and F does not centralize
E. Then the subgroup EF is extraspecial of type I and order p3 with Z(EF ) = Z
and the following assertions are equivalent, where M = CP (E):

a) F is normal in P .

b) |M : CM (F )| = p.

c) P = CM (F ) ∗
Z

EF .

Proof. Since E is normal in P and hence in EF , we have EF/E ∼= F/(E ∩ F ).
Since F does not centralize E, we have E )= F and since both E and F contain
Z and have rank 2, we must have E ∩ F = Z. It follows that EF has order
p3. Furthermore, the action of F on E by conjugation induces an action on
the quotient E/Z. Since E/Z is cyclic of order p, this action is trivial, so that
fef−1 ∈ eZ for all e ∈ E, f ∈ F . It follows that [EF,EF ] = Z and since EF
is generated by elements of order p, we obtain thus that EF is extraspecial of
type I.

We prove now the equivalence of the assertions. If F is normal in P , then
CP (F ) has index p in P and hence |M : CM (F )| = p. In this situation, M
is generated by CM (F ) and E, since E and F do not commute and thus P is
generated by CM (F ) and EF . For the same reason CM (F )∩EF = Z and those
two subgroups commute, hence P is a central product CM (F ) ∗

Z
EF . In this

case, F is clearly normal in P and the lemma is proved.

For any positive real number r, we denote "r# the greatest integer n such
that n ≤ r.

Lemma 2.4.2. If P is a p-group of order pn, n ≥ 1, then H̃k(Ap(P )≥2) = 0 if
k ≥ "n−1

2 #.

Proof. The proof goes by induction on n. It is clear for n = 1, 2, 3, so we
suppose n ≥ 4 and that the result holds for 1 ≤ n′ < n. If |Ω1(Z(P ))| > p, then
Ap(P )≥2 is contractible and the result holds trivially. If either P is cyclic, or
p = 2 and P is isomorphic to one of the following groups:

D2n , Q2n or SD2n (2.29)
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with n ≥ 4, then H̃k(Ap(P )≥2) = 0 for k ≥ 1, so that the result holds for these
groups. If Z = Ω1(Z(P )) has order p and P is not cyclic nor one of the groups
in (2.29), then by Lemma 2.3.12 we have that P contains a normal subgroup
E0 elementary abelian of rank 2 containing Z and M = CP (E0) is maximal in
P .

Let F = {F ∈ Ap(P )≥2 |F ∩M = Z}, Proposition 2.3.7 implies in particu-
lar that

H̃k(Ap(P )≥2) ∼=
⊕

F∈F
H̃k−1(Ap(CM (F ))≥2).

For F ∈ F , we have CM (F ) < M , hence |CM (F )| = pr with r ≤ n − 2. By
induction, we have H̃k−1(Ap(CM (F ))≥2) = 0 if k − 1 ≥ "n−3

2 # = "n−1
2 # − 1.

Therefore H̃k(Ap(P )≥2) = 0 if k ≥ "n−1
2 #.

Proposition 2.4.3. Let P be a p-group. If |P | = p2!+1 with ! ≥ 1, then
H̃k(Ap(P )≥2) = 0 if k ≥ !. Furthermore, H̃!−1(Ap(P )≥2) )= 0 if and only if P
is extraspecial of type I.

Proof. The first assertion, namely H̃k(Ap(P )≥2) = 0 for k ≥ !, follows directly
from Lemma 2.4.2.

Let P be an extraspecial p-group of type I and order p2!+1, with ! ≥ 1.
We know from Lemma 2.3.15 and Lemma 2.3.17 that the poset Ap(P )≥2 has
the homotopy type of a wedge of p!2 , respectively 2!(!−1) if p = 2, spheres of
dimension !− 1. Since ! ≥ 1, this implies H̃!−1(Ap(P )≥2) )= 0.

The proof of the converse goes by induction on !. It is clear for ! = 1 and
we suppose true for 1 ≤ r ≤ !− 1 and |P | = p2!+1, with ! ≥ 2. The hypothesis
H̃!−1(Ap(P )≥2) )= 0 implies in particular that P is not cyclic, dihedral, quater-
nion or semidihedral and that Ω1(Z(P )) is cyclic of order p. It follows that P
has a normal elementary abelian subgroup of rank 2 and Proposition 2.3.7 gives
then

H̃!−1(Ap(P )≥2) ∼=
⊕

F∈F
H̃!−2(Ap(CM (F ))≥2).

Since H̃!−1(Ap(P )≥2) )= 0, there exists a subgroup F0 ∈ F such that

H̃!−2(Ap(CM (F0))≥2) )= 0.

By Lemma 2.4.2 we must then have !− 2 < " r−1
2 #, where |CM (F0)| = pr. Since

CM (F0) < M , we also have r ≤ 2!− 1 and these two conditions together force
r to be equal to 2!− 1.

Now CM (F ) has order p2(!−1)+1 and H̃!−2(Ap(CM (F0))≥2) )= 0, so that by
the induction hypothesis CM (F0) is extraspecial of type I. By Lemma 2.4.1, P
is a central product P = CM (F0) ∗ (E0F0) and E0F0 is extraspecial of type I,
showing that P is extraspecial of type I.

Proposition 2.4.4. Let P be a p-group of order p2!, with ! ≥ 2. Then
H̃k(Ap(P )≥2) = 0 if k ≥ ! − 1. Moreover, if H̃!−2(Ap(P )≥2) )= 0, then P
has a maximal subgroup which is extraspecial of type I.
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Proof. The first assertion, namely H̃k(Ap(P )≥2) = 0 for k ≥ ! − 1, follows
directly from Lemma 2.4.2 since " 2!−1

2 # = !− 1.
Let now P be a group such that H̃!−2(Ap(P )≥2) )= 0. Since ! ≥ 2, we have

in particular that Z = Ω1(Z(P )) has order p.
The proof goes by induction on ! and we suppose first ! = 2, i.e. |P | = p4.

We have thus by assumptions that

H̃0(Ap(P )≥2) )= 0. (2.30)

This condition (2.30) implies in particular that P is not cyclic and that P is not
quaternion if p = 2. If P = D16 or SD16, then P contains a maximal subgroup
isomorphic to D8 so that the result holds for these groups. Note that (2.30)
holds in this case (see Lemma 2.3.20 and Lemma 2.3.22).

We may assume now that P is not cyclic and furthermore that P is not
dihedral, semi-dihedral nor quaternion if p = 2. It follows now that P has a
normal elementary abelian subgroup E0 of rank 2 with Z ≤ E0. The condition
(2.30) implies that there exists an elementary abelian subgroup F )= E0 of rank
2 containing Z. Since Z = Ω1(Z(P )) has order p, we have that F does not
centralize E0 and hence EF is an extraspecial p-group of type I and order p3

by Lemma 2.4.1. Since |P | = p4, it follows that E0F is maximal in P so that
the result holds for ! = 2.

We suppose now ! ≥ 3 and we have by assumption that

H̃!−2(Ap(P )≥2) )= 0. (2.31)

This condition (2.31) implies in particular that P is not cyclic and that P is not
quaternion if p = 2. Since ! ≥ 3, this implies also that P is not dihedral, nor
semi-dihedral. It follows now that P has a normal elementary abelian subgroup
E0 of rank 2 with Z ≤ E0. Let M = CP (E0), we can now apply the homological
version of the Bouc-Thévenaz Wedge Decomposition Formula and we obtain an
isomorphism

H̃0(Ap(P )≥2) ∼=
⊕

F∈F
H̃−1(Ap(CM (F ))≥2),

where F = {F ∈ Ap(P )≥2 |F ∩M = Z}.
Since the left-hand term is not trivial by assumption, there exists F0 ∈ F

such that H̃!−3(Ap(CM (F ))≥2) )= 0. Let us write C0 = CM (F0) to simplify the
notations and let pa be the order of C0. Since C0 is strictly contained in M we
have a ≤ 2!− 2. Furthermore, Lemma 2.4.2 implies !− 3 < "a−1

2 #. These two
conditions on a imply a = 2!− 2 or a = 2!− 3.

Let us see first what happens if a = 2! − 2. In this situation, C0 is max-
imal in M and P = C0 ∗ E0F0. But since the order of C0 is p2(!−1) and
H̃!−3(Ap(CM (F ))≥2) )= 0, we have by induction that C0 has a maximal sub-
group N extraspecial of type I. The subgroup N ∗ E0F0 is then extraspecial of
type I and maximal in P .

Let us see now what happens if a = 2! − 3 = 2(! − 2) + 1. Since we have
H̃!−3(Ap(CM (F ))≥2) )= 0, it follows by the previous Proposition 2.4.3 that C0

is extraspecial of type I. Therefore C0 ∗ E0F0 is extraspecial of type I and is
maximal in P .

In both cases P has a maximal subgroup extraspecial of type I and the
proposition is proved.
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Example 2.4.5. Let ! ≥ 2.

a) If P = (Xp3)∗(!−1) ∗ Cp2 , then |P | = p2! and H̃!−2(Ap(P )≥2) )= 0.

b) If p = 2 and P = D∗(!−2)
8 ∗S, where S is either D16 or SD16, then |P | = 22!

and H̃!−2(Ap(P )≥2) )= 0.

If P is a p-group of order p2! with a cyclic Frattini subgroup and such that
H̃!−2(Ap(P )≥2) )= 0, then it follows from the classifications obtained in Chap-
ter 1 and the calculations performed in Section 2.3, that P is one of the groups
of Example 2.4.5.

To our knowledge, there is no classification of p-groups with a maximal
subgroup extraspecial of type I. The two following examples show that there
are however other examples than those given in Example 2.4.5.

Example 2.4.6. Let X = Xp3 be an extraspecial p-group of type I and order
p3 and let x, y be two generators of order p of X. There is an automorphism
α of X of order p, given by α(x) = x and α(y) = xy. Let A = 〈a〉 be a cyclic
group of order p and let P = X " A be the semi-direct product of A acting
on X, with respect to the homomorphism A → Aut(X) sending a to α. We
identify X and A with the corresponding subgroups in P and we let z = [x, y].
We have now that P is generated by the elements x, y and a of order p and we
have the following relations:

[x, y] = z;

axa−1 = x;

aya−1 = xy.

Remark first that P ′ = Φ(P ) = 〈x, z〉, so that P does not have a cyclic Frat-
tini subgroup. Note that |P | = p4 = p2!, with ! = 2 and on the one hand,
the subgroup M = 〈z, x, a〉 is elementary abelian and maximal in P . On the
other hand, the subgroup F = 〈z, y〉 is elementary abelian, but is not properly
contained in any elementary abelian subgroup of P . This shows that the poset
Ap(P )≥2 is disconnected and hence H̃!−2(Ap(P )≥2) = H̃0(Ap(P )≥2) )= 0.

Example 2.4.7. Let p be a prime and let X = (Xp3)∗p be a central product
of p copies of the group Xp3 . We choose a generator z of Z(X) and symplectic
generators xi, yi, i = 1, . . . , p, of X, all of order p and such that [xi, yi] = z
for i = 1, . . . , p. Let α be the automorphism of X that permutes cyclicly the
generators {x1, . . . , xp} and the generators {y1, . . . , yp}. More precisely, α is
defined on the generators of X by

α(xi) = xi+1, for i = 1, . . . , p− 1, and α(xp) = x1;
α(yi) = yi+1, for i = 1, . . . , p− 1, and α(yp) = y1.

Let A = 〈a〉 be a cyclic group of order p, and let P be the semi-direct product
P = X " A with respect to the homomorphism A → Aut(X) sending a to
α. We identify X and A with the corresponding subgroups in P . Note that
|P | = p2p+2 = p2!, with ! = p + 1.

Let x = x1 · · ·xp and let E0 = 〈x, z〉. Since [xi, xj ] = 1 for i = 1, .., p, we
have axa−1 = x. Since X is extraspecial, yixy−1

i = zx for all i = 1, . . . , p.
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We have thus that E0 is normal in P and furthermore M = CP (E0) has the
following generators:

M = 〈a, x1, . . . , xp, y
−1
1 y2, . . . , y

−1
1 yp〉.

The subgroup F = 〈y1, z〉 is elementary abelian of rank 2 and F ∩ M = 〈z〉.
Furthermore, CM (F ) has the following generators:

CM (F ) = 〈x2, . . . , xp, y
−1
1 y2, . . . , y

−1
1 yp〉.

In particular, CM (F ) is extraspecial of type I and order p2p−1. It follows from
Lemma 2.3.15, respectively Lemma 2.3.17 when p = 2, that

H̃p−2(Ap(CM (F ))≥2) )= 0.

An application of the homological version of the Bouc-Thévenaz Wedge Decom-
position Formula shows now that H̃!−2(Ap(P )≥2) = H̃p−1(Ap(P )≥2) )= 0.

These last two examples seem to suggest that classifying all p-groups of order
p2!, ! ≥ 2, and such that H̃!−2(Ap(P )≥2) )= 0, may be a difficult task.

2.5 Cohen-Macaulay property

If P is a non-trivial p-group, it is well known that Ap(P ) is contractible. Con-
sequently, one cannot distinguish between p-groups by looking at the homotopy
type of Ap(P ). The homotopy Cohen-Macaulay property (hCM for short) is
more accurate, since it takes all intervals into consideration. Recall that a poset
P is hCM if P and the subposets P<p, (p, p′),P>p′ are spherical of maximal
dimension. In this section, we will determine for which of the p-groups with
cyclic derived p-group the poset Ap(P ) is hCM.

Example 2.5.1. As a first example, consider an elementary abelian p-group E
of rank !. The poset Ap(E) consists then of all non-trivial subgroups of E and
can be identified with the poset T (E) of all non-trivial subspaces of E viewed
as an Fp-vector space. It follows from the theory of buildings and the Solomon-
Tits theorem that this poset is hCM of dimension !−1. The reader not familiar
with buildings can refer to the discussion following [23, Proposition 8.6] or to
[18, Proposition 3.6] for other arguments.

As a consequence, for any group G, Ap(G)<A = Ap(A)<A is spherical of
maximal dimension. It is also true for any interval (A,B) in Ap(G) since this
interval is isomorphic to Ap(B/A)<B/A. We have thus the following character-
ization of the hCM property for posets of the form Ap(G).

Proposition 2.5.2. [23, Proposition 10.1] The poset Ap(G) is hCM if and
only if Ap(G) is spherical of dimension rp(G)− 1 and Ap(G)>A is spherical of
dimension rp(G)− rp(A)− 1 for any A ∈ Ap(G).

Remark 2.5.3. Note that if G = P is a p-group, then Ap(G) is always spherical
since it is contractible.

Definition 2.5.4. We will say that a group G has the hCM property if Ap(G)
is hCM.
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Remark 2.5.5. [23, Remark 10.2] Groups with the hCM property are somewhat
special since then all maximal elementary abelian subgroups have the same rank.

In this section, we will restrict our attention to p-groups, but it is useful to
note that the hCM property can be transferred to p-nilpotent groups.

Proposition 2.5.6 (Corollary 11.4 in [23]). Let G be a p-nilpotent group with
P = G/Op′(G). If Ap(P ) is hCM of dimension d then Ap(G) is hCM of dimen-
sion d .

Example 2.5.7. As a second example, suppose that p is odd and let P =
Xp2!+1 be an extraspecial group of type I. The poset Ap(P )>Z(P ) is equivalent
to the poset of totally isotropic subspaces of P/Z(P ) whose associated simplicial
complex is the building of a symplectic group. It follows that Ap(P )>Z(P ) is
hCM of dimension !− 1 = rp(P )− 1. This implies that Ap(P )>B is spherical of
dimension rp(P )− rp(B)− 1 for all B ∈ Ap(P ) containing Z(P ). If B ∈ Ap(P )
does not contain Z(P ), then Ap(P )>B is conically contractible via

A ≤ AZ(P ) ≥ BZ(P ).

As a consequence, Ap(P ) is hCM of dimension ! = rk(P ).

The argument using buildings can be avoided by a recursive argument that
we would like to present now. The same argument will be used in the rest of
this section for groups for which there is no natural geometry. It is first worth
noticing that the required property for Ap(P )>B is trivially satisfied for any B
containing Z, once we know that Ap(P )>Z is hCM.

Thanks to the recursive nature of the definition of the hCM property it is
not always needed to compute the homotopy type of all intervals. This is the
meaning of the next lemma.

Lemma 2.5.8. Let P be a p-group and Z = Ω1(Z(P )). If Ap(P )>Z is spherical
of dimension rk(P )− rk(Z)− 1 and Ap(CP (A)) is hCM of dimension rk(P )− 1
for each A minimal in Ap(P )>Z , then Ap(P ) is hCM.

Proof. We have to show thatAp(P )>B is spherical of dimension rk(P )−rk(B)−1
for each B ∈ Ap(P )∪{1}. Since P is a p-group, this holds for B = 1, so suppose
B > 1. If Z is not contained in B, the subgroup BZ is a conjunctive element
in Ap(P )>B , so that Ap(P )>B is contractible. If B = Z, then it holds by one
of our assumptions, so we may suppose Z < B.

There exists then A ∈ Ap(P )>Z of rank 2 such that Z < A ≤ B and we have
Ap(P )>B = Ap(CP (A))>B . By assumption, Ap(CP (A)) is hCM of dimension
rk(P )−1, so that Ap(CP (A))>B is spherical of dimension rk(P )−rk(B)−1.

We state one more useful lemma.

Lemma 2.5.9 (Proposition 10.3 in [23]). If Ap(G1) and Ap(G2) are hCM of
dimension d1 and d2 respectively, then Ap(G1 ×G2) is hCM of dimension d1 +
d2 + 1.

We summarize the preceding examples in the two following lemmas.

Lemma 2.5.10. If E is an elementary abelian p-group, then Ap(E) is hCM.
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As we have said before, the case of extraspecial p-groups can be deduced
from arguments using buildings. We will provide here an alternative proof and
this should clarify the usefulness of Lemma 2.5.8.

Lemma 2.5.11 (Example 10.4 in [23]). If p is odd and P is extraspecial, then
Ap(P ) is hCM.

Proof. If P = Xp2!+1 is extraspecial of type I, we know from our results in the
preceding section that Ap(P )>Z(P ) is a wedge of spheres of maximal dimension.

Let A be minimal in Ap(P )>Z(P ). We choose a generator z of Z(P ) and sym-
plectic generators x1, y1, . . . , x!, y! of P , all of order p, and such that [xi, yi] = z,
for i = 1, . . . , !. We can assume without loss of generality that A = 〈x1, z〉, so
that CP (A) has the following generators

CP (A) = 〈x1, x2, y2, . . . , x!, y!〉.

We have in particular that CP (A) = 〈x1〉 ×Q, where Q = 〈xj , yj , j = 2, . . . , !〉
is isomorphic to Xp2!−1 . We have then

Ap(P )>A = Ap(CP (A)>A) = Ap(〈x1〉 ×Q)>(〈x1〉×〈z〉)
∼= Ap(Q)>Z(Q).

A recursive argument can be used to conclude that Ap(P )>A is hCM, once we
know that Xp3 is hCM. But this is easy to check, since Ap(Xp3)>Z(Xp3 ) is a
discrete poset.

A similar argument can be used for an extraspecial p-group P = X−
p2!+1 of

type II (see [23, Example 10.4]). But this can also be seen in the following way.
The group P is a central product Xp2(!−1)+1 ∗X−

p3 , so that Ω1(P ) is isomorphic
to Xp2(!−1)+1 ×Cp. It follows then from the previous case and Lemma 2.5.9 that
Ap(P ) is hCM of dimension !.

The aim of this section is to study the hCM property for a larger class of
p-groups, namely those with cyclic derived subgroup. So let P be a p-group
with cyclic derived subgroup. Recall that we can suppose without restriction
that Ω1(P ) = P . In particular, P/P ′ in turn is generated by elements of order
p and since it is abelian, it must have exponent p. As a consequence, we have
Φ(P ) ≤ P ′, so that the Frattini subgroup of P is cyclic.

Suppose for a while that p is odd. Then Φ(P ) is also central (see Proposi-
tion 1.3.5), hence |P ′| = p and since P is generated by elements of order p, this
implies that P has exponent p. Therefore, P has the form P = Q × E, where
E is elementary abelian and Q is extraspecial of type I. The following result
follows now directly from lemmas 2.5.9, 2.5.10 and 2.5.11.

Proposition 2.5.12. Let p be an odd prime. If P is a p-group with cyclic
derived subgroup, then Ap(P ) is hCM of dimension rk(P )− 1.

Remark that this closes the discussion for p odd and we will focus now on
the case p = 2. Let P be a 2-group with Φ(P ) cyclic. Recall from Lemma 1.3.2
that P can then be written as P = Q × E where E is elementary abelian and
Q is a 2-group with Φ(P ) and Z(P ) cyclic. It follows from Lemma 2.5.9 and
Lemma 2.5.10 that Ap(P ) is hCM if Ap(Q) also is. As a consequence, we can
restrict our attention to 2-groups with cyclic center and cyclic Frattini subgroup.

81



Chapter 2. Subgroup complexes

Thanks to the classification obtained in the previous chapter, we can make a
case-by-case study of Ap(P ) for those groups.

If Φ(P ) has order 2, arguments using buildings can be used to prove the
following results. We will however provide a proof for sake of completeness.

Lemma 2.5.13.

a) If P = D∗!
8 with ! ≥ 1, then Ap(P ) is hCM of dimension !.

b) If P = D∗!
8 ∗ C4 with ! ≥ 0, then Ap(P ) is hCM of dimension !.

c) If P = D∗!
8 ∗Q8 with ! ≥ 0, then Ap(P ) is hCM of dimension !.

Proof. Suppose first that P = D∗!
8 and let x1, y1, · · · , x!, y! be symplectic gen-

erators of P all of order 2 and let z = [xi, yi]. We already know Lemma 2.3.17,
that Ap(P )>Z(P ) 1 Ap(P )≥2 has the homotopy type of a wedge of spheres of
dimension !− 1 = rk(P )− rk(Z(P ))− 1.

Following Lemma 2.5.8 it remains to show for any A ∈ Ap(P )>Z(P ) with
|A| = p that the poset Ap(CP (A)) is hCM of dimension !. Such a subgroup A is
generated by z and an element g of order 2. Without loss of generality, we may
assume g = x1. It is then easy to see that CP (A) is the subgroup generated by
x1 and the elements xj , yj for j )= 1.

Therefore CP (A) is isomorphic to C2 × D∗(!−1)
8 . The result for P = D∗!

8

follows now from an induction argument together with the use of Lemma 2.5.9.
The proof in the two other cases is very similar. When P = D∗!

8 ∗ C4, we
find centralizers isomorphic to D∗(!−1)

8 ∗ C4. In the case P = D∗!
8 ∗Q8 we find

centralizers isomorphic to D∗(!−1)
8 ∗Q8.

Remark 2.5.14. A proof of the previous result using the quadratic form on
P/Z(P ) can be found in a paper by Das [11].

If |Φ(P )| > 2, it follows from the classification theorems 1.3.26 and 1.3.37
that P is isomorphic to E × (D∗!

8 ∗ S) where E is elementary abelian, ! ≥ 0
and S is one of the following groups: C2m+1 , M2m+2 , D2m+2 , SD2m+2 , Q2m+2 ,
D+

2m+3 , Q+
2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D+

2m+3 ∗ C4 with m > 1.
When the Frattini subgroup is central, the result follows rather easily.

Lemma 2.5.15. If P = D∗!
8 ∗C2m+1 with ! ≥ 0, then Ap(P ) is hCM of dimen-

sion !.

Proof. Since the subgroup Ω1(P ) is isomorphic to D∗!
8 ∗C4, this follows at once

from Lemma 2.5.13.

Lemma 2.5.16. If P = D∗!
8 ∗ M2m+2 with ! ≥ 0 and m > 1, then Ap(P ) is

hCM of dimension ! + 1.

Proof. Since Ω1(P ) is isomorphic to (D∗!
8 ∗ C4) × C2 the result follows from

Lemma 2.5.13 and Lemma 2.5.9.
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It remains to treat the cases of 2-groups of the form D∗!
8 ∗ S where S is one

of the following groups

D2m+2 , SD2m+2 , Q2m+2 , D+
2m+3 , Q

+
2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D

+
2m+3 ∗ C4

(2.32)
all with m > 1. We wish to determine for which of these groups the poset
Ap(P ) is hCM. A necessary condition is that Ap(P )>Z = Ap(P )≥2 must be
spherical. As a consequence of the calculations performed in Lemma 2.3.23, we
obtain immediately the following result.

Lemma 2.5.17. If P = D∗!
8 ∗ SD2m+1 with ! ≥ 1 and m > 1, then Ap(P ) is

not hCM.

Note however that if ! = 0 in the previous lemma, i.e. P = SD2m+2 with
m > 1, then Ap(P ) is hCM. This follows from the fact that Ap(P )>Z(P ) has
dimension 0 in this case.

Lemma 2.5.18. If P = SD2m+1 with m > 1, then Ap(P ) is hCM of dimension
1.

For the same reason, we have the analogous result for P = D2m+2 with
m > 1.

Lemma 2.5.19. Let P = D2m+2 with m ≥ 1, then Ap(P ) is hCM of dimen-
sion 1.

Lemma 2.5.20. If P = D∗!
8 ∗ D2m+2 with m > 1 and ! ≥ 1, then Ap(P ) is

hCM of dimension ! + 1.

Proof. By Proposition 2.5.8 and Lemma 2.3.21, it is enough to check that
Ap(CP (A)) is hCM of dimension ! + 1 for all A minimal in Ap(P )>Z . Let
z be a generator of Z(P ) and let x1, y1, . . . , x!, y! be symplectic generators of
the subgroup D∗!

8 , all of order 2 and such that [xi, yi] = z. Let u, a be generators
of the subgroup D2m+2 with u of order 2m+1, a of order 2 and aua−1 = u−1.
We set furthermore w = u2m

, so that in particular z = w2.
A minimal subgroup in Ap(P )>Z(P ) is generated by z and an element g ∈ P

of order 2 which can be written g = xs, with x in the subgroup D∗!
8 and

s ∈ D2m+2 . Since g2 = 1, we have x2 = 1 = s2 or x2 = z = s2.
Suppose first that x has order 2. Without loss of generality, we may assume

x = x1. If s = 1, the centralizer of A in P is generated by all the above
generators of P except y1, that is

CP (A) = 〈x1, x2, y2, · · · , x!, y!, u, a〉.

It follows that CP (A) is isomorphic to C2 ×
(
D∗!−1

8 ∗D2m+2

)
. By an induction

argument, this group is hCM of dimension 1+ ((!− 1)+1) = !+1 = rk(P )− 1.
If s = a, then CP (A) is generated by x1a, a, y1w and the elements xj , yj

with j )= 1. If x = 1, then s has order 2 and without loss of generality we
may assume s = a, i.e. g = v. In this case, CP (A) is generated by a and all
elements xi, yi for i = 1, . . . , !. Suppose now that x has order 4. In this case, s
has also order 4 and we may suppose without loss of generality that x = x1y1

and s = w, i.e. g = x1y1w. In this case, we find that CP (A) is generated by

83



Chapter 2. Subgroup complexes

g, x1a, y1a and the elements xj , yj for j )= 1. In these three last cases, we see
that CP (A) is isomorphic to C2×D∗!

8 , so that Ap(CP (A)) is hCM of dimension
! + 1 = rk(P )− 1 by Lemma 2.5.13.

Lemma 2.5.21. If P = Q2m+2 with m > 1, then Ap(P ) is hCM of dimension 0.

Lemma 2.5.22. Let P = D∗!
8 ∗Q2m+2 with ! ≥ 1 and m > 1. Then Ap(P ) is

hCM of dimension !.

Proof. Let u, b be generators of the subgroup Q2m+2 with u of order 2m+1, b
of order 4 and bub−1 = u−1. Let w = u2m

and z = w2. Let x1, y1, . . . , x!, y!

be symplectic generators of the subgroup D∗!
8 , all of order 2 and such that

[xi, yi] = z. A minimal subgroup A in Ap(P )>Z(P ) is generated by z and an
element g = xs with x in the subgroup D∗l

8 and s in the subgroup Q2m+2 . Since
g2 = 1 we have that s has order at most 4. All cases can be reduced to one of
the following.

If g = x1, then CP (A) is generated by x1, x2, y2, . . . , x!, y! and the subgroup
Q2m+2 so that CP (A) is isomorphic to C2 ×

(
D∗(!−1)

8 ∗Q2m+2

)
.

If g = x1y1w, then CP (A) is generated by the following elements

xj , yj , for j > 1,

x1b, u,

x1y1w.

It follows that CP (A) is isomorphic to (D∗(!−1)
8 ∗Q2m+2)× C2.

If g = x1y1b, then CP (A) is generated by x1y1b, x1w, b and the elements
xj , yj for j )= 1. It follows that CP (A) is isomorphic to C2 × (D∗(!−1)

8 ∗Q8).
In all these cases, the poset Ap(CP (A)) is hCM of dimension ! by an induc-

tion argument and lemmas 2.5.13 and 2.5.21.

Lemma 2.5.23. If P = D2m+2 ∗C4 with m > 1, then Ap(P ) is hCM of dimen-
sion 1.

Proof. The poset Ap(P )>Z(P ) is a discrete poset, hence Ap(CP (A)) = A is hCM
of dimension rk(P )− 1, for any A ∈ Ap(P )>Z(P ).

The proofs for P = D∗!
8 ∗ D2m+2 ∗ C4 and P = D∗!

8 ∗ SD2m+2 ∗ C4 are
very similar so that we will not write them both. We have chosen to write
the proof for P = D∗!

8 ∗ SD2m+2 ∗ C4 for the following reason. We have seen
previously that the group P = D∗!

8 ∗ SD2m+2 is not hCM whereas the group
P = D∗!

8 ∗ SD2m+2 ∗ C4 is hCM. The reason for this difference will precisely
appear in the proof.

Lemma 2.5.24. Let P = D∗!
8 ∗D2m+2 ∗C4 with ! ≥ 1 and m > 1. Then Ap(P )

is hCM of dimension ! + 1.

Lemma 2.5.25. If P = SD2m+2 ∗ C4 with m > 1, then Ap(P ) is hCM of
dimension 1.
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Proof. The poset Ap(P )>Z(P ) is a discrete poset, hence Ap(CP (A)) = A is hCM
of dimension rk(P )− 1, for any A ∈ Ap(P )>Z(P ).

Lemma 2.5.26. Let P = D∗!
8 ∗ SD2m+2 ∗ C4 with ! ≥ 1 and m > 1. Then

Ap(P ) is hCM of dimension ! + 1.

Proof. Let c be a generator of the subgroup C4 and let u, a be generators of
the subgroup SD2m+2 with u of order 2m+1, a of order 2 and aua−1 = u−1+2m

.
Let w = u2m−1

and z = w2 = c2. Let x1, y1, . . . , x!, y! be symplectic generators
of the subgroup D∗!

8 , all of order 2 and such that [xi, yi] = z. A minimal
subgroup A in Ap(P )>Z(P ) is generated by z and an element g = xs with x in
the subgroup D∗l

8 and s in the subgroup SD2m+2 ∗C4. All cases can be reduced
to one of the following.

If g = a, then CP (A) is generated by the subgroup D∗!
8 and the two elements

c and a, so that CP (A) is isomorphic to (D∗!
8 ∗ C4)× C2.

If g = wc, then CP (A) is generated by the subgroup D∗!
8 and the two ele-

ments u and wc, so that CP (A) is isomorphic to (D∗!
8 ∗ C2m+1)× C2.

If g = auc, then CP (A) is generated by the subgroup D∗!
8 and the two

elements c and auc, so that CP (A) is isomorphic to (D∗!
8 ∗ C4)× C2.

If g = x1, then CP (A) is generated by x1, x2, y2, . . . , x!, y! and the subgroup
SD2m+2 ∗ C4 so that CP (A) is isomorphic to C2 × (D∗(!−1)

8 ∗ SD2m+2 ∗ C4).
If g = x1a, then CP (A) is generated by x1a, y1wc, c and the elements xj , yj

for j )= 1. It follows that CP (A) is isomorphic to (D∗(!−1)
8 ∗ C4)× C2 × C2.

If g = x1wc, then CP (A) is generated by x1wc, y1a, c and the elements xj , yj

for j )= 1. It follows that CP (A) is isomorphic to (D∗(!−1)
8 ∗ C4)× C2 × C2.

If g = x1auc, then CP (A) is generated by x1auc, y1wc, c and the elements
xj , yj for j )= 1. It follows that CP (A) is isomorphic to (D∗(!−1)

8 ∗C4)×C2×C2.
If g = x1y1w, then CP (A) is generated by x1y1w, y1a, u, c and the elements

xj , yj for j )= 1. It follows that CP (A) is isomorphic to (D∗(!−1)
8 ∗SD2m+2)×C2.

If g = x1y1au, then CP (A) is generated by x1y1au, x1w, y1wc, c and the
elements xj , yj for j )= 1. It follows that CP (A) is isomorphic to the group
(D∗(!−1)

8 ∗ D8 ∗ C4) × C2. Note that this is, in some sense, the crucial case as
the next remark will show.

If g = x1y1ac, then CP (A) is generated by x1y1ac, x1w, y1wc, c and the
elements xj , yj for j )= 1. It follows that CP (A) is isomorphic to the group
(D∗(!−1)

8 ∗D8 ∗ C4)× C2.
If g = x1y1c, then CP (A) is generated by x1y1c, u, a, c and the elements

xj , yj for j )= 1. It follows in this case that CP (A) is isomorphic to the group
(D∗(!−1)

8 ∗ SD2m+2 ∗ C4)× C2.
In all these cases, the poset Ap(CP (A)) is hCM of dimension ! + 1 by an

induction argument and our previous results, especially lemmas 2.5.9 and 2.5.15.

Remark 2.5.27. The crucial case in the preceding proof is when g = x1y1au. In
this situation, we obtained CP (A) = (D∗(!−1)

8 ∗ D8 ∗ C4) × C2. The subgroup
D8 ∗ C4 is generated by y1w, x1wc and c.

There is an analogous situation for the group Q = D∗!
8 ∗SD2m+2 , but for this

group, CQ(A) would be isomorphic to D∗!−1
8 ∗ Q8, which has not the required
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dimension. This is roughly why Ap(Q) is not hCM. The subgroup Q8 would be
here generated by the two elements x1w and y1w, of order 4.

Because of the presence of the central element c of order 4, when P is the
group D∗!

8 ∗ SD2m+2 ∗ C4, the two elements x1w and y1w, of order 4, can be
modified by c in order to change their order. This is the well-known isomorphism
Q8 ∗C4

∼= D8 ∗C4. In this situation, the centralizer has the required dimension
allowing Ap(P ) to be hCM, when P = D∗!

8 ∗ SD2m+2 ∗ C4.

Lemma 2.5.28. If P = D∗!
8 ∗D+

2m+3 with ! ≥ 0 and m > 1, then Ap(P ) is not
hCM.

Proof. By Remark 2.5.5, it is enough to exhibit two subgroups that are maximal
in Ap(P ) but that do not have the same rank. Let z be a generator of Z(P ).
Let x1, y1, . . . , x!, y! be symplectic generators of D∗!

8 all of order 2 and such
that [xi, yi] = z. Let a, b, u be generators of D+

2m+3 with a and b of order 2, u of
order 2m+1, aua−1 = u1+2m

and bub−1 = u−1. On the one hand, the subgroup
〈z, x1, . . . , x!, a, b〉 is maximal in Ap(P ) and has rank ! + 3. On the other hand,
the subgroup 〈z, x1, . . . , x!, ub〉 is also maximal in Ap(P ) but has rank !+2.

Lemma 2.5.29. If P = Q+
2m+3 with m > 1, then Ap(P ) is hCM of dimension

1.

Proof. Let a, b, u be generators of Q+
2m+3 with a of order 2, b of order 4, u of

order 2m+1, aua−1 = u1+2m

and bub−1 = u−1. We have seen in Lemma 2.3.24,
that Ap(P )>Z(P ) is a discrete poset and it follows that Ap(P ) is hCM.

Lemma 2.5.30. Let P = D∗!
8 ∗Q+

2m+3 with ! ≥ 1 and m > 1. Then Ap(P ) is
hCM of dimension ! + 1.

Proof. Let a, b, u be generators of Q+
2m+3 with a of order 2, b of order 4, u

of order 2m+1, aua−1 = u1+2m

and bub−1 = u−1. Let w = u2m−1
and let

x1, y1, . . . , x!, y! be symplectic generators of D∗!
8 all of order 2 and such that

[xi, yi] = z. Let Z = 〈z〉 and let A = 〈z, g〉 ∈ Ap(P )>Z .
If g = a, then CP (A) is generated by all the elements xi, yi, i = 1, . . . , !,

and the elements b, u2 and a. It follows that CP (A) is isomorphic to the group
(D∗!

8 ∗D2m+1)× C2.
If g = x1a, then CP (A) is generated by the elements xj , yj with j )= 1,

and the elements a, b, y1u and x1a. It follows that CP (A) is isomorphic to
(D∗!−1

8 ∗Q+
2m+3)× C2.

If g = abu, then CP (A) is generated by all the elements xi, yi, i = 1, . . . , !,
and the elements wa and abu. It follows that CP (A) is isomorphic to the group
(D∗!

8 ∗ C4)× C2.
If g = x1abu, then CP (A) is generated by the elements xj , yj with i )= 1,

and the elements x1, y1a, aw and abu. It follows that CP (A) is isomorphic to
(D∗!

8 ∗ C4)× C2.
If g = x1y1w, then CP (A) is generated by the elements xj , yj with j )= 1,

and the elements a, y1b, u and x1y1w. It follows that CP (A) is isomorphic to
(D∗!−1

8 ∗Q+
2m+3)× C2.
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If g = x1y1b, then CP (A) is generated by the elements xj , yj with j )= 1,
and the elements b, w, a and x1y1b. It follows that CP (A) is isomorphic to
(D∗(!−1)

8 ∗Q8)× C2 × C2.
If g = x1y1bu, then CP (A) is generated by the elements xj , yj with j )= 1,

and the elements x1a, y1a, aw and x1y1bu. It follows that CP (A) is isomorphic
to (D∗!

8 ∗ C4)× C2.
If g = x1y1bu2, then CP (A) is generated by the elements xj , yj with j )= 1,

and the elements x1w, y1w, a and x1y1bu. It follows that CP (A) is isomorphic
to (D∗(!−1)

8 ∗Q8)× C2 × C2.
If g = x1y1abu2, then CP (A) is generated by the elements xj , yj with j )= 1,

and the elements x1w, y1w, a and x1y1abu2. It follows that CP (A) is isomorphic
to (D∗(!−1)

8 ∗Q8)× C2 × C2.
In all these cases, it follows by induction and our previous results, especially

lemmas 2.5.9, 2.5.13, 2.5.20, that Ap(CP (A)) is hCM of dimension ! + 1.

Lemma 2.5.31. If P = D+
2m+3 ∗C4 with m > 1, then Ap(P ) is hCM of dimen-

sion 2.

Proof. Let z be a generator of Z(P ) and let c be a generator of C4 such that
c2 = z. Let u, a, b be generators of D+

2m+3 with a, b of order 2, u of order 2m+1,
aua−1 = u1+2m

and bub−1 = u−1. Set furthermore w = u2m−1
.

Let A = 〈z, g〉 be a minimal element in Ap(P )>Z . We have to show that
Ap(CP (A)) is hCM. If g = uiajbkcl with k = 1, then CP (A) is generated by g, c
and either awc if i is odd, or a if i is even. In both cases CP (A) is isomorphic
to C2 × C2 × C4 so that Ap(CP (A)) is hCM of dimension 2.

If g = a, then CP (A) is generated by b, u2, c and a, so that CP (A) isomorphic
to (D2m+1 ∗ C4)× C2. Hence Ap(CP (A)) is hCM of dimension 2.

If g = wc then CP (A) is generated by a, u and wc, so that CP (A) is isomor-
phic to M2m+2 × C2 and thus Ap(CP (A)) is hCM of dimension 2.

If g = wac, then CP (A) is generated by bu, u2, c and h so that CP (A) is
isomorphic to (D2m+1 ∗ C4) × C2 and thus Ap(CP (A)) is hCM of dimension
2.

Proposition 2.5.32. If P = D∗!
8 ∗ D+

2m+3 ∗ C4 with ! ≥ 1 and m > 1, then
Ap(P ) is hCM of dimension ! + 2.

Proof. Let z be a generator of Z(P ). Let x1, y1, . . . , x!, y! be symplectic gen-
erators of D∗!

8 all of order 2 and with [xi, yi] = z. Let u, a, b be generators of
D+

2m+3 with u of order 2m+1, a, b of order 2, aua−1 = u1+2m

and bub−1 = u−1.
Let c be a generator of C4 and let w = u2m−1

.
Let A = 〈z, g〉 be minimal in Ap(P )>Z , we have to show that Ap(CP (A)) is

hCM of dimension !+2. We can write g = xs with x ∈ D∗!
8 and s ∈ D+

2m+3 ∗C4.
If g = xuiajbkcl with ui )∈ 〈w〉, then CP (A) is isomorphic to the group

(D∗n
8 ∗C4)×C2 ×C2, so that Ap(CP (A)) is hCM of dimension ! + 2 by results

obtained previously.
If g = xwiajbkcl, then CP (A) is isomorphic to (D∗!−1

8 ∗D2m+3 ∗C4)×C2, so
that by induction Ap(CP (A)) is hCM of dimension ((!− 1)+2)+1 = !+2.

The above results are summarized in Table 2.2 located on page 88.
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P hCM and dimension

Xp2!+1 hCM of dimension !

Xp2(!−1)+1 ∗X−
p3 hCM of dimension !

Xp2!+1 ∗ Cpm hCM of dimension !

Xp2(!−1)+1 ∗Mpm+2 hCM of dimension !

D∗!
8 hCM of dimension !

D∗!
8 ∗ C4 hCM of dimension !

D∗(!−1)
8 ∗Q8 hCM of dimension !− 1

D∗!
8 ∗ C2m+1 hCM of dimension !

D∗(!−1)
8 ∗M2m+2 hCM of dimension !

D∗(!−1)
8 ∗D2m+2 hCM of dimension !

SD2m+3 hCM of dimension 1

D∗!
8 ∗ SD2m+1 not hCM

D∗(!−1)
8 ∗Q2m+2 hCM of dimension !− 1

D∗(!−1)
8 ∗D2m+2 ∗C4 hCM of dimension !

D∗(!−1)
8 ∗SD2m+2∗C4 hCM of dimension !

D∗(!−1)
8 ∗D+

2m+3 not hCM

D∗(!−1)
8 ∗Q+

2m+3 hCM of dimension !

D∗(!−1)
8 ∗D+

2m+3 ∗C4 hCM of dimension ! + 1

Table 2.2: hCM property for Ap(P ) for some p-groups. In this table, ! ≥ 1 and
m > 1

88



2.6 Homology with non-constant coefficients

2.6 Homology with non-constant coefficients

Definitions

Let f : P → Q be a poset map. If the posetQ and the fibers f−1
≤q are “sufficiently

well-behaved”, the homology groups of P can be computed using the following
spectral sequence introduced by Quillen in [23]:

E2
rs = Hr(Q, q .→ Hs(f−1

≤q )) ⇒ Hr+s(P) (2.33)

Quillen used it to show that certain properties of Q can be transferred to P.
He used it for example to prove Proposition 7.6 in [23] that asserts that if f−1

≤q
is n-connected for each q ∈ Q then P is n-connected if Q is.

It is important to note that the homology groups occurring in the E2-terms
of the spectral sequence (2.33) are not usual homology groups. As the notation
q .→ Hs(f−1

≤q ) suggests, the coefficients are not given by a constant abelian
group. In this section we will recall the definition of homology groups with non-
constant coefficients and we will derive a spectral sequence that may be used to
compute such homology groups in term of standard homology groups.

Recall that any poset P can be viewed as a category with a unique morphism
x → x′ if x < x′. In particular, we can consider the category of functors from
P with values in the category Ab of abelian groups. If F : P → Ab is such a
functor, then for x < x′ we denote Fx,x′ : F (x) → F (x′) the image of the unique
map x → x′. If F : P → Ab is a functor and σ = (x0 < . . . < xk) is a k-simplex,
we let F (σ) = F (x0).

Let P be a poset and F : P → Ab be a functor. For k ≥ 0, we define
(Ck(P, F ), δ) to be the abelian group given by

Ck(P, F ) =
⊕

σ∈Ck(P)

F (σ)

By convention, we set C−1(P, F ) = 0. For any k-simplex σ = (x0 < . . . < xk)
and λ ∈ F (σ), we denote by λ · σ the element of Ck(P, F ) with value λ in the
component corresponding to σ and 0 otherwise.

We define the differential δ on C∗(P, F ) in the following way. For any λ · σ
in Ck(P, F ), with σ = (x0 < · · · < xk) and λ ∈ F (σ), let

δ(λ · σ) = Fx0,x1(λ) · d0(σ) +
k∑

i=1

(−1)iλ · di(σ)

where di is the usual differential.

Definition 2.6.1. For k ≥ 0, we define the homology groups Hk(P, F ) of P
with coefficients in the functor F to be the homology groups of the complex
(C∗(P, F ), δ).

Filtration of the coefficients and spectral sequence

In what follows, P is an arbitrary poset and F is a functor from P to Ab. We
show that the homology groups with non-constant coefficients can be computed
in terms of homology groups with constant coefficients using a spectral sequence.
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For an abelian group A, we denote A : P → Ab the constant functor sending
each element y ∈ P to the abelian group A. For y < y′ in P, the image under
A of the unique map y → y′ is the identity map on A.

For an abelian group A and y ∈ P, we define the functor A(y) as the functor
sending y to A and any element y′ ∈ P with y′ )= y to 0.

The truncation at height k of a functor F : P → Ab is the functor F≤k

defined by

F≤k(y) =

{
F (y) if h(y) ≤ k

0 otherwise

and for y < y′, the map F≤k(y) → F≤k(y′) is the map F (y) → F (y′) if h(y′) ≤ k
and zero otherwise. In a similar way, we define the functor Fk

Fk(y) =

{
F (y) if h(y) = k

0 else

We will also use the conventions F≤−1 = F−1 = 0.

Lemma 2.6.2. The functor Fk is the direct sum of the functors F (y)(y), where
y ranges over all elements of height k in P.

Lemma 2.6.3. For k ≥ 0, the transformation tk : F≤k → F≤k−1, defined as
the identity on F (y) if h(y) ≤ k−1 and 0 otherwise, is a natural transformation
between the functors F≤k and F≤k−1.

Proof. We have to check that whenever y < y′ the following square commutes:

F≤k(y) !!

""

F≤k−1(y)

""
F≤k(y′) !! F≤k−1(y′)

(2.34)

This is clear if k = 0, since then the two right-hand terms are 0. We suppose
from now on that k ≥ 1. If h(y′) > k, then 2.34 commutes, since then both
F≤k and F≤k−1 have value 0 on y′. If h(y′) = k, then h(y) ≤ k − 1 and (2.34)
becomes

F (y) !!

""

F (y)

""
F (y′) !! 0

If h(y′) ≤ k − 1, then (2.34) becomes

F (y) !!

""

F (y)

""
F (y′) !! F (y′)

where both horizontal maps are the identity and both vertical maps are the map
Fy,y′ . Therefore the square commutes.
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In a similar way, we can define a natural transformation Fk → F≤k as the
identity on F (y) when h(y) = k and 0 otherwise. The verifications are similar
to those in the previous lemma.

Lemma 2.6.4. For k ≥ 0, there is a short exact sequence of functors

0 → Fk → F≤k → F≤k−1 → 0

Proof. We have to show that for each y ∈ P the following sequence is exact.

0 → Fk(y) → F≤k(y) → F≤k−1(y) → 0.

If k = 0, then this sequence is exact since F0 = F≤0 and F−1 = 0. Suppose
now that k ≥ 1. If h(y) > k, the sequence is clearly exact since in this situation
Fk(y) = F≤k(y) = F≤k−1(y) = 0. If h(y) = k, then the sequence becomes

0 → F (y) → F (y) → 0 → 0.

If h(y) ≤ k − 1, then the sequence becomes

0 → 0 → F (y) → F (y) → 0.

These two sequences are exact since in both cases the map F (y) → F (y) is the
identity and the lemma is proved.

Let d be such that F (y) = 0 if h(y) > d. Such a d always exists and we can
take for example d = dim(P). We have a sequence of natural transformations

F = F≤d → F≤d−1 → · · ·→ F≤1 → F≤0 → 0.

Let Km be the functor defined as the kernel of the map F → F≤d−m. This gives
a filtration of F

0 = K0 ⊆ K1 ⊆ · · · ⊆ Kd ⊆ Kd+1 = F. (2.35)

Furthermore, the successive quotients are given by Ki+1/Ki
∼= Fd−i. This

follows from the following general result.

Lemma 2.6.5. Let A
f−→ B

g−→ C be homomorphisms between abelian groups
such that ker g ⊆ Im f . Then ker g ∼= ker(gf)/ ker f .

The filtration (2.35) of F induces in turn a filtration of the complex C∗(P, F ).
We obtain therefore a spectral sequence converging to the homology of C∗(P, F ).

Proposition 2.6.6. Let P be a poset, F : P → Ab a functor and let d such
that h(y) > d implies F (y) = 0. There is a spectral sequence

E1
rs = Hr+s(P, Fd−r) ⇒ Hr+s(P, F ) (2.36)

As we have remarked earlier, the functors Fk are direct sums of functors
of the form F (y)(y). The homology with such functors F (y)(y) as coefficients
can be expressed in term of standard homology groups thanks to the following
lemma due to Quillen [23, (9.5)].
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Lemma 2.6.7. Let A be an abelian group and let r ≥ 0. There is an isomor-
phism

Hr(P, A(y)) ∼= H̃r−1(P>y, A).

Proof. See (9.5) in [23].

Lemma 2.6.8. Let P be a poset and F : P → Ab a functor. There is an
isomorphism

Hr(P, Fk) ∼=
⊕

y∈P
h(y)=k

H̃r−1(P>y, F (y))

Proof. The functor Fk is the direct sum of the functors F (y)(y) where y ranges
over the elements of height k in P. It follows that

Hr(P, Fk) ∼= Hr(P,
⊕

h(y)=k

F (y)(y)) ∼=
⊕

h(y)=k

Hr(P, F (y)(y)).

Lemma 2.6.7 implies now that Hr(P, F (y)(y)) is isomorphic to H̃r−1(P>y, F (y))
and the lemma is proved.

Putting everything together, we obtain the following spectral sequence to
compute homology groups with non-constant coefficients.

Proposition 2.6.9. Let F : P → Ab be a functor and let d be such that
F (y) = 0 if h(y) > d. There is a spectral sequence

E1
rs =

⊕

y∈P
h(y)=d−r

H̃r+s−1(P>y, F (y)) ⇒ Hr+s(P, F ) (2.37)

2.7 A spectral sequence for upper intervals

Quillen’s spectral sequence

To any poset map f : P → Q is associated a functor Q → Ab defined by
q .→ Hs(f−1

≤q ).

Proposition 2.7.1 (Quillen). Let f : P → Q be a poset map, there is a spectral
sequence

E2
rs = Hr(Q, q .→ Hs(f−1

≤q )) ⇒ Hr+s(P)

Proof. See (7.7) in [23].
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In what follows we will assume that f : P → Q is a poset map such that

1. Q is contractible,

2. for any y ∈ Q, the fiber f−1
≤q has the homotopy type of a wedge of spheres

of dimension 0.

As a first consequence, we have Hs(f−1
≤q ) = 0 for all s > 0 and this yields

the following lemma.

Lemma 2.7.2. For s ≥ 1, E2
rs = 0. Furthermore E∞

rs = E2
rs and for any r ≥ 0

we have Hr(P) ∼= E2
r,0.

Lemma 2.7.3. We have E2
r0
∼= Hr(Q, q .→ H̃0(f−1

≤q )) for r > 1 and a short
exact sequence

0 → H0(Q, q .→ H̃0(f−1
≤q )) → E2

00 → Z → 0 (2.38)

corresponding to the short exact sequence

0 → H0(Q, q .→ H̃0(f−1
≤q )) → H0(Q, q .→ H0(f−1

≤q )) → H0(Q, Z) → 0

Proof. Let Z : Q→ Ab denote the constant functor sending each element q ∈ Q
to Z. The short exact sequence of functors

0 →
(
q .→ H̃0(f−1

≤q )
)
→

(
q .→ H0(f−1

≤q )
)
→ Z → 0

induces a long exact sequence

· · ·→ Hr+1(Q) →
Hr(Q, q .→ H̃0(f−1

≤q )) → Hr(Q, q .→ H0(f−1
≤q )) → Hr(Q) → . . .

The lemma follows from the assumption that Q is contractible.

Corollary 2.7.4. Let f : P → Q be a poset map such that Q is contractible and
for all q ∈ Q, f−1

≤q has the homotopy type of a wedge of spheres of dimension 0.
Then for n ≥ 0

H̃n(P) ∼= Hn(Q, q .→ H̃0(f−1
≤q )) (2.39)

The left-hand term in Equation (2.39) can be computed using a spectral
sequence coming from a filtration of the coefficient functor.

Corollary 2.7.5. Let f : P → Q be a poset map where Q is contractible and
for all q ∈ Q, f−1

≤q has the homotopy type of a wedge of spheres of dimension 0.
Let d such that f−1

≤q is contractible if h(q) > d. There is a spectral sequence

E1
rs =

⊕

y∈Q
h(y)=d−r

H̃r+s−1(Q>y, H̃0(f−1
≤y )) ⇒ H̃r+s(P)

Proof. Follows from Proposition 2.6.9 applied to the functor Q → Ab mapping
q ∈ Q to H̃0(f−1

≤q ), and from the previous corollary.
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Application to odd order p-groups

Let p be an odd prime. Let P be a p-group with Z = Ω1(Z(P )) of rank r
and suppose that Z is not maximal in Ap(P ). By Lemma 2.3.8 there exists an
elementary abelian subgroup E0 normal in P such that |E0 : Z| = p. Let pd be
the index of M = CP (E0) in P . The case d = 1 can be dealt with using the
Bouc-Thévenaz Wedge Decomposition Formula, so that we are interested here
mainly to what happens when d > 1.

Let f : Ap(P )>Z → Sp(P ) be the poset map defined by f(A) = AE0 and
let E be the poset given by the image of f . In particular, f(E0) = E0 ∈ E and
clearly f(A) ≥ E0 for all A ∈ Ap(P )>Z , so that E is a cone over E0.

Our goal is to apply Corollary 2.7.5 and we check first that the assumptions
of Corollary 2.7.5 are satisfied.

Lemma 2.7.6. The poset E is contractible.

Recall that if x is an element in a poset P, the height of x in P is defined as

hP(x) = max {h |x0 < x1 < · · · < xh is a chain in P with xh ≤ x} .

In particular, minimal elements in P have height 0. When this leads to no
confusion, we will omit the subscript and just write h(x) for hP(x).

Lemma 2.7.7. Let R ∈ E, then

a) R/Z is elementary abelian.

b) R has exponent p.

c) hE(R) = rk(R/Z)− 1.

Proof. Before proving the assertions, we take a closer look to the action of P
on the normal subgroup E0.

The subgroup E0 is elementary abelian and can thus be identified with a
vector space over Fp. We will often use this fact implicitly from now on. Since
E0 contains Z with index p, i.e. as a subspace of codimension 1, we can choose
linearly independent generators z1, . . . , zr and e0 of E0 such that e0 ∈ E0\Z
and the elements zi, i = 1, . . . , r, form a basis of Z.

Let x ∈ P . Since Z is central, we have xzix−1 = zi, for all i = 1, . . . , r. It
follows that P acts on E0 as linear transformations fixing a hyperplane point-
wise. Since P is a p-group this implies that xe0x−1 = e0z for some z ∈ Z.
In other words, the action of any x ∈ P is represented, relatively to the basis
{z1, . . . , zr, e0}, by a matrix of the form





∗

Ir

...

∗

0 · · · 0 1




.

It follows in particular that [x, e0] ∈ Z for any x ∈ P . We are now in position
to prove the assertions.
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a) Let R ∈ E and let A ∈ Ap(P )>Z such that R = AE0. If A ∩ E0 = E0,
i.e. E0 ≤ A, then R = A is elementary abelian and in particular R/Z is
elementary abelian.

Suppose now that A ∩ E0 )= E0. Since Z ≤ A ∩ E0 ≤ E0, we have then
A ∩ E0 = Z. We keep the basis z1, . . . , zr, e0 of E0 as before and choose
linearly independent elements a1, . . . , at in A such that {z1, . . . , zr, a1, . . . , at}
is a basis of A.

The subgroup R is generated by the elements e0, zi, aj for i = 1, . . . , r and
j = 1, . . . , t. From our description of the action of P on E0, we know that
[ai, e0] ∈ Z. All other commutators between the chosen generators of R are
trivial, so that [R,R] ≤ Z. As a consequence, R/Z is abelian and since R is
generated by elements of order p, R/Z must be elementary abelian and our
first assertion is proved.

b) Since R/Z is elementary abelian, we have in particular that R′ is central in
R. Since R is generated by elements of order p and p is odd, we have that
R has exponent p.

c) Let R0 < R1 < · · · < Rk be a chain in E with Rk ≤ R. Since Ri belongs
to E , we have Z < E0 ≤ Ri, for all i = 0, . . . , k. It follows that the chain
R0/Z < · · · < Rk/Z is a chain of non-trivial subgroups of the elementary
abelian group R/Z. Therefore, k is strictly less than the rank of R/Z, i.e.
k ≤ rk(R/Z) − 1. The height of R in E is then at most rk(R/Z) − 1, i.e.
hE(R) ≤ rk(R/Z)− 1. We prove now the reverse inequality.

Let A ∈ Ap(P )>Z such that R = AE0 and let t be the rank of A/Z. Suppose
first E0 ≤ A, so that R = A is elementary abelian. There exists thus a chain
E0 = A0 < A1 < · · · < At−1 < At = A = R of length rk(A/Z) − 1 =
rk(R/Z) − 1. Note that since A is elementary abelian and contains E0, we
have Ai = AiE0 ∈ E for all i = 0, . . . , t. We have thus a chain of length
rk(R/Z)− 1 in E≤R, i.e. hE(R) ≥ rk(R/Z)− 1.

Suppose now that E0 is not contained in A, so that rk(R/Z) = rk(A/Z)+1.
Since A is elementary abelian, we can then choose a chain of subgroups
Z < A0 < · · · < At−1 < At = A of A with Z < A0 and t = rk(A/Z). For
i = 1, . . . , t, let Ri = AiE0 and let also R0 = ZE0 = E0. By definition,
Ri ∈ E for i = 1, . . . , t and also R0 = E0 ∈ E . Since Rt = AE0 = R, we have
thus a chain R0 < · · · < Rt = R in E of length t = rk(A/Z) = rk(R/Z)− 1.
Therefore hE(R) ≥ rk(R/Z)− 1.

Lemma 2.7.8. For R ∈ E, f−1
≤R = Ap(R)>Z .

Proof. Let R ∈ E , we have f−1
≤R = {B ∈ Ap(P )>Z |BE0 ≤ R}. On the one

hand, if B ∈ f−1
≤R, then Z < B ≤ BE0 ≤ R, so that B ∈ Ap(R)>Z . On

the other hand, if B ∈ Ap(R)>Z , B ≤ R, so that BE0 ≤ RE0 = R, hence
B ∈ f−1

≤R.
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Chapter 2. Subgroup complexes

Let E∗ and E be the subposets of E defined by

E∗ = {R ∈ E |R ∩M > E0} ∪ {E0}

and
E = E\E∗ = {R ∈ E |E0 )= R and R ∩M = E0}.

Remark 2.7.9.

a) We will see that for R ∈ E∗ the fibers f−1
≤R are contractible, i.e. f−1

≤R 1 ∗.
This is why we have chosen to denote this subposet with a ∗ as a superscript.

b) An element R ∈ E has not the same height, whether it is considered as
an element of E or E . More precisely, E≤R = E≤R − {E0} and since E0 is
minimal in E , we have then hE(R) = hE(R) − 1. In what follows, we will
always consider the height of R in E and we make the convention to write
h(R) for hE(R).

Since |P : M | = pd we have that R ∩ M > E0 if |R/E0| ≥ pd, i.e. if
rk(R/E0) ≥ d or equivalently rk(R/Z) > d. This yields the following lemma,
where h(R) is the length of R in E by convention (see Remark 2.7.9).

Lemma 2.7.10. For R ∈ E, we have 1 ≤ h(R) ≤ d.

Lemma 2.7.11. Let R ∈ E and let A ∈ Ap(P )>Z such that R = AE0. Then,

a) A ∩M = Z(R).

b) R ∈ E if and only if Z(R) = Z.

Proof.

a) Note that if E0 ∩A = E0, i.e. E0 ≤ A, then R = A is abelian and A ∩M =
A = R = Z(R). We suppose now A ∩ E0 )= E0, i.e. A ∩ E0 = Z.
Since A ∩ M centralizes E0 as well as A, we have that A ∩ M centralizes
R = AE0. Therefore, A ∩ M ≤ Z(R). Let now x ∈ Z(R). We must have
of course x ∈ M and it remains to show that x is in A. Since R = AE0, we
can write x = ae with a ∈ A and e ∈ E0. Since x ∈ Z(R), we must have
[x, a′] = 1 for all a′ ∈ A. Since [a, a′] = 1, we obtain

[x, a] = [ae, a′] = [e, a′], for all a′ ∈ A.

But this implies that e centralizes A and since e ∈ E0 centralizes E0, we
have e ∈ Z. Therefore x = ae ∈ A, so that Z(R) ≤ A ∩M .

b) Suppose first R ∈ E , so that R )= E0 and R ∩M = E0. If A ∩M = E0, i.e.
E0 ≤ A, then R = A. But then E0 = A ≤ M = A, so that R = A = E0

which is a contradiction. We must have then A ∩M )= E0 and in particular
(A∩M)∩E0 = Z. By assumption R∩M = E0, so that A∩M ≤ R∩M = E0

and it follows that A ∩M = Z. By part a), this is equivalent to Z(R) = Z.
Suppose now Z(R) = Z. It follows from part a) that A ∩ M = Z. But A
has index p in R, so that A ∩M has index p in R ∩M . Since E0 ≤ R ∩M ,
this implies R ∩M = E0.
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Lemma 2.7.12. Let R ∈ E with h(R) ≥ 2 and let B ∈ Ap(P )>Z such that
R = BE0. Then

a) For any A ∈ Ap(R)>Z , we have A ≤ B if rk(A/Z) ≥ 2.

b) B is the unique subgroup in Ap(P )>Z such that R = BE0.

c) The poset Ap(R)>Z is the disjoint union of Ap(B)>Z and ph(R) isolated
vertices, corresponding to the subgroups A ∈ Ap(R)>Z with rk(A/Z) = 1
that are not contained in B.

Proof. We begin with some deductions on the structure of R and introduce
some notation. Since R ∈ E , we have B ∩M = Z by Lemma 2.7.11. We have
in particular R )= B, so that |R : B| = p. This, together with Lemma 2.7.7,
implies that rk(B/Z) = rk(R/Z)− 1 = h(R) ≥ 2.

Let b1, . . . , bt be elements of B such that the left cosets biZ, i = 1, . . . , t form
a basis of B/Z. In other words, {b1, . . . , bt} is a basis of a complement to Z in
B. Let e0 ∈ E0\Z. Since R/Z is elementary abelian (see Lemma 2.7.7), there
exists zi ∈ Z such that bie0b

−1
i = zie0, for any i = 1, . . . , t.

The next step is to show that these elements z1, . . . , zt ∈ Z are linearly
independent. Suppose thus that

∏t
i=1 zai

i = 1. Let b be the element defined by

b =
t∏

i=1

bai
i .

Note that since B acts trivially on Z, we have bk
i e0b

−k
i = zk

i e0, for any k ∈ Z.
It follows that

be0b
−1 =

(
t∏

i=1

zai
i

)
e0 = e0.

We have thus b ∈ B ∩M = Z, hence b ∈ Z. Since the left cosets {biZ} form a
basis of B/Z, it follows that bai

i ∈ Z and hence ai ≡ 0 mod p for all i = 1, . . . , t.
Therefore, zai

i = 1 for all i = 1, . . . , t, showing that the elements z1, . . . , zt are
linearly independent.

a) Let A ∈ Ap(R)>Z with rk(A/Z) ≥ 2, we prove that A ≤ B. Since rk(A/Z)
is at least 2, we can choose x, y ∈ A such that the left cosets xZ and yZ are
linearly independent in A/Z. Note that in particular, x, y )∈ Z.

The subgroup E0 is generated by Z and the element e0 ∈ E0\Z. The sub-
group B is generated by Z and the linearly independent elements b1, . . . , bt.
It follows that R is generated by Z, e0 and b1, . . . , bt. We can then write x, y
as products of these generators:

x = zeγ
0

t∏

i=1

bxi
i and y = weδ

0

t∏

i=1

byi
i , with z, w ∈ Z.
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Since R/Z is elementary abelian, we have in particular [R,R] ≤ Z, so that
commutators can be calculated easily in R. We have

[x, y] =
t∏

i=1

(
[eγ

0 , byi
i ] · [bxi

i , eδ
0]

)
=

t∏

i=1

zδxi−γyi
i .

Since the elements zi, i = 1, . . . , t, are linearly independent, we have then

[x, y] = 1 ⇐⇒ δxi − γyi ≡ 0 mod p, for all i = 1, . . . , t. (2.40)

If γ )≡ 0 mod p and δ ≡ 0 mod p, then eδ
0 ∈ Z and (2.40) yields −γyi ≡ 0

mod p for all i = 1, . . . , t. Since γ is invertible modulo p, we have thus yi ≡ 0
mod p, for all i = 1, . . . , t. Therefore, byi

i ∈ Z for all i = 1, . . . , t, showing
that y ∈ Z, which is a contradiction.

If γ ≡ 0 mod p and δ )≡ 0 mod p, we obtain similarly x ∈ Z, which is also
a contradiction.

Suppose now γ )≡ 0 mod p and δ )≡ 0 mod p. We have then xi ≡ (γδ−1)yi

mod p and therefore

x = zeγ
0

t∏

i=1

bxi
i = zeγ

0

t∏

i=1

b(γδ−1)yi

i = z′
(

eδ
0

t∏

i=1

byi
i

)γδ−1

= z′′yγδ−1
.

But this contradicts the linear independence of xZ and yZ.

We are thus left with the case γ ≡ δ ≡ 0 mod p. But in this situation,
eγ
0 , eδ

0 ∈ Z, so that x, y ∈ B.

Since this is true for any pair x, y with xZ and yZ linearly independent, this
shows that A ≤ B.

b) By part a), the subgroup B contains all subgroups A ∈ Ap(R)>Z with
rk(A/Z) ≥ 2. It follows that B is maximal among those subgroups and
hence is unique.

c) Part a) implies immediately that Ap(P )>Z consists of isolated vertices and
one contractible component, namely Ap(B)>Z . Recall from Lemma 2.7.7
that R has exponent p, hence any subgroup A of R with |A : Z| = p is
elementary abelian. It follows that the number of isolated vertices is equal
to the number of complements to the hyperplane B/Z in R/Z. This is a
standard calculation and we obtain thus prk(R/Z)−1 = ph(R).

We are now in position to describe the fibers of f : Ap(P )>Z → E .

Lemma 2.7.13. Let R ∈ E, then

a) if R ∈ E∗, f−1
≤R = Ap(R)>Z is contractible;

b) if R ∈ E, f−1
≤R = Ap(R)>Z has the homotopy type of a wedge of ph(R) spheres

of dimension 0.
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Proof. Recall first from Lemma 2.7.8 that f−1
≤R = Ap(R)>Z .

a) Suppose R ∈ E∗. If R = E0, Ap(R)>Z = {E0} is a point. Suppose now
R )= E0 and let B ∈ Ap(P )>Z such that R = BE0. By Lemma 2.7.11,
we have Z(R) > Z. We have thus that Z(R) is a conjunctive element in
Ap(R)>Z , which is then contractible.

b) Suppose now R ∈ E . When h(R) ≥ 2, the result follows from Lemma 2.7.12.
When h(R) = 1, |R/Z| = p2, so that Ap(R)>Z is isomorphic to the poset of
proper subspaces in R/Z, hence consists of p + 1 points.

We can now apply Corollary 2.7.5 to the map f : Ap(P ) → E and we obtain
the following result.

Proposition 2.7.14. Let p be an odd prime and let P be a p-group such that
Z = Ω1(Z(P )) is not maximal in Ap(P ). Let E0 be a normal minimal element
in Ap(P )>Z and let pd be the index of CP (E0) in P . Let E be the image of
the poset map f : Ap(P )>Z → Sp(P ) defined by f(A) = AE0 and let also
E = {R ∈ E |R )= E0 and R ∩M = E0}.

There is a spectral sequence E1
rs converging to H̃r+s(Ap(P )>Z), with E1

rs = 0
if r ≥ d and

E1
rs =

⊕

R∈E
h(R)=d−r

H̃r+s−1

(
E>R, Zpd−r

)
, if 0 ≤ r ≤ d− 1.

Proof. We have seen in Lemma 2.7.6 that the poset E is contractible. Further-
more, Lemma 2.7.13 implies that f−1

≤R has the homotopy type of a wedge of
spheres of dimension 0 if R ∈ E , and is contractible otherwise. This, together
with Lemma 2.7.7, shows in particular that f−1

≤R is contractible if h(R) > d.
All the assumptions of Corollary 2.7.5 are thus satisfied, so that we obtain a
spectral sequence E1

rs converging to H̃(Ap(P )>Z), with E1
rs = 0 for r > d and

E1
rs =

⊕

R∈E
h(R)=d−r

H̃r+s−1

(
E>R, H̃0(f−1

≤R)
)

, if r ≤ d.

If R )∈ E , then f−1
≤R is contractible and hence H̃0(f−1

≤R) = 0. We have thus

E1
rs =

⊕

R∈E
h(R)=d−r

H̃r+s−1

(
E>R, H̃0(f−1

≤R)
)

, if r ≤ d.

Since h(R) ≥ 1 for R ∈ E , we have in particular H̃0(f−1
≤R) = 0 for any R ∈ E

with h(R) = 0, i.e. if R = E0. It follows that E1
rs = 0 if r = d, so that now

E1
rs = 0 for r ≥ d.

We remark finally that if R ∈ E , then H̃0(f−1
≤R) = H̃0(Ap(R)>Z) is isomor-

phic with Zph(R)
, thanks to corollary 2.7.13 and the proposition is proved.
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In order to use this spectral sequence, we need to understand the upper
intervals E>R for R ∈ E . When h(R) ≥ 2, we have the following result expressing
E>R in terms of upper intervals in Ap(P ).

Lemma 2.7.15. If R = BE0 ∈ E with h(R) ≥ 2, then E>R 1 Ap(P )>B.

Proof. Consider the poset map g : Ap(P )>B → E>R given by g(B′) = B′E0

and let S ∈ E>R. By the Quillen fiber lemma, we only have to show that g−1
≤S

is contractible. It is immediate that g−1
≤S = Ap(S)>B .

If S ∈ E , then S = B′E0 for a unique B′ ∈ Ap(P )>Z . Since h(R) ≥ 2,
we have rk(B/Z) ≥ 2 and thus B ≤ B′ by Lemma 2.7.12. We have thus
Ap(S)>B = Ap(B′)>B which is a cone on B′ hence is contractible.

Suppose now S ∈ E∗. Remark first that S )≤ M , since R )≤ M . In particular,
S )= E0. We can choose B′ ∈ Ap(P )>Z such that S = B′E0. And now
Z(S) = B′ ∩M > Z by Lemma 2.7.11.

If Z(S) ≤ B, then there exists b ∈ B\Z with b ∈ Z(S). In particular,
b centralizes E0, but this is a contradiction since we have B ∩ M = Z by
Lemma 2.7.11. We have thus that BZ(S) strictly contains B and hence BZ(S) ∈
Ap(S)>B . For any A ∈ Ap(S)>B , we also have AZ(S) ∈ Ap(S)>B and the
following inequalities show that the poset Ap(S)>B is (conically) contractible:

A ≤ AZ(S) ≥ BZ(S), for any A ∈ Ap(S)>B .

In all cases, we have that g−1
≤S = Ap(S)>B is contractible and the lemma is

proved.

Unfortunately, we don’t have a good description of E>R in general when
h(R) = 1. We shall now give two situations in which the poset E>R can be
described more precisely.

Lemma 2.7.16. Let R ∈ E with h(R) = 1 and let A ∈ Ap(P )>Z such that
R = AE0. Suppose that B ∩M strictly contains Z for all B ∈ Ap(P )>Z with
rk(B/Z) ≥ 2 and BE0 > R. Then

E>R 1 Ap(P )>A.

Proof. Let g : Ap(P )>A → E>R be the poset map defined by g(B′) = B′E0. By
the Quillen fiber lemma, it is enough to show that the fibers g−1

≤S are contractible
for any S ∈ E>R. It is immediate that g−1

≤S = Ap(S)>A.
Let B′ ∈ Ap(P )>Z such that S = B′E0. Since h(S) > h(R) = 1, we have

rk(B′/Z) ≥ 2 and hence Z(S) = B′ ∩ M > Z. The poset Ap(S)>A is now
(conically) contractible via the following inequalities:

E ≤ EZ(S) ≥ AZ(S), for any E ∈ Ap(S)>A.

Remark 2.7.17. The assumption made in the statement of the previous lemma
is equivalent to require that Z(S) strictly contains Z for all S ∈ E>R. This
implies in particular that E = {R1, . . . , Rk}, with h(Ri) = 1 for i = 1, . . . , k, so
that E consists of isolated vertices.
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Recall that d is defined as the p-valuation of the index of M = CP (E0) in
P . The situation of Lemma 2.7.16 happens in the particular case d = 1, i.e.
|P : M | = p. Indeed, if B ∈ Ap(P )>Z is such that rk(B/Z) ≥ 2, then on
the one hand |B : Z| ≥ p2. Since |P : M | = p, we have on the other hand
that B ∩ M has index p in B, so that B ∩ M > Z. The last assertion of
the following proposition shows that, in this situation, the spectral sequence
derived in Proposition 2.7.14 yields exactly the same result that what we would
have obtained by simply applying the homological version of the Bouc-Thévenaz
Wedge Decomposition Formula.

Proposition 2.7.18. Let p be an odd prime and let P be a p-group such that
Z = Ω1(Z(P )) is not maximal in Ap(P ). Let E0 be a normal minimal element
in Ap(P )>Z and let pd be the index of CP (E0) in P . Let E be the image of
the poset map f : Ap(P )>Z → Sp(P ) defined by f(A) = AE0 and let also
E = {R ∈ E |R )= E0 and R ∩M = E0}.

Assume that B ∩ M strictly contains Z, for any B ∈ Ap(P )>Z such that
rk(B/Z) ≥ 2. Then

a) For all R ∈ E with h(R) = 1, we have E>R 1 Ap(P )>A, where A is chosen
arbitrarily such that R = AE0.

b) There is a spectral sequence E1
rs converging to H̃r+s(Ap(P )>Z), with E1

rs = 0
if r )= d− 1 and

E1
d−1,s =

⊕

R∈E
h(R)=1

H̃d+s−2(E>R, Zp).

c) For all n ≥ 0, we have

H̃n(Ap(P )>Z) ∼=
⊕

R∈E
h(R)=1

H̃n−1(E>R, Zp).

d) For all n ≥ 0, we have

H̃n(Ap(P )>Z) ∼=
⊕

F∈F
H̃n−1(Ap(CM (F ))>Z),

where F = {F ∈ Ap(P )>Z |F ∩M = Z}.

Proof.

a) Follows immediately from Lemma 2.7.16.

b) Recall from Proposition 2.7.14 that there is a spectral sequence E1
rs converg-

ing to H̃r+s(Ap(P )>Z), with E1
rs = 0 for r ≥ d and

E1
rs =

⊕

R∈E
h(R)=d−r

H̃r+s−1(E>R, Zpd−r

), if 0 ≤ r ≤ d− 1.

It remains to show that E1
rs = 0 for r ≤ d − 2. Let R ∈ E and let A ∈

Ap(P )>Z such that R = AE0. If h(R) ≥ 2, then rk(A/Z) ≥ 2 and thus
A ∩M > Z which is in contradiction with Lemma 2.7.11. It follows that R
must have height 1 and thus E1

rs = 0 for r ≤ d− 2.
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c) The spectral sequence obtained in b) has all its non-zero terms concentrated
in the (d− 1)-th column. It follows that E1

rs = E∞
rs and hence

H̃n(Ap(P )>Z) ∼= E1
d−1,n−d+1 =

⊕

R∈E
h(R)=1

H̃n−1(E>R, Zp).

d) Let R ∈ E . Since B ∩M > Z for all B ∈ Ap(P )>Z such that rk(B/Z) ≥ 2,
we must have h(R) = 1. Since R/Z is elementary abelian of rank 2 and
R has exponent p, we have that Ap(R)>Z consists of p + 1 isolated points.
More precisely,

Ap(R)>Z = {E0, A1, . . . , Ap} .

By Lemma 2.7.16, we have also that E>R is homotopy equivalent to Ap(P )>A

for any A such that R = AE0. It follows that E>R is homotopy equivalent
to Ap(P )>Ai for any i = 1, . . . , p. In particular, Ap(P )>Ai is homotopy
equivalent to Ap(P )>Aj for any 1 ≤ i, j ≤ p. Putting everything together,
we have now

H̃n−1(E>R, Zp) ∼=
p⊕

i=1

H̃n−1(E>R) ∼=
p⊕

i=1

H̃n−1(Ap(P )>Ai)

To finish the proof, it is now enough to remark that

F =
∐

R∈E

Ap(R)>Z\ {E0} ,

and that Ap(P )>Ai is homotopy equivalent to Ap(CM (Ai))>Z . This last
equivalence comes from the fact that, for any B ∈ Ap(P )>Ai , we have
rk(B) ≥ 3, hence B ∩ M > Z by assumption. We can thus define a poset
map f : Ap(P )>Ai → Ap(CM (Ai))>Z by f(B) = B ∩M . This map has a
homotopy inverse given by the poset map g : Ap(CM (Ai))>Z → Ap(P )>Ai

given by g(E) = EAi.

We turn now our attention to another special case in which E>R can be
described for R ∈ E with h(R) = 1.

Lemma 2.7.19. Let R ∈ E with h(R) = 1. If CP (R) = Z, then

E>R
∼=

∐

A∈Ap(R)>Z

A ,=E0

Ap(P )>A

Proof. Since R/Z is elementary abelian of rank 2 and R has exponent p, we
have that Ap(R)>Z consists of p + 1 isolated points and more precisely

Ap(R)>Z = {E0, A1, . . . , Ap} .

Remark that since R is not abelian, we have Ap(P )>Ai ∩ Ap(P )>Aj = ∅, for
1 ≤ i )= j ≤ p. Let us write A for the disjoint union

∐p
i=1Ap(P )>Ai . There is

a natural poset map g : A→ E>R sending E ∈ Ap(P )>Ai to EE0.
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Let S ∈ E>R and let B ∈ Ap(P )>Z be such that S = BE0. We have that
B∩M centralizes E0 and B, hence centralizes S and thus also R. Since CP (R) =
CM (R) = Z, we must have B ∩M = Z. It follows then by Lemma 2.7.11 that
S ∈ E and therefore B is unique with the property S = BE0, by Lemma 2.7.12.

Since |S : B| = p and E0 ≤ R, we have also |R : B ∩ R| = p. In particular,
B ∩ R > Z, so that there exists 1 ≤ j ≤ p such that Aj = ∩R. Furthermore,
this Aj is uniquely determined since the posets Ap(P )>Ai are disjoint.

We denote by q : E>R → A the poset map sending S ∈ E>R to B in the
component Ap(P )>Aj , where B is the unique elementary abelian subgroup of
P such that S = BE0 and j is the only index is such that Aj = B ∩R.

We show now that g and q are mutually inverse. If B > Ai for some i, then
Ai ≤ BE0, so that qg(B) = B. In the other direction, for S = BE0 ∈ E>R, we
have gq(S) = g(B) = BE0 = S. It follows that gq and qg are the identity, so
that E>R is thus isomorphic to A.

The situation of Lemma 2.7.19, that is CP (R) = Z for all R ∈ E with
h(R) = 1, can happen only if the poset F = {F ∈ Ap(P )>Z |F ∩M = Z} and
the posetAp(M)>Z are disjoint. In particular, the posetAp(P )>Z is the disjoint
union of the contractible component Ap(M)>Z and of the poset F . Except for
what concerns the connected components, the homotopy type of Ap(P )>Z is
thus determined by F .

In the situation of Lemma 2.7.19, that is CP (R) = Z for all R ∈ E with
h(R) = 1, the spectral sequence derived in Proposition 2.7.14 does not converge
immediately. The best we can say is the content of the following proposition.
Note that this is consistent with our previous discussion, since the following re-
sult shows that the homology groups ofAp(P )>Z are determined by the poset F .

Proposition 2.7.20. Let p be an odd prime and let P be a p-group such that
Z = Ω1(Z(P )) is not maximal in Ap(P ). Let E0 be a normal minimal element
in Ap(P )>Z and let pd be the index of CP (E0) in P . Let E be the image of
the poset map f : Ap(P )>Z → Sp(P ) defined by f(A) = AE0 and let also
E = {R ∈ E |R )= E0 and R ∩M = E0}

Assume that CP (R) = Z for all R ∈ E with h(R) = 1. There is a spectral
sequence E1

rs converging to H̃r+s(Ap(P )>Z), with E1
rs = 0 if r ≥ d and

E1
rs =

⊕

F∈F
H̃d+s−2

(
Ap(P )>F , Zrk(F/Z)

)
, if 0 ≤ r ≤ d− 1,

where F = {F ∈ Ap(P )>Z |F ∩M = Z}.

Proof. Recall from Proposition 2.7.14 that there is a spectral sequence E1
rs con-

verging to H̃r+s(Ap(P )>Z), with E1
rs = 0 for r ≥ d and

E1
rs =

⊕

R∈E
h(R)=d−r

H̃r+s−1(E>R, Zpd−r

), if 0 ≤ r ≤ d− 1.

Since CP (R) = Z, the poset F is the union of
{
R ∈ E |h(R) ≥ 2

}
and of the

posets Ap(R)>Z\ {E0}, where R ranges over all R ∈ E with h(R) = 1.
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Let R ∈ E with h(R) = 1. It follows from Lemma 2.7.19 that H̃n(E>R) is
isomorphic to the direct sum

⊕

A∈Ap(R)>Z\{E0}

H̃n(Ap(P )>A).

The proposition follows now from the observation that since CP (R) = Z, the
poset F is the union of

{
R ∈ E |h(R) ≥ 2

}
and of the posets Ap(R)>Z\ {E0},

where R ranges over all R ∈ E with h(R) = 1.

In general, we don’t have a good description of the poset E>R, for R ∈ E
with h(R) = 1. A good description would be to have an expression of E>R in
term of upper intervals of the form Ap(P )>A with A ∈ Ap(R)>Z\ {E0}. Note
that this was the case in the two previous special situations. The best we can
do towards such a description of E>R is the following.

Let R ∈ E with h(R) = 1 and let AR be the poset defined as the disjoint
union

AR =
∐

A∈Ap(R)>ZA ,=E0

Ap(P )>A.

We can define a relation ∼ on the poset AR in the following manner. Let
A1, A2 ∈ Ap(R)>Z\ {E0} and let B1, B2 ∈ AR with A1 < B1 and A2 < B2.

If A1 = A2, then B1 ∼ B2 if and only if B1 = B2. If A1 )= A2, then B1 ∼ B2

if and only if |Bi : Bi ∩M | = p for i = 1, 2 and B1 ∩M = B2 ∩M ∈ Ap(M)>Z .
Let us explain briefly the meaning of this condition. Suppose B1 ∼ B2 with

A1 )= A2 and let C = B1 ∩ M = B2 ∩ M . Remark first that C centralizes
R, so that in fact C ∈ Ap(CM (R)>Z) = Ap(CP (R)>Z). The condition that
|Bi : Bi ∩M | = p, for i = 1, 2, implies that C is maximal in B1 and in B2 and
thus Bi = CAi for i = 1, 2. We see then that the relation ∼ identifies CA1 with
CA2 for any A1, A2 ∈ Ap(R)>Z\ {E0} and any C ∈ Ap(CP (R)>Z).

It is not difficult to check that ∼ is an equivalence relation on AR and we
define DR as the quotient

DR = AR/ ∼ .

For B ∈ AR we denote by [B] the class of B in DR. For B1 and B2 in Ar,
we define [B1] ≤ [B2] if and only if there exists B′

1 ∼ B1 and B′
2 ∼ B2 with

B′
1 ≤ B′

2. Now DR is a poset with respect to this partial order ≤.

Lemma 2.7.21. Let R ∈ E with h(R) = 1. There is a homotopy equivalence

E>R 1 DR.

Proof. There is a natural map AR → E>R sending B to BE0. Suppose B1 ∼ B2,
then B1 = CA1 and B2 = CA2 for some C ∈ Ap(CP (R)>Z). Since R = A1E0 =
A2E0, we have B1E0 = CA1E0 = CR = CA2E0 = B2E0. There is thus an
induced map g : DR → E>R.

In the other direction, we define a map q : E>R → DR in the following way.
Let S ∈ E>R and let B such that R = BE0.

If R ∈ E , then B is unique such that R = BE0 and B ∩R contains a unique
Aj in Ap(R)>Z\ {E0}. In this situation, we send S to [B] ∈ DR.
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If R )∈ E, then B∩M > Z and we send S to [(B∩M)A], where A can be any
subgroup in Ap(R)>Z\ {E0}. This is independent of the choice of A because of
the definition of ∼.

It is not difficult to check that gq ≤ id and qg ≤ id, showing that E>R is
homotopy equivalent to DR.

Remark 2.7.22. The two special cases treated previously correspond to the two
extreme cases. If B ∩M > Z for any B ∈ Ap(P )>Z with rk(R/Z) ≥ 2, then
all subgroups in AR are equivalent with respect to ∼. In this situation, we see
that E>R 1 DR

∼= Ap(P )>A for an arbitrary chosen A ∈ Ap(R)>Z\ {E0}. If
CP (R) = Z, then no subgroups are identified by ∼, so that E>R 1 DR = AR.
In both cases, we recover the previous results.

Note that the presence of these two extreme cases seems to suggest that
there is no easy description of E>R in the intermediate cases.

2.8 Fiber theorems

Useful tools in topology of posets are the so-called “fiber theorems”. They have
the following general form: given a poset map f : P → Q, certain properties
can be transferred from P to Q if the fibers f−1(Q≤q) are sufficiently well-
behaved. Maybe the best known of this family of results is the so-called “Quillen
fiber lemma” asserting that P and Q are homotopy equivalent if the fibers are
contractible.

A general result subsuming several known fiber theorems, including the
Quillen fiber lemma, was proved by Björner, Wachs and Welker.

Theorem 2.8.1 (Björner, Wachs, Welker). Let f : P → Q be a poset map such
that for all q ∈ Q the fiber f−1

≤q is non-empty, and for all non-minimal q ∈ Q
there exists cq ∈ f−1

≤q such that the inclusion map f−1
<q ↪→ f−1

≤q is homotopic
to the constant map sending f−1

<q to cq. Then P is homotopy equivalent to the
wedge

Q ∨
∨

q∈Q

(
f−1
≤q ∗Q>q

)

For reasons that will become clear later, we would like to give an idea of
the proof of this theorem. The details can be found in [7]. The proof uses
tools from the theory of diagrams of spaces. We will not go too much into the
details, but let us recall that if Q is a poset, then Q can be seen as a category
and a simplicial Q-diagram is a functor from Q to the category of simplicial
complexes.

If f : P → Q is a poset map, we let D be the Q-diagram given by D(q) = f−1
≤q

and for q′ < q, the morphism dq′,q : f−1
≤q′ → f−1

≤q is the inclusion map. The first
step in the proof of Theorem 2.8.1 is to prove the following lemma. This is done
via the theory of arrangement of subspaces.

Lemma 2.8.2. The poset P is homotopy equivalent to hocolim D.

As a second step, we consider the Q-diagram E defined by E(q) = f−1
≤q and

with constant maps, i.e. if q′ < q then eq′,q is the constant map sending every
element of f−1

≤q′ to the chosen point cq ∈ f−1
≤q . The following lemma follows then

from the so-called Wedge Lemma (see for example [7, Lemma 2.2]).
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Lemma 2.8.3.
hocolim E 1 Q ∨

∨

q∈Q

(
f−1
≤q ∗Q>q

)
.

Remark 2.8.4. The proof of these two lemmas is independent of the assumption
that the inclusion map f−1

<q → f−1
≤q is homotopy equivalent to a constant map.

To prove the theorem, it only remains to show that hocolim D 1 hocolim E.
It is enough to show that there is a diagram map α : D → E such that, for all
q ∈ Q, the map αq : D(q) → E(q) is a homotopy equivalence.

Suppose that q ∈ Q is not minimal. By the homotopy extension property
for simplicial pairs, the homotopy from the inclusion map f−1

<q ↪→ f−1
≤q to the

constant map can be extended to a homotopy equivalence αq : f−1
≤q → f−1

≤q . For
minimal q ∈ Q, the map αq is the identity. This gives the desired diagram map
α : D → E and this finishes our sketch of the proof of Theorem 2.8.1.

In practice, given a poset map f : P → Q, one can find more convenient
conditions on the fibers to ensure that the inclusions f−1

<q ↪→ f−1
≤q are homotopy

equivalent to constant maps. This is the case, for example, if the fibers f−1
≤q are

sufficiently connected, as the next theorem shows.

Theorem 2.8.5 (Björner, Wachs, Welker). Let f : P → Q be a poset map such
that for all q ∈ Q the fiber f−1

≤q is dim(f−1
<q )-connected. Then

P 1 Q ∨
∨

q∈Q

(
f−1
≤q ∗Q>q

)
.

For q ∈ Q, we can write f−1
<q =

⋃
q′<q f−1

≤q′ . In particular, if f−1
≤q is r-

connected and f−1
≤q′ has dimension at most r for all q′ < q, then it follows by

a standard topology argument that the inclusion map f−1
<q ↪→ f−1

≤q is homotopy
equivalent to a constant map. This observation was used by Pulkus and Welker
in [22] in their study of Ap(G) for solvable groups G, and they obtain the
following result.

Proposition 2.8.6. Let f : P → Q be a poset map such that f−1
≤q is spherical

of dimension dq = dim(f−1
≤q ), with dq′ < dq if q′ < q. Then

P 1 Q ∨
∨

q∈Q

(
f−1
≤q ∗Q>q

)
.

Remark 2.8.7. If f−1
≤q is r-connected, it is not enough to require that for each

q′ < q the fiber f−1
≤q′ at most r−1-connected, since this does not imply necessarily

that the union f−1
<q =

⋃
q′<q f−1

≤q′ is at most d-connected.

This proposition can be used to prove the following result of Quillen.

Proposition 2.8.8 (Quillen). Let f : P → Q be a poset map. Assume Q is
d-spherical and for each q ∈ Q that Q>q is (d− h(q)− 1)-spherical and f−1

≤q is
h(q)-spherical. Then P is d-spherical.
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Proof. By assumption f−1
≤q is spherical of dimension h(q) = dim(f−1

≤q ) = dq.
Furthermore, if q′ < q, then h(q′) < h(q) so that dq′ < dq. Proposition 2.8.6
implies now

P 1 Q ∨
∨

q∈Q

(
f−1
≤q ∗Q>q

)
. (2.41)

Since Q>q is spherical of dimension d − h(q) − 1, we have that f−1
≤q ∗ Q>q is

spherical of dimension (d − h(q) − 1) + h(q) + 1 = d (see 8.1 in [23]). Since Q
is also d-spherical, we have that all the wedge summands in the right-hand side
of equation (2.41) are spherical of dimension d. It follows that P is spherical of
dimension d.

It is not really the result that interests us here but more the method. In
[23], Quillen’ proof is based on the spectral sequence (2.33) and what we would
like to point out here is that the two methods, namely the theory of diagrams
and the spectral sequence, can yield the same result.

In the paper [12], Fumagalli makes the following assumptions on a poset
map f : P → Q (see [12, Corollary 5]).

Assumption 1. Q is a meet semi-lattice with unique least element 0̂;

Assumption 2. for every q ∈ Q>0̂, f−1
≤q # f−1({0̂});

Assumption 3. for every q ∈ Q, f−1
≤q is either contractible or a wedge of

nq-dimensional spheres , with 0 ≤ nq′ < nq if q′ < q in Q.

Fumagalli claims that under these assumptions there is a homotopy equiva-
lence

P 1 f−1({0̂}) ∗Q>0̂ ∨
∨

q∈Q>0̂

(
f−1
≤q ∗Q>q

)
. (2.42)

It is given as a corollary to the three standard lemmas, namely the so-called Pro-
jection Lemma [7, Lemma 2.3], Homotopy Lemma [7, Lemma 2.1] and Wedge
Lemma [7, Lemma 2.2], but no detailed proof is given. It is also mentioned as a
corollary to Theorem 2.8.1 (Theorem 2.5 in [7]) or [22, Corollary 2.4]. Unfortu-
nately, as stated, this result is false and we will give counterexamples below. The
absence of a detailed proof makes it difficult to point out where the mistake is.
But in view of our previous discussion and especially the sketch of the proof of
Theorem 2.8.1, it is almost certain that the problem comes from Assumption 3.

We will present now an example which satisfies the three assumptions but
for which Formula (2.42) does not hold.

Example 2.8.9. Let f : P = Q\{z1, 0̂}→ Q be the inclusion of posets defined
by their Hasse diagrams in Figure 2.1.

The posetQ is a meet semi-lattice with least element 0̂, so that Assumption 1
is satisfied as well as Assumption 2, since f−1(0̂) = ∅ and for q ∈ Q>0̂ the fiber
f−1
≤q is non-empty. The fiber f−1

≤q is contractible for every q ∈ Q>0̂, except
for q = z1 in which case f−1

≤z1
= {y0, z0} is a sphere of dimension 0, hence

Assumption 3 is also satisfied. However, the poset P is contractible, whereas
the right-hand side of formula (2.42) contains the wedge summand Q>0̂ which
is homotopy equivalent to a sphere of dimension 1, thus formula (2.42) does not
hold.
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0̂

x1

x0x0

x1

z0y0

y1 z1

y0

y1

z0

f

Figure 2.1: Hasse diagrams of P and Q.

Note furthermore that the inclusion map f−1
<z1 ⊆ f−1

≤z1
is the identity map on

{y0, z0}, hence is not homotopic to a constant map. Therefore, fiber theorems
such as [22, Corollary 2.4] and [7, Theorem 2.5] don’t apply.

We show how formula (2.42) is used by Fumagalli and provide a counterex-
ample to the wedge decomposition he obtained along the proof of his Lemma 19.
In his paper, Fumagalli introduces, for X ∈ Ap(G) ∪ {1}, the poset

MX(G) = {U ∈ Sp(G) |X < U, U = Ω1(U), Φ(U) ≤ X ≤ Z(U)} .

During the proof of [12, Lemma 19], he claims to prove the following formula:
let A be a central elementary abelian p-subgroup of a finite group G, 1 ≤ X ≤
Y ≤ A with |Y : X| = p and let R ≤ A be such that A = RY and Y ∩R = X.
Fumagalli claims that under these assumptions, there is a homotopy equivalence

MX(G)>A 1MY (G)>A ∨
∨

U∈MY (G)>A

(Ap(U/R)>A/R ∗MY (G)>U ). (2.43)

Fumagalli obtains this formula by applying Formula (2.42) to the inclusion map
MX(G)>A ↪→MY (G)>A. We provide now a counterexample to Formula (2.43).

Example 2.8.10. Let p be an odd prime. We denote by P the p-group on
the generators x1, y1, x2, y2, v, w of order p and with the commuting relations
[x1, y1] = [x2, y2] = w, [x1, x2] = v and all other commutators between gen-
erators trivial. Let V = 〈v〉 and W = 〈w〉. This group P has the following
properties:

(i) Z(P ) = 〈v, w〉 = V ×W is elementary abelian of rank 2;

(ii) P ′ = Φ(P ) = Z(P );

(iii) P has exponent p;

(iv) P/V is extraspecial of order p5 and exponent p with Z(P/V ) = Z(P )/V .

For any subgroup H of P containing V , we will denote by H the quotient H/V .
We would like to describe now Formula (2.43) in the following setting:

A = Z(P ), X = {1}, Y = V and R = W.

In this situation, we can do the following identifications:

MX(P )>A = Ap(P )>Z(P ), MY (P )>A
∼= Ap(P )>Z(P ),
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and for B ∈MY (P )>A,

Ap(B/R)>A/R
∼= Ap(B)>Z(P ).

Formula (2.43) is thus identical to the following formula:

Ap(P )>Z(P ) 1 Ap(P )>Z(P ) ∨
∨

B=B/V ∈Ap(P )>Z(P )

(
Ap(B)>Z(P ) ∗Ap(P )>B

)
.

(2.44)
Since P is extraspecial, we know from Lemma 2.3.15 that Ap(P )>Z(P ) is

a wedge of p4 spheres of dimension 1, so that the right-hand side of equation
(2.44) is in particular not contractible. It turns out, however, that the left-hand
side of equation (2.44), namely Ap(P )>Z(P ), is contractible.

To see this, we apply the Bouc-Thévenaz wedge decomposition to our group
P defined above, with A = Z(P ) and E0 = 〈y1, v, w〉. In this situation,
M = CP (E0) = 〈y1, x2, y2, v, w〉 and the elementary abelian complements of
M are of the form F = 〈x1xr

2y
s1
1 ys2

2 , v, w〉. For such a complement, CM (F ) =
〈y−r

1 y2, v, w〉 is elementary abelian, so that Ap(CM (F ))>A is always contractible
showing that Ap(P )>Z(P ) is contractible. It follows that Formula (2.44) does
not hold and by extension Formula (2.43) does not hold in general.

Remark 2.8.11. Let p be an odd prime, P a p-group and let A ∈ Ap(P )>A. Let
X0 = {1} ≤ X1 ≤ · · · ≤ Xr−1 ≤ Xr = A be a chain of subgroups of A such that
|Xi+1 : Xi| = p. There are inclusion of posets

Ap(P )>A = M{1}(P )>A →MX1(P )>A → · · ·MXr−1(P )>A →MA(P ).

The idea of Fumagalli was to apply Formula (2.43) recursively, in order to
connect the homotopy type of Ap(P )>A with the homotopy type of MA(P ). As
we have seen in in Example 2.8.10, Formula (2.43) does not hold in general and
as a consequence, the proof of Fumagalli’s lemma 19 does not hold in general.
This lemma 19 is a central argument in Fumgalli’s main claim [12, Theorem 21],
that Ap(G) has the homotopy type of a wedge of spheres for solvable groups G.
As a consequence, whether Ap(G) is homotopy equivalent to a wedge of spheres
for solvable groups G, seems to remain an open question.

As we have seen before with Proposition 2.8.8, some results can be proved
using either fiber theorems or Quillen’s spectral sequence. We have seen in
Example 2.8.10 a situation for which fiber theorems don’t apply and we will
show now, in a special situation, what results can be obtained using Quillen’s
spectral sequence.

Let p be an odd prime number. Let P be a non-abelian p-group with Z =
Ω1(Z(P )) of rank 2 and such that P/Z is elementary abelian. We wish to
determine Ap(P )>Z , so that we may assume also that P = Ω1(P ), and in
particular P has exponent p.

Let V,W be central subgroups of P of order p such that Z = V ×W , and
let P = P/V . For any subgroup H containing Z, we will denote by H the
corresponding subgroup in P . Since Φ(P ) ≤ Z, we have in particular that
Φ(P ) ≤ Z has order 1 or p. It follows now from Proposition 1.3.18 that P
is isomorphic to a direct product Q × E, where E elementary abelian of rank
m ≥ 0, and Q is either trivial, or extraspecial of type I, i.e. Q = Xp2!+1 with
! ≥ 0.
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Let f : Ap(P )>Z → Ap(P )>Z be the poset map given by f(A) = A. We
determine first the fibers of f in the following lemma.

Lemma 2.8.12. Let B = B/V ∈ Ap(P )>Z , then f−1
≤B

= Ap(B)>Z . Further-
more,

a) If h(B) is even, then f−1
≤B

is contractible.

b) If h(B) is odd, then f−1
≤B

is either contractible, or has the homotopy type of

a wedge of pk2
spheres of dimension h(B)−1

2 , where k = h(B)+1
2 .

Proof. It follows directly from the definition of f that f−1
≤B

= Ap(B)>Z . If
Z(B) > Z, then Z(B) ∈ Ap(B)>Z , since P has exponent p. Therefore,
Ap(B)>Z is conically contractible, via the inequalities

A ≤ AZ(B) ≥ Z(B), for all A ∈ Ap(B)>Z .

We suppose from now on that Z(B) = Z. We have that B = B/V is elementary
abelian, so that we can choose a complement B0/V to Z/V in B/V , that is,

B/V = B0/V × Z/V.

We have thus B0 ∩ Z = V , so that B0 ∩W = 1. Furthermore, B is generated
by B0 and Z = V ×W , hence by B0 and W , since B0 contains V . It follows
then that B = B0 ×W . Since V is central in B0 and V ×W = Z = Z(B) =
Z(B0) ×W , we have Z(B0) = V . Since B0/V is elementary abelian, we have
thus that B0 is extraspecial of type I, i.e. B0

∼= Xp2k+1 . Note that k ≥ 1, since
B0/V > Z/V .

This shows in particular that B0/V has even rank 2k, and hence B/V has
odd rank 2k +1 . Since B has height rk(B/V )− 1 = 2k in Ap(P ), we have that
B has height 2k−1 in Ap(P )>Z . This implies then that, for any F ∈ Ap(P>Z),
we have Z(F ) > Z if h(F ) is even, so that f−1

≤F
is always contractible if h(F ) is

even.
Since Z(B0) = V and Z = V×W , the two posetsAp(B)>Z andAp(B0)>Z(B0)

are isomorphic. Since B0 is isomorphic to Xp2k+1 , we have by Lemma 2.3.15,
that Ap(B0)>Z(B0) has the homotopy type of a wedge of pk2

spheres of dimen-
sion k − 1. The lemma follows now from the equality k = h(B)+1

2 .

Since P is isomorphic to Xp2!+1 × E, with ! ≥ 0 and E elementary abelian
of rank m ≥ 0, we have from Lemma 2.5.9 and Lemma 2.5.11, that Ap(P )
is hCM of dimension d = ! + (m − 1) + 1 = ! + m, and hence Ap(P )>Z is
hCM of dimension ! + m − 1. We can apply now Quillen’s spectral sequence
(Proposition 2.7.1) to the map f : Ap(P )>Z → Ap(P )>Z . We have preferred
however to extract the strictly needed informations on f , in order to give a
general lemma on posets. Our purpose in doing so, is to ease notation.
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Proposition 2.8.13. Let f : P → Q be a poset map. We assume that Q is
hCM of dimension d ≥ 0 and we make the following assumptions on the fibers: If
h(q) is odd, then f−1

≤q is either contractible, or has the homotopy type of a wedge
of spheres of dimension h(q)−1

2 , and if h(q) is even, then f−1
≤q is contractible.

Then,

a) If d = 0, then P is homotopy equivalent to Q.

b) If d = 1, then Hk(P) = 0 if k ≥ 2 and there is an exact sequence

0 → H1(P) → H1(Q) →
⊕

h(q)=1

(
H̃−1(Q>q)⊗ H̃0(f−1

≤q )
)
→ H0(P) → Z → 0.

c) If d > 1, there is a spectral sequence E2
rs converging to Hr+s(P) with

E2
rs = 0, if either s > 0 and r + 2s )= d− 1, or s = 0 and r )∈ {d− 1, d}

and

E2
rs
∼=

⊕

h(q)=2s+1

H̃d−2s−2(Q>q)⊗ H̃s(f−1
≤q ), if s > 0 and r + 2s = d− 1.

Moreover, there is an exact sequence

0 → E2
d,0 → Hd(Q) →

⊕

h(q)=1

H̃d−2(Q>q)⊗ H̃0(f−1
≤q ) → E2

d−1,0 → 0.

In particular, the only non-zero terms are either E2
d,0, or concentrated on

the line r + 2s = d − 1 (which has the same direction as the differentials).
Therefore, E∞

rs = E3
rs.

Proof. Suppose first d = 0. In this situation, Q has no elements of odd height,
so that by assumption, f−1

≤q is contractible for all q ∈ Q. It follows now from
the Quillen fiber lemma that P and Q are homotopy equivalent.

We suppose from now on that d ≥ 1. Recall from Proposition 2.7.1 that
Quillen’s spectral sequence has the following form, for any poset map f : P → Q,

E2
rs = Hr

(
Q, q .→ Hs(f−1

≤q )
)
⇒ Hr+s(P).

For s > 0, we have H̃s(f−1
≤q ) = Hs(f−1

≤q ) for any q ∈ Q, so that in this case,

E2
rs = Hr

(
Q, q .→ H̃s(f−1

≤q )
)

. (2.45)

For s = 0 there is an exact sequence

· · ·→ Hr+1(Q) → Hr

(
Q, q .→ H̃0(f−1

≤q )
)
→ E2

r0 → Hr(Q) → · · · (2.46)

associated to the short exact sequence

0 → H̃0(f−1
≤q ) → H0(f−1

≤q ) → Z → 0.
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We describe now these groups Hr

(
Q, q .→ H̃s(f−1

≤q )
)
. Recall that if A is any

abelian group, we denote A(q) the functor from Q to the category of abelian
groups, sending q to A and all other elements of Q to 0. Let s ≥ 0. By the
assumptions made on the fibers, we have that H̃s(f−1

≤q ) )= 0 implies s = h(q)−1
2 .

It follows that the functor q .→ H̃s(f−1
≤q ) )= 0 is the direct sum of the functors

H̃s(f−1
≤q )(q), where q ranges over all elements of Q of height 2s + 1. We have

then

Hr

(
Q, q .→ H̃s(f−1

≤q )
)
∼=

⊕

h(q)=2s+1

Hr

(
Q, H̃s(f−1

≤q )(q)
)

(2.47)

∼=
⊕

h(q)=2s+1

H̃r−1

(
Q>q, H̃s(f−1

≤q )
)

, (2.48)

where the second isomorphism comes from Lemma 2.6.7. Since Q is assumed to
be hCM of dimension d, we have that Q>q is (d−h(q)− 1)-spherical. It follows
that

H̃r−1

(
Q>q, H̃s(f−1

≤q )
)

= 0, if r − 1 )= d− h(q)− 1. (2.49)

We have thus Hr

(
Q, q .→ H̃s(f−1

≤q )
)

= 0, if r − 1 )= d − (2s + 1) − 1, i.e.
r + 2s )= d− 1. This, together with (2.45), shows that

E2
rs = 0, if s > 0 and r + 2s )= d− 1,

and

E2
rs
∼=

⊕

h(q)=2s+1

H̃r−1

(
Q>q, H̃s(f−1

≤q )
)

, if s > 0 and r + 2s = d− 1.

The case s = 0 is a little bit more complicated, but we still have from (2.48)
and (2.49) that

Hr

(
Q, q .→ H̃0(f−1

≤q )
)

= 0, if r )= d− 1,

and

Hd−1

(
Q, q .→ H̃0(f−1

≤q )
)
∼=

⊕

h(q)=1

H̃d−2

(
Q>q, H̃s(f−1

≤q )
)

. (2.50)

Since Q is hCM of dimension d, we know furthermore that Hk(Q) = if k ≥ 1
and k )= d. We can enter now these informations into the long exact sequence
(2.46).

Suppose first d = 1. The long exact sequence (2.46) becomes

0 → E2
1,0 → H1(Q) → H0(Q, q .→ H̃0(f−1

≤q )) → E2
00 → Z → 0. (2.51)

Since E2
rs = 0 if s > 0 and r + 2s )= d − 1 = 0, we have E2

rs = 0 for all s > 0.
It follows that the only non-zero terms of E2

rs are E2
0,0 and E2

1,0. In particular,
E2

rs = E∞
rs , so that H0(P) = E2

0,0, H1(P) = E2
1,0 and Hk(P) = 0 if k > 1. The

exact sequence (2.51) can now be rewritten

0 → H1(P) → H1(Q) →
⊕

h(q)=1

H̃−1

(
Q>q, H̃0(f−1

≤q )
)
→ H0(P) → Z → 0.
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2.8 Fiber theorems

The result for d = 1 will now follow from the isomorphism given in (2.52) below.
Suppose now d > 1. The long exact sequence (2.46) becomes

0 → E2
d,0 → Hd(Q) → Hd−1(Q, q .→ H̃0(f−1

≤q )) → E2
d−1,0 → 0.

This shows in particular that the non-zero terms of E2
rs are concentrated

on the diagonal r + 2s = d − 1 and on E2
d,0. As a consequence, the spectral

sequence converges at the third page, i.e. E3
rs = E∞

rs . The proposition follows
now from (2.50) and the following isomorphism, coming from the fact that the
top homology of a spherical complex is free,

H̃r−1

(
Q>q, H̃s(f−1

≤q )
)
∼= H̃r−1(Q>q)⊗ H̃s(f−1

≤q ). (2.52)

Remark 2.8.14. Consider the exact sequence coming from the previous propo-
sition:

0 → E2
d,0 → Hd(Q) →

⊕

h(q)=1

H̃d−2

(
Q>q, H̃s(f−1

≤q )
)
→ E2

d−1,0 → 0.

The homomorphism

Hd(Q) →
⊕

h(q)=1

H̃d−2

(
Q>q, H̃s(f−1

≤q )
)

in this exact sequence comes from the connecting homomorphism Hd(Q) →
Hd−1(Q, q .→ H̃0(f−1

≤q )). If this homomorphism is zero, then the exact sequence
splits into two sequences

0 → E2
d,0 → Hd(Q) → 0

and
0 →

⊕

h(q)=1

H̃d−2

(
Q>q, H̃s(f−1

≤q )
)
→ E2

d−1,0 → 0.

In this situation, we would have in particular Hd(P) = E2
d,0 = Hd(Q). There

are unfortunately situations in which this homomorphism is not zero (see Ex-
ample 2.8.16).

We return now to the situation of our p-group above. Recall that p is an
odd prime number and that P is a non-abelian p-group with Z = Ω1(Z(P )) of
rank 2 and such that P/Z is elementary abelian. Without loss of generality, we
suppose also that P has exponent p.

Recall also that V,W are central subgroups of P of order p such that Z =
V ×W and we denote by P the quotient P/V . For any subgroup H containing Z,
we denote by H the corresponding subgroup in P . Recall that P is isomorphic
to E×Xp2!+1 , with E elementary abelian of rank m ≥ 0 and ! ≥ 0. In particular,
Ap(P ) is hCM of dimension d = ! + r − 2 and in view of Lemma 2.8.12, we
can apply Proposition 2.8.13 to the map f : Ap(P )>Z → Ap(P )Z . To save
some space, we will not write down explicitly the result obtained, but we wiil
do some examples instead. These examples will show in particular that there
are non-trivial differentials to handle, so that this spectral sequence may not be
very easy to use for calculations.
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Example 2.8.15. If ! = 0, then P = P/V is elementary abelian of rank m. It
follows that Φ(P ) = V and has order p. The fact that Z = Ω1(Z(P )) has rank 2
and Proposition 1.3.18 imply that P = Q×U , with Q ∼= Xp2k+1 and Φ(Q) = V .
Of course, it is easy now to compute the homotopy type of Ap(P )>Z . Indeed,
we have Ap(P )>Z

∼= Ap(Q)>Z(Q), which is spherical of dimension k − 1 (see
Lemma 2.3.15). It is not difficult to see that the results obtained by applying
Proposition 2.8.13 are consistent with this result.

Example 2.8.16. In this example, we apply Proposition 2.8.13 to the group
P defined in Example 2.8.10. Recall that p is an odd prime and P is the p-
group with generators x1, y1, x2, y2, v, w of order p and with commuting relations
[x1, y1] = [x2, y2] = w and [x1, x2] = v. All other commutators between gener-
ators are trivial. Let V = 〈v〉 and W = 〈w〉, so that Z = Ω1(Z(P )) = Z(P ) =
V ×W . Furthermore, P = P/Z is isomorphic to Xp5 , so that here ! = 2 and
m = 0. In particular, Ap(P )>Z is hCM of dimension d = ! + m− 1 = 1.

Proposition 2.8.13 implies that Hk(Ap(P )>Z) = 0 for k ≥ 2 and that there
is an exact sequence

0 → H1(Ap(P )>Z) → H1(Ap(P )>Z)

→
⊕

B∈Ap(P )>Z

rk(B)=3

H̃0(Ap(B)>Z) → H0(Ap(P )>Z) → Z → 0. (2.53)

We have used here the fact that if B = B/V has height 1 in Ap(P )>Z , then
B has rank 3. In this case, Ap(P )>B is empty, so that H̃−1(Ap(P )>B) = Z.
Furthermore, H̃0(Ap(B)>Z) is non-zero if and only if B = B0 × B, with B0

∼=
Xp3 and Z(B0) = V . In this case, Ap(B)>Z

∼= Ap(B0)>V is a wedge of p spheres
of dimension 0. Such subgroups B exist and we can consider for example the
subgroup B = 〈x1, x2, v, w〉, in which case B0 = 〈x1, x2, v〉. There are p3 such
subgroups in P , so that

⊕

B∈Ap(P )>Z

rk(B)=3

H̃0(Ap(B)>Z) ∼=
⊕

p3

Zp = Zp4
.

Furthermore, since P = Xp5 , we have that Ap(P )>Z has the homotopy type
of a wedge of p4 spheres of dimension 1, hence H1(Ap(P )>Z)Zp4

. The exact
sequence (2.53) can now be rewritten

0 → H1(Ap(P )>Z) → Zp4
→ Zp4

→ H0(Ap(P )>Z) → Z → 0

This exact sequence is however not sufficient to determine the homology groups
of Ap(P )>Z , without the knowledge of the homomorphism Zp4 → Zp4

.
Using the Bouc-Thévenaz Wedge Decomposition Formula, we have seen

however in Example 2.8.10, that Ap(P )>Z is in fact contractible. The exact
sequence (2.53) has thus the following form:

0 → 0 → Zp4
→ Zp4

→ Z → Z → 0.

In particular, the connecting homomorphism Zp4 → Zp4
is the identity.
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2.8 Fiber theorems

Example 2.8.17. Let P be the group defined in the preceeding example. Let
Q be defined as an iterated central products of this group P with itself. It is
not difficult to see that, in this situation, there may be non-trivial terms on
the diagonal of the spectral sequence obtained in Proposition 2.8.13. For such
groups Q, however, the poset Ap(Q)>Z is contractible. The differentials must
thus be non-trivial in this situation.
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Automorphisms

In this chapter, we determine the automorphism groups for the following groups:

(I) p-groups with a cyclic Frattini subgroup.

(II) odd order p-groups of class 2 with a cyclic center and such that the
quotient by the center is homocyclic.

3.1 Introduction

The purpose of this chapter is to describe the automorphism group of p-groups
introduced in Chapter 1. To begin, we will consider p-groups with a cyclic Frat-
tini subgroup. As was seen in the first chapter, such a group can be decomposed
as P = Q × E where E is elementary abelian and Q has a cyclic center and a
cyclic Frattini subgroup. The first step will be to get rid of the direct factor
E. This will be done by using work of Bidwell, Curran and McCaughan [5] on
automorphism groups of direct product of groups with no common direct factor.
We will then be able to assume that the center of P is cyclic. This will greatly
simplify the proofs and the statement will also become more readable.

If the Frattini subgroup is central, that is, P is quasi-extraspecial in our
terminology, we can then adapt the method used by Winter [32] to determine
the automorphism group of extraspecial p-groups. We will first reduce the
problem to the study of automorphisms fixing the center pointwise. We will
then show that there is an exact sequence

1 → Int(P ) → AutZ(P )(P ) → S → 1,

where S is a (known) subgroup of a symplectic group.
When the Frattini subgroup of P is cyclic but is not central (and then p = 2),

the method goes roughly as follows. Thanks to the work of Bidwell, Curran and
Mc-Caughan, we may assume that Z(P ) is cyclic. Recall from Lemma 1.3.35
that C0 = CP (Φ(P )) is then maximal in P and Φ(C0) = Φ(P ) is central in C0.
We will then express Aut(P ) in terms of automorphimsms of C0.

The case of p-groups with central and cyclic Frattini subgroup can be gen-
eralized for the odd order p-groups of class 2 with cyclic center and such that
P/Z(P ) is homocyclic. This will be done in Section 3.5.
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3.2 Preliminaries and notation

Let G be a group and let C be a characteristic subgroup of G. The restriction
of automorphisms induces a homomorphism

ρC : Aut(G) → Aut(C).

We let AutC(G) = ker ρC . This is the normal subgroup of Aut(G) consisting of
all automorphisms of G that restrict to the identity on C. If H is any subgroup
in G, we denote similarly by AutH(G) the subgroup of Aut(G) consisting of
automorphisms of G acting as the identity on H, that is

AutH(G) = {α ∈ Aut(G) |α(h) = h, ∀h ∈ H} .

Note that if H is not characteristic in G, then the subgroup AutH(G) is not
necessarily normal in Aut(G).

Any automorphism α of G induces an automorphism α on the quotient group
G/C by α(g) = α(g) for all g ∈ G/C. This defines a homomorphism

πG/C : Aut(G) → Aut(G/C).

We let AutG/C(G) = kerπG/C . This is the normal subgroup of Aut(G) consist-
ing of automorphisms of G inducing the identity on G/C.

We denote by AutC,G/C(G) = AutC(G) ∩ AutG/C(G). This group can be
seen as the kernel of the homomorphism

AutC(G) → Aut(G/C)

given by the composition of the inclusion AutC(G) ↪→ Aut(G) followed by
πG/C : Aut(G) → Aut(G/C). This is the normal subgroup of Aut(G) consisting
of all automorphisms of G that are the identity on C and that induce the identity
on G/C. The following lemma gives a useful description of this group if C is
also assumed to be central.

Lemma 3.2.1. Let Z be a central and characteristic subgroup of a group G.
Then AutZ,G/Z(G) is isomorphic to Hom(G/Z, Z).

Proof. Remark first that Hom(G/Z, Z) is a group since Z is central in G. More
precisely, for θ1, θ2 ∈ Hom(G/Z, Z), the product θ1θ2 is defined by (θ1θ2)(g) =
θ1(g)θ2(g) for all g ∈ G/Z.

If θ is a homomorphism from G/Z to Z, we define f(θ) : G → G by
f(θ)(g) = θ(g)g for all g ∈ G. Since Z is central in G, we have that f(θ)
is a homomorphism. If f(θ)(g) = 1, then θ(g)g = 1 and hence g must be in Z.
But then θ(g) = 1, so that 1 = f(θ)(g) = g. This shows that f(θ) is injective
and thus is an automorphism of G since G is finite. Furthermore, it is clear from
the definition that f(θ) fixes Z pointwise and induces the identity on G/Z.

We have thus a map f : Hom(G/Z, Z) → AutZ,G/Z(G) and f turns out to
be a homomorphism since

f(θ1θ2)(g) = θ1(g)θ2(g)g = f(θ1)(θ2(g)g) = f(θ1)(f(θ2)(g)).

If f(θ) is the identity on G, then g = f(θ)(g) = θ(g)g. It follows that θ(g) = 1
for all g ∈ G/Z and thus θ = 1, showing that f is actually injective.
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To see that f is also surjective, let ρ ∈ AutZ,G/Z(G). We have then ρ(g) = g
so that there exists a unique element zg ∈ Z such that ρ(g) = gzg. Since θ
is the identity on Z, we have ρ(gz′) = ρ(g)ρ(z′) = ρ(g)z′ and it follows that
zg = zgz′ for all z′ ∈ Z. There is thus a well-defined map h(ρ) : G/Z → Z by
h(ρ)(g) = zg. It is not difficult to see that h(ρ) is a homomorphism and that
f(h(ρ)) = ρ.

For g ∈ G, we denote by cg the inner automorphism of G given by conju-
gation by g, that is cg(x) = gxg−1. We denote by IntG = {cg | g ∈ G} the
group of inner automorphisms of G. If H is a subgroup of G, we denote
IntH G = Int(G) ∩ AutH G. We will also denote by Int(G, H) the subgroup
of Int(G) generated by the inner automorphisms given by elements in H, that
is Int(G, H) = {ch |h ∈ H}. Note that in general Int(G, H) )∼= Int(H).

Lemma 3.2.2.

a) For any g ∈ G and α ∈ Aut(G), one has αcgα−1 = cα(g). In particular,
Int(G) is a normal subgroup of Aut(G).

b) The homomorphism sending g ∈ G to cg ∈ Int(G) induces an isomorphism
G/Z(G) ∼= Int(G).

c) If H is a subgroup of G, then Int(G, H) ∼= H/(Z(G) ∩H).

We will often make use of particular automorphisms of cyclic groups so that
we fix some notation.

Notation 3.2.3. Let Cn = 〈x〉 be a cyclic group of order pn, n ≥ 1.

a) If p is odd, recall that Aut(Cn) is cyclic of order pn−1(p− 1). We denote by
θ the automorphism of Cn of order p defined by θ(x) = x1+pn−1

.

b) If p = 2 we denote similarly by θ the automorphism of Cn of order 2 defined
by θ(x) = x1+2n−1

. We denote by τ the automorphism of Cn of order 2 given
by τ(x) = x−1. Remark that if n = 2 then θ = τ and Aut(C2) is cyclic of
order 2 and generated by τ and if n > 2 then Aut(Cn) is abelian of type
(2n−2, 2) and θ and τ form a basis of Ω1(Aut(Cn)).

Definition 3.2.4. We say that the short exact sequence 1 → N → G
π−→ K → 1

splits if there exists homomorphism r : K → G such that πr = idK . We will
call the homomorphism r a homomorphic section of π.

Lemma 3.2.5. Let 〈x〉 be a cyclic group of order pm+1, with m ≥ 1, and let
〈xp〉 be its unique maximal subgroup. Let θ be the automorphism of 〈x〉 defined
by θ(x) = x1+pm

. Then the following sequence is exact:

1 → 〈θ〉 → Aut(〈x〉)
ρ〈xp〉−−−→ Aut(〈xp〉) → 1

Furthermore,

a) If p is odd, this sequence splits if and only if m = 1.

b) If p = 2, this sequence splits if and only if m = 1 or m = 2.
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Proof. On the one hand, we have θ(xp) = (x1+pm

)p = xpxpm+1
= xp, so that θ

is in ker ρ〈xp〉. On the other hand, if α is an element of Aut(〈x〉) then α(x) = xk

for some k prime to p. Therefore, if α is the identity on 〈xp〉 we have

xp = α(xp) = (α(x))p = (xk)p = (xp)k.

Since xp has order pm, it follows that k ≡ 1 mod pm, i.e. k = 1+apm for some
a. But then α = θa and this proves that ker ρ〈xp〉 = 〈θ〉.

It follows from the description of the automorphism groups of cyclic groups
that |Aut(〈x〉)| = p·|Aut(〈xp〉)|, so that ρ〈xp〉 must be surjective and this proves
that the sequence is exact.

For the splitting, one has to consider separately the case p odd and p = 2.
We suppose first that p is odd. If m = 1, then Aut(〈x〉) is abelian of type
(p, p− 1) and Aut(〈xp〉) has order p− 1. Hence Aut(〈x〉) = 〈θ〉×Aut(〈xp〉) and
the sequence splits.

When m > 1, the exact sequence becomes

1 → Cp → Cpm−1 × Cp−1 → Cpm−2 × Cp−1 → 1.

This sequence cannot split since Cpm−1 ×Cp−1 is not isomorphic Cp ×Cpm−2 ×
Cp−1.

We suppose now p = 2. If m = 1, then Aut(〈x2〉) is reduced to the identity
so that the sequence trivially splits. If m = 2, Aut(〈x〉) is elementary abelian
of rank 2 and generated by θ and the involution τ sending x to x−1. The group
Aut(〈x2〉) is cyclic of order 2 generated by the involution x .→ x−1 which is the
restriction of τ so that the sequence splits.

An argument similar to the one for p odd shows that the sequence does not
split when m > 2.

Lemma 3.2.6. Let G, G1, G2 be groups and suppose that the following diagram
is commutative and the two rows are exact.

1 !! ker f1
!!

""

G
f1 !! G1

g

""

!! 1

1 !! ker f2
!! G

f2 !! G2
!! 1

Then

a) ker f2/ ker f1
∼= ker g.

b) If f2 splits then g splits.

c) If g and f1 split, then f2 splits.

d) If f1 splits, then ker f2
∼= ker f1 " ker g.

We recall finally some standard notation and results on symplectic and or-
thogonal groups. More details can be found in Chapter 8 and Chapter 11 of
Taylors’s book [28].
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Let F be a field and let V be a vector space over F. If b : V × V → F is an
alternating form on V , we denote Sp(V ) the subgroup of GL(V ) consisting of
linear transformations of V preserving b, namely

Sp(V ) = {σ ∈ GL(V ) | b(σv,σw) = b(v, w), ∀v, w ∈ V } .

If the alternating form b is non-degenerate, then V has even dimension 2! for
some ! ≥ 1 and has a basis such that the matrix of b relatively to this basis is
given by

B =



 0 I!

−I! 0



 .

The group Sp(V ) is then isomorphic to the subgroup Sp(2!, F) of GL2!(F) con-
sisting of invertible matrices such that ABAt = B. When F is the finite field
Fp, we will denote by Sp(2!, p) the group Sp(2!, Fp).

Lemma 3.2.7.

|Sp(2!, p)| = p!2
!∏

i=1

(p2i − 1)

Suppose from now on that F is a finite field of characteristic 2 and let q :
V → F be a quadratic form on V . The orthogonal group of q is the subgroup
O(V, q) (or simply O(V )) of GL(V ) consisting of linear transformations of V
preserving q, namely

O(V, q) = {σ ∈ GL(V ) | q(σv) = q(v)∀v ∈ V } .

The polar form b on q is the alternating form defined by b(v, w) = q(v + w) −
q(v)− q(w) and the form q is non-degenerate if V

⊥
has no singular vectors, i.e.

q(w) )= 0, for all w ∈ V ⊥. If V has odd dimension 2! + 1, there is only one non-
degenerate quadratic form on V up to isomorphism and we denote O(2! + 1, F)
the corresponding orthogonal group. If V has even dimension 2!, there are
two non-isomorphic non-degenerate quadratic q+, q− form on q. We denote by
O+(2!, F) and O−(2!, F) the two corresponding (non-isomorphic) orthogonal
groups O(V ) (see [28, Chapter 11] for details).

Similarly to the case of symplectic groups, we use the respective notation
O(2! + 1, 2), O+(2!, 2), O−(2!, 2) when F is the field F2.

3.3 Automorphisms of direct products of groups

In this section, we recall briefly the results of Bidwell, Curran and McCaughan
on automorphisms of direct products of groups with no common direct factor.
For the proofs, the reader is referred to [5].

Let G, H be finite groups. If θ, ψ ∈ Hom(G, H), the map θ + ψ : G → H
defined by (θ + ψ)(g) = θ(g)ψ(g) is again a homomorphism if Im θ and Im ψ
commute.

Definition 3.3.1. Let G = H ×K, we define

E =








α β

γ δ



 :
α ∈ End(H), β ∈ Hom(K, H),

γ ∈ Hom(H,K), δ ∈ End(K),

[Im α, Im β] = 1,

[ Im γ, Im δ] = 1.
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The set E is a monoid under matrix multiplication


α β

γ δ







α′ β′

γ′ δ′



 =



αα′ + βγ′ αβ′ + βδ′

γα′ + δγ′ γβ′ + δδ′





Proposition 3.3.2 (Bidwell-Curran-McCaughan). If G = H×K, then End(G)
is isomorphic to E.

Proof. See Bidwell-Curran-McCaughan [5]

Definition 3.3.3. Let G = H ×K and let

A =








α β

γ δ



 :
α ∈ Aut(H), β ∈ Hom(K, Z(H)),

γ ∈ Hom(H,Z(K)), δ ∈ Aut(K),




 ⊆ E

Proposition 3.3.4 (Bidwell-Curran-McCaughan). Let G = H × K where H
and K have no common direct factor, then Aut(G) ∼= A.

Proof. See [5].

Corollary 3.3.5. Let G = H × K, where H and K have no common direct
factor, then

|Aut(G)| = |Aut(H)| · |Aut(K)| · |Hom(H,Z(K))| · |Hom(K, Z(H))|

3.4 Automorphisms of p-groups with cyclic Frat-
tini subgroup

Let p be an arbitrary prime and let P be a p-group with cyclic Frattini subgroup.
We know from Lemma 1.3.2 that P = Q×E with E elementary abelian and Q
has a cyclic center and Φ(Q) = Φ(P ) is cyclic. In particular, Q and E have no
common direct factor and Proposition 3.3.4 gives the following result.

Lemma 3.4.1. Let P = Q × E be a p-group with E elementary abelian and
such that Q has a cyclic Frattini subgroup and a cyclic center. Then Aut(P ) is
isomorphic to the group

A =








α β

γ δ



 :
α ∈ Aut(Q), β ∈ Hom(E,Z(Q)),

γ ∈ Hom(Q,Z(E)), δ ∈ Aut(E),




 .

Lemma 3.4.2. Let P = Q × E be a p-group with E elementary abelian and
such that Q has a cyclic Frattini subgroup and a cyclic center. Let d denote the
p-rank of Q/Φ(Q) and let r be the p-rank of Z(P ).
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a) Aut(E) is isomorphic to GLr−1(Fp),

b) Hom(E,Z(Q)) is an elementary abelian p-group of rank r − 1,

c) Hom(Q,Z(E)) = Hom(Q,E) is isomorphic to the group M(r−1)×d(Fp) of
(r − 1)× d matrices.

Proof.

a) The group E is elementary abelian of rank r − 1, hence can be viewed as
an Fp-vector space of dimension r − 1. Choosing a basis, we can identify its
automorphism group with the group GLr−1(Fp).

b) Let Z be the unique subgroup of order p of Z(Q). Since E is elementary
abelian, Hom(E,Z(Q)) = Hom(E,Z) ∼= E.

c) Since E is elementary abelian we have

Hom(Q,Z(E)) = Hom(Q,E) = Hom(Q/Φ(Q), E).

Choosing a basis of Q/Φ(Q) and a basis of E, we can identify the group
Hom(Q/Φ(Q), E) with the group of (r − 1)× d matrices with coefficients in
Fp.

Corollary 3.4.3. If P = Q × E where E is elementary abelian of rank r − 1
and Q has a cyclic center and a cyclic Frattini subgroup, then

|Aut(P )| = |Aut(Q)| · pa
r−1∏

i=1

(pi − 1)

where a = r(r−1)
2 + d(r − 1).

It remains thus to determine Aut(Q), i.e. we can assume that P is a p-group
with cyclic Frattini subgroup and cyclic center. The automorphism groups of
extraspecial p-groups have already been determined by Winter [32], so that we
will not consider them in what follows.

Automorphisms of Xp2!+1 ∗ Cpm+1

Let p be an arbitrary prime and let P = Xp2!+1 ∗Cpm+1 with ! ≥ 1 and m ≥ 1.
To begin, we fix some notation for the sequel. Let c be a generator of the
cyclic group Z(P ) = Cpm+1 and let z = cpm

. Let x1, y1, . . . , x!, y! be symplectic
generators of the subgroup Xp2!+1 , all of order p and such that [xi, yi] = z.

Since Z(P ) is characteristic in P , restriction of automorphisms defines a
homomorphism

ρZ(P ) : Aut(P ) → Aut(Z(P )).

By definition, the kernel of ρZ(P ) is the subgroup AutZ(P )(P ) of Aut(P ).
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Lemma 3.4.4. The following extension of groups is split:

1 → AutZ(P )(P ) → Aut(P ) → Aut(Z(P )) → 1 (3.1)

In particular, Aut(P ) = AutZ(P )(P ) " Aut(Z(P )).

Proof. It is enough to show that there exists a homomorphic section, i.e. a
homomorphism σ : Aut(Z(P )) → Aut(P ) such that ρr = id. Since Z(P ) is
cyclic, an automorphism α ∈ Aut(Z(P )) is defined by its value on the generator
c of Z(P ). There exists thus an integer a prime to p such that α(c) = ca. The
automorphism α is uniquely defined by the class of a modulo pm+1.

We would like to extend α to an automorphism α̃ of the whole group P . For
this, we define α̃ on the generators of P and check that the relations defining P
are preserved. We set

α̃(xi) = xa
i , (3.2)

α̃(yi) = yi, (3.3)
α̃(c) = α(c) = ca. (3.4)

Let us check first that this definition does not depend on the choice of a repre-
sentative of a modulo pm+1. If a ≡ a′ mod pm+1 then xa

i = xa′
i , since xi has

order p. Since c has order pm+1, we also have ca = ca′ .
The following sequence of equalities show that the relations [xi, yi] = z are

preserved by α̃:

α̃([xi, yi]) = [α̃(xi), α̃(yi)] = [xa
i , yi] = [xi, yi]a = za = α̃(z).

Similar and even easier calculations show that the other relations are also pre-
served. We can thus extend α̃ to an endomorphism of P . Since a is prime
to p, the map α̃ is bijective, and hence α̃ ∈ Aut(P ). It follows by definition
that α̃ extends α, so that we can define a section Aut(Z(P )) → Aut(P ) by
sending an automorphism α to α̃. We still have to check that this section is a
homomorphism.

Let α, β ∈ Aut(Z(P )), we have to check α̃β = α̃β̃. It is enough to check
this equality on the generators of P . This is trivially true on the generators yi,
i = 1, . . . , !, since these maps are the identity on these elements. Let a be such
that α(c) = ca and let b be such that α(c) = cb. Since α̃β does not depend on
the representative of ab modulo pm+1, we have

α̃β(xi) = (xab
i ) = (xa

i )b = (α̃(xi))b = α̃(xb
i ) = α̃(β̃(xi)).

A similar argument shows that α̃β(c) = α̃(β̃(c)) and hence α̃β = α̃β̃. We have
then showed that the map α .→ α̃ is a homomorphic section and the lemma is
proved.

Remark 3.4.5.

a) In the previous proof, we could have equally well defined α̃ as the identity
on the xi and α̃(yi) = ya

i . We could also have chosen α̃(xi) = xiyi and
α̃(yi) = ya

i . This should be enough to convince the reader that many more
choices are possible and that the splitting is far from being unique.
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

b) Note that when p = 2, the elements xi, yi have order 2, so that α is extended
as the identity on these elements.

The previous lemma allows us to identify Aut(Z(P )) with a subgroup of
Aut(P ). From now on, we will often make no distinction between an automor-
phism of Z(P ) and its extension to P . If we need to make the identification
precise, then we will use the notation α̃ for the extension of α defined in the
proof of Lemma 3.4.4.

Another characteristic subgroup of P is the Frattini subgroup Φ(P ). We
have then a homomorphism

ρΦ(P ) : Aut(P ) → Aut(Φ(P )).

By definition the kernel of ρΦ(P ) is the subgroup AutΦ(P )(P ) of Aut(P ) and we
will see below that ρΦ(P ) does not split in general. Let us before recall briefly our
notation for automorphisms of cyclic p-groups. We denote by θ the generator
of the kernel of the restriction Aut(Z(P )) → Aut(Φ(P )). More precisely, θ is
defined by θ(c) = c1+pm

= cz. When p = 2, we denote by τ the involution
defined by τ(c) = c−1. Recall also that θ = τ when p = 2 and m = 1.

Lemma 3.4.6. Let P = Xp2!+1 ∗ Cpm+1 with ! ≥ 1 and m ≥ 1.

a) There is a commutative diagram with exact rows:

1 !! AutZ(P )(P ) !!

""

Aut(P )
ρZ(P )!! Aut(Z(P ))

ρZ(P )
Φ(P )

""

!! 1

1 !! AutΦ(P )(P ) !! Aut(P )
ρΦ(P )!! Aut(Φ(P )) !! 1

b) The first row splits and the second row splits if and only if either m = 1 or
p = 2 and m = 2.

c) AutΦ(P )(P ) = AutZ(P )(P ) " 〈θ〉.

d) If either p is odd or p = 2 and m > 1, then AutΦ(P )(P ) = 〈θ〉×AutZ(P )(P ).

e) If p is odd and m = 1, then Aut(P ) = AutΦ(P )(P ) " 〈β〉, where β is a
generator of the cyclic group of order p− 1 of Aut(Z(P )).

f) If p = 2 and m = 1, then Aut(P ) = AutΦ(P )(P ).

g) If p = 2 and m = 2, then Aut(P ) = AutΦ(P )(P ) " 〈τ〉.

Proof.

a) The fact that the first row is exact is the content of Lemma 3.4.4. Since
m > 1, Lemma 3.2.5 gives that the vertical map ρZ(P )

Φ(P ) is surjective. It
follows that the map ρΦ(P ) is surjective, so that the second row is exact.

b) It follows from Lemma 3.4.4 that the first row splits. Lemma 3.2.6 implies
now that the second row splits if and only if the vertical map ρZ(P )

Φ(P ) splits.
We have seen in Lemma 3.2.5 that this maps splits if and only if either m = 1
or p = 2 and m = 2.
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c) This follows from the splitting of ρZ(P ) and Lemma 3.2.6.

d) Let α ∈ AutZ(P )(P ), we check on the generators of P that θαθ−1 = α. Since
α is the identity on the characteristic subgroup Z(P ) of P , we have immedi-
ately that (θαθ−1)(c) = c = α(c). It remains to see that (θαθ−1)(xi) = α(xi)
and (θαθ−1)(yi) = α(yi) for i = 1, . . . , !.
Suppose first that p is odd. The subgroup Ω1(P ) of P is generated by the
elements xi, yi, i = 1, . . . , !. Recall from Lemma 3.4.4 that the automorphism
θ is extended to P as the identity on the yi but also on the xi, since x1+pm

i =
xi. It follows that θ is the identity on the characteristic subgroup Ω1(P ) of
P . Therefore,

θαθ−1(xi) = θα(xi) = α(xi).

We have similarly (θαθ−1)(yi) = α(yi) for all i = 1, . . . , !.
Suppose now p = 2 and m > 1. The subgroup Ω1(P ) of P is generated
by w = cpm−1

and the elements xi, yi, i = 1, . . . , !. Since m > 1, θ acts as
the identity on w. The automorphism θ is extended to P as the identity on
the elements xi, yi for i = 1, . . . , !. It follows that θ is the identity on the
characteristic subgroup Ω1(P ) of P . Therefore, (θαθ−1)(xi) = α(xi) and
(θαθ−1)(yi) = α(yi) for all i = 1, . . . , !.

e) Follows at once from the splitting of ρΦ(P ) and the fact that Aut(Φ(P )) is
cyclic of order p− 1.

f) If p = 2 and m = 1, the characteristic subgroup Φ(P ) of P has order 2.
It follows that Φ(P ) is fixed pointwise by any automorphism of P , hence
AutΦ(P )(P ) = Aut(P ).

g) Follows at once from the splitting of ρΦ(P ).

Recall from Lemma 3.4.4 that Aut(P ) is a semi-direct product Aut(P ) =
AutZ(P )(P ) " Aut(Z(P )). Since Z(P ) is cyclic, the structure of Aut(Z(P )) is
well known. Our next goal is to determine the structure of AutZ(P )(P ). We
denote π the homomorphism

π : AutZ(P )(P ) → Aut(P/Z(P ))

obtained by the composition of the inclusion map AutZ(P )(P ) → Aut(P ) fol-
lowed by the canonical homomorphism πP/Z(P ) : Aut(P ) → Aut(P/Z(P )).
Recall that V = P/Z(P ) is a regular alternating space relatively to the form

b : V × V → P ′ ∼= Fp

induced by commutators. More precisely, for any x, y ∈ P there exists a ∈ Z
such that [x, y] = za and b(x, y) is defined as the class of a modulo p. In order
to simplify the notation, we will sometimes identify b(x, y) with [x, y].

Since P/Z(P ) is a regular alternating space, we can consider the subgroup
Sp(P/Z(P )) of Aut(P/Z(P )) = GL(P/Z(P )) consisting of all linear transfor-
mations preserving b, namely

Sp(P/Z(P )) = {σ ∈ Aut(P/Z(P )) | b(σ(u),σ(v)) = b(u, v),∀u, v ∈ P/Z(P )} .
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

Since the alternating form is non-degenerate, we can choose a symplectic basis
on P/Z(P ) in such a way that b is represented by the matrix

J =



 0 I!

−I! 0





The group Sp(P/Z/(P )) can now be identified with the group Sp(2!, p) of all
matrices A ∈ GL2!(Fp) such that AJAt = J .

Lemma 3.4.7. The image of π : AutZ(P )(P ) → Aut(P/Z(P )) is contained in
Sp(P/Z(P )).

Proof. Let α ∈ AutZ(P )(P ) and x, y ∈ P/Z(P ). We have to show that

b(α(x),α(y)) = b(x, y). (3.5)

By definition, the right-hand term is equal to [x, y] and the left-hand term
is equal to [α(x),α(y)] as the following equalities show:

b(α(x),α(y)) = b(α(x),α(y)) = [α(x),α(y)].

Since P ′ is central and α restricts to the identity on P , we have [α(x),α(y)] =
[x, y] and the lemma is proved.

We have now an exact sequence

1 → ker π → AutZ(P )(P ) → S → 1,

where S = Im π is a subgroup of Sp(P/Z(P )). Furthermore, we have by defini-
tion that kerπ is equal to the group AutZ(P ),P/Z(P )(P ). The next lemma shows
that this group is nothing more than the group Int(P ) of inner automorphisms
of P .

Lemma 3.4.8.

a) The group AutZ(P ),P/Z(P )(P ) is equal to the group Int(P ) and is elementary
abelian of rank 2!.

b) The automorphism θ commutes with any inner automorphism of P and

AutΦ(P ),P/Φ(P )(P ) = Int(P )× 〈θ〉.

Proof.

a) It is clear that any inner automorphism of P restricts to the identity on
Z(P ). Since P ′ is central, we have that cx(g) ∈ gZ(P ) for any x, g ∈ P .
We have thus that Int(P ) is contained in AutZ(P ),P/Z(P )(P ). To prove the
reverse inclusion, we simply show that these two groups have the same order.
Recall first that there is a natural isomorphism Int(P ) ∼= P/Z(P ), so that
Int(P ) is elementary abelian of rank 2!. On the other hand, Lemma 3.2.1
implies that AutZ(P ),P/Z(P )(P ) is isomorphic to Hom(P/Z(P ), Z(P )). But
P/Z(P ) is elementary abelian of rank 2! and Z(P ) is cyclic of order pm+1,
hence Hom(P/Z(P ), Z(P )) is also elementary abelian of rank 2!.
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b) The automorphism θ is extended as the identity on the elements xi and yi

for i = 1, . . . , !, since x1+p
i = xi. We have therefore θcxiθ

−1 = cθ(xi) = cxi

and the same equality holds with xi replaced by yi. This equality is trivially
satisfied for z since cz is the identity on P . It follows that θ commutes with
all the generators of Int(P ).

Since θ fixes Φ(P ) but not Z(P ) pointwise, we have that θ ∈ AutΦ(P )(P )
but θ )∈ Int(P ). Hence Int(P )× 〈θ〉 is elementary abelian of rank 2! + 1 and
is contained in AutΦ(P ),P/Φ(P )

∼= Hom(P/Φ(P ),Φ(P )) which is elementary
abelian of the same rank. It follows that these two groups are equal and the
lemma is proved.

In Figure 3.1, the reader will find a drawing making some of the above results
maybe a little bit more explicit.

Aut(P )

%%
%%

%%
%%

%%
%%

%%
%

$$
$$

$

Aut(Z(P ))

$$
$$

$

AutΦ(P )(P )

%%
%%

%

$$
$$
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Int(P )× 〈θ〉

%%
%%

%%

$$
$$

$$

〈θ〉

p
$$

$$
$$

AutZ(P )(P )

%%
%%

%

Int(P )

p2! %%
%%

%%

1

Figure 3.1: Structure of Aut(P ) for P = Xp2!+1 ∗ Cpm+1 .

Everything is now contained in the following proposition describing the au-
tomorphisms of P = Xp2!+1 ∗ Cpm+1 .

Proposition 3.4.9. Let P = Xp2!+1 ∗ Cpm+1 with ! ≥ 1 and m ≥ 1. Then

Aut(P ) = AutZ(P )(P ) " Aut(Z(P ))

and there is an exact sequence

1 → Int(P ) → AutZ(P )(P ) → Sp(2!, p) → 1.

Proof. A great part of the job has already been done. The decomposition
Aut(P ) = AutZ(P )(P ) " Aut(Z(P )) is the content of Lemma 3.4.4. The kernel
of π is AutZ(P ),P/Z(P )(P ) and we have seen in Lemma 3.4.8 that this group is
equal to the group Int(P ). The preceding lemma shows that Imπ is contained
in Sp(P/Z(P )) ∼= Sp(2!, p), so that it only remains to show that π is surjective
on Sp(P/Z(P )).
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

To begin, we reorder the elements x1, y1, . . . , x!, y!. For j = 1, . . . , ! we let
wj = xj and wj+! = yj . We have in this way

[wi, wj ] =

{
z if |i− j| = !.

1 else.

Let B = {w1, . . . , w2!} be the basis of P/Z(P ) where wi is the class of wi in
P/Z(P ). Relatively to this basis, the alternating form b is represented by the
matrix 

 0 I!

−I! 0



 .

Let σ be an automorphism of P/Z(P ) which preserves the alternating form b.
With respect to the basis B the automorphism σ is represented by a matrix
s = (sl,k) ∈ Sp(2!, p). Precisely,

σ(wi) = w
s1,i

1 w
s2,i

2 · · ·ws2!,i

2! .

We define σ̃ : P → P on the generators P by

σ̃(wi) = w
s1,i

1 w
s2,i

2 · · ·ws2n,i

2n and σ̃(c) = c.

Clearly, with this definition, σ̃(wi) = σ(wi), and since σ preserves the sym-
plectic form b, we have

[σ̃(wi), σ̃(wj)] = b(σ̃(wi), σ̃(wj)) = b(σ(wi),σ(wj)) = b(wi, wj) = [wi, wj ].

Furthermore, if p is odd,

σ̃(wi)p =
(
w

s1,i

1 · · ·ws2!,i

2!

)p = (ws1,i

1 )p · · · (ws2!,i

2! )p = 1.

Since σ is an automorphism we have σ̃(wi) )= 1, hence σ̃(wi) has order p.
For p = 2 we have that σ̃(wi)2 is in P ′. If σ̃(wi)2 )= 1, we modify σ̃(wi) by

letting
σ̃(wi) = c2m−1

· (ws1,i

1 w
s2,i

2 · · ·ws2n,i

2n ).

instead of the previous definition of σ̃(wi). In this way we have σ̃(wi)2 = 1 for
all i = 1, . . . , 2!. Since u2m−1

is in Z(P ) this does not affect the commuting
relations, so that σ̃ preserves all the relations defining P .

This shows that σ̃ extends to an endomorphism of P . As σ is an automor-
phism, wi = σ(vi) for some vi ∈ P . Therefore

wi = σ(vi) = σ̃(vi),

so that wi = σ̃(vi)h for some h ∈ Z(P ). But then wi = σ̃(vi)σ̃(h) = σ̃(vih),
since σ̃ acts trivially on Z(P ). It follows that wi is in the image of σ̃, proving
that σ̃ is an automorphism of P .

Remark 3.4.10. The condition m ≥ 1 is really necessary only if p = 2. When
p is odd, all our above results still hold under the assumption m = 0. In this
situation, P is extraspecial of exponent p and we recover the results of Winter
[32]. If p = 2 and m = 0, then P = D∗!

8 and in this situation there is a
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quadratic form q : P/Z(P ) → Φ(P ) given by q(x) = x2 and one obtains in this
case a similar result to the above proposition, but with the symplectic group
Sp(2!, p) replaced by the orthogonal group O+(2!, p). The details can be found
in Winter’s paper [32].

We will see below under which conditions the extension

1 → Int(P ) → AutZ(P )(P ) → Sp(2!, p) → 1

is split. We give before two immediate corollaries of the preceding proposition.

Corollary 3.4.11. Let P = Xp2!+1 ∗ Cpm+1 with ! ≥ 1 and m ≥ 1. Then

Out(P ) ∼= Sp(2!, p) " Aut(Cpm+1).

Corollary 3.4.12. Let P = Xp2!+1 ∗ Cpm+1 with ! ≥ 1 and m ≥ 1. Then

|Aut(P )| = p(!+1)2+m−1(p− 1)
!∏

i=1

(p2i − 1).

Proposition 3.4.13. Let P = Xp2!+1 ∗ Cpm+1 with ! ≥ 1 and m ≥ 1. Let

1 → Int(P ) → AutZ(P )(P ) → Sp(2!, p) → 1. (3.6)

be the extension of groups obtained in Proposition 3.4.9. Then

a) If p is odd, the extension (3.6) is split.

b) If p = 2 and ! ≥ 3, the extension (3.6) is not split.

Proof. In the case p odd, there is a standard argument due to Griess and Isaacs
(see [16, Chapter 7]). This argument goes as follows.

Let J be the preimage of the central involution −Id under the map π :
AutZ(P )(P ) → Sp(2!, p). Since p is odd, N = π−1(〈−Id〉) = Int(P ) " 〈J〉 and
J acts on Int(P ) by sending each element to its inverse. Furthermore, N is
normal in AutZ(P )(P ) (since 〈−Id〉 is normal in Sp(2!, p)) and 〈J〉 is a 2-Sylow
subgroup of N since p is odd and Int(P ) ∼= (Cp)2!. It follows by the Frattini
argument that AutZ(P )(P ) is generated by NAutZ(P )(P )(〈J〉) and N . But since
J has order 2, NAutZ(P )(P )(〈J〉) = CAutZ(P )(P )(〈J〉) and J is not centralized by
any element of Int(P ). It follows that NAutZ(P )(P )(〈J〉) ∩ Int(P ) = {1}, so that
NAutZ(P )(P )(〈J〉) is a complement to Int(P ) in AutZ(P )(P ).

Suppose now p = 2 and ! ≥ 3. Griess proved in [15, Corollary 2] that the
extension (3.6) is not split when m = 1, i.e. when P = D∗!

8 ∗ C4. Suppose now
m > 1, and let D be the subgroup of P generated by w and the xi, yi, 1 ≤ i ≤ !,
so that D = D∗!

8 ∗ C4. Any automorphism of D fixing Z(D) = 〈w〉 pointwise
can be extended to an automorphism of P by letting it act trivially on Z(P ).
This defines an injective homomorphism

AutZ(D)(D) ↪→ AutZ(P )(P ).
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The inner automorphisms of D are then sent to inner automorphisms of P and
we have the following commutative diagram

1 !! Int(P ) !! AutZ(P )(P ) !! Sp(2!, 2) !! 1

1 !! Int(D) !!

##

AutZ(D)(D) !!

##

Sp(2!, 2) !! 1

The first row does not split since the second one does not by Griess’ result [15,
Corollary 2].

Remark 3.4.14. We don’t know whether the extension splits or not, when p = 2
and ! ∈ {1, 2}.

We end up this part on automorphisms of P = Xp2!+1 ∗ Cpm+1 with a last
remark on the special case p = 2 and m = 1. In this situation, P = D∗!

8 ∗ C4

and P/Φ(P ) is endowed with a quadratic form

q : P/Φ(P ) → Φ(P ) ∼= F2

given by q(x) = x2. Since Φ(P ) has order 2, any automorphism α of P restricts
to the identity on Φ(P ). Furthermore, if α is the automorphism induced by α
on P/Φ(P ), then

q(α(x)) = q(α(x)) = (α(x))2 = α(x2) = x2 = q(x).

Therefore, α preserves the quadratic form q and there is thus a well-defined
homomorphism

π : Aut(P ) → O(P/Φ(P ), q) = O(2! + 1, 2).

The kernel of π is easily seen to be generated by Int(P ) and the extension to
P of the automorphism θ ∈ Aut(Z(P )) sending c → cz = c1+2, where c is
the generator of Z(P ). We have seen furthermore in Lemma 3.4.6 that when
P = D∗!

8 ∗C4, then Aut(P ) = AutZ(P )(P ) " 〈θ〉. All this shows that there is an
exact sequence

1 → Int(P ) → AutZ(P )(P ) → O(2! + 1, 2) → 1

We recover then the result of Proposition 3.4.9 thanks to the isomorphism be-
tween O(2! + 1, 2) and Sp(2!, 2).

Automorphisms of Xp2!+1 ∗Mpm+2

Let P = Xp2!+1 ∗Mpm+2 with ! ≥ 0 and m > 1. We fix notation for the sequel.
Let a, u be generators of the subgroup Mpm+2 with a of order p, u of order
pm+1 and aua−1 = u1+pm

. Let z = upm

and let x1, y1, . . . , x!, y! be symplectic
generators of the subgroup Xp2!+1 all of order p and such that [xi, yi] = z.

In this situation, we have that Z(P ) = Φ(P ) is maximal in the subgroup
U = 〈u〉 and we denote by c = up the generator of Z(P ).

The first main difference with the previous case is that, in general, the group
Aut(P ) is not a semi-direct product AutZ(P )(P ) " Aut(Z(P )) anymore as the
next lemma shows. The reason is roughly that Z(P ) is not a maximal cyclic
subgroup of P anymore. We will see in Lemma 3.4.16 that the automorphisms
of U , which is maximal cyclic in P , can be extended homomorphically to P .
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Lemma 3.4.15. The following sequence is exact

1 → AutZ(P )(P ) → Aut(P ) → Aut(Z(P )) → 1

and splits if and only if p = 2 and either m = 2 or m = 3.

Proof. To show the exactness of the sequence, it is enough to show that an
automorphism of Z(P ) can be extended to P . If α ∈ Aut(Z(P )) then α(c) = ck

with k prime to p and uniquely defined modulo pm. We extend α by letting

α̃(xi) = xk
i ,

α̃(yi) = yi,

α̃(a) = a,

α̃(u) = uk.

As defined, α̃ preserves all the relations and defines an automorphism of P
that extends α (see 3.4.4 for details). Note that this definition depends on the
chosen representative of k modulo pm since u has order pm+1. We show now
the assertion on the splitting of the sequence. Suppose that σ is a homomorphic
section. Suppose first that p is odd and let α ∈ Aut(Z(P )) be the automorphism
of Z(P ) defined by α(c) = c1+p. Note that this automorphism has order pm−1.
The automorphism σα sends u to uhx, for some h )≡ 0 mod p, and some x in
the subgroup generated by the xi, yi and a, that is, x ∈ Ω1(P ). In particular,
xp = 1 and we have

c1+p = α(c) = (σα)(c) = (σα)(up) = (uhx)p = uphxp = uph = ch.

It follows that h ≡ 1 + p mod pm, i.e. h = 1 + p + tpm. We have therefore

(σα)(u) = u1+pztx.

The element x can be written as x′aε with x′ ∈ 〈xi, yi, i = 1, . . . , !〉 and 0 ≤ ε ≤
p− 1.

If x′ = 1, i.e. x = aε, we choose γ to be the automorphism of P defined by
γ(u) = uaε and the identity on all the other generators. If x′ )= 1 then without
loss of generality we may assume x′ = x1. In this situation, we choose γ to be
the automorphism of P defined by γ(u) = ux, γ(a) = a, γ(x1) = x1, γ(y1) = y1a
and γ is the identity on the other generators, namely xj , yj for j )= 1. In both
cases γ has order p.

Let β be the automorphism of P defined by β(u) = u1+p and the identity
on the other generators. By our definitions, we have (σα)(u) = βγ(u). Since
m > 1, we have βγ )= 1 and (βγ)p = βp, so that βγ has order pm. It follows
that σα has order pm and this contradicts the fact that σ is a homomorphism.

Suppose now p = 2 and m = 2. Then Aut(Z(P )) is cyclic of order 2
generated by the involution δ sending c to c−1. We define δ̃ as the automorphism
of P given by δ̃(u) = u−1 and the identity on all other generators. Note that
this is a well-defined automorphism of P since P ′ has order 2 and thus [a, u−1] =
[a, u] so that all relations will be preserved. The map Aut(Z(P )) → Aut(P )
given by δ .→ δ̃ is the desired homomorphic section.

Suppose now p = 2 and m = 3. The group Aut(Z(P )) is elementary abelian
of rank 2 generated by u2 .→ (u2)5 = u2z and the involution u2 .→ (u2)−1.
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

Consider the automorphism δ of P given by δ(u) = ux1y1, δ(a) = a, δ(x1) =
x1a, δ(y1) = y1a and δ is the identity on the remaining generators, namely the
xj , yj for j )= 1. As defined δ is an automorphism of order 2 and

δ(u2) = u2z = u2(u2)4 = u5.

We have thus a homomorphic section of ρZ(P ). The case p = 2 and m ≥ 4 can
be dealt similarly to the case p odd.

Lemma 3.4.16. There is an injective homomorphism

Aut(U) ↪→ Aut(P )

Proof. If α is an automorphism of U , then α(u) = uk for some k prime to p.
Furthermore, k is unique modulo pm+1. We can define α̃ on the generators of
P by letting

α̃(xi) = xk
i ,

α̃(yi) = yi,

α̃(a) = a,

α̃(u) = α(u) = uk.

We have to check that the relations defining P are preserved. Since k is prime
to p, it is immediate that the order of the generators are preserved. For the
relations [xi, yi] = z, (1 ≤ i ≤ !), we obtain

α̃([xi, yi]) = [α̃(xi), α̃(yi)] = [xk
i , yi] = [xi, yi]k = zk = α(z) = α̃(z).

Similarly, for the relation [a, u] = z we obtain

α̃([a, u]) = [a, uk] = zk = α̃(z).

The remaining relations are verified with a similar argument and this shows
that α̃ extends to an endomorphism of P . Since k is prime to p, α̃ is easily seen
to be an automorphism of P . This shows that any automorphism α of U can
be extended to an automorphism α̃ of P . We still have to show that the map
sending α to α̃ is a homomorphism.

Let α, β ∈ Aut(Z(P )), we have to check that α̃β = α̃β̃. It is enough check
this equality on the generators of P . This is trivially true on the yi, i = 1, . . . , !,
since these maps are the identity on these elements. Let r be such that α(u) = us

and let r be such that β(u) = us. Since α̃β does not depend on the chosen
representative of ab modulo pm+1, we have then αβ(u) = urs so that

α̃β(xi) = (xrs
i ) = (xr

i )
s = (α̃(xi))s = α̃(xs

i ) = α̃(β̃(xi)).

A similar argument shows that α̃β(u) = α̃(β̃(u)) and hence α̃β = α̃β̃. We
have then showed that the map Aut(U) → Aut(P ) given by α .→ α̃ is a ho-
momorphism. If α̃ is the identity on P , then it is also the identity on the sub-
group U and therefore α is the identity. This shows that this homomorphism
Aut(U) → Aut(P ) is injective and the lemma is proved.
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From now on, we identify Aut(U) with its image in Aut(P ). With this
identification, we have the following two results.

Lemma 3.4.17. Let θ ∈ Aut(U) be the automorphism of U defined by θ(u) =
u1+pm

= uz. Then
Aut(U) ∩AutZ(P )(P ) = 〈θ〉.

Proof. As a subgroup of Aut(U), the intersection Aut(U) ∩ AutZ(P )(P ) is the
kernel of the restriction map ρU

Z(P ) : Aut(U) → Aut(Z(P )). Since m > 1,
Lemma 3.2.5 gives that ker ρU

Z(P ) is generated by θ and the lemma is proved.

Lemma 3.4.18. The subgroup AutU (P ) is not normal in Aut(P ).

Proof. Since m > 1 the element ua has the same order as u and we let α be
the automorphism of P defined as α(u) = ua and as the identity on the other
generators of P . The inner automorphism cu is in AutU (P ) and we have

αcuα−1(u) = αcu(ua−1) = α(u(az)−1) = uaa−1z−1 = uz−1.

Therefore αcuα−1 )∈ AutU (P ), so that AutU (P ) is not normal in Aut(P ).

Remark 3.4.19. We have seen above two different ways to decompose Aut(P ).
The first one is to see Aut(P ) as generated by the two subgroups Aut(U) and
AutU (P ). This has the advantage of giving a decomposition of P as a product of
two subgroups with a trivial intersection. However, none of these two subgroups
is canonical, since both are not normal in Aut(P ). The second way of decom-
posing Aut(P ) is as the product of the two subgroups Aut(U) and AutZ(P )(P ).
But now, one of the two subgroups, namely AutZ(P )(P ) is normal in Aut(P ).
For this reason, we will prefer this decomposition even though the intersection
is not trivial. However, this intersection is reasonably small since it is has order
p by Lemma 3.4.17.

We make next some observations on the inner automorphisms of P .

Lemma 3.4.20. Let θ ∈ Aut(U) be defined by θ(u) = u1+pm

= uz.

a) θ = ca.

b) Int(P ) = IntU (P )× 〈θ〉 is elementary abelian of rank 2! + 2.

c) IntU (P ) is elementary abelian of rank 2! + 1.

Proof.

a) By definition ca(u) = uz and ca is the identity on the remaining generators
of P . It follows immediately that θ = ca.

b) The group Int(P ) is elementary abelian of rank 2(! + 1) and has a basis
given by the inner automorphisms {cu, ca, cxi , cyi , i = 1, . . . , !}. The only
basis element that acts non-trivially on U = 〈u〉 is ca = θ. It follows that

Int(P ) = 〈cu, cxi , cyi , i = 1, . . . , !〉 × 〈ca〉 = IntU (P )× 〈θ〉.
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

c) Follows immediately from part b) and the fact that Int(P ) ∼= P/Z(P ) is
elementary abelian of rank 2(! + 1) and θ has order p.

The reader will find in Figure 3.2 a more visual description of some of the
above results.

Aut(P )

%%
%%

%%
%%

%%
%%

%%
%

$$
$$

$

Aut(U)

$$
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$

AutZ(P )(P )

%%
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Int(P )

%%
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〈θ〉
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AutU (P )

%%
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IntU (P )

%%
%%

%%

1

Figure 3.2: Structure of Aut(P ) for P = Xp2!+1 ∗Mpm+2 .

We turn now our attention to the subgroup AutZ(P )(P ) of Aut(P ). Recall
that V = P/Z(P ) is a regular alternating space relatively to the map

b : V × V → Fp

induced by commutators. In particular, we denote by Sp(V ) or Sp(P/Z(P ))
the subgroup of all automorphisms of P/Z(P ) preserving the alternating form b.
Recall also that there is a linear map

ϕ : V → Z(P )/Ω1(Z(P )) ∼= Fp

induced by taking p-th powers.

Definition 3.4.21. Let b be a non-degenerate alternating form on a vector
space V over a field F and let ϕ : V → Fp be a non-zero linear form on V . We
define Spϕ(V ) as the subgroup of GL(V ) consisting of all linear transformations
preserving b and ϕ, namely

Spϕ(V ) = {σ ∈ GL(V ) | b(σv,σw) = b(v, w) and ϕ(σv) = ϕ(v), ∀v, w ∈ V } .

The structure of the group Spϕ(V ) has already been reasonably well de-
scribed by Winter in [32] where this group appears in the study of the automor-
phism group of odd order extraspecial p-groups of exponent p2. The proof of
the following lemma can be found along the lines of Winter’s paper.
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Lemma 3.4.22. Let p be a prime and let V be vector space of over Fp. Let
b : V × V → Fp be a non-degenerate alternating form on V and let ϕ : V → Fp

be a non-zero linear form on V . Then Spϕ(V ) is the semi-direct product of
Sp(2(n− 1), p) acting on an extraspecial p-group of type I and exponent p.

More precisely, let B = {e1, f1, . . . , en, fn} be a symplectic basis of V such
that ϕ(ej) = ϕ(fj) = 0 = ϕ(en) for 1 ≤ j ≤ n− 1 and ϕ(fn) = 1. Let S be the
subgroup of Sp(2n, p) consisting of matrices of the form



 A′ 0

0 I2





with A′ ∈ Sp(2(n − 1), p). Let N be the subgroup of Sp(2n, p) consisting of
matrices of the form





0 −v1

0 u1

I2(n−1)

...
...

0 −vn−1

0 un−1

u1 v1 · · · un−1 vn−1 1 z

0 0 · · · 0 0 0 1





Then S ∼= Sp(2(n − 1), p), N is extraspecial of type I and order 22(n−1)+1 and
Spϕ(V ) is isomorphic to the semi-direct product of S acting on N .

Proof. A detailed proof can be found in [32]. We will however give an idea on
how the proof goes. Let α ∈ Spϕ(V ) and let A be the matrix of α relatively to
the basis B. The kernel of ϕ has basis {ej , fj , en, j = 1, . . . , n− 1} and 〈en〉 =
(ker ϕ)⊥. Since α preserves ϕ and b, we have that α stabilizes ker ϕ and (kerϕ)⊥.
For the same reason, α(fn) = fn + w with w ∈ ker ϕ. It follows then that
α(en) = λen for some λ ∈ Fp and then

1 = b(en, fn) = b(αen,αfn) = b(λen, fn + w) = λb(en, fn) = λ.

Therefore α(en) = en and we have that the matrix A of α relatively to B has
the following form 



0 ∗

A′ ...
...

0 ∗

∗ · · · ∗ 1 ∗

0 · · · 0 0 1





Furthermore, A′ is the matrix of the homomorphism induced by α on the non-
degenerate vector space V/〈en, fn〉, so that A′ ∈ Sp(2(n− 1), p).
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We denote by
π : AutZ(P )(P ) → Aut(P/Z(P ))

the composition of the inclusion map AutZ(P )(P ) → Aut(P ) followed by the
canonical map πP/Z(P ) : Aut(P ) → Aut(P/Z(P )).

Lemma 3.4.23. The image of the map π : AutZ(P )(P ) → Aut(P/Z(P )) is
contained in Spϕ(P/Z(P )).

Proof. Let α ∈ AutZ(P )(P ). By definition, we have

b(α(x),α(y)) = b(α(x),α(y)) = [α(x),α(y)] = α([x, y]) = [x, y] = b(x, y).

The equality α([x, y]) = [x, y] follows from our choice of α in AutZ(P )(P ) and
the fact that P ′ is central. This shows that Im π is contained in Sp(P/Z(P )).
For the same reason we have the following equalities

ϕ(α(x)) = ϕ(α(x)) = (α(x))p = α(xp) = xp = ϕ(x).

This shows that Im π is contained in Spϕ(P/Z(P )) and the lemma is proved.

Lemma 3.4.24. The kernel of π is equal to the group Int(P ).

Proof. The kernel of π is equal to the group AutZ(P ),P/Z(P )(P ) which is iso-
morphic to Hom(P/Z(P ), Z(P )) by Lemma 3.2.1. Since P/Z(P ) is elementary
abelian and Z(P ) is cyclic, we have that Hom(P/Z(P ), Z(P )) has order p2!+2.

Since P ′ ≤ Z(P ), we have that Int(P ) is contained in AutZ(P ),P/Z(P )(P ),
but these groups have the same order since P/Z(P ) is elementary abelian of
rank 2! + 2. Therefore Int(P ) = AutZ(P ),P/Z(P )(P ) = kerπ.

Proposition 3.4.25. Let P = Xp2!+1 ∗Mpm+2 with ! ≥ 0 and m > 1. Then

a) Aut(P ) is generated by AutZ(P )(P ) and a subgroup H ∼= Aut(Cpm+1) with
AutZ(P )(P ) ∩H cyclic of order p.

b) There is an exact sequence

1 → Int(P ) → AutZ(P )(P ) → Spϕ(P/Z(P )) → 1.

Furthermore, Int(P ) is isomorphic to C2(!+1)
p and Spϕ(P/Z(P )) is isomorphic

to a semi-direct product of Sp(2!, p) acting on an extraspecial p-group of type I
and order p2!+1.

Proof. a) Recall from Lemma 3.4.16 that Aut(U) can be identified with a sub-
group H of Aut(P ). More precisely, if α(u) = uk, then α is extended by
α(xi) = xk

i and as the identity on the other generators. If α is in the
intersection H ∩ AutZ(P )(P ), then α is the kernel of the restriction ho-
momorphism Aut(U) → Aut(Z(P )), hence is contained in 〈θ〉, where θ is
defined by θ(u) = u1+pm

. We have of course θ ∈ AutZ(P )(P ), so that
H ∩AutZ(P )(P ) = 〈θ〉 and has order p. This proves our first assertion.
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b) We know from Lemma 3.4.23 that the image of the homomorphism π :
AutZ(P )(P ) → Aut(P/Z(P )) is contained in the subgroup Spϕ(P/Z(P ))
and we know from Lemma 3.4.24 that kerπ = Int(P ). It remains thus to see
that π is surjective on Spϕ(P/Z(P )).
To begin, we reorder the generators of P in the following way. We let

wj =






xj if j = 1, . . . , !.

a if j = ! + 1.

yj if j = ! + 2, . . . , 2! + 1.

u if j = 2! + 2.

The vector space P/Z(P ) has a basis B = {e1, . . . , e2!, e2!+1, e2!+2} where
ei = wi and the matrix of the alternating form b relatively to B is given by



 0 I!+1

I!+1 0



 .

We have to show that any automorphism σ in Spϕ(P/Z/(P )) can be lifted
to an automorphism σ̃ of P such that π(σ̃) = σ. Relatively to the basis B,
the automorphism σ is represented by a matrix s = (si,j) and we let

σ̃(wj) =
2!+2∏

i=1

w
si,j

i .

With this definition, we have σ̃(wi) = σ(wi) and furthermore

[σ̃(wi), σ̃(wj)] = b(σ̃(wi), σ̃(wj)) = b(σ(wi),σ(wj)) = b(wi, wj) = [wi, wj ].

To see that σ̃ defines an endomorphism of P , it remains to check that the
orders are preserved. Since σ preserves ϕ, we have that σ stabilizes kerϕ =
〈e1, . . . , e2!+1〉. It follows that s2!+2,j = 0 for j = 1, . . . , 2! + 1, and hence

σ̃(wj) ∈ Ω1(P ) = 〈w1, . . . , w2!+1〉, for all j = 1, . . . , 2! + 1.

When p is odd, this shows that σ̃(wj) has order p for j = 1, . . . 2!+1. When
p = 2, σ̃(wj) may have order 4 for some j )= 2! + 2. If it is the case, then we
modify our definition of σ̃(wj) by letting

σ̃(wj) =

(
2!+2∏

i=1

w
si,j

i

)
· w,

where w = u2m−1
. Since m > 1, we have that w is central in P , so that all

commuting relations are still preserved, but now σ̃(wj) has order 2, hence
has the same order as wj .
It remains to see that w2!+2 has the same order as σ̃(w2!+2). Since σ pre-
serves ϕ, we have

ϕ(w2!+2) = ϕ(σ(w2!+1)) = ϕ(σ̃(w2!+1))
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and it follows by definition of ϕ that c = wp
2!+2 = σ̃(w2!+2)pg with g ∈

!1(Z(P )) = 〈cp〉. Therefore w2!+2 and σ̃(w2!+2) have the same order.

It is easy now to see that σ̃ is an automorphism of P and we have also
seen that π(σ̃) = σ. Therefore π is surjective on Spϕ(P/Z(P )) so that the
sequence is exact.
The last assertion concerning the isomorphism type of Spϕ(P/Z(P )) can be

found in Lemma 3.4.22.

Corollary 3.4.26. Let P = Xp2!+1 ∗Mpm+2 with ! ≥ 0 and m > 1. Then

|Aut(P )| = p(!+2)2+m−2(p− 1)
!∏

i=1

(p2i − 1).

Remark 3.4.27. In the corresponding case m = 1, P is extraspecial of type II,
that is P = X∗!

p ∗ X−
p3 . For such a group and according to Griess [15], the

extension
1 → Int(P ) → AutZ(P )(P ) → Spϕ(P/Z(P )) → 1

splits when p is odd. The argument seems to be similar to the one for extraspe-
cial p-groups of type I, but in Griess’ words, “. . . is technically more compli-
cated.”. No more details are given by Griess, but it is highly probable that the
argument could be generalized to the case m > 1 when p is odd. We have no
clue however of what happens when p = 2 and m > 1.

Automorphisms of p-groups with cyclic and non-central
Frattini subgroup

So far, we have treated the case of p-groups with cyclic and central Frattini
subgroup. Recall that if the Frattini subgroup of P is cyclic but not central, say
of order 2m+1, with m > 1, then p = 2 and P is isomorphic to E × (D∗!

8 ∗ S),
with ! ≥ 0, and where E is elementary abelian and S is one of the groups in
the following list:

D2m+2 , SD2m+2 , Q2m+2 , D+
2m+3 , Q

+
2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D

+
2m+3 ∗ C4.

(3.7)
In view of Lemma 3.4.1, we may assume that E = 0, so that P = D∗!

8 ∗ S, with
S as in (3.7). In all cases, the subgroup C0 = CP (Φ(P )) is maximal in P and
Φ(C0) = Φ(P ) is cyclic and central in C0. More precisely, C0 is isomorphic to

(I) D∗!
8 ∗ C2m+1 , if S is isomorphic to D2m+2 , SD2m+2 , or Q2m+2 ;

(II) D∗!
8 ∗M2m+2 , if S is isomorphic to D+

2m+3 or Q+
2m+3 ;

(III) (D∗!
8 ∗ C2m+1)× C2, if S is isomorphic to D2m+2 ∗ C4 or SD2m+2 ∗ C4;

(IV) (D∗!
8 ∗M2m+2)× C2, if S is isomorphic to D+

2m+3 ∗ C4.

The automorphism group of C0 is thus known by our previous results. In what
follows, we are going to describe the automorphism group of P mainly in terms
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of Aut(C0). Since C0 is characteristic in P , restriction of automorphisms induces
a homomorphism

ρ : Aut(P ) → Aut(C0).

In order to describe Aut(P ), we are going to identify the image of ρ and its
kernel, for all the possible choices of S. We will see in particular, that ρ is
surjective, unless if S = D2m+2 ∗ C4 or S = SD2m+2 ∗ C4, in which case the
image of ρ is a subgroup of index 2 in Aut(C0).

Proposition 3.4.28. Let P = D∗!
8 ∗ S, where S is one of the groups in the

list (3.7). Let C0 = CP (Φ(P )) and let ρ : Aut(P ) → Aut(C0) be the homomor-
phism induced by restriction of automorphisms.

a) If S = D2m+2 ∗C4 or S = SD2m+2 ∗C4, then the image of ρ is the stabilizer
of a cyclic subgroup of Z(C0) of maximal order. In particular, the image of
ρ has index 2 in Aut(C0).

b) In all other cases, ρ is surjective.

Proof. Let z be a generator of Z(P ) and let x1, y1, . . . , x!, y! be symplectic
generators of the subgroup D∗!

8 , all of order 2 and such that [xi, yi] = z, for
i = 1, . . . , !.

(I) Suppose first that S is one of the groups D2m+2 , SD2m+2 or Q2m+2 .
Then S has two generators u and b, with u of order 2m+1. The generator b has
order 2 if S is D2m+2 or SD2m+2 , and has order 4 if S = Q2m+2 . The action
of b on u is given by bub−1 = u−1 if S is D2m+2 or Q2m+2 , and is given by
bub−1 = u−1+2m

= u−1z if S = SD2m+2 .
The subgroup C0 is isomorphic to D∗!

8 ∗C2m+1 and has the following gener-
ators

C0 = 〈x1, y1, . . . , x!, y!, u〉.

Let α be an automorphism of C0. To show that ρ is surjective, we have to
show that α can be extended to P , i.e. we have to define the value of α on the
remaining generator b.

The center of C0 is the cyclic subgroup of order 2m+1 generated by u, so
that in particular α(u) = uk for some odd k. The subgroup Ω0 = Ω1(C0) is
characteristic in C0, hence in P , and for ! ≥ 1, the group Ω0 has the following
generators, where w = u2m−1

:

Ω0 = 〈x1, y1, . . . , x!, y!, w〉.

In particular, we have
α(xi) = aiw

ri (3.8)

for some ai ∈ 〈xi, yi, i = 1, . . . , !〉 and ri ∈ {0, 1}. We have similarly

α(yi) = biw
si (3.9)

for some bi ∈ 〈xi, yi, i = 1, . . . , !〉 and si ∈ {0, 1}.
To extend α to the whole group P , we let

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· b. (3.10)
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If ! = 0, we simply let α(b) = b. To see that this extends α to an automorphism
of P , we mainly have to check that, as defined, α is an endomorphism of P ,
the bijectivity of α being clear from the definition. We have thus to show
that α(b)2 = b2, that the action of b on u is preserved and that the relations
[b, xi] = 1 and [b, yi] = 1 are preserved for i = 1, . . . , !. The other relations
defining P are expressed inside C0, hence are automatically preserved since α
is an endomorphism of C0.

We consider first the relation [b, xi] = 1. It is useful to note here that the
subgroup generated by b and w is isomorphic to D8, since bwb−1 = w−1 = wz.
The subgroup generated by Ω0 and b has thus a central Frattini subgroup of
order 2, namely Z(P ). It follows that commutators can be computed easily (see
Lemma 1.2.1). We have

[α̃(b), α̃(xi)] = [
!∏

j=1

α(xj)sj α(yj)rj b, α(xi)] = [α(yi)rib, α(xi)]

= [α(yi),α(xi)]ri [b, aiw
ri ] = α([xi, yi]ri) · [b, wri ]

= zri · zri = 1.

(3.11)

Therefore the relations [b, xi] = 1, i = 1, . . . , !, are preserved and a similar
argument shows that the relations [b, yi] = 1 are also preserved.

Since α is an endomorphism of C0, we have that α(xi) and α(yi) commute
with α(u), for all i = 1, . . . , !. It follows that the action of α(b) on α(u) = uk is
the same as the action of b on α(u), hence the relation given by the action of b
on u is preserved.

It remains thus to see that α(b)2 = b2. Let r =
∑!

i=1 risi, we have first

!∏

i=1

α(xi)siα(yi)ri =
!∏

i=1

(aiw
ri)si(biw

si)ri =
!∏

i=1

asi
i wrisibri

i wrisi =
!∏

i=1

asi
i bri

i zr.

It follows now from Lemma 1.2.2 that

(α(b))
2

=

(
!∏

i=1

asi
i bri

i zr

)2

· b2 · [b,
!∏

i=1

asi
i bri

i zr] = zrb2

To see that α(b)2 = b2, we are thus led to check that r =
∑!

i=1 risi = 0. For
this, note that the group Ω0 is isomorphic to D∗!

8 ∗ C4 and hence the quotient
V = Ω0/Z(P ) is a quadratic space endowed with the quadratic form q given
by q(x) = x2 ∈ Φ(Ω0). The polar form of q is the alternating form b induced
by commutators so that in particular V = W ⊕ V ⊥, where V ⊥ is the one-
dimensional subspace of V generated by the class of w in V . The automorphism
α induced by α on V preserves the quadratic form since α is the identity on
Φ(Ω0) = Z(P ).

The vector space V has a basis B given by the images in V of the elements
xi, yi, i = 1, . . . , !, and w. It follows from (3.8) and (3.9) that the matrix of α
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relatively to the basis B has the following form:




0

A
...

0

r1 s1 · · · r! s! 1





and is in the orthogonal group O(2! + 1, 2) since α preserve q. It follows now
from a general result on the orthogonal group O(2! + 1, 2) (see Proposition
B.0.22 in Appendix B) that

∑!
i=1 risi = 0.

(II) Suppose now that S is the group D+
2m+3 or the group Q+

2m+3 . Let a, b
and u be generators of S such that u has order 2m+1, a has order 2, aua−1 =
u1+2m

= uz, bub−1 = u−1 and a and b commute. The generator b has order 2
if S = D+

2m+3 , and has order 4 if S = Q+
2m+3 .

The subgroup C0 of P has the following generators

C0 = 〈x1, y1, . . . , x!, y!, u, a〉

and is isomorphic to D∗!
8 ∗M2m+2 . The subgroup Ω0 = Ω1(C0) is characteristic

in C0, hence in P and, for ! ≥ 1, has the following generators

Ω0 = 〈x1, y1, . . . , x!, y!, w, a〉,

where w = u2m−1
. It follows that

α(xi) = aiw
ri , (3.12)

for some ai ∈ 〈x1, y1, . . . , x!, y!, a〉 and ri ∈ {0, 1}. We have similarly

α(yi) = biw
si , (3.13)

for some bi ∈ 〈x1, y1, . . . , x!, y!, a〉 and si ∈ {0, 1}.
We have also α(u) = ukxaε, for some odd k, x ∈ 〈xi, yi, i = 1, · · · , !〉 and

ε ∈ {0, 1}. Since the subgroup Ω1(Z(Ω0)) = 〈z, a〉 is characteristic in C0, we
have α(a) = a or α(a) = az. To extend α to an automorphism of P , it remains
to choose its value on the generator b. We let

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· b. (3.14)

If ! = 0, we simply let α(b) = b. We have to check that this definition preserves
the relations defining P . We only have to check that α(b)2 = b2 and that the
following relations are preserved:

bub−1 = u−1,

[b, xi] = [b, yi] = 1, for all i = 1, . . . , !,
[b, a] = 1.

The other relations are defined inside C0 and are immediately preserved since
α is an endomorphism of C0. It is almost immediate that the relation [b, a] = 1
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

is preserved, since α(xi) and α(yi) commute with a, for all i = 1, . . . , !. The
verification that the relations [b, xi] = [b, yi] = 1 are preserved is identical to the
one performed in the previous case in (3.11).

We consider now the action of b on u. We have to verify that

α(b)α(u)α(b)−1 = α(u)−1.

Since α is an endomorphism of C0, we have that α(xi) and α(yi) commute with
α(u), for all i = 1, . . . , !. We have then

α(b)α(u)α(b)−1 = bα(u)b−1 = b(ukxaε)b−1 = u−kxaε.

We have now

(α(b)α(u)α(b)−1)α(u) = (u−kxaε)(ukxaε) = zεx2.

Since x2 ∈ 〈z〉, we have either zεx2 = 1, or zεx2 = z. If we are in this second
case, namely zεx2 = z, then we modify our initial definition of α(b) by choosing
instead

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· ba. (3.15)

In this way, we introduce, if needed, the element a in α(b) in order to have
α(b)α(u)α(b)−1 = α(u)−1, so that the relation bub−1 = u−1 is preserved. Note
that since a is central in Ω0, the relations [b, xi] = [b, yi] = 1 and [b, a] = 1 are
still preserved after the modification performed in (3.15).

It remains now to see that α(b)2 = b2. This is done in a manner similar
to what was performed in the previous case with only small changes, that we
indicate now. The first difference is that, in some cases, α(b) has to be modified
by the element a as in (3.15). But this change has no incidence on the value of
α(b)2, since a has order 2, is central in Ω0 and commutes with b. The second
difference is that here Ω0 is isomorphic to (D∗!

8 ∗C4)×C2 and we have have to
consider then the quadratic space V = Ω0/Ω1(Z(Ω0)), which has a symplectic
basis induced by w and the generators xi, yi, for i = 1, . . . , !. The rest of the
argument is then identical to the one in the previous case.

(III) Suppose now that S = D2m+2 ∗ C4 or S = SD2m+2 ∗ C4. Let u, b and
c be generators of S, such that c is central in S with c2 = z, the generator u
has order 2m+1 and b has order 2. We will assume that S = D2m+2 ∗ C4, so
that bub−1 = u−1. The other case, namely S = SD2m+2 ∗ C4, can be treated
similarly.

In this situation, the group C0 has the following generators

C0 = 〈x1, y1, . . . , x!, y!, u, c〉

and is isomorphic to D∗!
8 ∗ C2m+1 ∗ C4

∼= (D∗!
8 ∗ C2m+1) × C2. The subgroup

Z0 = Z(C0) is generated by u and c, is characteristic in P and has two cyclic
subgroups of maximal order, namely 〈u〉 and 〈uc〉. The automorphism group of
P acts on these two subgroups and we show first that any automorphism of P
stabilizes 〈u〉.

Supppose by contradiction that β ∈ Aut(P ) does not centralize 〈u〉. We have
then that β(u) = ukc, for some odd k. Since C0 is a characteristic subgroup
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of index 2 in P and b )∈ C0, we have β(b) ∈ bC0. Since β(u) ∈ Z0 is obviously
central in C0, we have thus

β(bub−1) = β(b)β(u)β(b)−1 = bβ(u)b−1 = b(ukc)b−1 = u−kc.

But this is a contradiction, since β(bub−1) = β(u−1) = β(u)−1 = u−kc−1. Any
automorphism of P must then stabilize 〈u〉, that is, must stabilize the cylic
subgroups of maximal order in Z0.

We show next that any automorphism α of C0 that stabilizes 〈u〉 can be
extended to an automorphism of the whole group P . For ! ≥ 1, the subgroup
Ω0 = Ω1(C0) has the following generators

Ω0 = 〈x1, y1, . . . , x!, y!, w, c〉,

and is isomorphic to (D∗!
8 ∗ C4)× C2. Similarly to the previous cases, we have

then α(xi) = aiwri and α(yi) = biwsi , with ai, bi ∈ 〈x1, y1, . . . , x!, y!, c〉. The
subgroup Ω1(Z(Ω0)) = 〈z, c〉 is characteristic in P , so that α(c) = c or α(c) = cz.
The automorphism α ∈ Aut(C0) can now be extended to b exactly as in (3.10),
that is,

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· b. (3.16)

If ! = 0, we simply let α(b) = b. The verifications that the relations

[b, xi] = [b, yi] = 1, for all i = 1, . . . , !,

are preserved can be done similarly to what was performed in the first case of
the proof. The only change is the eventual presence of the generator c, but
this does not have any incidence on the argument, since c is central. Since α
stabilizes 〈u〉, we have α(u) = uk, for some odd k and the verification that the
relation

bub−1 = u−1

is preserved can also be done similarly to what was performed in the first case of
the proof. It is easy to see that the relation [c, b] = 1 is preserved and it remains
to see that α(b) has order 2. For this, an argument similar to the one used in the
first case of the proof can be used, but there is however a much easier argument
in this situation. Indeed, if α(b)2 = z, then we modify our initial definition of
α(b) by letting

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· bc.

instead of (3.16), so that now α(b)2 = 1.
(IV) Suppose now that S = D+

2m+3 ∗ C4. Let a, b, u and c be generators of
S, where c is central in S with c2 = z, u has order 2m+1, a and b have order 2,
aua−1 = uz and bub−1 = u−1. The subgroup C0 has the following generators

C0 = 〈x1, y1, . . . , x!, y!, a, u, c〉

and is isomorphic to D∗!
8 ∗ M2m+2 ∗ C4

∼= (D∗!
8 ∗ M2m+2) × C2. Similarly to

the previous cases, we have α(xi) = aiwri and α(yi) = biwsi , where ai, bi are
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elements of the subgroup 〈x1, y1, . . . , x!, y!, a, c〉, for all i = 1, . . . , !. We let

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· b. (3.17)

We have α(u) = ukxaεcδ, for some odd k, and with x ∈ 〈xi, yi, i = 1, · · · , !〉 and
ε, δ ∈ {0, 1}. The action of α(b) on α(u) is given by

α(b)α(u)α(b)−1 = bα(u)b−1 = b(ukxaε)cδb−1 = u−kxaεcδ.

We have now

(α(b)α(u)α(b)−1)α(u) = (u−kxaεcδ)(ukxaεcδ) ∈ 〈z〉.

If (α(b)α(u)α(b)−1)α(u) = z, then we modify the initial definition (3.17) of α(b)
by letting

α(b) =

(
!∏

i=1

α(xi)siα(yi)ri

)
· ba.

As defined, α preserves the relation bub−1 = u−1. The element α(b) can be
modified by c, if needed, in order to have α(b)2 = 1. The verification that the
other relations are preserved is similar to the one performed in the previous
cases.

We are now in position to describe the automorphism groups of p-groups
with a cyclic but non-central Frattini subgroup. Recall that this implies p = 2
and that we may assume that the center of P is cyclic, so that P = D∗!

8 ∗ S,
where S is one of the following groups:

D2m+2 , SD2m+2 , Q2m+2 , D+
2m+3 , Q

+
2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D

+
2m+3 ∗ C4.

(3.18)

Proposition 3.4.29. Let P = D∗!
8 ∗ S with S taken in the list (3.18). If

S = D2m+2 ∗ C4 or S = SD2m+2 ∗ C4, then there is an exact sequence

1 → AutC0(P ) → Aut(P ) → A → 1,

where A is a subgroup of index 2 of AutC0. More precisely, A is the stabilizer
in Aut(C0) of a cyclic subgroup of maximal order in Z(C0). In all other cases,
there is an exact sequence

1 → AutC0(P ) → Aut(P ) → Aut(C0) → 1.

Furthermore, in all cases, AutC0(P ) is cyclic and more precisely, AutC0(P ) has
order 2m+1 if S is one of the following groups:

D2m+2 , Q2m+2 , D2m+2 ∗ C4, SD2m+2 ∗ C4;

and has order 2m if S is one of the following groups:

SD2m+2 , D+
2m+3 , Q

+
2m+3 , D

+
2m+3 ∗ C4.
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Proof. We have seen in the previous proposition that the homomorphism ρ :
Aut(P ) → Aut(C0) is surjective. It is immediate that ker ρ is the group
AutC0(P ) and we obtain thus the desired exact sequence. It remains to de-
termine more precisely this group AutC0(P ) for each of the groups in the list
(3.18).

Let z be a generator of Z(P ) and let x1, y1, . . . , x!, y! be symplectic genera-
tors of the subgroup D∗!

8 , all of order 2 and such that [xi, yi] = z, for i = 1, . . . , !.
Suppose first S = D2m+2 and let b, u be generators of S with u of order 2m+1,

b of order 2 and bub−1 = u−1. Let α ∈ AutC0(P ). Since C0 is characteristic in
P and P/C0 has order 2, we have α(b) ∈ bC0, hence

α(b) = bukx

for some k and some x ∈ 〈xi, yi, i = 1, . . . , !〉. If x is not in Z(P ), then there
exists y ∈ 〈xi, yi, i = 1, . . . , !〉 such that [x, y] = z. Since 〈xi, yi, i = 1, . . . , !〉 is
contained in C0, we have α(y) = y, so that

α([b, y]) = [α(b),α(y)] = [bukx, y] = [x, y] = z

which is a contradiction, since [b, y] = 1. It follows that x must be in Z(P ), hence
α(b) = buk for some k, since z = u2m

. The group AutC0(P ) is thus generated
by the automorphism µ of P0 defined by µ(b) = bu and by the identity on C0.
Since µk(b) = buk, we have that µ has order 2m+1, so that AutC0(P ) is cyclic
of order 2m+1.

The case S = Q2m+2 is identical to the previous case. For S = SD2m+2 ,
the situation is analogous, with the difference that the generator of AutC0(P )
is defined then by µ(b) = bu−2, since bui has not order 2 if i is odd. It follows
that for S = SD2m+2 , the group AutC0(P ) is cyclic of order 2m.

Suppose now S = D+
2m+3 and let u, b, a be generators of S, with u of order

2m+1, a and b of order 2 and such that [a, b] = 1, aua−1 = uz and bub−1 = u−1.
We have

α(b) = bukxaε,

for some k, ε ∈ {0, 1} and x ∈ 〈xi, yi, i = 1, . . . , !〉. The same argument as above
shows that x must be in Z(P ), so that we may assume x = 1. Furthermore,
since u is fixed by α, the action of α(b) on u must be the same as the action of
b on u, so that we must have ε = 0 and hence

α(b) = buk

for some k. Since a and b commutes and a is fixed by α, we must also have
that α(b) commutes with a, so that k must be even. The subgroup AutC0(P )
is thus generated by the automorphism µ of P defined by µ(b) = bu2 and by
the identity on C0. It follows that AutC0(P ) is cyclic of order 2m. The same
argument shows the same result if S = Q+

2m+3 .
Suppose now S = D2m+2 ∗C4. Let b, u be generators of the subgroup D2m+2

as above and let c be a generator of the central subgroup C4. If α is an auto-
morphism of P acting as the identity on C0, then the same arguments as above
show that

α(b) = bukcδ

for some k and δ. Since c has order 4 and commutes with b and u, we must
have cδ ∈ 〈z〉, so that α(b) = buk for some k. It follows that AutC0(P ) is cyclic
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3.4 Automorphisms of p-groups with cyclic Frattini subgroup

of order 2m+1 generated by the automorphism of P sending b to bu and acting
as the identity on C0.

If S = SD2m+2 ∗ C4, then for identical reasons, we have α(b) = bukcδ. But
since buk may have order 4, we don’t have necessarily that cδ is in 〈z〉. In fact,
AutC0(P ) is cyclic of order 2m+1 generated by the automorphism sending b to
buc and acting as the identity on C0.

The case S = D+
2m+3 ∗C4 is similar to the above treated case S = D+

2m+3 . In
this situation, AutC0(P ) is cyclic of order 2m generated by the automorphism
of P sending b to bu2 and acting as the identity on C0.

Corollary 3.4.30. Let P = D∗!
8 ∗ S, with S as in (3.18).

a) If S = D2m+2 or S = Q2m+2 , then

|Aut(P )| = 2(!+1)2+2m
!∏

i=1

(22i − 1).

b) If S = SD2m+2 , then

|Aut(P )| = 2(!+1)2+2m−1
!∏

i=1

(22i − 1).

c) If S = D+
2m+3 or S = Q+

2m+3 , then

|Aut(P )| = 2(!+2)2+2m−2
!∏

i=1

(22i − 1).

d) If S = D2m+2 ∗ C4 or S = SD2m+2 ∗ C4, then

|Aut(P )| = 2(!+2)2+2m−2
!∏

i=1

(22i − 1).

e) If S = D+
2m+3 ∗ C4, then

|Aut(P )| = 2(!+3)2+2m−4
!∏

i=1

(22i − 1).

Proof. The exact sequence

1 → AutC0(P ) → Aut(P ) → Aut(C0) → 1

shows in particular that |Aut(P )| = |AutC0(P )| · |Aut(C0)|. The order of
AutC0(P ) can be found in Proposition 3.4.29 and the order of Aut(C0) can be
deduced from Corollary 3.4.3, Corollary 3.4.12 and Corollary 3.4.26.
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3.5 Automorphisms of p-groups of class 2 with
cyclic center

In this section, p will always denote an odd prime number. Let P be a p-
group of class 2 with a cyclic center and such that P/Z(P ) is homocyclic. The
description of the automorphism group of such groups is very similar to the
description for p-groups with cyclic and central Frattini subgroup performed
previously. As a first step, we show that the problem can be reduced to the
study of automorphisms fixing the center pointwise.

We fix a p-group P of class 2 with a cyclic center and such that P/Z(P ) is
homocyclic of type pm, m ≥ 1. Recall from Lemma 1.4.1 that pm is also the
order of the derived subgroup P ′ of P . The group P is isomorphic to one of the
following groups

1. P = X3(pm)∗! ∗ Cpm+r , with ! ≥ 1 and r ≥ 0.

2. P = X3(pm)∗(!−1) ∗M(m, s), with ! ≥ 1 and s ≥ 1.

3. P = X3(pm)∗(!−1) ∗M(m, s) ∗ Cpm+r , with ! ≥ 1 and 1 ≤ r < s < m + r.

We will treat these three cases separately, but before we briefly recall the def-
inition of the alternating form and the linear form on P/Z(P ). We denote by
V = P/Z(P ) and for x ∈ P we denote by x its class in V . Let z be a generator
of Z(P ) and c = zpr

be a generator of P ′, the map

b : V × V → Z/pmZ

defined by [x, y] = cb(x,y) is a non-degenerate alternating form on the free
Z/pmZ-modulo P/Z(P ). In order to simplify the notation, we will sometimes
use b(x, y) also to denote the element [x, y].

The map
ϕ : V → Z/pmZ

defined by xpm

= π(z)ϕ(x), where π is the canonical homomorphism Z(P ) →
Z(P )/!m(P ), is a linear form on V .

Automorphisms of X2!+1(pm) ∗ Cpm+r

Let P = X3(pm)∗! ∗Cpm+r with ! ≥ 1, m ≥ 1 and r ≥ 0. Note that when r = 0,
P is simply the group X3(pm)∗! = X2!+1(pm). Let z be a generator of Z(P ).
The group P is generated by z and elements x1, y1, . . . , x!, y! all of order pm

and satisfying

[xi, yi] = zpr

, for all 1 ≤ i ≤ !.

[xi, xj ] = [xi, yj ] = [yi, yj ] = 1, for all 1 ≤ i )= j ≤ !.

Lemma 3.5.1. The following sequence is exact and splits

1 → AutZ(P )(P ) → Aut(P ) → Aut(Z(P )) → 1.
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Proof. It is enough to show that there exists a homomorphic section. If α is
an automorphism of Z(P ), then α(z) = zk for some k prime to p and uniquely
determined modulo pm+r. We extend α to an automorphism α̃ of P by letting

α̃(z) = α(z) = zk.

α̃(xi) = xi, for all 1 ≤ i ≤ !.

α̃(yi) = yk
i , for all 1 ≤ i ≤ !.

All relations are preserved and k is prime to p, so that α̃ is an automorphism
of P . The definition of α̃ does not depend on the choice of k modulo pm+r so
that the map sending an automorphism α of Z(P ) to the automorphism α̃ of
P is a homomorphism. This shows that the sequence splits and the lemma is
proved.

From now on, we identify Aut(Z(P )) to a subgroup of Aut(P ). If α is
an automorphism of Z(P ), we will also use α to denote its extension to an
automorphism of the whole group P .

Since Z(P ) is characteristic, there is a canonical homomorphism

π : AutZ(P )(P ) → Aut(P/Z(P )).

We denote by Sp(P/Z(P )) the subgroup of Aut(P/Z(P )) consisting of all au-
tomorphisms preserving b, namely

Sp(P/Z(P )) = {α ∈ Aut(P/Z(P )) | b(αv,αw) = b(v, w), ∀v, w ∈ P/Z(P )} .

Choosing a basis of the free Z/pmZ-module P/Z(P ), we can identify the groups
Sp(P/Z(P )) and Sp(2!, Z/pmZ). The following lemma shows that automor-
phisms of P fixing Z(P ) pointwise preserve the alternating form b, hence are in
Sp(P/Z(P )).

Lemma 3.5.2. The image of π is contained in Sp(P/Z(P )).

Proof. If α is an automorphism of P fixing Z(P ) pointwise, then by definition
π(α)(x) = α(x) and thus

b(x, y) = [x, y] = α([x, y]) = [αx,αy] = b(α(x),α(y)) = b(π(α)(x),π(α)(y)).

Therefore π(α) preserves the non-degenerate alternating form b induced by the
commutators.

Lemma 3.5.3. The kernel of π is equal to the group Int(P ) of inner automor-
phisms of P .

Proof. The kernel of π consists of all automorphisms of P fixing Z(P ) and
P/Z(P ) pointwise. It follows from Lemma 3.2.1 that ker π is isomorphic to
Hom(P/Z(P ), Z(P )). But Z(P ) is cyclic of order pm+r and P/Z(P ) is a direct
product of 2! copies of the cyclic group pm, hence

ker π ∼= Hom((Cpm)2!, Cpm+r ) ∼= Hom((Cpm)2!, Cpm) ∼= (Cpm)2!.
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Since also Int(P ) ∼= P/Z(P ) ∼= (Cpm)2!, it is enough to check that Int(P )
is contained in ker π. It is clear that any inner automorphism of P fixes Z(P )
pointwise. Since P ′ is central in P , we also have cx(y) ∈ yZ(P ) for any x, y ∈ P .
It follows that cx induces the identity on P/Z(P ) and therefore Int(P ) ≤ ker π
and the lemma is proved.

Proposition 3.5.4. Let P = X2!+1(pm) ∗Cpm+r with ! ≥ 1, m ≥ 1 and r ≥ 0.
Then

Aut(P ) = AutZ(P )(P ) " Aut(Z(P ))

and there is a short exact sequence

1 → Int(P ) → AutZ(P )(P ) → Sp(2!, Z/pmZ) → 1.

Proof. In view of the previous lemmas, it remains only to check that the map
π : AutZ(P )(P ) → Aut(P/Z(P )) is surjective on Sp(P/Z(P )). To begin, we
reorder the elements x1, y1, . . . , x!, y!. For j = 1, . . . , ! we let wj = xj and
wj+! = yj . We have this way

[wi, wj ] =

{
zpr

if |i− j| = !.

1 else.

We will show that any automorphism of P/Z(P ) preserving b is induced by
an automorphism of P . So let α be an automorphism of P/Z(P ) such that
α(b(v, w)) = b(αv,αw) for all v, w ∈ P/Z(P ). For any x ∈ P we denote by x
its class in P/Z(P ). We have then for all i = 1, . . . , 2!

α(wi) = w
s1,i

1 · · ·ws2!,i

2! .

We define now α̃ : P → P to be the map with the following values on the
generators of P

α̃(z) = z,

α̃(wi) = w
s1,i

1 · · ·ws2!,i

2! .

With this definition, we have α̃(wi) = α(wi) and since α preserves b we have
now for all 1 ≤ i, j ≤ 2!

[α̃(wi), α̃(wj)] = b(α̃(wi), α̃(wj)) = b(α(wi),α(wj)) = b(wi, wj) = [wi, wj ].

Since α is invertible, for all 1 ≤ i ≤ 2! there exists j such that sj,i is prime to
p. It follows from Lemma 1.4.2 that α̃(wi) has order pm and therefore α̃ is an
endomorphism of P . Since α is an automorphism, α̃ is also invertible hence α̃ is
an automorphism of P . It is clear that α̃ induces α on P/Z(P ). It follows that
π is surjective on the subgroup of Aut(P/Z(P )) consisting of automorphisms
preserving the non-degenerate alternating form b, that is Im ψ is isomorphic to
the group Sp2!(Z/pmZ).
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3.5 Automorphisms of p-groups of class 2 with cyclic center

Automorphisms of X2(!−1)+1(pm) ∗M(m, s)

Let P = X3(pm)∗(!−1) ∗M(m, s) with ! ≥ 1 and s ≥ 1 and let z be a generator
of Z(P ). Recall that Z(P ) has order pmax{m,s}. The group P is generated by z
and elements x1, y1, . . . , x!, y! such that all except y! have order pm and satisfy

[xi, yi] = z.

[xi, xj ] = [xi, yj ] = [yi, yj ] = 1.

Furthermore, we have

ypm

! =

{
zpm−s

if s ≤ m.

z if m ≤ s.

Let U be the subgroup generated by y!. This is a cyclic subgroup of P of
order pm+s containing P ′.

Lemma 3.5.5. There is an injective homomorphism

Aut(U) ↪→ Aut(P ).

Proof. An automorphism α ∈ Aut(U) sends y! to yk
! for some k prime to p and

uniquely defined modulo pm+s. We extend α to the whole group P by letting

α̃(xi) = xi,

α̃(yi) = yk
i ,

α̃(z) = zk.

As defined, α̃ preserves all the relations. Since k is prime to p, it follows that α̃
is an automorphism of P and by definition α̃ extends α.

The element z has order pmax{m,s}. Since m, s ≥ 1, we have then m < m+ s
and s < m+s. It follows that the definition of α̃ is independent of the choice of a
representative of k modulo pm+s. The map sending α ∈ Aut(U) to α̃ ∈ Aut(P )
is a then a homomorphism. If α̃ is the identity on P then by definition α̃ is the
identity on U so that this homomorphism Aut(U) → Aut(P ) is injective and
the lemma is proved.

Let w ∈ Z(P ) be defined by

w =

{
ypm

! if s ≤ m.

yps

! if m ≤ s.

Let θ be the automorphism of U defined by θ(y!) = y!w, that is

θ(y!) =

{
y1+pm

! if s ≤ m

y1+ps

! if m ≤ s

We denote also θ its extension to the whole group P given by Lemma 3.5.5.
Remark then that θ is the identity on all generators except y!.
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Lemma 3.5.6. The intersection Aut(U) ∩AutZ(P )(P ) is generated by 〈θ〉 and
in particular is cyclic of order pmin{m,s}.

Proof. We first show that θ(w) = w. If s ≤ m, then θ(w) = w1+pm

= wwpm

.
But w has order ps with s ≤ m so that wpm

= 1 and hence θ(w) = w. A similar
argument shows that θ(w) = w also when m ≤ s.

We have then that θa(y!) = y!wa. It follows that θ has the same order as
w, hence θ has order ps if s ≤ m and order pm if m ≤ s.

When s ≤ m, we have z = [x!, y!] so that θ(z) = [x!, y!w] = z since w is
central. When m ≥ s, we have z = ypm

and hence θ(z) = ypm

wpm

= z since
wpm

= 1. It follows that in both cases θ(z) = z so that θ ∈ Aut(U)∩AutZ(P )(P ).
It remains to show that θ generates Aut(U)∩AutZ(P )(P ). If α ∈ Aut(U)∩

AutZ(P )(P ) is given by α(y!) = yk
! then z = α(z) = zk. If s ≤ m, this implies

that k = 1 + apm for some a. It follows that α(y!) = y!wa and hence α = θa.
A similar argument shows that α ∈ 〈θ〉 also when m ≤ s and the lemma is
proved.

Since Z(P ) is characteristic, there is a well-defined map

π : AutZ(P )(P ) → Aut(P/Z(P )).

Furthermore, the image of θ ∈ AutZ(P )(P ) must preserve the non-degenerate
alternating form b on P/Z(P ) induced by commutators and the linear form ϕ in-
duced by pm-th powers. We denote Spϕ(P/Z(P )) the subgroup of Sp(P/Z(P ))
consisting of all automorphisms of P/Z(P ) preserving b and ϕ, namely

Spϕ(P/Z(P )) = {α ∈ Aut(P/Z(P )) | b(αv,αw) = b(v, w) and ϕ(αv) = ϕ(v),
∀v, w ∈ P/Z(P )}

Lemma 3.5.7. The image of π is contained in Spϕ(P/Z(P )).

Proof. If α is an automorphism of P fixing Z(P ) pointwise, then by definition
π(α)(x) = α(x) and thus

b(x, y) = [x, y] = α([x, y]) = [αx,αy] = b(α(x),α(y)) = b(π(α)(x),π(α)(y)).

Therefore π(α) preserves the non-degenerate alternating form b induced by the
commutators. We have furthermore α(xpm

) = xpm

, since xpm ∈ Z(P ) for all
x ∈ P . Therefore ϕ(π(α)(v)) = ϕ(v) for all v ∈ P/Z(P ) and the lemma is
proved.

Lemma 3.5.8. The kernel of π is equal to the group Int(P ) of inner automor-
phisms of P .

Proof. We set r = 0 if s ≤ m and r = s − m if m ≤ s, so that in both cases
|Z(P )| has order pm+r. It follows from Lemma 3.2.1 that

ker ψ ∼= Hom(P/Z(P ), Z(P )) = Hom((Cpm)2!, Cpm+r ) ∼= (Cpm)2!.

Since also Int(P ) ∼= P/Z(P ) ∼= (Cpm)2!, it remains to show that Int(P ) is
contained in kerπ. This follows as usual from the fact that the commutators
are central in P and the lemma is proved.
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Proposition 3.5.9. Let P = X3(pm)∗(!−1) ∗ M(m, s) with ! ≥ 1 and s ≥ 1.
Then Aut(P ) is generated by AutZ(P )(P ) and a subgroup H ∼= Aut(Cpm+s).
Furthermore, H ∩AutZ(P )(P ) is cyclic of order pmin{m,s} and there is an exact
sequence

1 → Int(P ) → AutZ(P )(P ) → S → 1

where S is isomorphic to the subgroup of Sp2!(Z/pmZ) consisting of matrices s
such that s2!,j = 0 for j = 1, . . . , 2!− 1 and

s2!,2! ≡
{

1 mod ps if s ≤ m.

1 mod pm if m ≤ s.

Proof. We show first that the group Spϕ(P/Z(P )) is isomorphic to S. In view
of the preceding lemmas, it will then only remain to show that the map π :
AutZ(P )(P ) → Aut(Z(P )) is surjective on Spϕ(P/Z(P )).

To begin, we reorder the elements x1, y1, . . . , x!, y!. For j = 1, . . . , ! we let
wj = xj and wj+! = yj . We have this way

[wj , wk] = zpr

, if |j − k| = !,

[wj , wk] = 1, else.

Furthermore, wj has order pm for 1 ≤ j ≤ 2!− 1 and

wpm

2! =

{
zpm−s

if s ≤ m.

z if m ≤ s.

Let B = {w1, . . . , w2!} be the basis of P/Z(P ) where wi is the class of wi in
P/Z(P ). Relatively to this basis, the alternating form b is represented by the
matrix 

 0 I!

I! 0



 .

Relatively to this basis the group Spϕ(P/Z(P )) is isomorphic to a subgroup of
the symplectic group Sp2!(Z/pmZ). Let s be the matrix of α ∈ Spϕ(P/Z(P )),
that is

α(wi) =
2!∑

k=1

sk,jwk.

Since α stabilizes the kernel of the linear form ϕ, we have that s2!,j = 0 for all
j = 1, . . . , 2!− 1. Furthermore, α(w2!) = λw2! + v with λ invertible in Z/pmZ
and v ∈ ker ϕ.

Suppose first s ≤ m. In this situation, we have furthermore ypm

= zpm−s

,
so that ϕ(w2!) = pm−s. It follows that

pm−s = ϕ(w2!) = ϕ(α(w2!)) = λpm−s

Therefore, λ ≡ 1 mod ps.
Suppose now m ≤ s. In this situation, we have ypm

= z so that ϕ(w2!) = 1.
We must have then λ ≡ 1 mod pm.
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It remains now to show that π is surjective on Spϕ(P/Z(P )). We will
show that any automorphism of P/Z(P ) preserving b and ϕ is induced by
an automorphism of P . So let α be an automorphism of P/Z(P ) such that
α(b(v, w)) = b(αv,αw) and ϕ(α(v)) = ϕ(v) for all v, w ∈ P/Z(P ). For any
x ∈ P we denote x its class in P/Z(P ). We have then

α(wi) = w
s1,i

1 · · ·ws2!,i

2!

We define now α̃ : P → P to be the map with the following values on the
generators of P

α̃(z) = z,

α̃(wi) = w
s1,i

1 · · ·ws2!,i

2! .

The relations of the form [wi, wi+!] = zpr

are preserved because α preserves b.
For 1 ≤ j ≤ 2! − 1, the element α(wi) has order pm because α is invertible.
Since α preserves ϕ we also have that the relation

wpm

2! =

{
zpm−s

if s ≤ m.

z if m ≤ s.

is preserved. Therefore α̃ is a well-defined automorphism of P and it is clear
that α̃ induces α on P/Z(P ). It follows that π is surjective on the group
Spϕ(P/Z(P )) and the lemma is proved.

Automorphisms of X2(!−1)+1(pm) ∗M(m, s) ∗ Cpm+r

Let P = X3(pm)∗(!−1) ∗M(m, s) ∗ Cpm+r with ! ≥ 1 and 1 ≤ r < s < m + r.
Let z be a generator of Z(P ), the group P is generated by z and elements
x1, y1, . . . , x!, y! such that all except y! have order pm and satisfy

[xi, yi] = zpr

,

[xi, xj ] = [xi, yj ] = [yi, yj ] = 1,

ypm

! = zpm+r−s

.

Let U be the subgroup generated by y!. This is a cyclic subgroup of P of
order pm+s containing P ′.

Lemma 3.5.10. There is an injective homomorphism

Aut(U) ↪→ Aut(P )

Proof. An automorphism α ∈ Aut(U) sends y! to yk
! for some k prime to p

uniquely defined modulo pm+s. We extend α to the whole group P by letting

α̃(xi) = xi,

α̃(yi) = yk
i ,

α̃(z) = zk.
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As defined, α̃ preserves all the relations. Since k is prime to p, it follows that α̃
is an automorphism of P and by definition α̃ extends α.

The element z has order pm+r and m+r < m+s since r < s. It follows that
the definition of α̃ is independent of the choice of a representative of k modulo
pm+s. The map sending α ∈ Aut(U) to α̃ ∈ Aut(P ) is a then a homomorphism.
If α̃ is the identity on P then by definition α is the identity on U so that this
homomorphism Aut(U) → Aut(P ) is injective and the lemma is proved.

We let w = ypm+r

! and let θ be the automorphism of U defined by θ(y!) =
y1+pm+r

! = y!w. We denote also θ its extension to the whole group P given
by the previous lemma. Remark then that θ is the identity on all generators
except y!. Furthermore, θ(w) = w1+pm+r

= w since w has order ps−r and
m + r > s > s− r. It follows that θa(y!) = y!wa and in particular θ has order
ps−r.

Lemma 3.5.11. The intersection Aut(U)∩AutZ(P )(P ) is cyclic of order ps−r

and generated by the automorphism θ.

Proof. We have θ(z) = z1+pm+r

= z since z has order pm+r. We have then
θ ∈ Aut(U) ∩ AutZ(P )(P ) and it remains to show that θ generates Aut(U) ∩
AutZ(P )(P ).

An automorphism α ∈ Aut(U) ∩ AutZ(P )(P ) is given by α(y!) = yk
! for

some k prime to p. Since α(z) = z and z has order pm+r, we must have k ≡ 1
mod pm+r. Therefore, α(y!) = y!yapm+r

= y!wa for some a, so that α = θa and
the lemma is proved.

Since Z(P ) is characteristic, there is a canonical homomorphism

π : AutZ(P )(P ) → Aut(P/Z(P )).

Furthermore, the image of θ ∈ AutZ(P )(P ) must preserve the non-degenerate
alternating form b on P/Z(P ) induced by commutators and the linear form ϕ
induced by pm-th powers. As before, we denote Spϕ(P/Z(P )) the subgroup of
Sp(P/Z(P )) consisting of all automorphisms of P/Z(P ) preserving b and ϕ.

Lemma 3.5.12. The image of π is contained in Spϕ(P/Z(P )).

Proof. If α is an automorphism of P fixing Z(P ) pointwise, then by definition
π(α)(x) = α(x) and thus

b(x, y) = [x, y] = α([x, y]) = [αx,αy] = b(α(x),α(y)) = b(π(α)(x),π(α)(y)).

Therefore π(α) preserves the non-degenerate alternating form b induced by the
commutators. We have furthermore α(xpm

) = xpm

, since xpm ∈ Z(P ) for all
x ∈ P . Therefore ϕ(π(α)(v)) = ϕ(v) for all v ∈ P/Z(P ) and the lemma is
proved.

Lemma 3.5.13. The kernel of π is equal to the group Int(P ) of inner auto-
morphisms of P .
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Proof. The kernel of π consists of all automorphisms of P fixing Z(P ) and
P/Z(P ) pointwise. It follows from Lemma 3.2.1 that

ker π ∼= Hom(P/Z(P ), Z(P )) ∼= Hom((Cpm)2!, Cpm+r ) ∼= (Cpm)2!.

The two groups Int(P ) and ker π have then the same order since Int(P ) ∼=
P/Z(P ) ∼= (Cpm)2!. Furthermore, Int(P ) is contained in ker π since P ′ is central
in P and the lemma is proved.

Proposition 3.5.14. Let P = X3(pm)∗(!−1) ∗M(m, s) ∗ Cpm+r with ! ≥ 1 and
1 ≤ r < s < m + r. Then Aut(P ) is generated by AutZ(P )(P ) and a subgroup
H ∼= Aut(Cpm+s). Furthermore, H ∩ AutZ(P )(P ) is cyclic of order ps−r and
there is an exact sequence

1 → Int(P ) → AutZ(P )(P ) → Spϕ(P/Z(P )) → 1

Proof. We show first that π is surjective on Spϕ(P/Z(P )). To begin, we reorder
the elements x1, y1, . . . , x!, y!. For j = 1, . . . , ! we let wj = xj and wj+! = yj .
We have this way

[wj , wk] =

{
zpr

if |j − k| = !,

1 else.

We will show that any automorphism of P/Z(P ) preserving b and ϕ is induced
by an automorphism of P . So let α be an automorphism of Z(P ) such that
α(b(v, w)) = b(αv,αw) and ϕ(α(v)) = ϕ(v) for all v, w ∈ P/Z(P ). For any
x ∈ P we denote x its class in P/Z(P ). We have then

α(wi) = w
s1,i

1 · · ·ws2!,i

2!

We define now α̃ : P → P to be the map with the following values on the
generators of P

α̃(z) = z,

α̃(wi) = w
s1,i

1 · · ·ws2!,i

2! .

Since α preserves the alternating form b and the linear form ϕ all relations
are preserved, so that α̃ is an automorphism of P . By definition, α̃ induces α
on P/Z(P ). It follows that π is surjective on the group Spϕ(P/Z(P )) and we
describe now this group more precisely

Let B = {w1, . . . , w2!} be the basis of P/Z(P ) where wi is the class of wi in
P/Z(P ). Relatively to this basis, the alternating form b is represented by the
matrix 

 0 I!

I! 0



 .

Relatively to this basis the group Spϕ(P/Z(P )) is isomorphic to a subgroup of
the symplectic group Sp2!(pm). Let s be the matrix of α ∈ S, that is

α(wi) =
2!∑

k=1

sk,jwk.
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Since α stabilizes the kernel of the linear form ϕ, we have that s2!,j = 0 for all
j = 1, . . . , 2!− 1. Furthermore, α(w2!) = λw2! + v with λ invertible in Z/pmZ
and v ∈ ker ϕ. We have furthermore ypm

= zpm+r−s

so that

ϕ(w2!) ≡ pm+r−s mod pm.

Since α preserves ϕ we also have

ϕ(w2!) = ϕ(α(w2!)) = λϕ(w2!)

It follows that λ ≡ 1 mod ps−r and the proposition is proved.
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Appendix A

Alternating forms

Definitions and first properties

Let R be a commutative ring with unit and let M be a finitely generated R-
module.

Definition A.0.1. An alternating form on M is an R-bilinear form

b : M ×M → R,

such that b(x, x) = 0, for all x ∈ M . We will call the pair (M, b) an alternating
module. If furthermore M = L is free over R, then we call (L, b) an alternating
space.

Remark A.0.2. The condition b(x, x) = 0 implies that b(y, x) = −b(x, y). The
converse is also true provided that the characteristic of R odd.

Definition A.0.3. The orthogonal sum of two alternating modules (M, b) and
(M ′, b′) is the alternating module (M ⊕M ′, b⊕ b′) with

(b⊕ b′)(x + x′, y + y′) = b(x, y) + b′(x′, y′), for all x, y ∈ M and x′, y′ ∈ M ′.

We fix now an alternating form b on M .

Definition A.0.4. Let N be a submodule of M , the orthogonal complement
of N in M (with respect to b) is the submodule N⊥ of M defined by

N⊥ = {x ∈ M | b(x, y) = 0 for all y ∈ N} .

Definition A.0.5. The alternating form b induces an R-linear map b̂ : M →
M∗ = hom(M,R) defined by b̂(x)(y) = b(x, y). The map b̂ is called the adjoint
map to b.

It is easy to see that ker b̂ = M⊥ so that in particular M⊥ = 0 if and only if
b̂ is injective. But it is important to note that it does not necessarily imply that
b̂ is an isomorphism. As a counterexample, one can consider the case R = Z,
M = Z2 and b given by b(x, y) = 2x1y2 − 2x2y1 for x = (x1, x2), y = (y1, y2) ∈
Z2.
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Lemma A.0.6. If either R is a field or R is finite and M is free over R, then
M⊥ = 0 if and only if b̂ is an isomorphism.

Proof. If R is a field, then M and M∗ are vector spaces over R of the same
dimension. In particular, any injective map M → M∗ is also surjective. The
same is true if R is finite and M is free over R, say of rank r, since in this
situation M∗ = Hom(M,R) ∼= Hom(Rr, R) ∼= Rr. Hence b̂ can be seen as a
map Rr → Rr and since R is finite b̂ is injective if and only if b̂ is surjective.
This shows that the condition M⊥ = 0 implies that b̂ is an isomorphism. The
converse is trivial.

Definition A.0.7. The alternating form b is said to be non-degenerate if M⊥ =
0.

Definition A.0.8. The alternating form b is said to be regular if b̂ is an iso-
morphism.

In the setting of vector spaces or free module over finite rings, these two
definitions coincide and regular and non-degenerate are often considered to be
synonyms. Since we work here in a more general setting, we will keep the
distinction. It is of particular importance in the following crucial lemma. Recall
that if N is a submodule, the restriction of b to N is the alternating form
bN : N ×N → R given by bN (x, y) = b(x, y) for all x, y ∈ N .

Proposition A.0.9. Let b be an alternating form on the R-module M and let
N be a submodule of M such that the restriction bN of b on N is regular. Then
M = N ⊕N⊥.

Proof. By definition, N∩N⊥ = ker
(
b̂N : N → Hom(N,R)

)
, hence N∩N⊥ = 0,

since bN is non-degenerate.
Let x ∈ M , then b̂(x) ∈ Hom(M,R) and we can consider its restriction to

N , namely b̂(x)N ∈ Hom(N,R). Since bN is regular, there exists y ∈ N such
that b̂(x)N = b̂N (y) and now x = y + (x− y) ∈ N + N⊥.

This shows that M = N⊕N⊥ and it is clear that the sum is orthogonal.

Alternating forms on vector spaces

Let R = F be a field and let M = V be a vector space over F.

Proposition A.0.10. If b : V ×V → F is a non-degenerate alternating form on
V , then dim V is even, say dim V = 2n, and there exists a basis e1, f1, . . . , en, fn

of V such that

b(ei, fi) = 1, for all i = 1, . . . , n, (A.1)
b(ei, ej) = b(ei, fj) = b(fi, fj) = 0, for all 1 ≤ i )= j ≤ n. (A.2)
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Proof. Since b is non-degenerate, there exist x, y ∈ V such that b(x, y) )= 0. By
multipliying x or y by a scalar, one can suppose that b(x, y) = 1. Let W be the
subspace of V generated by x and y. It is easy to see that the restriction bW is
non-degenerate on W , so that V = W ⊕W⊥. Of course this sum is orthogonal
and the proposition follows by a recursive argument.

Definition A.0.11. If b is a non-degenerate alternating form V , then a basis
of V satisfying conditions (A.1) and (A.2) is called a symplectic basis.

If ϕ : V → F is a non-zero linear form on V , then the kernel of ϕ has
codimension 1 in V . The following proposition shows that the symplectic basis
can be chosen such that all but one of the elements of the basis are in ker ϕ.

Proposition A.0.12. Let b be a non-degenerate alternating form on V and let
ϕ : V → F be a linear map on V . There exists a symplectic basis e1, f1, . . . , en, fn

on V such that ϕ(ei) = ϕ(fi) = ϕ(en) = 0 for all i = 1, . . . , n−1 and ϕ(fn) = 1.

Proof. Since b̂ is linear, there exist e in V such that b̂(e) = ϕ. In particular,
ϕ(e) = b(e, e) = 0 and if we choose f ∈ V such that b(e, f) = 1, then ϕ(f) = 1.
Let W be the subspace of V generated by e and f . The restriction bW is non-
degenerate, so that V = W ⊕W⊥. For u ∈ W⊥, we have ϕ(w) = b(e, w) = 0, so
that W⊥ is contained in ker ϕ. Now, the restriction bW⊥ is also non-degenerate
so that we can choose a symplectic basis e1, f1, . . . , en−1, fn−1 on W⊥ and if we
let en = e and fn = f we obtain the desired basis.

Alternating forms on Z/pmZ-modules

Definition A.0.13. Let L be a free R-module and let b be an alternating form
on L. A symplectic basis on L is a basis e1, f1, . . . , en, fn of L such that

b(ei, fi) = 1, for all i = 1, . . . , n,

b(ei, ej) = b(ei, fj) = b(fi, fj) = 0, for all 1 ≤ i )= j ≤ n.

When R = Z/pmZ and M = L is free over R, the situation is very similar
to the situation of alternating spaces over fields, as the two next results show.

Proposition A.0.14. If (L, b) is a regular alternating space over R = Z/pmZ,
then the rank of L is even and there exists a symplectic basis on L.

Proof. Since b is regular, L has rank at least 2 and let x1, . . . , xr be a basis of L.
We claim that there exists 1 < j ≤ r such that b(x1, xj) has order pm. Indeed,
if b(x1, xj) has order strictly less that pm for all j, then there exists a < m such
that pab(x1, xj) = 0. But then, one would have b(pax1, xj) = 0 for all j, so
that pax1 ∈ L⊥. Since b is regular, this would imply pax1 = 0 for an a < m
which is a contradiction since x1 is a basis element. Let e1 = x1 and f1 = xj

where j is such that b(x1, xj) has order pm. By rescaling x1, we can assume that
b(e1, f1) = 1. Let N be the submodule of L generated by e1 and f1. It is easy
to see that N is free and that the restriction bN is regular. Hence M = N⊕N⊥.
Remark that N⊥ is a free Z/pmZ-module, since both M and N are homocyclic
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abelian groups of type pm. A more elaborate argument would be to say that
both M and N are free over Z/pmZ and that Krull-Schmidt holds for Z/pmZ.
The proof follows now by an induction argument.

Lemma A.0.15. Let (L, b) be a regular alternating space over R = Z/pmZ and
let ϕ be a linear form on L. There exists a symplectic basis e1, f1, . . . , en, fn

on L such that ϕ(fn) = pa for some 0 ≤ a ≤ m − 1 and ϕ is zero on all other
elements of the basis.

Proof. Since b is regular, there exists x ∈ L such that ϕ = b̂(x). Let x1, . . . , xs

be a basis of L. Then x =
∑s

i=1 nixi, where we use · to denote the class of an
integer modulo pm. Now, we can rewrite x = pa

∑s
i=1 mixi with a ≥ 0 and mj

is prime to p for some j. Without loss of generality, we may suppose that m1

is prime to p, so that in particular m1 is invertible in R. Let x′1 =
∑s

i=1 mixi,
so that x = pax′1. We claim that x′1, x2, . . . , xs is a basis of L. Since x1 =
m1

−1(x′1 −
∑s

j=2 mjxj), it clearly generates L. Now, if r1x′1 +
∑s

j=2 rjxj = 0
then

r1m1x1 +
s∑

j=2

(r1mj + rj) = 0

But then r1 = 0 since m1 is invertible and it follows then that rj = 0 for all j =
2, . . . , s. Hence our claim is proved and we have shown that the basis of L can be
chosen such that ϕ = b̂(pax1). Let en = x1. Following the proof of proposition
A.0.14, we can find an element fn and elements e1, f1, . . . en−1, fn−1 such that
e1, f1, . . . , en, fn is a symplectic basis. In particular, ϕ(fn) = b(psen, fn) =
pab(en, fn) = pa.

Proposition A.0.16. For m ≥ 1, let R = Z/pmZ and let b be a regular alter-
nating form on the R-module M . Then M can be decomposed as an orthogo-
nal sum M = (M1, b1) ⊕ · · · ⊕ (Ms, bs), where (Mi, bi) is a regular alternating
space over Z/pmiZ with m ≥ m1 > · · · > ms and such that bMi = τibi where
τi : Z/pmiZ → Z/pmZ is the canonical injection sending the class of 1 modulo
mi to the class of pm−mi modulo m.

Proof. Since b is regular, M has p-rank at least 2 and let x, y ∈ M be such that
b(x, y) has maximal order, say pm1 . By maximality of b(x, y), we have for any
u, v ∈ M that 0 = pm1b(u, v) = b(pm1u, v) and since b is regular this implies
that any u ∈ M has order at most pm1 . We claim that both x and y have order
exactly pm1 . Let pa be the order of x. We already know that a ≤ m1. Now by
maximality of the order of b(x, y) we have 0 = pm1b(x, u) = b(pm1x, u) hence
pm1x ∈ M⊥. Since b is regular, this implies that pm1x = 0, hence a ≥ m1. The
same argument shows that y has order pm1 .

Let N be the submodule of M generated by x and y. Since x and y both
have order pm1 it follows that N is a free module of rank 2 over Z/pm1Z and
we claim that the restriction bN is regular. Suppose ax + a′y ∈ N is orthogonal
to every other element of N . In particular 0 = b(ax + a′y, y) = a · b(x, y) hence
pm1 divides a, but then ax = 0. A similar argument shows that a′y = 0 and
therefore bN is regular. The submodule N is then a regular alternating space
over Z/pm1Z.
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It follows in particular that M = N ⊕N⊥ and an induction argument shows
that N⊥ decomposes as an orthogonal sum N⊥ = N1⊕. . .⊕Nt where (Ni, bNi) is
a regular alternating space over Z/pniZ with n1 > n2 > . . . > nt. By maximality
of the order of b(x, y) we have m1 ≥ n1. If m1 = n1 we set M1 = N ⊕N1 and
Mi = Ni for i ≥ 2. If m1 > n1 we set M1 = N1 and Mi = Ni−1 for i ≥ 2. This
gives the desired decomposition of M .

Quadratic forms in characteristic 2

We will recall here only the results for quadratic forms on vector spaces over
the field F2. The reader will find more details for arbitrary fields in [28].

Definition A.0.17. A quadratic form on a K-vector space V is a map q from
V to K such that q(λv) = λ2q(v) and b(v, w) := q(u + v) − q(u) − q(v) is a
bilinear form. The bilinear form b is called the polar form of q.

Definition A.0.18. The quadratic form q is non-degenerate if the condition
b(v, w) = q(v) = 0 for all w ∈ V , implies v = 0.

Remark A.0.19. The quadratic form may be non-degenerate without its polar
form being non-degenerate.

Proposition A.0.20. Let q be a non-degenerate quadratic form on V with
polar form b. If the dimension of V is odd, say 2n + 1, then V has a basis
e1, f1, . . . , en, fn, c such that

b(ei, fi) = 1
b(ei, ej) = b(ei, fj) = b(fi, fj) = 0 for i )= j

b(ei, c) = b(fi, c) = 0
q(ei) = q(fi) = 0

q(c) = 1

If V has dimension even, say 2n, then V has a basis e1, f1, . . . , en, fn such that

b(ei, fi) = 1
b(ei, ej) = b(ei, fj) = b(fi, fj) = 0 for i )= j

and either

q(ei) = q(fi) = 0 for all i = 1, . . . , n

or

q(ei) = q(fi) = 0 for all i = 1, . . . , n− 1
q(en) = q(fn) = 1

Remark A.0.21. In all cases, the basis elements ei, fi form a symplectic basis
(relatively to b) of the subspace they generate.
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Appendix B

A note on the orthogonal
group O(2! + 1, 2)

The purpose of this appendix is to show a small result on the orthogonal group
O(2! + 1, 2) that was needed in chapter 3. It is a well-known fact that the
orthogonal group O(2! + 1, 2) is isomorphic to the symplectic group Sp(2!, 2)
and let us recall briefly where this isomorphism comes from.

Let (V, q) be a non-degenerate quadratic space of odd dimension 2! + 1 over
the field F2. Let b be the polar form of q. Since V has odd dimension and q is
non-degenerate, we have that V ⊥ has dimension 1 and does not contain any non-
singular vector. This means that if w is the basis element of V ⊥ then q(w) = 1.
The vector space V has a basis B = {e1, . . . , e2!, w} such that q(ei) = 0 for all
i = 1, . . . , 2! and

b(ei, ej) =

{
1 if |i− j| = !.

0 else.

The alternating form b induces naturally a non-degenerate alternating form b
on V = V/V ⊥. If α is in the orthogonal group O(V, q) = O(2! + 1, q), then α
induces a linear transformation α on V . Since α preserves the quadratic form
and hence preserves b, we have that α preserves b so that α is in the symplectic
group Sp(V , b) = Sp(2!, 2). We have thus a homomorphism

g : O(V, q) → Sp(V , b)

sending α to α. With respect to the above basis {B}, the automorphism α is
represented by a matrix

A =





0

A′ ...

0

q1 q2 · · · q2!−1 q2! 1




.

Furthermore, A′ is the matrix of α relatively to the basis B = {ei, i = 1, . . . , 2!}
of V . In particular, A′ ∈ Sp(2!, 2).
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Chapter B. A note on the orthogonal group O(2! + 1, 2)

It turns out that the coefficients qi in the matrix of α are uniquely determined
by A′. Indeed, since α preserves the quadratic form q and w is orthogonal to ei

for all i = 1, . . . , 2!, we have

0 = q(ei) = q(α(ei)) = q(A′ei + qiw) = q(A′ei) + qiq(w) = q(A′ei) + qi.

It follows then that
qi = q(A′ei). (B.1)

This shows then directly that the homomorphism g : O(V, q) → Sp(V , b) is
injective. This last condition gives also the way of proving surjectivity. Indeed,
if α is in Sp(V , b), then α is represented by a matrix A′ relatively to the basis
B. Let α be the linear transformation of V defined by

α(ei) = A′ei + q(A′ei)w.

α(w) = w.

Since α preserves b we have that α preserves b. Furthermore, it follows by
definition that q(α(ei)) = 0 = q(ei) and hence α preserves q. This shows that α
is in O(V, q) and the surjectivity of the homomorphism g : O(V, q) → Sp(V , b)
is proved.

Results on the group O(2! + 1, 2) are generally obtained by considering the
symplectic group Sp(2!, 2) instead. What interests us here concerns precisely
what is left behind with this identification, namely the coefficients q1, . . . , q2!.
The purpose of this appendix is to prove the following result.

Proposition B.0.22. Let (V, q) be non-degenerate quadratic space of odd di-
mension 2! + 1 over the field F2. Let B = {e1, . . . , e2!, w} be a basis of V such
that w ∈ V ⊥, the elements {ei, i = 1, . . . , 2!} form a symplectic basis of the vec-
tor space V ′ they generate and q(ei) = 0 for all i = 1, . . . , 2!. If α ∈ O(V, q) is
represented by the matrix





0

A′ ...

0

q1 q2 · · · q2!−1 q2! 1





then
∑!

k=1 qkqk+! = 0.

Before going on with the proof of this proposition, we recall a little bit of
terminology and notation. We make first the convention that all vector spaces
are over the field F2.

If (V, q) is a quadratic space over F2, we will say that v ∈ V is singular if
v )= 0 and q(v) = 0 and we will say that v is non-singular if q(v) = 1. We will call
a hyperbolic line a 2-dimensional vector space H = 〈e, f〉 with q(e) = q(f) = 0
and b(e, f) = 1. A quadratic space is said to have type I if it is an orthogonal
sum of hyperbolic lines.

For a quadratic space (L, q) of type I, we denote by n1(L) the number of non-
singular vectors in L. Similarly, n0(L) is the cardinal of the set {x ∈ L | q(x) = 0}.
We must have of course n0(L) + n1(L) = 2dim L.
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If H is a hyperbolic line, then it is easy to see that n0(H) = 3 and n1(H) = 1.
We see that there are thus more singular vectors than non-singular ones. We
can give exact values for orthogonal sums of hyperbolic lines. The next result
can easily be proved by a induction argument.

Lemma B.0.23. If the vector space L is an orthogonal sum of ! hyperbolic
lines, then

n0(L) = 2!−1(2! + 1) and n1(L) = 2!−1(2! − 1)

We are now in position to prove Proposition B.0.22. The idea is roughly to
use two different methods to count the number of singular vectors u such that
q(A′u) = q(u).

Proof of Proposition B.0.22. Let u =
∑2!

i=1 xiei ∈ V ′, we have

q(u) =
2!∑

i=1

q(xiei) +
!∑

j=1

b(xjej , xj+!ej+!) =
!∑

j=1

xjxj+!.

Since A′ preserves the restriction of b to V ′ we have

q(A′u) = q

(
2!∑

i=2

xiA
′ei

)
=

!∑

j=1

q(xjA
′ej + xj+!A

′ej+!) =
2!∑

i=1

xiqi +
!∑

j=1

xjxj+!.

It follows that

q(A′u) = q(u) ⇐⇒
2!∑

i=1

xiqi = 0. (B.2)

Let q0 =
∑!

j=1(q!+jej + qje!+j) ∈ V ′. For any u =
∑2!

i=1 xiei ∈ V ′, we have

b(q0, u) =
2!∑

i=1

xiqi.

Let f : V ′ → F2 be the linear map defined by f(u) = b(q0, u) =
∑2!

i=1 xiqi. We
can now rewrite the previous condition (B.2) as

q(A′u) = q(u) ⇐⇒ u ∈ ker f = 〈q0〉⊥.

Note that we have furthermore

q(q0) =
!∑

j=1

qjqj+!,

so that we are trying to prove that q(q0) = 0.
If f = 0, then q(A′u) = q(u) for all v ∈ V . Therefore qi = q(A′ei) = q(ei) =

0 and the result follows trivially. We assume from now on that the linear form
f is non-zero.

Let V1 = {u ∈ V ′ | q(u) = 1} be the set of non-singular vectors of V ′ and let
similarly V0 = {u ∈ V ′ | q(u) = 0} the set of singular vectors together with 0.
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The vector space V ′ is then a disjoint union V ′ = V0
∐

V1. The subset V1 is a
disjoint union V1 = U1

∐
K1 where

K1 = V1 ∩ ker f = {u ∈ V ′ | q(u) = 1 and q(A′u) = q(u)}

and
U1 = {u ∈ V ′ | q(u) = 1 and q(A′u) )= q(u)} .

We decompose similarly V0 = U0
∐

K0. The transformation A′ stabilizes the
subsets K0 and K1 and exchanges the subsets U0 and U1. This shows in partic-
ular that |U1| = |U0|. By definition of these subsets, we have ker f = K0

∐
K1

an in particular K0
∐

K1 has cardinality 22!−1. Therefore,

22! = |V ′| = |U0|+ |K0|+ |K1|+ |U1| = 2|U0|+ 22!−1.

Hence |U0| = |U1| = 22!−2. By the previous Lemma B.0.23, we have also that
|V0| = 2!−1(2! + 1) and |V1| = 2!−1(2! − 1). All this shows that

|K0| = 2!−1(2!−1 + 1)

and
|K1| = 2!−1(2!−1 − 1). (B.3)

On the other hand, V ′ is a quadratic space of type I so that ker f = 〈q0〉⊥ =
V ′′ ⊕ 〈q0〉 and V ′′ is a non-degenerate quadratic space of type I and dimension
2(! − 1). Let u′′ = v′′ + λq0 ∈ 〈q0〉⊥ with v′′ ∈ V ′′ and λ ∈ F2. Since q0 is
orthogonal to V ′′, we have

q(u′′) = q(v′′ + λq0) = q(v′′) + λq(q0).

If q(q0) = 1, the singular vectors in ker f = 〈q0〉⊥ are the singular vectors in V ′′

together with the vectors v′′ + q0 with q(v′′) = 1. It follows that the number of
singular vectors in ker f is equal to the cardinality of V ′′, i.e.

|K0| = 22(!−1).

This is a contradiction to the value found previously in (B.3) and thus q(q0) = 0.
Since q(q0) =

∑!
j=1 qjqj+! the proposition is proved.

Remark B.0.24. In the previous proof, the case q(q0) = 0 yields no contradiction.
Indeed, in this situation the non-singular vectors in ker f = 〈q0〉⊥ have the form
u′′ + λq0 with q(u′′) = 1 and λ ∈ F2. It follows then that

|K1| = 2 · n1(V ′′) = 2 · 2!−2(2! − 1) = 2!−1(2!−1 − 1),

which is the value found in (B.3).
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