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9.2.2 Parameter estimation for Bäckebol site, Sweden . . . . . 206
9.2.3 Parameter estimation for Sk̊a-Edeby site, Sweden . . . . 213
9.2.4 Parameter estimation for Port Huron site, USA . . . . . 215
9.2.5 Parameter estimation for Amherst site, USA . . . . . . . 218
9.2.6 Parameter estimation for Bothkennar site, UK . . . . . . 222
9.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 227

10 Final Conclusions and Recommendations 229
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.1.1 Enhanced parameter identification . . . . . . . . . . . . 230
10.1.2 Model calibration with SBPT . . . . . . . . . . . . . . . 231
10.1.3 Soil profiling with CPTU . . . . . . . . . . . . . . . . . . 233
10.1.4 Summary of original contributions . . . . . . . . . . . . . 236

10.2 Outlook for future research . . . . . . . . . . . . . . . . . . . . . 237

A Modified Gauss-Newton Algorithm 257

References 257

B Material Data for Numerical Simulations 265

C Rp versus OCR in the MCC 267

D Pattern Generation for CPTU 269

E GUI for CPTU Data 271

F NN Training for CPTU Data 273

G Material Data 281
G.1 Database of discrete piezocone results from clay sites . . . . . . 281
G.2 Database of continuous CPTU results from clay sites . . . . . . 284

Curriculum Vitae 287

iv



Abstract

This study proposes a new advanced algorithm for determining material parameters
based on in situ tests.

In situ testing gives an opportunity to perform soil characterization in natural
stress conditions on a representative soil mass. Most field techniques reduce soil
disturbances to minimum, allowing investigating the response of virgin soil. Self-
boring pressuremeter tests (SBPT) and standard piezocone tests (CPTU) are widely
used to deduce properties of clayey soils through analytical and empirical correla-
tions between soil properties and experimental measurements. Empirical correlations
usually require some tuning based on reference laboratory data because first-order
estimates for typical correlation coefficients may give unreliable evaluation of soil
properties. Analytical correlations are mostly based on cavity expansion methods
which are restricted to either fully drained or perfectly undrained problems, so that
inverse closed-form solutions for relatively simple constitutive models can be derived.
In practice, however, depending on physical and consolidation properties of the soil,
partially drained conditions may occur during field testing, leading to an erroneous
estimation of clay characteristics. Therefore, elaborating a generic parameter iden-
tification framework, which is based on the artificial neural network (NN) technique
and which may improve the reliability of soil properties derived from in situ testing,
is the main goal of this research.

This study explores the possibility of using NNs to solve complex inverse problems
including partially drained conditions. In other words, NNs are used to map exper-
imental measurements onto set of soil properties. The development of NN-based
inverse models is based on a training data sets which consists of pseudo-experimental
measurements derived from numerical simulations of both the SBPT and the CPTU
test in normally- and lightly overconsolidated clay type material.

The study presents a generic two-level procedure designed for the calibration of
constitutive models of soils. It is demonstrated that NN inverse models can be easily
integrated into the classical back-analysis. At the first level, the NN approach is
applied to achieve the first approximation of parameters. This technique is used
to avoid potential pitfalls related to the conventional gradient-based optimization
(GBO) technique, considered here as a corrector that improves predicted parameters.
Trained NNs as parallel operating systems can provide output variables instantly
and without a costly GBO iterative scheme. The proposed framework is verified for
the elasto-plastic Modified Cam Clay (MCC) model that can be calibrated based
on standard triaxial laboratory tests, i.e. the isotropic consolidation test and the
consolidated isotropic drained compression test. The study presents formulations
of the input data for the NN predictors, enhanced by a dimensional reduction of
experimental data using principal component analysis (PCA). The determination of
model characteristics is demonstrated, first on numerical pseudo-experiments and
then on the experimental data. Furthermore, the efficiency of the proposed approach
in terms of accuracy and computational effort is also discussed.

The verified two-level strategy is applied to a numerical procedure of parameter
identification for the boundary value problem (BVP) of the SBPT. The coupled hydro-
mechanical finite element (FE) formulation allows the generated excess pore water
pressure to be dissipated during simulations of the expansion test, followed then by
a holding test. Numerical simulations demonstrate that volume changes that may
occur in clay during the expansion test due to partial drainage, can cause local soil
hardening near the cavity wall and affect parameter interpretation for pressuremeter
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tests. Therefore, the NN technique is applied to obtain an initial guess for model
parameters, taking into account the possible partially drained conditions during the
expansion test. Parameter identification based on measurements obtained through the
pressuremeter expansion test and two types of holding tests is illustrated on the MCC
model. NNs are trained using a set of synthetic test samples, which are generated
by means of FE simulations based on constrained random permutations of input
model parameters. The measurements obtained through expansion and consolidation
tests are normalized by the proposed normalizing formulas so that NN predictors
operate independently of the testing depth. Examples of parameter determination
are demonstrated on both numerical data and field measurements from the Fucino
clay deposit. The efficiency of the combined parameter identification in terms of
accuracy, effectiveness and computational effort is also discussed.

Finally, an application of NN predictors as a stand-alone support for soil profiling
is presented for the piezocone test. By similarity to the SBPT problem, a number of
NN inverse models are developed based on the results derived from rigorous FE ana-
lyzes. The FE model of piezocone penetration involves numerical formulation for the
two-phase material obeying the MCC law and including the large strain theory, as well
as the large deformation formulation for contact interface. It is demonstrated that a
considerable computational effort related to the generation of the training database
can be reduced by optimizing the mesh size and ”steady-state” depth in function of
soil rigidity index. Due to a severe loss of measurement accuracy observed in the finite
elements adhered to the ”rough” interface, an equivalent semi-numerical approach is
proposed to account for frictional effects in different drainage conditions which are
delineated from a number of numerical simulations. The validity of the developed
penetration model is verified in detail by means of comparisons with other theoretical
solutions and parametric studies synthesized from literature, as well as experimental
evidence for both undrained and partially drained scenarios. An extended parametric
study including influence analyzes of strength and stress anisotropy, rigidity index
and cone roughness on two cone factors provides new insight into the analysis of
cone penetration. The shortcomings of the FE model due to the limitations of the
applied constitutive model are also discussed. As regards NN models, different con-
figurations of input variables, including standard normalized piezocone metrics and
other available soil characteristics are investigated in terms of feasibility of effective
NN training. The post-training regression analyzes are performed for numerical data
allowing the assessment of the influence of specific input variables on accuracy of
parameters predictions. Finally, the developed NN models are applied to predict pa-
rameters based on field measurements for a number of characterization sites. Provided
examples demonstrate that NN inverse models may constitute an effective comple-
mentary support during the first-order quantification of the MCC parameters from
piezocone measurements.

Keywords: back analysis, parameter identification, elasto-plastic model calibration, opti-

mization, neural networks, principal component analysis, Modified Cam Clay model, finite

element modeling, hydro-mechanical coupling, soft clay deposits, self-boring pressuremeter

testing, piezocone testing, soil profiling
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Résumé

Cette étude propose un nouvel algorithme avancé pour la détermination des paramètres
des matériaux à partir de tests in situ.

Les tests in situ permettent de caractériser un échantillon de sol représentatif dans
des conditions de contraintes naturelles, tout en réduisant l’altération des échantillons
au minimum et en favorisant l’analyse du comportement d’un sol intact. Les essais
pressiométriques auto-foreur (SBPT) et les essais de pénétration de cône (CPTU)
sont couramment utilisés pour la détermination des propriétés des sols argileux ;
ils utilisent des corrélations analytiques et empiriques entre les propriétés du sol et
les mesures expérimentales. Les corrélations empiriques exigent habituellement un
ajustement sur la base d’essais de laboratoire de référence, afin d’améliorer les esti-
mations de premier ordre pour les coefficients de corrélation typiques. Les corrélations
analytiques sont pour la plupart basées sur les méthodes d’expansion d’une cavité.
Ces méthodes sont limitées aux problèmes entièrement drainés ou parfaitement non
drainés, de sorte que des solutions inverses en forme fermée peuvent être obtenues
pour des modèles constitutifs relativement simples. Or, les tests in situ peuvent
présenter des conditions partiellement drainées, lesquelles dépendent des propriétés
physiques et de consolidation du sol et peuvent induire des estimations erronées des
caractéristiques de l’argile. Le but de cette recherche est ainsi d’élaborer un système
générique d’identification des paramètres basé sur la technique des réseaux de neu-
rones artificiels (artificial neuronal network NN) et permettant d’améliorer la fiabilité
des caractéristiques du sol déterminées à partir de tests in situ.

On explore la possibilité d’utiliser les NN pour résoudre des problèmes inverses
complexes, notamment en conditions partiellement drainées. En d’autres termes, les
NN sont utilisés pour transformer des mesures expérimentales en un ensemble de
propriétés du sol. Le développement de modèles inverses basés sur des NN s’appuie
sur des données issues de mesures pseudo expérimentales dérivées d’une simulation
numérique des deux tests - SBPT et CPTU - exécutés dans de l’argile normale et
légèrement surconsolidée.

On présente une procédure générique à deux niveaux conçue pour la calibration
des modèles constitutifs de sols. On démontre que les modèles inverses NN peuvent
facilement être intégrés dans des rétro-analyses classiques. D’abord, l’approche NN
est appliquée afin d’obtenir une première approximation des paramètres, ce qui per-
met d’éviter les pièges potentiels liés aux techniques conventionnelles d’optimisation
par gradient (gradient-based optimisation GBO), considéré ici comme un correcteur
qui améliore les paramètres prédits. Le système d’exploitation parallèle des réseaux de
neurones, fournit instantanément les variables de sortie sans passer par un système
itératif coûteux tel que le GBO. Le système proposé a été vérifié pour le modèle
elasto-plastique Modified Cam Clay (MCC), qui peut être calibré par le biais de
tests triaxiaux standards en laboratoire, c’est-à-dire la consolidation isotrope et l’essai
drainé de compression triaxiale conventionelle. L’étude formule les données d’entrée
pour les prédicteurs du NN, enrichies par une réduction dimensionnelle des données
expérimentales par analyse des composantes principales (principal component analy-
sis, PCA). Les caractéristiques du modèle sont déterminées d’abord sur les pseudo-
expériences numériques puis sur les données expérimentales. De plus, l’efficacité de
l’approche proposée est discutée en termes de précision et de coût de calcul.

La stratégie à deux niveaux validée est appliquée à une procédure numérique
d’identification de paramètres pour le problème aux limites (boundary value problem,
BVP) de la SBPT. La formulation couplée hydromécanique aux éléments finis (EF)
inclut la dissipation de l’excès de pression interstitielle pendant la simulation des es-
sais d’expansion suivis d’un essai de holding. Les simulations numériques démontrent
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que les changements de volume survenant dans l’argile pendant les essais d’expansion
en raison d’un drainage partiel, peuvent causer un écrouissage local du sol proche des
parois de la cavité et donc affecter l’interprétation des paramètres pour les essais de
pressiomètre. C’est pourquoi on applique la technique des réseaux de neurones afin
d’obtenir une première estimation des paramètres du modèle, tout en tenant compte
des conditions partiellement drainées durant les essais d’expansion. L’identification
des paramètres basée sur les mesures obtenues grâce aux essais d’expansion de pres-
siomètre et aux deux types d’essais de holding est appliquée au modèle MCC. Les NN
sont développés en utilisant un ensemble d’échantillons de tests numériques générés
au moyen de simulations EF basées sur une permutation aléatoire contrainte des
paramètres d’entrée du modèle. Les mesures obtenues par les essais d’expansion et de
consolidation sont normalisées afin que les prédicteurs NN fonctionnent indépendam-
ment de la profondeur d’essai. On présente des exemples d’identification de paramètres
pour des données numériques ainsi que pour des mesures sur le terrain d’un dépôt
d’argile Fucino. De plus, l’identification combinée des paramètres est discutée en
termes de précision, d’efficacité et de coût de calcul.

Enfin, on présente l’application des prédicteurs de réseaux de neurones en tant que
support autonome pour effectuer le profil du sol pour l’essai de pénétration du cône.
Comme pour le problème SBPT, des modèles inverses NN sont développés sur la base
de résultats provenant d’analyses EF rigoureuses. Le modèle EF de la pénétration
du cône implique une formulation numérique pour le matériau biphasique qui obéit
à la loi MCC et contenant la théorie des grandes déformations ainsi qu’une formula-
tion de grands déplacements pour l’interface. Il a pu être démontré que l’important
effort de calcul lié à la génération de la base de données peut être réduit en op-
timisant la taille du maillage et la profondeur ”d’état stationnaire” en fonction de
l’indice de rigidité du sol. Afin de solutionner l’imprécision des mesures prises dans
les éléments finis adhérant à la surface rugueuse, on propose une approche semi-
numérique équivalente qui explique les effets de friction dans les différentes condi-
tions de drainage déterminées sur la base de nombreuses simulations numériques. Le
modèle de pénétration proposé est validé par comparaison avec d’autres solutions
théoriques et études paramétriques issues de la littérature, ainsi que des données
expérimentales de scénarios drainé et partiellement drainé. Une étude paramétrique
plus étendue et comprenant l’analyse de l’influence de l’anisotropie de la résistance
et de la contrainte, de l’indice de rigidité et de la rugosité du cône, offre un nouveau
regard sur l’analyse des essais de pénétration de cône. Les défauts du modèle EF dus
aux limitations du modèle constitutif appliqué sont également discutés. Quant aux
modèles NN, différentes configurations des variables d’entrées, y compris les mesures
des cônes normalisés ou autres caractéristiques du sol, sont examinées en termes de
faisabilité d’apprentissage effectif des NN. Une analyse post-apprentissage est réalisée
sur les données numériques afin d’evaluer l’influence de variables d’entrée spécifiques
sur la précision des paramètres de prédiction. Enfin, les modèles NN développés
sont appliqués aux paramètres de prédiction basés sur les mesures du terrain pour
un certain nombre de sites caractéristiques. Les exemples présentés démontrent que
les modèles NN inverses constituent un support complémentaire et efficace lors de la
quantification de premier ordre des paramètres MCC des mesures de pénétration du
cône.

Mots-clefs: rétro-analyse, identification de paramètres, calibration de modèle elasto-plastique,

optimisation, réseaux de neurones, analyse de composantes principales, Modified Cam Clay,

modélisation aux éléments finis, couplage hydromécanique, dépôts d’argile molle, pressiomètre

autoforeur, pénétration d’un cône, profil géotechnique
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Chapter 1

Introduction

Reading maketh a full man,
conference; a ready man,

and writing; an exact man.

Francis Bacon

1.1 Evaluation of engineering properties of soils

Over the last few decades, the developments in the fields of constitutive mod-
eling and numerical methods have given engineers a robust tool which allows
analyzing soil behavior by means of computer simulations. Complex soil behav-
ior can be represented by mathematical models which are governed by a set of
material properties. However, ”with exceptions, there seems to be less confidence
in assessing material properties effectively” (Graham, 2006) due to the rising
complexity of constitutive soil models and the increasing number of parameters.
Obviously, some parameters can be estimated directly through closed-form so-
lutions; others can be found only through time-consuming trial-and-error and
curve-fitting procedures. Hence, the identification of reliable design properties
to be used in numerical modeling is often a challenging task.

In geotechnical practice, engineers face the problem of interpreting exper-
imental data acquired by means of a variety of laboratory and field testing
techniques. While parameter identification based on laboratory tests can be,
in general, performed directly, the interpretation of field tests requires solving
complex boundary value problems involving theoretical assumptions and sim-
plifications of soil behavior, geometry and water drainage conditions (Yu, 2006).
On the other hand, in situ testing provides a good opportunity for soil char-
acterization in natural stress conditions on a representative soil mass. Most
field techniques reduce soil disturbances to minimum, capturing the response of
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virgin soil. However, the interpretation of field tests often involves a large dose
of empiricism since the inverse solutions are too complex to conceive or their
oversimplification can lead to unreliable parameter estimation. Effective param-
eter identification is thus of great importance in numerical modeling since the
interpretation of test measurements may significantly affect a project’s service-
ability or its economical aspects. Hence, there is an understandable demand for
efficient parameter identification systems which - integrated with commercial
applications - may encourage practical engineers to use more advanced models
and run numerical simulations with a higher level of confidence.

Over the last two decades, biologically inspired soft computing methods
such as neural networks (NNs) or genetic algorithms, have been exploited in
many domains of engineering. NNs, with their ability to learn from examples,
were soon applied in a broad range of geo-engineering tasks where traditional
methods prove to be inefficient or there is a need for alternative complementing
solutions. The universality of NNs allows engineers to tackle problems which
require approximating highly non-linear functional relationships or performing
multi-dimensional regression analyzes. In the light of the NN features, the
application of NNs to parameter identification may improve its efficiency or
provide complementary solutions for inverse problems.

The goal of the following research is to elaborate a parameter identification
framework which is based on the neural network technique and which may raise
reliability of soil properties derived from experimental in situ testing. In the
context of parameter identification, NN inverse models can be integrated into
the classical back-analysis scheme or they can provide a complementary stand-
alone support for existing parameter identification systems.

1.2 Objectives of the thesis

The present study explores the applicability of NN models in a reliable predic-
tion of constitutive parameters based on experimental evidence derived from
field tests. In the context of such a defined task, NN inverse models are devel-
oped based on a large number of reference measurements which are derived from
numerical simulations representing boundary conditions of selected laboratory
and field tests, and which are in the form of standardized test results. Numer-
ical measurements are obtained for corresponding constrained permutations of
material parameters for an applied deterministic constitutive model. Param-
eter permutations are constrained in the sense that random parameter values
are drawn from admissible parameter sets which are defined with intervals and
statistical intercorrelations observed in geotechnical evidence, and which are of
practical interest. Since a numerical model idealizes real soil behavior, an arti-
ficial ”noise” is introduced into numerical measurements in order to account for
geometrical and material variability. Hence, NNs are trained by providing their
input with test results which correspond to the specific parameter values which
are expected in the NN output. Thus, NNs gain knowledge about model behav-
ior under selected boundary conditions and for a broad class of soils. Once NNs
are trained, no further computational cost is borne and they can be applied to
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parameter prediction from a wide spectrum of real test results.
In addition, a parametric study which accompanies the numerical generation

of training database makes it possible to evaluate whether a given model is
able to qualitatively and quantitatively describe soil behavior under specific
boundary conditions.

The research focuses on parameter identification for normally- to lightly
overconsolidated clayey soils which can be modeled with the Modified Cam
Clay model (MCC). However, the proposed strategy can also be adapted to
other constitutive relationships. Firstly, the triaxial compression test is used to
verify the proposed strategy and then, the identification procedure is developed
for two commonly applied field testing probes, i.e. the self-boring pressuremeter
and the piezocone. For these selected field tests, the effect of partial drainage
which may occur during testing is studied with particular attention.

Since NNs may inherit their imprecisions from, among other reasons, training
data sets, they produce results which, although meaningful, can be considered
as approximative in the light of mathematical precision. However, considering
that solutions provided by NNs are close to the global minimum in the context
of a given objective function, the results can be quickly corrected using the
gradient-based optimization.

Although the main objective of the thesis is to develop NN-based inverse
models through supervised NN training, the research also involves a deductive
process related to numerical generation of the training database, as well as an
abductive part associated with the validation of developed NN models with the
aid of experimental evidence. The main goals of the present study are as follows:

• elaborating finite element models which reliably reflect the boundary value
problems of selected field tests including complex drainage condition,

• working out a generic framework for developing inverse NN models for
in situ tests based on pseudo-experimental measurements derived from
numerical simulations,

• developing inverse NN models which, based on field measurements, pro-
vide meaningful first-order estimates of soil parameters taking into account
a possible occurrence of partial drainage during testing,

• enhancing a conventional curve-fitting scheme with neural network pre-
diction of the initial vector of parameters for a coupled hydro-mechanical
problem of the pressuremeter expansion and holding tests,

• performing a validation of developed inverse NN models using experimen-
tal evidence from a number of well-documented characterization sites.

Finally, it should be emphasized that the presented parameter character-
ization deals with individual soil tests and the analysis of spatial parameter
variability in subsoil is beyond the scope of this study.
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This research can be applied in a broad range of civil and environmental
geoengineering projects, where reliable quantifying of parameters plays an es-
sential role in the designing process. The proposed reasoning can be employed
in expert systems supporting parameter interpretation for advanced soil consti-
tutive models from laboratory or in situ tests. Using a well-designed interface,
the proposed generic scheme for the development of NN inverse models can be
adapted to any constitutive model or boundary value problem with only few
modifications. The developed methodology can constitute a part of automated
identification toolboxes combined with, for instance, FE packages.

1.3 Outline of the thesis

The dissertation presents a development of a parameter identification frame-
work which includes numerical modeling of two field tests, the generation of
training patterns and the development of NN-based inverse models. The study
is organized as follows:

Chapter 2 introduces fundamentals of parameter identification in geotech-
nical engineering including brief reviews of existing back-calculation methods
and soil testing techniques. The concept of an enhanced approach to parame-
ter calibration is then introduced based on the recognized shortcomings of the
gradient-based optimization approach. Finally, the anticipated contribution of
the study is presented.

Chapter 3 covers the state-of-the-art for neural networks in geomechanics,
and focuses on theoretical aspects of this technique in the context of parameter
estimation from experimental measurements. The main concepts of the feed-
forward neural network and the supervised network training are demonstrated.
The strategy of numerical generation of the training database is introduced and
compared with other approaches. Remarks on NN shortcomings are also out-
lined.

Chapter 4 presents the main aspects of the Modified Cam Clay (MCC)
constitutive model used throughout the study in numerical simulations. The
governing equations for the hydro-mechanical analysis are recalled. Some short-
comings of the MCC constitutive model are also acknowledged.

Chapter 5 demonstrates the initial validation of the proposed hybrid pa-
rameter identification framework on experimental measurements derived from
triaxial compression tests.

Chapter 6 focuses on two in situ tests, i.e. the self-boring pressuremeter
and the piezocone test. In the context of interpreting these tests, the concept
of the cavity expansion theory with an extension to the critical state mechan-
ics model is recalled. As regards the pressuremeter test, the interpretation of
the expansion test and the holding tests is reviewed revealing the directions of
improvements to be explored. The part related to the piezocone test includes
a condensed review of the existing methods for analyzing cone resistance, as
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well as a presentation of the most commonly applied interpretation formulas.
Finally, an unfavorable effect of partial drainage considered, among others, as
a source of parameter overestimation, is analyzed and discussed.

Chapter 7 is organized into two main sections dealing separately with finite
element modeling of the pressuremeter and the piezocone tests. Each section
contains a detailed description of the developed numerical model considered
as pattern generator for the supervised NN training. Additional investigations
presented in the chapter concern parametric studies, analysis of the partial
drainage effect. As regards the piezocone model, comparative analyzes with
existing models and experimental evidence are also presented.

Chapter 8 describes in detail the development of NN inverse models, from
FE-based generation of the synthetic training dataset and specific configurations
of input vectors to post-training performance analyzes. The synthetic database
of piezocone measurement is verified with trends observed for real experimental
data. In the case of pressuremeter tests, the efficiency of the enhanced two-level
parameter identification is demonstrated on numerical simulations.

Chapter 9 presents an application of developed NN inverse models to pa-
rameter assessment from real testing measurements derived from both, the pres-
suremeter and the piezocone tests. In the the case of SBPT, an application of
the hybrid strategy for parameter identification is also presented. Efficiency
of NN predictors is verified by performing comparative analyzes for obtained
NN predictions and experimental evidence collected for various characteriza-
tion sites.

Finally, Chapter 10 presents the main achievements of this study and sug-
gests areas for further research.
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Chapter 2

Fundamentals of Parameter
Identification

A proper characterization of natural geomaterials
is paramount in all site investigations

because the results will impact the solution
with respect to safety, performance, and economy.

Paul W. Mayne

Identification of soil parameters is an inseparable part of site characterization
and designing process in geotechnics. The knowledge of soil design properties is
necessary when using theoretical models which allow practitioners to solve prob-
lems such as the estimation of foundation settlements, stability of slopes and
embankments, bearing capacity and many others. These theoretical descrip-
tions include constitutive equations which require certain material properties to
be set. These properties can be used to establish and analyze the stress-strain
state of the solid/soil system.

In geotechnical engineering, parameter identification mostly deals with as-
sessing three general groups of parameters which define stiffness, strength and
seepage properties of soil. Soil characteristics are commonly assessed through
soil testing which provides experimental measurements. The measured soil re-
sponse can be then analyzed using a suitable deterministic solution which cor-
responds to the considered phenomena, the particular soil type and the relevant
test geometry. Deterministic algorithms are often developed under rigorous
theoretical assumptions and simplifications which may, unfortunately, neglect
important factors affecting the studied problem.

Sometimes, the complexity of the inverse problem to be solved leads to
applying simplified empirical formulas which rely on regression analyzes per-
formed for a large number of collected experimental data. This can be the
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Table 2.1: Categories of back-calculation methods in geomechanics (modified after
Hight and Leroueil, 2003).

Category Description

Empirical Direct use of test results based on correla-
tions obtained through regression analyzes.

Analytical Theoretical models based on elasticity and
plasticity theories.

Semi-numerical Numerical integration of equations obtained
for analytical models.

Numerical Complex soil models partly or completely
based on real soil behavior, combined with
numerical post-processing of measurements.

Soft-computing Direct mapping experimental results for
complex phenomena by computational
methods including artificial intelligence
techniques.

case with electric piezocone test, for which the complex penetration mechanism
makes it difficult to unambiguously interpret probe measurements (e.g. Sully
and Campanella, 1991; Demers and Leroueil, 2002). In other cases, when e.g.
an advanced effective stress model and undrained conditions, are considered, a
closed-form solution needs to be achieved by means of numerical methods (cf.
Table 2.1). The solution of the cavity expansion problem for the Modified Cam
Clay model can serve as an example (Collins and Yu, 1996; Cao et al., 2001).
It may also happen that some theoretical assumptions which are assumed in
closed-form solutions are not fulfilled. In such a case, in order to rationally
calibrate a model, a complex inverse problem needs to be solved by an indirect
technique using fitting procedures and numerical methods, such as finite differ-
ence (FDM), discrete element (DEM) or finite element method (FEM), etc. This
may be the case with hydro-mechanical coupling for the pressuremeter bound-
ary value problem, where the assumption of undrained expansion is sometimes
violated (Fioravante et al., 1994; Rangeard et al., 2003; Obrzud et al., 2009a).
Such a numerical approach typically involves complex soil models partly or com-
pletely based on real soil behavior and realistic modeling of relevant boundary
and drainage conditions, initial stress state and stress history. If all these re-
quirements are fulfilled in the case of field tests, such a back analysis provides
the most reliable assessment of geotechnical design parameters (Jamiolkowski
et al., 1985; Graham, 2006). Numerical methods may be also advantageous for
calibrating models complex multi-parameter constitutive models (e.g. Anan-
darajah and Dafalias, 1986; Whittle and Kavvadas, 1994; Benz, 2007), and
they can be indispensable for multi-mechanism models including parameters
with no physical meaning (e.g. Hujeux, 1985) or micro-parameters for DEM
models (Yoon, 2007). Such a calibration usually requires an automatic pro-
cedure which combines a numerical solver with a gradient-based optimization
technique (Anandarajah and Agarwal, 1991). However, indirect techniques are
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computationally expensive in the sense that the amount of time required to
calibrate the model increases with the number of independent variables (Flood
and Kartam, 1994b). Another inconvenience is that the final solution provided
by a gradient-based algorithm depends on an initial trial guess which initiates
a local search in the space of solutions. Soft-computing techniques can serve us
an alternative to the indirect methods.

In the last two decades, soft-computing methods such as genetic algorithms,
neural networks (NN) or fuzzy logic systems, have attracted researchers’ at-
tention because of their ability to solve inverse problems which are poorly-
understood or for which deterministic algorithms are not feasible, not complete
or give unreliable results (Shahin et al., 2008)1. This class of methods has been
inspired by the biological strategies for solving problems. With the feature of
inherited imprecision tolerance (Ghaboussi, 2001), the bio-inspired algorithms
provide approximated solutions which, nevertheless, can be very close to ex-
act solution. Another common feature of these techniques is that they can by
applied to inverse problems to approximate optimal solution from the space of
admissible parameter ranges. Unlike to the indirect method, the solution can
be provided instantly without the iterative procedures. On the other hand, un-
like deterministic methods which describe precisely how the output is obtained
from the input, soft-computing methods determine the solution in the implicit
manner. The advantage of these methods is that they can be regarded as the
main source of parameter identification or they can be incorporated to the stan-
dard optimization schemes providing first estimations which may accelerate the
indirect searching process (Flood and Kartam, 1994b; Obrzud et al., 2009a).

A reliable parameter identification may combine several identification meth-
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Figure 2.1: A schematic representation of possible inaccuracy extents for the param-
eter identification based on various methods of estimations.

1A review of a number of neural network applications for complex geomechanical problems
is provided in Chapter 3.
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ods to reduce uncertainty in determined parameters. A search for the best solu-
tion can rely on expert knowledge, available existing methods or self-developed
identification solutions, etc. However, uncertainty of identified parameters can
vary depending on the applied approach (Figure 2.1). Obviously, an expert
can provide precise solutions but he or she may also suggest highly inaccurate
estimations. Analytical methods may also be accurate but since they are con-
strained by several simplifications and assumptions, they may also be imprecise.
A correctly developed bio-inspired inverse model may reduce the inaccuracy
range which may stem from theoretical constraints and provide meaningful so-
lutions. Such inverse models can provide solutions which can be then refined by
the gradient-based methods. In such a case, a local search algorithm avoids be-
ing attracted by another possible, although seemingly-correct solutions. Clearly,
the use of many possible identification approaches may amplify the reliability
of parameter assessment for geomaterials which are inherently subject to high
uncertainty and variability.

The subject of interest in this study will be the application of the multi-
layer perceptron, feed forward neural networks for prediction of geomechanical
parameters. Their ability to generalize, which is the derivative of the impreci-
sion tolerance (Ghaboussi, 2001), seems to be a very suitable solution for the
problems subject to measurement uncertainties and material variability. It will
be demonstrated that the NNs can be easily combined with the standard di-
rect local searching scheme to improve reliability of results and speed up the
calibration process. The NNs will be applied to solve the inverse problems
of pressuremeter and piezocone tests. For these tests, the complexity of the
boundary value problem (BVP) with possible partial drainage and the non-
linear constitutive model pose difficulties in finding a deterministic algorithm
which would take into account many factors affecting the test results.

2.1 Testing as a tool for parameter identifica-

tion

Parameter identification inseparably accompanies material testing which is usu-
ally performed by standardized mechanical devices. The testing methods can
be classified into two main groups according to the actual soil localization with
regards to the virgin deposition, i.e. laboratory and in situ tests. The number
of testing devices used to determine specific soil properties is very large. The
most commonly used ones are the triaxial cell, the oedometer or the direct sim-
ple shear apparatus as regards laboratory tests, and the field investigation tools
such as standard penetrometers, electric piezocone penetrometers, pressureme-
ters, flat dilatometers, vanes, T-bars, etc. (Jamiolkowski et al., 1985; Mayne,
2006). Depending on the budget and the project’s complexity, different labora-
tory and in situ tests can be employed and combined to amplify reliability of
soil investigations. Combining laboratory and field tests lies in the economical
issue. Laboratory tests are relatively expensive and time-consuming, while field
probes can provide, in general, a continuous or quasi-continuous soil profile in a
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considerably short period of time. Collecting undisturbed samples and labora-
tory testing is often required to reliably calibrate interpretation formula for field
tests, e.g. piezocone records (Mayne, 2006). It is common practice to carry out
more than one different field tests side-by-side, confirming reliability of mea-
sured and interpreted results or providing complementary data (e.g. DeGroot
and Lutenegger, 2003; Hight et al., 2003).

Engineers face the problem of interpreting experimental measurements to
determine material properties. Parameter identification based on laboratory
tests is usually relatively straightforward since constitutive models are typically
developed on the basis of well-defined and fully-controlled boundary conditions.
Assuming that a soil sample represents a material point subject to a homo-
geneous state of stress and strain, the majority of parameters can be derived
directly from experimental curves. The interpretation of field tests may be
inconvenient because it requires solving complex inverse BVPs, involving theo-
retical assumptions and simplifications of soil behavior, geometry and drainage
conditions (Jamiolkowski et al., 1985; Yu, 2006). Hence, the use of neural
networks that account for the factors which are neglected in theoretical consid-
erations, is encouraged here.

It has been widely recognized that the in situ behavior of soils may be
significantly different from that of laboratory samples. This can be mainly at-
tributed to the quality of the intact specimens which may depend on drilling
and sampling methods and sample geometry (DeGroot and Sandven, 2004).
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Figure 2.2: Undrained shear strength in normally consolidated soil (a) as a function of
shear modes for various tests: triaxial undrained compression tests (CIUC
and CKoUC), plain strain compression test (PSC), direct simple shear
test (DSS) and field vane test (FVT) (after Wroth, 1984), (b) profiles for
field and laboratory tests on Onsøy clay (from Lacasse et al., 1981).
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The disturbance of samples may increase during their insertion into a sampling
tube, transportation, relaxation of stresses, drying, temperature changes, trim-
ming and, finally, their installation in the testing cells, etc. (Hight et al., 1992a).
Different sampling devices such as piston samplers, thin walled tubes or down-
hole block samplers can provide specimens for which different magnitudes of
preconsolidation pressure or undrained shear strength are measured (e.g. Hight
et al., 1992a; Tanaka and Tanaka, 1999). Experience shows that sample distur-
bance may lead to underestimation of the apparent preconsolidation pressure,
softer soil response, and consequently, to the over-dimensioning of foundation
structures and costly project design (Karlsrud, 1999; Fioravante, 2004). Most
field techniques reduce the effect of soil disturbances to minimum by capturing
the response of the virgin soil in natural stress conditions and preserving the
original fabric structure of soil. Moreover, in situ testing provides a good op-
portunity for soil characterization on a representative soil mass (Jamiolkowski
et al., 1985; Graham, 2006). Contrary to discontinuous sampling for laboratory
tests, continuous or semi-continuous field profiles allow investigating the inher-
ent natural spatial variability of soil properties.

It also has to be mentioned that the inconsistencies in parameter values mea-
sured by laboratory and field tests may also stem from the non-uniqueness of
some properties. For example, it is commonly known that the undrained shear
strength cu is not a unique soil parameter (Wroth, 1984; Jamiolkowski et al.,
1985), as it depends on the type of test, which involves particular strain paths
(Figure 2.2).

The differences in interpreted results also stems from the time-dependent
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behavior of soils (e.g. Vaid and Campanella, 1977; Leroueil, 1988; Sheahan et al.,
1996; Penumadu et al., 1998). The undrained shear strength increases linearly
with the logarithm of the shear strain (Bjerrum, 1972; Nakase and Kamei, 1986).
For instance, the testing speed for SBPT or CPTU can be one or more or-
ders of magnitude greater than that used in the triaxial compression test TC
(ε̇ = 0.01%/min), see Figure 2.3. Laboratory tests with the use of a model
pressuremeter in clays have revealed an increase of cu of about 10% for every
tenfold increase of strain rate (Prapaharan et al., 1989). While the oversti-
mation of cu derived from pressuremeter test due to the strain rate effect can
be reasonably small, in the order of 10-20%, the differences for CPTU can be
much larger. The extrapolated results of Bjerrum (1972) (Figure 2.3) can in-
dicate that neglecting the strain effect in the analysis of penetration may lead
to the considerable overestimation of cu of about 40% with respect to the value
obtained for the conventional triaxial compression. Since the undrained shear
strength is a function of the stress history, the similar effects can be observed
for the derived values of preconsolidation pressure σ′

p. The study carried out
by Leroueil et al. (1983b) revealed the increase of about 10-14% for σ′

p per log
cycle of volumetric strain rate ε̇v in the constant rate of strain oedometer test
(CRS).

A number of studies also link the misinterpreting of strength parameters
in clays with partial consolidation, which may occur in the case of field testing.
Laboratory studies in a calibration chamber have revealed that partial drainage
increases soil strength around the pressuremeter probe (Anderson et al., 1987).
The occurrence of partial drainage may be attributed to soil permeability and
drainage path. A numerical study of the cylindrical expansion test with the
standard strain rate of 1%/min has revealed a possible pore pressure dissi-
pation for soil with the coefficient of permeability k greater than 10−10 m/s
(Fioravante et al., 1994). As the undrained shear strength is a function of soil
critical state and stress history, the local increase of the preconsolidation stress
may strongly affect the expansion stress relief, which may clearly have a signif-
icant influence on subsequently evaluated consolidation parameters (Fukagawa
et al., 1990; Rangeard et al., 2003). Numerical studies of the piezocone test have
shown that the partial dissipation of excess pore water pressure behind the cone
tip (u2 configuration) for 2cm/s penetration rate may occur for k > 10−10m/s
(Voyiadjis and Kim, 2003; Markauskas et al., 2005). In consequence, partial
dissipation may increase soil resistance during penetration.

A summarized comparison of advantages and disadvantages of laboratory
and in situ testing is provided in Table 2.2.

The following sections will introduce the reliability of experimental mea-
surements in geotechnics and show how experimental data can be included into
the framework of numerical parameter identification, aiming to account for the
complexity of constitutive models and boundary value problems.
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2.2 Reliability of experimental measurements

Material testing is usually performed with the aid of mechanical devices. Test-
ing provides a physical response of a material specimen subject to an imposed
action, e.g. applied load - deformation. The material response which is trans-
formed onto experimental data may be, however, a burden with uncertainties
related to the quality of device readings, homogeneity or inherent properties of
a material, etc. Generally, the uncertainties in experimental data include (i) in-
completeness, (ii) data noise and (iii) data scatter, which are briefly explained
below.
Incompleteness is epistemic uncertainty and can be associated with the fre-
quency of sampling or intentions of testing (cf. Lunne et al., 1997). The first
may affect the continuity of data due to a discrete character of measurements,
but this can be usually overcome by frequent sampling or interpolating missing
data. However, incompleteness cannot be avoided if a testing program does not
provide a sufficient number of measured quantities (in order to avoid the non-
uniqueness of solution) or the program is not adequate to a studied phenomena

Table 2.2: A comparison of laboratory and in situ testing (after Jamiolkowski et al.,
1985; Hight and Leroueil, 2003).

Laboratory testing In situ testing

Advantages Disadvantages
• Well-defined boundary conditions. • Boundary conditions often poorly defined.
• Strictly controlled drainage conditions. • Drainage conditions often poorly defined

and not controlled.
• Stress (or strain) fields reasonably uniform. • Stress and stress fields non-uniform.
• Well-defined stress (or strain) paths im-
posed and response observed. Interpretation
possible as element test.

• Stress (or strain) paths vary. Interpre-
tation only possible if the whole boundary
value problem considered.

• With increasing sophistication, stress
paths can match some field paths.

• Modes of deformation and failure often dif-
ferent from civil engineering structures.

• Strain rates can be controlled. • Strain rates often higher than in laboratory
or field.

• Soil and physical features positively iden-
tified.

• Nature of tested soil frequently not identi-
fied.

• Level of disturbance can be assessed ap-
proximately.

• Degree of disturbance often unknown.

Disadvantages Advantages
• Cumulative effects of sampling, storage
and specimen preparation.

• Can be carried out in some soils that can-
not be sampled without considerable distur-
bance.

• Changes in temperature. • Tests carried out in natural environment.
• Discontinuous information from small vol-
ume of soil.

• Semi- or continuous readings record of
soil response for some penetration devices.
Larger volume of soil tested than in labora-
tory.

• Time-consuming and relatively expensive
testing.

• Reduced time and economical aspects in
terms of the size of investigated area.
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so that model parameters are insensitive to measured variables. For example,
parameter identification of consolidation characteristics will fail if the testing
device is not instrumented with pore pressure sensors and the testing program
does not ensure seepage in a sample.
Data noise arises from measuring errors or non-homogeneity of a single sample.
The former may be the result of inertia of the testing apparatus, its precision
or simply of the preparation mode, i.e. undisturbed installation of probe or
sample. Non-homogeneity of a single sample is highly connected with random
nature of soil genesis. The variability may rise with an increasing representative
volume. Generally, data noise has a smaller influence than data scatter, which
concerns results for a set of samples.
Data scatter is an inherent (aleatory) uncertainty and represents the natural
randomness of the material. Unlike to manufactured materials like concrete
or steel, natural soils reveal a considerable spatial variability. In the case of
testing of an extensive volume of soils, data scatter cannot be avoided since
soil properties fluctuate over space and time (Lunne et al., 1997). The data
scatter can be reduced by probing in a ”statistically homogeneous” soil layers,
which ensure representativeness of data samples. However, in natural soils, the
variation of soil property values even in statistically homogeneous layer may
be quite wide. For natural clays, the measured properties are fairly uniform
with depth but the reported coefficients of variation for mechanical properties
reach on average 20-50% depending on parameter whereas for hydraulic con-
ductivity the variation can be obsereved as high as 200-300% (Baecher and
Christian, 2003). Prediction of representative design parameters for more and
more sophisticated soil models is thus a chalenging task for practicing engineers.

Throughout this dissertation, it is assumed that the presented experimental
data does not include errors stemming from installation disturbances or speci-
men sampling, and data noise is eliminated using interpolation and smoothing
techniques.

2.3 Classical approaches to the inverse prob-

lem

Generally, the problem of parameter identification lies in proposing a set of char-
acteristics which would minimize the difference between the quantities obtained
from the stress-strain analysis and experimental measurements. A problem of
the back-analysis can be solved using two different approaches called inverse
and direct strategy (Gioda and Sakurai, 1987).
The inverse approach is simply the reverse process of the standard stress anal-
ysis with geometrical constraints. In the case of a simple geometry of a system,
the solution can be found in a closed form while complex boundary conditions
need a support of a numerical ”engine” such as FEM (Sakurai and Takeuchi,
1983).
The direct approach consists of solving a non-linear problem using the iterative
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technique. It consists of correcting an ad hoc assumed set of parameters in order
to minimize an error function which is formally defined as follows:

S (b) =
1

t1 − t0

∫ t1

t0

‖y(t) − y′(b, t)‖ dt where b ∈ Rb (2.1)

where t1 − t0 is the length of the observation time, y(t) − y′(b, t) denotes the
difference between experimental data and calculated quantities, and b is the
vector of model parameters adhered to the physical parameter space Rb.

In geomechanics, complexity of both constitutive model and the boundary
value problem, often enforces the use of the direct approach and numerical
methods to solve the inverse problem. The numerical optimization of model
parameters consists of the following steps:

1. Test the soil and provide comprehensive experimental data.

2. Provide an initial guess of material parameters.

3. Carry out a numerical simulation of the BVP that represents the experi-
ment.

4. Evaluate the magnitude of the objective function that is a measure of
discrepancy between the numerical response and experimental data.

5. Update the initial guess of parameters by means of a gradient-based min-
imization technique if the objective function exceeds a user-specified tol-
erance.

6. Return to step 3 unless the convergence of optimization is achieved.

Although the set of parameters obtained in the last iteration is considered as
the optimal one, the final solution may not be the best one since it strongly
depends on the initial guess given by the user (see Section 2.3.4).

2.3.1 Constitutive equations and direct approach

A general mathematical solution of the direct problem can by formulated for
the FE analysis as:

Fext(t) − Fint (u,b, t) = 0 , s.t. boundary condition and b ∈ Rb (2.2)

where Fint (u,b, t) is the internal force vector which evolves in time t and de-
pends on model variables b, u is the displacement vector, and Fext(t) denotes
the vector of external forces. The vector of internal forces in the domain Ω is
computed using the following formula:

Fint =

∫

Ω

BTσdΩ (2.3)

Linearization of Equation (2.2) yields an iterative scheme:

K
(i)
t+1∂u(i+1) = Fext

t+1 − F
int(i)
t+1 (2.4)
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where K is a global stiffness matrix is defined as:

K =

∫

Ω

BT DtBdΩ (2.5)

In the above expressions strain-displacement matrix is denoted by B and the
tangent stress-strain operator by Dt.
Hence, the parameter identification is the inverse procedure which enables an
unknown vector b to be established if u, Fext are measured, and constitutive
equations and boundary conditions are known.

2.3.2 Objective function and its minimization

Various definitions of the objective function S can be adopted to measure dis-
crepancies between experimentally measured data and a model response (cf.
Sakurai and Takeuchi, 1983; Gioda and Sakurai, 1987; Cailletaud and Pilvin,
1994; Ledesma et al., 1996a; Poeter and Hill, 1998). Apart from conventionally
taken measurements, any prior information such as measurement reliability of
estimated parameters or measurement errors can also be introduced into the
back-analysis to improve parameter identification. In geotechnical practice, the
following approaches have been proposed: the least-squares function (e.g. Gioda
and Sakurai, 1987; Anandarajah and Agarwal, 1991), the weighted least-squares
function (e.g. Finno and Calvello, 2005; Levasseur et al., 2008), the maximum
likelihood approach (e.g. Ledesma et al., 1996b), the Bayesian approach (e.g.
Cividini et al., 1983). The Kalman filter method (Murakami and Hasegawa,
1988) can be also adopted if, for instance, the whole construction process with
varying influence of measurements at different stages is taken into account. Re-
fer to Xiang et al. (2003) for other examples.

In the least-squares approach, the error function depends on the squared
differences between measured data and model response without any prior infor-
mation. The information about error measurements can be incorporated into
the weighted least-squares function which introduces the weighting of observa-
tional data. Each measurement can be weighted separately so that data with
a greater weight contribute more to the fit. Usually, weights are taken as an
inverse of the measurement error variance. Hereafter, in the regression analysis,
the weighted least-squares approach is used and is given as:

S (b) = [y − y’(x|b)]T · ω · [y − y’(x|b)] (2.6)

where y is a vector of empirical data, y’(x|b) is a vector containing the model
response at discrete points xj, j = 1,ND for a set of parameters b; a diagonal
weighting matrix, ω is introduced in order to transform the observable variables
into dimensionless quantities, wherein the weight of every observation can be
taken as the inverse of its error variance ωkk = 1/σ2.

In the context of linear regression the function y’ can be approximated as
(Bates and Watts, 1988):

y’ = xTb (2.7)
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Hence, the solution of the parameter identification consists of minimizing the
error function, which can be formulated as:

min [y − xTb] · ω · [y − xTb] (2.8)

and can be achieved using one of the known optimization methods.

2.3.3 Gradient-based search algorithm

The minimization of the objective function is typically performed by means of a
suitable gradient-based optimization (GBO) algorithm. Among many optimiza-
tion algorithms used in geotechnics, the most popular are the conjugate gradient
algorithms (e.g. Ou and Tang, 1994), the Newton’s methods with the Gauss-
Newton algorithm (e.g. Zentar et al., 2001; Finno and Calvello, 2005; Levasseur
et al., 2008) and the quasi-Newton algorithm (e.g. Anandarajah and Agarwal,
1991). These gradient-based algorithms allow the objective function to be effec-
tively minimized during the process of parameter determination. As reported by
several researchers, the Gauss-Newton is a suitable and efficient algorithm when
the weighted least-squares objective function is adopted (e.g. Gioda and Saku-
rai, 1987; Ledesma et al., 1996b). This method can also be extended with the
Levenberg-Marquardt algorithm, what can result in an improved convergence
rate (Marquardt, 1963). Therefore, the Modified Gauss-Newton algorithm re-
ported in Hill (1998) is adopted in the present study.

When dealing with elastic-plastic problems the objective function is a highly
non-linear function of unknown variables. Typically, the objective function can
be minimized by means of an unconstrained optimization. The Newtonian al-
gorithms search for the function gradient in the entire solution domain solving
linear equations. It consists of linear direct searching along directions which
reduce the objective function in an NP-dimensional space. At each iteration r,
an update of a NP-dimensional vector of parameters br is evaluated as:

br+1 = br + dr (2.9)

where br+1 denotes updated vector of parameters in r-th iteration, dr is the
updating vector which represents a search direction. To determine dr, one may
linearize the function f :

f(br + dr) ≈ f(br) + ∇f(br)dr (2.10)

where ∇f(br) is the first derivative of f with respect to br. In Equation (2.10),
an expansion into quadratic form is omitted to avoid an expensive direct calcu-
lating of the Hessian. Typically, information about function curvature can be
evaluated using quasi-Newton methods which approximate the second deriva-
tive relying on the observed trend of the objective function and its gradient
(Anandarajah and Agarwal, 1991).

The direct searching achieves its goal if a strong local minimum is met.
Mathematically, it can be expressed as:

Xr = 0 (2.11)
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that is the necessary and sufficient condition of the existence of a local minimum
for a continuous and differentiable function at point br. Differentiating Equation
(2.10) with the function defined in Equation (2.8) and setting to zero leads to
the following expression:

(XT
r ωXr)b̂ = XT

r ωy (2.12)

where b̂ is the weighted least-squares estimator. Finally, the linear equa-
tion of the Modified Gauss-Newton algorithm is obtained by introducing the
Levenberg-Marquardt termmrI and a diagonal scaling matrix C = (XT

ωX)
−1/2
kk

(Hill, 1998). Thus, Equation (2.12) can be rearranged into:

(CTXT
r ωXrC +mrI)C−1 · dr = CTXT

r ω

(
y − y’(br)

)
(2.13)

where mr is the Marquardt parameter and I is the identity matrix. The Mar-
quardt parameter is introduced to improve the convergence for ill-posed prob-
lems. At the beginning, this parameter is equal to zero and can be adjusted at
consecutive iterations using the formula mr+1 = 1.5mr + 0.001 (Hill, 1998). In
the case of a complex non-linear function, the sensitivity matrix X = ∂y’/∂b
can be evaluated directly by the FEM subroutine using central or forward dif-
ferences. Hereafter, the latter is adopted in order to reduce a computational
cost.
The updating vector dr (Equation (2.9)) can be controlled by introducing a
scaling parameter ρr:

br+1 = ρr · dr + br (2.14)

The scaling parameter controls the length of dr so that the maximal abso-
lute value of fractional parameter value (br+1

j − brj)/|brj | changes less than user-
specified tolerance dmax. The parameter can be calculated as:

ρr =
dmax

|dr
i |/|bri |

(2.15)

where the superscript i is attributed to the maximal absolute change of NP
parameters. The scaling parameter is a scalar ρr ∈ 〈0, 1〉 so the search direction
dr is preserved.

The performance of an iterative search procedure is accomplished if one of
the two convergence conditions is achieved:

1. The error function S(b) changes in three sequential iterations less than
the user-defined amount. In this case, for ill-conditioned problems the
search process risks getting stuck in a narrow valley associated with a
weak minimum if the tolerance is set too high.

|S(br) − S(br−1)| ≤ εI and |S(br) − S(br−2)| ≤ εI (2.16)

2. The largest and absolute change of each optimized parameter in r-th it-
eration is smaller than user-specified tolerance.

∣∣∣∣
dr

k
brk

∣∣∣∣ ≤ εII ∀k (2.17)
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Figure 2.4: Scheme of optimization algorithm coupled with FE analysis.

The main steps of the direct search strategy coupled with FEM solver (refer to
Figure 2.4) can be summarized as follows2:

1. Assign tolerances of convergence conditions and maximal parameter changes.
Deliver prior information about measurement errors to calculate the di-
agonal weighting matrix ωjj.

2. Assign the components of the initial vector of NP-number of parameters,
brk, k = 1,NP. The parameter mr is initially set equal to zero.

3. For a specified boundary problem, compute the vector y’(br) through the
FEM analysis with respect to the current vector of parameters br.

4. Compute the current sensitivity matrix Xik = ∂y′i/∂b
r
k; the procedure

requires l = NP runs of the FEM model with a small perturbation of
k-th parameter ∆brk = αbrkδkl (δkl is the Kronecker’s symbol). Assign the
difference between data for perturbed parameters and the vector y′i(b

r
k)

as ∆y′i, so that the sensitivity matrix becomes Xik
∼= ∆y′i/∆bk.

5. Assign the search direction dr by solving Equation (2.13). Then, calculate
the scaling parameter ρr using Equation (2.15) with a temporary assigned
value ρr = 1 in Equation (2.14).

6. Update the vector br+1 using Equation (2.14). Set r = r + 1 and return
to the step 3 until one of the convergence criteria is satisfied.

2For details of the Modified Gauss-Newton algorithm also refer to Appendix A.
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2.3.4 Limitations of gradient-based optimization

The GBO techniques search for the minimum of S(b) using its value and deriva-
tives with respect to each parameter Xij = ∂y′i/∂bj. In the case of a nonlinear
problem, the gradient of S(b) may be computed using, for instance, the FE
analysis. As regards multiple FE analysis runs providing the current response
of the BVP, a trial-and-error search for a neighborhood of the global minimum
may prove to be very time-consuming due to the iterative manner of mini-
mization and the number of parameters that describe constitutive relations.
Moreover, the number of FE analyses can be multiplied by the number of struc-
tural tests (or processes) considered in the calibration procedure. Typically,
the minimization is terminated if a strong minimum is met. Hence, the final
solution strongly depends on accuracy of the user-specified initial vector of pa-
rameters b0. Starting from different initial vectors, the inverse problem may
exhibit the non-uniqueness of the solution because the algorithm may yield dif-
ferent local minima (Xiang et al., 2003; Finno and Calvello, 2005; Levasseur
et al., 2008). The non-uniqueness may stem from a complex nonlinear system
involving multi-variable model, Figure 2.5(a), but it can also be a result of
the insensitivity of model parameters with respect to the provided input infor-
mation, Figure 2.5(b)). Assuming that the alleged global minimum is found,
verification of the solution is usually required. Starting from different initial
points in the parameter space, the minimization should converge to the unique
optimal solution, i.e. global minimum.
In certain cases, the ill-posed initial vector may lead to instability of the FE
analysis because the algorithm searches for the solution in an inadmissible space
of parameters. Consequently, the function S, losing its continuity, is no longer
differentiable. Sometimes, the problem of instability can be avoided by means
of the constrained optimization, i.e. by imposing parameter bounds
(e.g. Anandarajah and Agarwal, 1991). Nevertheless, the identification proce-
dure involves several time-consuming trial-and-error runs using various random
starting points in order to find the global minimum (Raphael and Smith, 2003).

bk

S(b)

local

minimum

global
minimum

(a)

bk

S(b)

non-unique
minimum

(b)

Figure 2.5: Non-uniqueness of the objective function: (a) existence of local minima,
(b) insensitivity of model parameters to provided input information.
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Table 2.3: Main difficulties related to the gradient-based optimization.

Problem Cause Consequences

Non-existence Model cannot describe modeled
problem or measurements pro-
vide incomplete data

Impossible to determine reliable
model parameters

Non-uniqueness Complex non-linear problem in-
cluding multi-variable material
model and complex BVP

Existence of many local minima pro-
viding many equivalent solutions

Parameters insensitive to mea-
surements (not enough informa-
tion provided)

Existence of a flat local minimum
satisfying infinite number of param-
eter pairs

Instability Non-linear problem and uncon-
strained model parameters

Loss of objective function continuity
due to instability of the model

2.4 Enhanced approach to parameter identifi-

cation

In order to avoid potential pitfalls related to GBO, there is a need for using
methods which directly approximate the final solution, i.e. that find the vicin-
ity of the global minimum by means of an implicit inverse strategy. Typically,
statistical methods can be used to solve an identification problem. A mixed for-
mulation of genetic algorithms (GA) and neural networks (NN) (Pichler et al.,
2003) or the stochastic binary search approach (Cekerevac et al., 2006) can be
found in literature. Recently, the GA have also been adapted to solve some
model calibration problems (Pal et al., 1996; Samarajiva et al., 2005; Levasseur
et al., 2008). However, the efficient and stable application of genetic algorithms
to inverse problems may prove to be computationally expensive, as it requires
generating a large number of individuals in each optimization run (Levasseur
et al., 2008, 2009).

In this study, the NN approach is proposed to search the entire multi-
dimensional space of parameters and to approximate soil model characteristics
(Obrzud et al., 2009b). The approach will be applied to parameter identifica-
tion based on two commonly recognized field tests, i.e. SBPT and CPTU. By
mapping experimental measurements, an approximated solution will be gener-
ated by the NN. The prediction provided by the NN can be accepted as the
final estimate or it can be used as a prediction of the initial vector which is
then refined through the gradient-based optimization. The first-order estima-
tion will be demonstrated on piezocone results, while the coupled identification
NN-GBO will be applied first to the triaxial compression test to validate the
hybrid strategy, and then to the pressuremeter results.

The Feed-Forward Neural Network (FFNN) approach (see Chapter 3) is
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Figure 2.6: Scheme of the two-level parameter identification with the development of
prediction tool.

proposed to be the first step of the calibration of the applied elasto-plastic
constitutive model. The FFNN algorithm can be used as a predictor which
instantly maps the experimental data of a given test onto model parameters.
Such prediction may constitute the initial vector of parameters used later on by
the GBO, regarded as the correction step. Such a prediction can be regarded as
an inverse solution of the identification problem while the optimization involves
the direct approach. The strategy of the two-level parameter identification is
schematically presented in Figure 2.6.

The self-organizing ability of NNs is used to prepare the prediction tool.
The supervised NN training (see Section 3.3.3) is performed only once based
on the results from numerical pseudo-experiments. The numerical model which
is used to generate numerical measurements, should reflect the boundary value
problem (BVP) of the real system. The sufficient number of training patterns
allows the NN to gain enough knowledge in order to be able to generalize fur-
ther new inputs. Numerical simulations are carried out for random variations
of model parameters, bj, j = 1, . . . ,NP and b ∈ Rb. Vectors of parameters
constitute the NN training target sets t = {bT

k }, i.e. the values of parameters
expected for the corresponding results of previously computed NS(t)-number of
pseudo-experiments, where k = 1, . . . ,NS(t). Correspondingly, the numerical
results are collected in the training input set p = {y′T

k }, where each vector
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y′
k(bk) contains ND-number of discrete measurements.

As constitutive models only approximate real soil behavior, the numerical
simulations tend to idealize the test response. Hence, the numerical response
may never be fitted ideally to the real curve. This suggests that numerical data
would lead to the overfitting of the NN and, consequently, to improper predic-
tion. Hence, the NN can be correctly trained by means of two discretization
approaches. The first approach assumes that only gradient-delivering discrete
points are chosen and provided as the training input; an example will be pre-
sented in Chapter 5. The second method consists of introducing noise into the
smooth computed equilibrium paths using, for instance, the Gaussian probability
density function (pdf) and presenting to the network all observational measure-
ments. In this case, the mean value of the noise is prescribed as equal to zero in
each equilibrium point while the standard deviation can be derived from a vari-
ability of the data dispersion observed for experimental curves. The noise simul-
taneously introduces material and geometrical imperfections regarded, among
others, as sources of geotechnical uncertainty (Goh and Kulhawy, 2005). Since
the whole range of measurements of an experiment is considered, a dimensional
reduction of data is desired. This can be easily carried out by applying the
principal component analysis (PCA) which maps data into a new coordinate
system (Haykin, 1999).

The choice of the method may depend on the possible level of data fitting
which is influenced by smoothness of the response of a model subject to given
boundary conditions.

For a considered constitutive model, the NN training can be regarded as the
one-time process, only if the broad spans of parameter values are covered, for
the generation of training patterns. Obviously, a further development of an NN
inverse model is not precluded, and any expected parameter extensions can be
reconsidered to retrain the existing NN. Hence, with the single computational
effort related to the NN model generation, the efficiently trained NN becomes
a robust prediction tool ready to solve any inverse problem for a variety of soil
stress-strain responses for a given BVP. The activated trained NN with experi-
mental data will respond generating the vector of material properties b0j . Then,
the quality of predicted parameters can easily be controlled by performing the
regression analysis of experimental data y and numerical results y′(b0). Since
the NN is created to seek the vicinity of the global minimum, the identified
parameters may need only slight corrections using the GBO technique. The
relatively poorly-recognized parameters bk can be quickly updated within r-
iterations with a substantially reduced computational effort.

Considering the high complexity of non-linear soil constitutive models and
the number of parameters included, the performance of a traditional trial-and-
error calibration with a large number of tests is often computationally expensive
and does not always lead to satisfactory results. These problems related to the
GBO can be clearly illustrated using an example of parameter identification
for the cavity expansion BVP. Figure 2.7 presents a highly nonlinear character
of the error function with respect to consolidation characteristics (permeability
coefficient k and slope of the normal consolidation line λ). The presented error

24



2
4

6
8

10
12

x 10
−9

0.1

0.2

0.3

0

50

 

 λ

 S(k, λ) /time−ε
c
/

  k  [m/s]
 

Global Minimum

Small Tolerance

Large Tolerance

(a) Mesh

0

20

20

2020

20

20

20

40

40

40

40

40

40

40

60

60

60

60

60

80

80

80

100

100

120

140

160
180 20

0

 S(k,λ) /time−ε
c
/

 k
  [

m
/s

]

  λ

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35

2

4

6

8

10

12
x 10

−9

ANN Performance
Global Minimum
Small Tolerance
Large Tolerance

(b) Contour

Figure 2.7: Example of computationally expensive optimization and its trapping be-
fore reaching the global minimum, and the possible space of prediction
with neural networks

function is associated with the variation of cavity strain in time, for a simulation
of the pressuremeter pressure holding test (PHT, see Section 6.2.3). In order
to transparently illustrate the problem, the error function was extracted from
the total error function, including the error function related to the second curve
provided by the test, i.e. pore pressure dissipation in time. It is shown that
starting from a remote point, the calibration can be prematurely finished if the
small tolerance for one of the convergence criteria is set. Despite the raising of
the tolerance threshold, the procedure can be terminated if the broad valley in
the functional is met. On the other hand, Figure 2.7(b) shows that the possible
region of network prediction is close to global minimum. A potential prediction
area can easily be deduced from the post-training analysis of NN performance.

2.5 Summary and anticipated contribution

In this study, a development of the neural network (NN) approach for parame-
ter prediction with special reference to two complex boundary value problems
(BVP) of pressuremeter and piezocone tests will be investigated. NNs will be
used to map experimental data of field tests onto estimates of characteristics
of the Modified Cam Clay (MCC) model taking into account the complexity
of BVPs. NNs are known as information-processing systems that can general-
ize even highly non-linear functions and can be used to solve inverse problems
in computational mechanics. Another main feature of NNs is that a parallel
operating system instantly transforms input variables onto output parameters.
These two features may considerably accelerate the parameter identification
procedure and improve the accuracy of the identified parameters.

In the proposed approach, NNs are to predict the vector of model pa-
rameters in order to avoid potential shortcomings and pitfalls, such as non-
uniqueness, solution instability or computational effort, which are related to
the gradient-based minimization technique. It will be demonstrated that NNs
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can be trained based on measurements obtained through a number of numerical
pseudo-experiments representing BVPs of in situ tests. Moreover, in numerical
simulations, different drainage conditions will be imposed in order to raise NN
awareness of possible occurrence of partial dissipation during the test.
As regards the BVP of the pressuremeter test, a hybrid parameter identification
combining neural networks and gradient-based optimization (GBO) will be pro-
posed to ensure accuracy of the identified parameters. The effectiveness of such
a two-level parameter identification will be first investigated and demonstrated
on the well-defined boundary value problem of the drained triaxial test. Then
the strategy will be adopted to SBPT.
As regards the piezocone test, it is expected that the NNs will be able to provide
first estimates of some model parameters without the necessity of test calibra-
tion based on a reference benchmark value obtained through laboratory tests
(e.g. undrained shear strength). A well-designed interface should provide not
only the facility to train NN for standard piezocone measurements but also the
possibility of including in the training additionally acquired information about
other soil properties.

In the context of NN training, a set of training patterns will be generated
numerically by means of FE simulations of field tests applying the MCC consti-
tutive law. It is intended that the identification framework will operate regard-
less of the testing depth. Thus, non-dimensionality, regarded as normalization
with respect to the initial effective stress conditions will be introduced to input
and output vectors containing test measurements.

Finally, results of the computational parameter identification applied to ex-
perimental data will be compared with the results obtained through various
laboratory and field tests for several characterization sites.
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Chapter 3

Neural Networks as
Identification Method

When the only tool you have is a hammer,
every problem you encounter tends to resemble a nail.

Abraham H. Maslow

3.1 Introduction

In recent decades, neural networks (NN) have gained current acceptance in
many domains of science and engineering where straightforward modeling is
unfeasible or the existing problem solutions need to be improved. With ref-
erence to the quote opening this chapter, the feed-forward neural networks
(FFNN) are considered as a universal approximation tool for any continuous
function (Hornik et al., 1989). The concept of an artificial neural network was
inspired by the complex architecture of the human brain, regarded as a complex,
highly non-linear, parallel operating system (Haykin, 1999). NNs are known
as information-processing systems that can generalize even highly non-linear
functions providing meaningful solutions for input data which includes error
or presents incompleteness. They can be applied to problems which are not
well-understood or for which deterministic models involve many assumptions
or simplifications. In computational mechanics, they can deal with problems
which involve time-dependent multi-phase processes including inverse problems
(Flood and Kartam, 1994a). One of their main features is that a parallel op-
erating system instantly transforms input variables onto sought outputs. The
main features of NNs are the ability to learn and generalize solutions from a set
of examples, and to provide meaningful results for input data which includes
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error or presents incompleteness.
One of the first papers concerning constitutive modeling by means of neural

networks by Ghaboussi et al. (1991) encouraged geotechnical researchers to be-
gin exploring the potential of artificial intelligence, adopting the NNs to solve
various mechanical problems. Ghaboussi and his collegues originally proposed
an NN-based framework for constitutive modeling in geomechanics (Ghaboussi
and Sidarta, 1998; Sidarta and Ghaboussi, 1998). They introduced a concept
of nested adaptive neural networks which consider the nested structure of the
material test data, e.g. dimensionality, stress path dependency or drainage
conditions. By means of the FE method and the auto-progressive training al-
gorithm proposed in Ghaboussi et al. (1998), they trained neural networks with
experimental non-uniform triaxial test data, in order to capture and reproduce
the non-linear response of soil without using the conventional concepts of the
theory of plasticity. Further research proved that NN constitutive models can
be successfully embedded within the FE codes to compute the consistent tan-
gent stiffness matrix (Shin and Pande, 2000; Lefik and Schrefler, 2003; Hashash
et al., 2004). Hashash et al. (2004) demonstrated that a tangent stiffness matrix
can be derived from NN-based material models, using the explicit formulation
represented by network parameters. However, the main drawback of NN consti-
tutive models is that it is valid only for a specific material for which a new NN
has to be adopted each time. Moreover a material model loses its ”flexibility”
which is inherent in the case of conventional models and which is controlled
by parameters explicitly describing concepts of plasticity such as yield surface,
flow rule and hardening law. Other examples of constitutive modeling without
standard mechanical concepts present the prediction of nonlinear stress-strain
behavior using the recurrent neural networks (RNN). In this approach, apart
from physical or mechanical properties, the actual stress-strain state which is
provided by previous network activation complements the input vector in order
to iteratively reproduce and predict complex soil behavior. Based on grain size
distribution, stress history or initial voids ratio, such modeling was proposed
for cohesionless soils (Ellis et al., 1995; Penumadu and Zhao, 1999) and for fine-
grained soils (Zhu et al., 1998; Najjar and Huang, 2007). The RNN potential
was also used to model hysteric soil behavior for cyclic loadings (Basheer, 2000,
2002).

Since the NNs are able to generalize a multi-variable complex relationships,
they can assist in solving typical geotechnical problems like forecasting of slope
movements or vertical ground movements based on rainfall history (Mayoraz
and Vulliet, 2002; Neaupane and Achet, 2004; Doris et al., 2008), prediction of
deflections of diaphragm walls and earth retaining structures (Goh et al., 1995;
Jan et al., 2002; Hashash et al., 2003; Kung et al., 2007) and their reliability
assessment (Goh and Kulhawy, 2005), assessment of shallow foundation settle-
ments (Shahin et al., 2005). Further studies present successful applications of
NNs for pile designing. Chan et al. (1995); Goh (1996b); Lee and Lee (1996);
Abu-Kiefa (1998) compared the conventional methods for estimating load ca-
pacity of driven piles with NN models. Hanna et al. (2004) compared an effective
NN model with existing empirical approaches for assessing the group efficiency
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of axially loaded piles installed in cohesionless soil. In other studies, Nawari
et al. (1999); Goh et al. (2005) proposed various approaches of NN modeling
to analyze, respectively, the deflection and undrained shear resistance of drilled
shafts.

Another category of NN applications deals with liquefaction phenomenon.
Although the phenomenon is well known, the assessment of liquefaction sus-
ceptibility is not easy and is mostly based on empirical methods due to the
complexity and uncertainty of the mechanism (Agrawal et al., 1997). The liq-
uefaction potential was initially investigated with the aid of NN by Goh (1994,
1996a) based on SPT records and CPT cone resistance data, respectively. In
his further study, Goh (2002) showed the application of the probabilistic neural
network model in order to assess the liquefaction potential based on CPT and
shear wave velocity data. Recently, Baziar and Ghorbani (2005) proposed the
NN model to predict the lateral ground displacement induced by the liquefac-
tion.

The NN strategy has been also successfully applied to three-dimensional
site characterization. Typically, such investigations involve assessing the spatial
variability of soil properties or field measurements based on reanalyzed discrete
soil profiles or sections. Published examples demonstrate the feasibility of es-
timating the spatial distribution of the rockhead elevation based on seismic
refraction survey data (Zhou and Wu, 1994), capturing the spatial variability
of soil permeability (Basheer et al., 1996), and a three-dimensional variability
analysis of the cone resistance records using CPT data in discrete test locations
(Juang et al., 2001).

A development of the multi-regression analysis using NN technique has been
found highly suitable for parameter identification in geotechnical engineering.
The deterministic inverse solutions may rely on theoretical assumptions or sim-
plifications, often justifiable, although occasionally neglecting important factors
which are involved in some processes. The complexity of geomaterials with their
inherent variability makes the identification challenging as many properties can
be intercorrelated (Yang and Rosenbaum, 2002). This fact may be a significant
difficulty when performing a traditional statistical regression analysis. In con-
sequence, many researchers have leaned towards the NN methods to estimate
geotechnical properties based on physical soil characteristics, e.g. hydraulic con-
ductivity of compacted clay liners (Agrawal et al., 1994; Goh, 1995; Najjar and
Basheer, 1996), compaction characteristics (Najjar et al., 1996), ultimate shear
strength for unsaturated soil (Lee et al., 2003), or effective stress parameter χ
(Kayadelen, 2007). The NNs can be also used to map experimental test mea-
surements onto geotechnical properties such as undrained shear strength (Kim,
2004), stress history (Kurup and Dudani, 2002) from CPT data, preconsoli-
dation pressure from laboratory tests (Celk and Tan, 2005) or water content,
degree of saturation and dry soil density based on measurements of the com-
plex permittivity of a soil-water electrolyte system (Ding and Shang, 2004).
NNs have been used to identify various mechanical properties from structural
tests (Waszczyszyn, 1998; Shin and Pande, 2003; Nardin et al., 2003; Obrzud
et al., 2009b) or some geotechnical properties from in situ experimental data
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(Pichler et al., 2003; Obrzud et al., 2009a). Shin and Pande (2003) proposed
an identification of the orthotropic elastic constants by forming a set of equa-
tions representing components of the computed tangent non-symmetric stiffness
matrix for the NN-based constitutive model with the unknown elements of the
conventional orthotropic stiffness matrix. Nardin et al. (2003) performed an
identification of macro- and micro-parameters for a discrete element model.

For further reading, please refer to Toll (1996); Shahin et al. (2001, 2008)
who provide a comprehensive review of a large number of complex geomechan-
ical tasks which have been solved by means of neural networks.

Inverse modeling is one of the major issue in geomechanics. The inverse
problems are often characterized by non-unique solutions which is derivative
of the highly non-linear functional relationships between measured dependent
and identified independent variables. In fact, many solutions may satisfy a
formulated inverse problem. One of the reasons that the NNs are suitable to
assist in solving the inverse problems is that they are able to map an admissible
space of solution domain providing close approximates of the optimal solution.
In connection with the supervised training algorithm, the NNs can serve as a
powerful tool for solving inverse problems. Among variety of neural network
algorithms, the multi-layer, feed-forward neural networks are most commonly
used in engineering (Ghaboussi, 2001). The following sections present a brief
overview on development and applicability of NN-based models.

3.2 Identification based on neural networks

Generally, development of an NN-based model consists of (i) assembling suffi-
ciently large training database, (ii) selecting correlated input/output pairs and
(iii) performing an efficient model calibration, i.e. the supervised NN training.
Clearly, the efficiency of the NN model depends on the coherency of a collected
database and the amount of information which is provided. Then, with the
inherent imprecision tolerance feature, the NN models are able to find a gen-
eral solution even for experimental data containing erroneous measurements.
Typically, assembling of training patterns can be carried out by means of (i)
synthesis of published historic data (e.g. Abu-Kiefa, 1998; Hanna et al., 2007),
(ii) direct experimental observations of modeled problem (e.g. Ellis et al., 1995),
(iii) acquiring experimental results through an alternative model (e.g. Basheer,
2000), (iv) performing inverse analysis to the problem under consideration using
relevant numerical modeling (e.g. Goh et al., 1995; Hashash et al., 2003; Lefik
and Schrefler, 2003). The first two approaches enable to develop phenomeno-
logical NN models as soon as results include no theoretical assumptions and
simplifications, whereas other methods provide results which highly depend on
the adequacy of an applied model. On the other hand, the first two approaches
do not ensure a full control over pattern distribution in the problem domain
(Flood and Kartam, 1994a).
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3.2.1 Numerical approach for database generation

In this study, neural networks will be trained based on a set of synthetic curves
which are produced by numerical simulations. This approach to training pattern
generation has the following advantages:

• The approach provides full control across the space of constitutive model
parameters. The parameters can be regularly distributed in the training
set using relevant probability density functions (pdf). The constraints for
parameter relationships stemming from model mechanics or observed re-
lationships can be imposed. Thus, the non-physical or unlike combination
of parameters are skipped reducing dimensions of parameter space and
improving the accuracy for densely clustered regions.

• Contrary to the synthesis of available experimental or historical data which
may prove to be time-consuming and expensive, the number of training
patterns is defined by the user and depends only on storage capacities or
computational time restrictions. The numerical database can be enlarged
at any moment if an improved accuracy of problem solution is required in
some problem domains.

• The quality of numerical measurements rigorously depends on the devel-
oped numerical model which depends on the capacities of constitutive
law, the adequacy of BVP modeling and the robustness of numerical pro-
cedures. If two latter issues are met, the measurements are directly pro-
portional to the initial model variables and do not include disturbance
effects, as is the case with the conventional testing procedures.

• Contrary to the synthesis of historical data, the measurements can be
provided by one probing unit driven by one operator. Then, the numerical
pseudo-experiments reveal numerical accuracy and coherency of results.

Hence, NN training in such a case can be regarded as an organization of ”knowl-
edge” about constitutive relations of a selected model, subject to selected bound-
ary conditions. On the other hand, the generation of numerical patterns may
bear some shortcomings. It can be questionable to what extent the constitutive
model represents real soil behavior for the imposed boundary conditions and
how it affects the quality of measurements (cf. the discussion in Section 4.3).
Another limitation of this approach is that the modeling of the boundary value
problem for a selected constitutive model is sometimes unfeasible or limited due
to insufficient capabilities of numerical procedures (e.g. see Section 7.2.2.3). In
certain cases, the numerical generation of training patterns can prove to be
time-consuming since it depends on the robustness of numerical procedures and
the number of samples in the experimental database.

In this study, the development of neural network models in the context of
parameter prediction consists of two main tasks which comprise of: (1) genera-
tion of NS number of training samples using the numerical model of the selected
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BVP so that the database comprises of input-target pairs D = {pm, tm}, with
m = 1, . . . ,NS; (2) performance of the NN training until the neural network
is able to reproduce target parameters and to generalize the problem for new
numerical data. This part may be regarded as a one-time process if the suffi-
ciently large space of parameters, Rb, is covered.
In the identification mode, the developed prediction tool is used to map real
experimental data onto output vector, o, regarded as a set of mechanical soil
characteristics.

3.2.2 Preparation of training patterns

The supervised training is based on a sufficiently rich set of representative nu-
merical samples, D = {ŷ′(b)m,bm} which ensures an effective training so that
the properly trained network gives acceptable accuracy of predicted variables.
These samples comprise of input vectors corresponding to the normalized nu-
merical measurements ŷ′(b) and expected outputs representing target model
parameters b ∈ Rb. In the context of field tests, non-dimensionality, regarded
as normalization with respect to the initial effective mean stress p′o, is introduced
to reduce this variable in random generation of samples. Since field measure-
ments exhibit a non-smooth stress-strain relief, artificial noise can be introduced
to the smooth numerical data. This helps to avoid an over-fitting of the trained
network and to improve the ability of generalization. Generation of D consists
of the following steps:

1. Generating random permutations of bn, within Rb observable in geotech-
nical practice and preserving statistical correlations between model pa-
rameters (where n = 1, . . . ,NC, and NC is the overall number of variables
defining numerical model),

2. Computing numerical model responses y′(b) by means of FE simulations,

3. Introducing random noise s to numerical results ỹ′(b) = y′(b, s),

4. Introducing non-dimensionality of measured variables with respect to the
initial stress state ŷ′(b) = ỹ′(b, p′o).

The above approach will be presented on examples in Sections 5.1 and 8.

3.3 Theory of feed-forward neural networks

This section introduces the main issues as regards the feed-forward neural net-
works. The description includes the basics of neural network topography as
well as the concept of the back-propagation training algorithm. A reduction of
multidimensional data set by means of the principal component analysis (PCA)
will also be described.
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Figure 3.1: Scheme of single neuron.

3.3.1 Model of a neuron

Each neural network is composed of an assembly of single interconnected pro-
cessing units which represent neurons of human brain. The terms unit and
neuron will be used alternately in the later part of this study. The concept
of a simple mathematical model of a neuron was conceived of by McCulloch
and Pitts (1943) and still remains the basic unit used in neural processing. An
elementary neuron with N number of activating inputs is shown in Figure 3.1.
A single unit consists of weights storing knowledge gained during the training,
computing an activation level, and a differentiable transfer function transmit-
ting processed inputs to other units as outputs. The basic activities performed
by a single neuron in the so-called feed-forward procedure can be summarized
as follows:

1. Processing unit j receives signals coming from incoming inputs, ai. These
signals, however, are modified by the strengths called network weights,
ωij. The weights are network parameters which interconnect input ele-
ments with an internal state parameter, ξj, also called the excitation of
the neuron. The modified signals are summed up as shown below:

ξ
(n)
j = ω

(n)
1j a1 + ω

(n)
2j a2 + . . .+ ω

(n)
NjaN + θ

(n)
j =

N∑

i=1

ω
(n)
ij ai + θ

(n)
j ,

j = 1,M

(3.1)

where n is an identity of the layer, N is the number of elements in the input
vector and M is the number of neurons in n-th layer. Moreover, neurons
can also contain an additional input node, so-called bias, θj, acting as a
form of threshold. Its value is equal to 1.

2. The activation level, aj, which is an output of the processing unit, is
computed through a non-linear transfer function, fj, which is a threshold
function of the value aj. In addition, the unity output may be affected by
the bias θj. The outgoing unity value is given by:

aj = fj(ξj) (3.2)
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The output signal aj is restricted by the upper and lower thresholds de-
pending on the form of the differentiable transfer function. Generally, the
log-sigmoid and tan-sigmoid functions are used generating output values
between 0 to 1, and -1 to 1, respectively:
a) log-sigmoid function

1

-1

ξ

f(ξ)

f(ξ) =
1

1 + e−ξ
(3.3)

b) tan-sigmoid function

1

-1

ξ

f(ξ)

f(ξ) =
2

1 + e−2ξ
− 1 (3.4)

For the output layers, the linear transfer function is often used to calculate
a layer’s output from its net input. This function is represented in a simple
form:

f(ξ) = ξ (3.5)

Since N single units can be interconnected through so-called hidden layers, they
create a collective network which is able to solve even highly non-linear prob-
lems. Nowadays, the most popular neural network applied in civil engineering
is a multi-layered, feed-forward network.

3.3.2 Network architecture and feed-forward procedure

The multi-layered network is designed hierarchically and consists of hidden lay-
ers. Each layer comprises of processing units which are fully interconnected
with units in the next layer. A typical architecture of the multi-layered net-
work with input, output and one hidden layer is presented in Figure 3.2. The
input layer consisting of N (p) input units activates a hidden layer containing
N (h) neurons. Then, the signal is transmitted across outgoing connections to
the N (o)-dimensional output layer. In other words, the feed-forward algorithm
maps the dimensionless values of the input vector pi, i = 1, . . . , N (p) into the
output vector ok, k = 1, . . . , N (o). The output vector for a network with one
hidden layer can be thus expressed using Equation (3.2):

ok = f
(o)
k




N(h)∑

j=1

ω
(o)
jk f

(h)
j

(
N(p)∑

i=1

ω
(h)
ij pi + θ

(h)
j

)
+ θ

(o)
k


 (3.6)
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This formula can be regarded as the closed-form solution to a given problem
if network weights are correctly adjusted. Such designed NN has the ability to
generalize a specified problem for which the solution can be represented by an
unknown non-linear function.
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Figure 3.2: Example of the NN topology with one hidden layer.

3.3.3 Neural network training

Apart from the ability to generalize, a neural network possesses the impor-
tant feature of self-organizing in the light of a specified problem. The self-
organization requires adjusting network weights by means of performing super-
vised training. The NN training is equivalent to the minimization of discrepan-
cies between output values produced by the untrained NN and target solutions
considered as the part of a training set. Supposing that the important input
factors affecting further output products are recognized, then NN modeling al-
gorithm comprises of the following subroutines:

1. Division of experimental database into training, validation and testing
subsets.

2. Data pre-processing.

3. Specification of network topology.

4. NN training with network performance monitoring.

5. Post-training performance analysis.

The following subsections are addressed to these issues.
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3.3.3.1 Selection of training database

Similarly to conventional statistical inverse models, the calibration of NN pa-
rameters requires a set of experimental results D which comprises of representa-
tive input/output pairs. Usually, the training set is divided into three subsets:
training, validating and testing.
The first set is used to adjust network weights to feed trained network during the
back-propagation procedure (Section 3.3.3.4). This set should be large enough
and well-specified so that the trained NN is able to generalize within the range
of variables used for NN learning. It is well recognized that NNs optimally
perform for the range of data which is included in the training set and their
abilities of extrapolation are limited (Flood and Kartam, 1994a; Shahin et al.,
2008). Therefore, the extreme data points for all dimensions of the database
should be included in the training subset.
The validation set is used to perform the cross-validation of the trained network
(Section 3.3.3.5). This procedure is used to avoid network overfitting when per-
forming training cycles. In other words, this subset controls whether network
performance maintains the general trend for the solution. The overfitting may
lead to the memorization of single data points loosing the ability to generalize
a problem.
The last testing subset is used after the training to independently assess net-
work performance using the new data points that have not been presented to
the network before (see Section 3.3.4). Clearly, the best network performance
can be achieved for the data points within the space of data points included in
the training set. If this is the case, a reasonable performance analysis of NN
model can be carried out. Masters (1993) suggested that the statistical proper-
ties, i.e. mean and standard deviation for each subset should be similar so that
they represent the same statistical population.
Generally, no unified guidelines exist for the determination of proportions for
training subsets. Apart from random or statistically consistent data division,
some systematic approaches for data division, such as the self-organizing map
or the fuzzy clustering technique have been proposed in literature. Shahin et al.
(2004) compared these various data division approaches in a case study for set-
tlement prediction of shallow foundations in granular soils. They found optimal
proportions of 20% of the dataset for the validation test whereas the remaining
part was divided into 70% for training and 30% for testing. Typically, the 60-
70% of the dataset can be used as the training set, whereas the other sets can
contain 15-20% each.

3.3.3.2 Data pre-processing

It may occur that input and output vectors contain data comprising of physical
values often varying in order of magnitude. This may result in large amplitudes
of the target solution surfaces and attract the training attention to the regions
with the highest amplitudes (Flood and Kartam, 1994a). In such cases, it
may be useful to transform the input and output vectors so that all variables
would receive similar attention during training. All variables can be scaled into
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dimensionless values falling into an interval 〈−1, 1〉. Thus, the elements of the
column vectors x1,x2, . . . ,xn are scaled to values x̂ according:

x̂ =
2(x− xmin)

xmax − xmin

− 1 (3.7)

Another approach to scale network input/output pairs is normalization with re-
spect to the mean and standard deviation of the training set (Equation (3.8)).

In the present study, training data samples are generated by means of FE
analyzes. For some analyzes the final results can be provided in rows of many
discrete measurements. Many of these measurements, provided also with arti-
ficial noise imitating a natural scatter, can be correlated and, in the context of
parameter identification, may be redundant. Hence, it is useful to compute the
most meaningful basis to filter out the noise from numerical and further exper-
imental measurements and to extract the most meaningful information from a
large data set. The principal component analysis (PCA) is a statistical method
which reduces multidimensional data sets to lower dimensions (Haykin, 1999).
Reducing a large data set, PCA reveals a simplified hidden structure that can
be nested in the test measurements. PCA is an orthogonal linear transforma-
tion that transforms the data to a new coordinate system so that the greatest
variance of the projected data lies on the first principal axis, the second greatest
variance on the second axis etc. Ignoring the higher-order principal components,
the most affecting data in the analysis are retained by lower-order ones.

Supposing that column vectors x̂1, x̂2, . . . , x̂n contain scaled observations of
m = ND variables of n = NS stress-strain analyses, means and deviations
along each dimension m are mapped respectively onto 0 and 1 according to the
following equation:

x̂j =
(xj − E[xj])√
E[x2

j ] − (E[xj])2
and j = 1, . . . ,m (3.8)

The empirical correlation matrix (m × m) can be estimated as (Diamantaras
and Kung, 1996):

R ∼= 1

n

n∑

i=1

x̂ix̂
T
i =

1

n
XXT (3.9)

where X = [x̂1, . . . , x̂i, . . . , x̂n]. Then, using the orthogonal similarity of trans-
formation

WTRW = V (3.10)

the matrix of eigenvectors W = [w1, . . . ,wj, . . . ,wm] and the diagonal matrix
of eigenvalues V = diag [v1, . . . , vj, . . . , vm] can be computed and arranged ac-
cording to a descending order. The principal component vectors can be thus
computed as:

yj = wT
j x̂, j = 1, . . . , l (3.11)

where l denotes the reduced number of observations 1 ≤ l < m under the
condition that vl ≫ vl+1. This operation transforms the Rm space into the
reduced dimension Rl retaining those variables which contribute most to the
variance.
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3.3.3.3 Determination of network topology

Network topology should be selected prior to NN training. It requires assigning
a number of neurons which are distributed in a number of hidden layers. The
choice of the optimal network configuration is not straightforward since it may
be influenced by the number of elements in the input and output vectors, as
well as by a dimension of a training set or complexity of the problem. Flood and
Kartam (1994a) stated that ”two hidden layers provide the grater flexibility nec-

essary to model complex-shaped solution surfaces, and are thus recommended

as a starting point when developing a layered feed-forward network of sigmoidal

neurons”. On the other hand, more than one hidden layer may increase the risk
of getting trapped in local minima (Shahin et al., 2008). Usually, the number of
hidden layers is selected arbitrarily and a trial-and-error procedure is performed
to find an optimal number of processing units. It is well known that a large
number of neurons increases the risk of over-fitting. Thus, it is recommended
to keep the number of neurons as small as possible which (i) ensures a reduced
computational cost of the training, (ii) improves generalization performance by
avoiding network overfitting, (iii) makes the trained network easier to be ana-
lyzed (Shahin et al., 2008).

Usually, the trial-and-error procedure is initiated with a small number of
neurons. This number remains constant for a given training trial and is modi-
fied as necessary if the performance of the network is not satisfactory.

Ghaboussi and Sidarta (1998) proposed an adaptive method of network
topology determination which consists of starting the training with a small
number of neurons which is dynamically updated during the training cycles.
The discussion on the other approaches to the determination of the optimal
network architecture is provided by Shahin et al. (2008).

In this study, optimal network topologies will be found with a few trial-and-
error training runs.

3.3.3.4 Back-propagation algorithm

In the supervised training, NS(t)-number of representative patterns comprising
of input vectors and corresponding targets is used to adjust network weights
until the NN satisfactorily approximates a function. This is usually performed
by using one of gradient-based optimization techniques. The quality of network
performance can be validated by means of NS(s)-number of testing patterns
which have not been presented to the network before. As mentioned above, each
training pattern comprises the input vector pi within N (p)-number of elements
(i = 1, . . . , N (p)) and the corresponding output vector ok of N (o) elements (k =
1, . . . , N (o)). During the first activation of the untrained network, the network
weights are chosen randomly, and therefore, discrepancies between each output
vector ok and target vector tk are expected. Hence, the global error function to
be minimized, F (g), for the total number of training sets, NS(t), can be calculated
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as follows:

F (g) =
1

NS(t)

NS(t)∑

t=1

Ft =

=
1

NS(t)

NS(t)∑

t=1

1

N (o)

N(o)∑

k=1

(
tk(p) − ok(p)

)2

→ minimize

(3.12)

where t denotes the index of the training pattern (t = 1, . . . ,NS(t)).
NN training aims at minimizing the global error by an iterative adjustment

of the network weights according to the generalized delta rule (Rumelhart et al.,
1986). The global error is gradually reduced in each network activation, using
one of gradient-based optimization algorithms, such as conjugate gradient, New-
tonian or quasi-Newtonian algorithms, etc. Partial derivatives of the global error
with respect to the weights, ω

(o)
jk and ω

(h)
ij , determine the gradient of weights in-

crements, ∆ω
(o)
jk and ∆ω

(h)
ij , by means of the generalized delta rule. Hence, the

learning process is referred to the back-propagation term, as the derivative of
the global error is back-calculated contrary to the direction of activated network
calculations. The increments of weights are functions of partial derivatives of
the global error with respect to weights:

∆ω
(o)
jk = ∆ω

(o)
jk

(
− η

∂F (g)

∂ω
(o)
jk

)
and ∆ω

(h)
ij = ∆ω

(h)
ij

(
− η

∂F (g)

∂ω
(h)
ij

)
(3.13)

where η denotes the learning-rate parameter, superscripts (o) and (h) concern
respectively the output and the hidden layer while i, j, k denote the number
of elements of a relevant layer presented in Figure 3.2, i = 1, . . . , N (p), j =
1, . . . , N (h), k = 1, . . . , N (o).
The direction of weight changes is directly calculated as:

∂F (g)

∂ω
(o)
jk

=
NS(t)∑

t=1

∂F (g)

∂Ft

∂Ft

ω
(o)
jk

(3.14a)

∂F (g)

∂ω
(h)
ij

=
NS(t)∑

t=1

∂F (g)

∂Ft

∂Ft

ω
(h)
ij

(3.14b)

where partial derivatives for the error function Ft, for pairs input/output o(p)
and input/target t(p) are calculated as:

∂Ft
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jk
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∂ξ
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In Equation 3.15 the derivative of the linear transfer function in the output layer
is trivial and derivatives for the log-sigmoid or tan-sigmoid functions (Equation
3.3 and 3.4) which may be used alternately in hidden layers are calculated
respectively as:

∂f(ξ
(h)
j )

∂ξ
(h)
j

= f(ξ
(h)
j )

(
f(ξ

(h)
j ) − 1

)
(3.16a)

or
∂f(ξ

(h)
j )

∂ξ
(h)
j

= 4f(ξ
(h)
j )

(
f(ξ

(h)
j ) − 1

)
(3.16b)

For further details, please refer to literature of the topic (Rumelhart et al., 1986;
Haykin, 1999).

Sometimes the gradient descent algorithm may be prone to get stuck in local
minima if the network weights are selected randomly at the beginning of the
training. If such cases, the learning process needs to be repeated or the global
search techniques such as genetic algorithms can be used to find the values of
weights that are close to the optimal ones (e.g. Pichler et al., 2003).

Depending on the problem, the complexity of solution surfaces, extension of
the training patterns and network topology, different optimization techniques
can be employed during the process of training. In this study, the Levenberg-
Marquardt algorithm (Marquardt, 1963) will be used for all training sessions
since it delivers the fastest training for a moderate-sized network topology (Ha-
gan et al., 1996).

3.3.3.5 Network performance monitoring

The optimal calibration of network parameters requires the monitoring the net-
work performance during the learning process. The training can be stopped if
the global error F (g) achieves the user-specified threshold. However, this cri-
terion may lead to network over-fitting or premature stopping the calibration
of under-optimized weights (Shahin et al., 2008). Such pitfalls can be avoided
using the cross-validation technique (Figure 3.3). Before the training, a rep-
resentative set of patterns is divided into three parts: training, validation and
testing subsets comprising, respectively, NS(t), NS(v) and NS(s) numbers of pat-
terns. As shown before, the determination of the global error F (g) in order
to modify network weights is computed as the sum of errors Ft obtained for
each pair of network output-target belonging to the training set. By analogy,
the global error for the validation set can be established as a sum of errors Fv

corresponding to NS(v)- validation patterns:

F (g)
v =

1

NS(v)

NS(v)∑

v=1

Fv (3.17)

An accurate ability to generalize is achieved by the trained network if the global
errors F (g) and F

(g)
v decrease with the similar rate until the user-specified toler-

ance is met or if the further cycles deliver no downward trend for both training
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and validation patterns (Figure 3.3). On the other hand, a limited ability of the

network is recognized if the global error F
(g)
v displays no further improvements

or the increasing trend as the training progresses.

Training cycles

E
rr

o
r

Validation Patterns

(poor approximation )

Validation Patterns

(good approximation )

Training Patterns

Error 

minimum

Tolerance level

Figure 3.3: Network performance monitoring during training.

3.3.4 Post-training network analysis

Before applying the network to a case study, the degree of confidence has to
be established (Flood and Kartam, 1994a). The applicability of the trained
network can be assessed by performing the post-training analysis. It requires
providing the trained network with the testing set containing NS(s) represen-
tative solutions which are not presented to the network during training. The
accuracy of fit can be then evaluated by comparing the network output prod-
ucts with the benchmark targets. For this purpose, a qualitative evaluation of
plotted data points and a quantitative statistical analysis by means of a coef-
ficient of correlation R and mean squared error MSE are typically carried out
(Figure 3.4). A good approximation is thus characterized by MSE which tends
to reach 0. For this measure, large errors receive greater attention than small
errors (Shahin et al., 2008). As regards the quality of correlation measured by
R, according to Smith (1986) (after Shahin et al., 2008), this measure can be
tentatively classified as follows:

|R| ≥ 0.8 strong correlation exists

0.2 < |R| < 0.8 medium correlation exists

|R| ≤ 0.2 weak correlation exists

(3.18)

Since the training patterns in this study are generated with the aid of FE
simulations, it is strongly recommended to check the applicability of the NN
inverse models for real case studies. Such a validation is necessary because
NN models will be developed based on the results provided by the simplified
constitutive relations of the soil model subject to idealized boundary conditions.

41



1 2 3 4
1

1.5

2

2.5

3

3.5

4

o 
  o

ut
pu

t (
pr

ed
ic

te
d)

t   target (reference)
 

 

R = 0.661    
MSE = 0.38955

Data Points
Best Lin. Fit
o = t
10% Error

(a) Poor approximation

1 2 3 4
1

1.5

2

2.5

3

3.5

4

o 
  o

ut
pu

t (
pr

ed
ic

te
d)

t   target (reference)

 

 

R = 0.932     
MSE = 0.085604

Data Points
Best Lin. Fit
o = t
10% Error

(b) Good approximation

Figure 3.4: Post-training analysis of network performance for patterns never pre-
sented to the network.

Examples of the validations with the real experimental measurements will be
presented in Sections 5.2, 9.1 and 9.2.

3.4 Remarks on NN’s shortcomings

There are four main issues which may discourage engineers from using NNs,
i.e. (i) the lack of transparency of NN models, (ii) the lack of precision, (iii)
the uncertainty related to knowledge extraction, and (iv) reduced ability of
extrapolation. The latter is clearly a derivative of the strictly-defined space of
training dataset. The application of developed NN models is thus restricted
to the range of data points that are included in the training database (Flood
and Kartam, 1994a). Since the value of extrapolated solutions can sometimes
be doubtful, the acquisition of training patterns well representing the modeled
task plays an important role in the development of the NN models.

Lack of precision is related to the non-uniqueness of network topology. Dif-
ferent configurations may give different results, and yet they are reasonable and
close to the exact solution. The imprecision may sometimes stem from the
random assignment of network weights at the beginning of the training or the
random character of pattern sampling within the entire training dataset. In the
context of inverse modeling, the mathematical precision is typically not required
since this kind of problems are characterized by the inherent non-uniqueness of
solutions. Hence, the NN ability to find the vicinity of the most optimal solution
is appreciated in most practical problems.

Lack of transparency is related to network parameters which store the knowl-
edge gained by neural networks. Since network weights have no physical mean-
ing, as is the case of conventional mechanical characteristics, NN are often
considered as ”black boxes” (Shahin et al., 2008). Knowledge extraction has
been the subject of many studies (e.g. Garson, 1991; Yang and Zhang, 1997;
Gevrey et al., 2003; Olden et al., 2004). Generally, it consists of carrying out
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a hierarchical analysis which specifies input variables which mostly affect the
corresponding outputs. In other words, such an analysis allows the user to
detect the factors which have the most influence on the problem under con-
sideration. Typically, the existing methods of knowledge extraction are based
on an examination of network weights (e.g. Goh, 1994) or on carrying out the
sensitivity analysis (e.g. Yang and Zhang, 1997). Among the proposed meth-
ods, the most popular ones are weight partitioning algorithm (Garson, 1991),
the connection weights algorithm (Olden and Jackson, 2002) and the input per-
turbation approach (e.g. Yao et al., 1998; Scardi and Harding, 1999; Sudheer,
2005), partial derivatives approach (e.g. Yang and Zhang, 1997), etc.1 In this
study, the first three approaches will be used in an example of finding factors
which have the largest impact on the predicted parameter (see Section 8.2.6).
Although the Garson’s algorithm is proved to provide sometimes unreasonable
results (cf. Olden et al., 2004), the approach will also be considered in further
analyzes. This algorithm involves partitioning of the absolute values of connec-
tion weights to calculate variable contributions (for details see Goh, 1994; Olden
et al., 2004). The ”connection weights” approach calculates the product of the
raw input-hidden and hidden-output connection weights between each input
and output unit and sums the products across all hidden neurons (for details
see Olden et al., 2004). In the input perturbation approach, a selected variable
is perturbed with artificial noise while the other variables remain unchanged.
The mean square error MSE can be a measure of the input contribution. Hence,
the input variable which produces the largest error has the most relative influ-
ence. The input values can be perturbed in 5% increaments varying from 75 to
125% of the reference values.

3.5 Summary

Over the last two decades, the feed-forward neural networks have drawn a lot
of attention from geotechnical engineers. It has been proved in many stud-
ies that, as universal and rapid function approximators, they are suitable to
assist in solving inherently complex geotechnical problems. They can also be
complementary to the mathematical models which often suffer from theoretical
assumptions and simplifications. The NN ability to learn with a set of exam-
ples, problem generalization and imprecision tolerance make them a powerful
tool for modeling the inverse problems. As a parallel operating system, they
provide solutions rapidly, without iterative procedures characteristic to direct
search approaches. Despite their advantages, NNs possess some shortcomings
such as lack of ”mathematical” precision or limited possibility of knowledge ex-
traction and rationalizing provided solutions. However, these shortcomings do
not diminish the value of NNs in the context of inverse modeling.

In this chapter, the main concepts of feed-forward networks and the effective
supervised training have been briefly introduced and analyzed. The strategy

1Refer to Gevrey et al. (2003); Olden et al. (2004) for comprehensive reviews of the knowl-
edge extraction approaches.
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of numerical pattern generation has been presented and compared with other
approaches. Such a strategy provides a full control over the parameter space
and ensures coherency of measurements corresponding to model characteristics.
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Chapter 4

Mathematical Model of Soil

Entia non sunt multiplicanda praeter necessitatem 1

William of Ockham

In this study, the application of neural networks for parameter prediction
will be applied for the isotropic elasto-plastic Modified Cam-Clay (MCC) model
(Roscoe and Burland, 1968). This model is often the kernel of more complex
models such as multi-mechanism model by Hujeux (1985). Despite certain lim-
itations, this strain-hardening model describes the behavior of normally- and
lightly overconsolidated cohesive soil incorporating the effect of stress path his-
tory fairly well. In natural clays, overconsolidation may stem from mechanical
unloading such as erosion, excavations, changes in ground water level, or due to
other phenomena such as dessication, melting of ice cover, secondary compres-
sion, and cementation (Whittle and Kavvadas, 1994).

In Chapter 5 the MCC model will be used to illustrate the application of
the hybrid parameter identification on a simple example of the drained triax-
ial compression test. Although the feasibility of the identification technique
is investigated with the MCC model, it can be adopted for much more com-
plex constitutive models. Such a simple model was selected to reliably verify
the proposed parameter identification strategy. Although most of model pa-
rameters have a clear physical meaning and can be directly estimated for the
considered BVPs, in the case of numerical parameter identification, they can be
artificially perceived as ”non-physical” properties. This is so because all these
parameters may control and affect the stress-strain response of the model. This
assumption is introduced only for the purpose of demonstration because it is
obvious that the MCC parameter estimates can be directly assessed from the
conventional triaxial test curves.

1”Entities should not be multiplied beyond necessity”, also paraphrased as ”All other
things being equal, the simplest solution is the best”.

45



The proposed parameter prediction and identification strategy for the MCC
will be investigated for field tests in Chapters 8 and 9. Two of the most common
standardized tests, i.e. pressuremeter and piezocone test, will be investigated
with the special reference to complexity of their BVPs, as well as possible oc-
currence of partial drainage. However, in order to avoid further complexity
associated with the increasing number of parameters, the strain-rate effects will
be neglected in this study.

4.1 Constitutive equations of the Modified Cam

Clay model

The yield and plastic potential surface of the model are defined in terms of
effective stress invariants p′ = −I1/3 and q =

√
3J2 and the preconsolida-

tion pressure pco which defines the overconsolidation ratio Rp = pco/p
′ 2. The

equation for the state boundary surface for MCC (cf. Figure 5.1b) is defined as
follows:

F (σ′, pco) = q2 +M2 · p′(p′ − pco) = 0 (4.1)

The constitutive model is characterized by five model parameters M , λ, κ,
pco and ν. The M parameter is the slope of the critical state line (CSL) in
the p′ − q plane (Figure 5.1(b)) and can be expressed as M = 6 sinφ′

c/(3 −
sinφ′

c), where φ′
c, is the effective friction angle determined from the triaxial

compression test; ν is the Poisson’s ratio, λ and κ denote respectively the slope
of normal consolidation (NCL) and unload-reload compression lines in isotropic
compression tests (Figure 5.1(a)). In the model, lines of virgin loading and
swelling are approximated linearly in the e-lnp′ axes, which consequently implies
a linear relationship between bulk modulus, K, and the effective mean stress,
p′.

K = K(p′) =
1 + eo

κ
p′ (4.2)

where eo denotes the initial voids ratio. In that case, G/K = const and is
expressed by the formula:

G

K
=

3

2

1 − 2ν

1 + ν
(4.3)

Hence, the current shear modulus is computed through:

G =
3(1 − 2ν)(1 + eo)p

′

2(1 + ν)κ
(4.4)

The total strain increment (rate) is decomposed into elastic, ε̇
e, and plastic

parts, ε̇
p:

ε̇ = ε̇
e + ε̇

p (4.5)

2Note that the overconsolidation ratio in the MCC is defined in terms of effective mean
stress unlike to traditionally expressed overconsolidation ratio OCR = σ′

p/σ
′
vo where σ′

p is the
preconsolidation pressure with respect to the uni-axial compression conditions. For further
discussion see Section 8.1.
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where the effective stress rate is computed with the aid of the elastic stiffness
matrix De:

σ̇
′ = De · ε̇e (4.6)

De =
(
K − 2

3
G
)
I +G2Is (4.7)

The I symbol represents the unity tensor (Iijkl = δikδjl) and Is is the sym-
metrized unity tensor (Is

ijkl = (δikδjl + δilδjk)/2). Plastic strains occur when the
stress state reaches the state boundary surface given by Equations (4.1) and the
flow rule is assumed to be associated:

ε̇
p = λ̇

∂F

∂σ
(4.8)

where λ̇ is a plastic multiplier.
The hardening parameter modifies the state boundary surface and its evolution
connected to the irreversible (plastic) strains, εp

v, is given by:

·
pc = −1 + eo

λ− κ
pc

·
ε

p

kk (4.9)

4.2 Hydro-mechanical solid-fluid interaction

Numerical simulations of in situ tests require taking into account hydro-mechanical
behavior of a three-phase medium, i.e. solid, water and air. In this study, the nu-
merical simulations have been carried out using two commercial implicit finite-
element codes, i.e. Z Soil (ZACE, 2003) and ABAQUS/Standard (ABAQUS,
2007). The mathematical formulation implemented in these codes approximates
the soil ”mixture” as an equivalent two-phase medium with compressible fluid,
i.e. air bubbles are trapped in the liquid phase and there is no transition of
the air bubbles relatively to the liquid. The time-dependent soil behavior is
described by means of consolidation and transient flow formulations, in which
the conservation of mass and momentum balance of two phases are considered.

Considering soil as a two-phase medium, the total stress tensor is decom-
posed into the effective stress tensor, σ′

ij, and the fluid pressure, pf .

σij = σ′
ij + χpfδij (4.10)

where χ factor depending on saturation is assumed to be the degree of saturation
Sr. In this work, attention is limited to the behavior of saturated clays so the
soil can be represented by the solid-water system, i.e. the degree of saturation
is equal to 1.0.
With the assumption of small strains, an increment of the stress is expressed in
terms of an increment of the total strain tensor ∆εij and the constitutive tensor
Cijkl as follows:

∆σ′
ij = Cijkl∆εkl (4.11)

If the assumption of small strains is accepted, the strain increment is computed
as follows:

∆εij =
1

2

(
∂∆ui

∂Xj

+
∂∆uj

∂Xi

)
(4.12)
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and rotations increments, ∆εij, are determined in terms of displacement incre-
ments.

For simulations of cone penetration test, the large strain theory was assumed
for which the Green-Lagrange strain increment is calculated as (cf. Belytschko
et al., 2000):

∆Eij =
1

2

(
∂∆ui

∂Xj

+
∂∆uj

∂Xi

+
∂∆uk

∂Xi

∂∆uk

∂Xj

)
(4.13)

The stress-strain relation links ∆Eij and the second Piola-Kirchhoff stress Sij

through the formula:
∆S ′

ij = Cijkl∆Ekl (4.14)

and the second Piola-Kirchhoff stress tensor is related to the Cauchy stress
tensor by:

σ′
ij =

1

J
FikS

′
klFjl (4.15)

where J is the determinant of the deformation gradient F which is defined by
Fij = ∂xi/∂Xi. The initial configuration specified by coordinates Xi and the
current configuration coordinates xi are related by the displacement vector ui

by xi = Xi + ui.
In numerical simulations, the Updated Lagrangian formulation was considered,
which means that all current variables at time t + ∆t are referred to the last
equilibrium configuration at time t.

The hydraulic conductivity of partially saturated medium is governed by the
Darcy’s seepage law, and therefore, the fluid velocity relative to the solid phase,
qi, is obtained from the flow equations:

qi = k∗ij

(
− pf

γf

+ z
)

,j
(4.16)

in which, the permeability tensor for the porous medium, k∗ij, is computed
by scaling the tensor of fully saturated medium by a scalar function, kr(S),
dependent on the degree of saturation (in the case of full saturation kr(1.0) =
1.0).

k∗ij = kr(Sr)kij (4.17a)

and

kr =

(
Sr − Sres

1 − Sres

)3

(4.17b)

with Sres denoting a residual degree of saturation. The principle of mass conser-
vation is introduced in order to control the fluid flow. Thus, mass conservation
is obeyed with the continuity equation:

Srε̇kk + qk,k = cṗf (4.18)

where c, is the specific storage coefficient dependent on the total pore pressure:

c = c(pf ) = n

(
Sr

Kf

+
dSr

dpf

)
(4.19)

48



where porosity, n denotes porosity and Kf is the bulk modulus of fluid.
The validity of the continuity equation, requires that the density of the fluid is
constant, so that conservation of mass means conservation of volume.
Finally, the overall solid-fluid equilibrium equation is expressed by momentum
balance given by:

∂σij

∂xj

+ bi = 0 (4.20)

where σij is the total stress tensor and bi denotes body forces. The body force
per volume is expressed by gravity vector, gi, and the density of the solid-fluid
composite, ρ:

bi = ρgi (4.21)

and for two-phase partially saturated medium, we have:

ρ = nSrρf + (1 − n)ρs (4.22)

where ρf , is the density of the fluid and ρs is the density of the skeleton particles.

4.3 Remarks on model shortcomings

The MCC represents the simplest among the critical state concept models. This
fact imposes certain shortcomings which are briefly recalled here.

In the model, stress paths within the yield surface are fully reversible which
means that no plastic strains are generated inside the bounding surface. Hence,
there is no coupling between volumetric and shear response until yield limit
occurs (Whittle and Kavvadas, 1994). The yield surface defines the sharp tran-
sition between elastic and plastic deformations. In consequence, the model
generates no shear-induced pore pressure excess in undrained shearing. In ef-
fect, the accuracy of results for highly overconsolidated clays would be doubtful
for modeled field tests.
Furthermore, the assumption of linearity within yield surface neglects small
strain stiffness behavior which is observed in laboratory tests (Jardine et al.,
1984). Neglecting small strains may clearly affect the results of modeled BVPs.
Since the MCC is the isotropic strain-hardening model, it contains no anisotropic
properties which would describe behavior of Ko-normally consolidated clays in
subsequent hardening (e.g. Whittle and Kavvadas, 1994). In effect, modeling
of highly overconsolidated clays, with Ko values far from 1, would be doubtful.
Consequently, the anisotropy effect will be taken into account by means of im-
posing the initial stress anisotropy.

Considering the model limitations, the use of MCC in this study will be
restricted to modeling normally- and lightly overconsolidated clays.
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Chapter 5

Enhanced Identification
Verification

In order to investigate the robustness of the proposed identification scheme on
a well-defined boundary conditions, routinely performed triaxial tests, i.e. (i)
isotropic consolidation test (CI), (ii) isotropically consolidated drained com-
pression test (CIDC), were adopted to compare the quality of analytically and
numerically evaluated/predicted characteristics of the MCC model. These two
examples were also chosen to illustrate the adoption of two approaches for the
training input discretization that have been presented in Section 2.4.

5.1 Numerical implementation for drained tri-

axial compression test

Performing the CI test for the preconsolidated material, consolidation charac-
teristics κ, λ, pco can be obtained if the test is run through the elastic and plastic
domains. The simulation of CI does not require running FE analyses due to
the linear solution in lnp′ − e space (Figure 5.1(a)). To obtain a numerical re-
sponse of the model, each simulation contains five isotropic equilibrium paths
(points O, Y, A, B, C, see Figure 5.1(a)) corresponding to two measured vari-
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p'Cp'A

N
C
L

O

λ

κ

Y

(a) Isotropic
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0
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C B
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Figure 5.1: Scheme of test stress paths in (a) isotropic and (b) deviatoric plane.
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ables, i.e. the mean pressure at points, p′O, pco, p
′
A, p

′
B, p

′
C , and the volumetric

strain, εv
O, ε

v
Y , ε

v
A, ε

v
B, ε

v
C . Assuming that the slopes of consolidation lines can be

evaluated using the gradients of A-B and B-C paths, the pressure p′A is kept
constant for each numerical simulation while the ratios p′B/p

′
A and p′C/p

′
B are

randomly imposed within the interval presented in Table 5.1. Introducing a
random variable of pco/p

′
A that imposes an occurrence of plastic straining, var-

ious degrees of preconsolidation are taken into account. Furthermore, to allow
the identification to be executable regardless of the applied stress increments, a
normalization of mean stresses p′i with respect to the maximal mean stress p′max

was introduced applying dimensionless variables p′i/p
′
max. A discussion on the

choice of space of parameters as well as details concerning the NN training will
be presented in the following subsections.

The axisymmetrical simulations of the drained compression test were per-
formed with the use a FE model. Simulations of the compression under triaxial
conditions were carried out using the MCC driver within the Z Soil v.6 code
(ZACE, 2003). In each computation, a strain-controlled compression test was
performed on the isotropically preconsolidated material subject to the stress
path C-F (Figure 5.1(b)). The degree of preconsolidation was imposed through
initial stress conditions σ3 = p′C and the random values of Rp = p′B/p

′
C within

the interval depicted in Table 5.1. This interval ensures the occurrence of yield-
ing on the ”wet” side of boundary surface. For each simulation, three variables,
i.e. axial strain ε1, volumetric strain εv and deviatoric stress q were computed in
31 increments until ε1 = 20%. Small increments were imposed at the beginning
of the test and then were gradually extended toward the end of the test in order
to capture the elastic gradient regardless of the chosen set of parameters as well
as to ensure the accurate convergence of the FE analysis. For practical reasons,
the normalization of the measured q was applied so that the identification could
be executed regardless of the magnitude of the initial confining pressure p′C :

qN = q/p′C (5.1)

Table 5.1: Intervals of variables considered in the NN training.

Variable Interval
CI test CIDC test

eo 〈0.10, 1.20〉
ν − 〈0.25; 0.40〉
M − 〈0.50; 1.50〉
λ cf. Figure 5.2
Λ 〈0.50; 0.95〉
pco/p

′
A 〈0.2; 0.8〉 −

p′B/p
′
A 〈1.5; 2.1〉 −

p′B/p
′
C 〈1.1; 16.0〉 〈1.1; 2.2〉
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5.1.1 Space of parameters

The choice of the admissible space of parameters Rb plays an important role in
NN training. Parameters should be chosen from ranges which are observable
in geotechnial practice in order to (i) reduce parameter domain, (ii) regularize
distribution in this domain, (iii) avoid non-physical vector of variables. The re-
duction of the multi-dimensional space of parameters may lead to a significant
decrease of the number of generated patterns with a simultaneous improvement
of accuracy. This may be of utmost importance if the large-scale FE models are
considered in patterns generation.

The intervals adopted in the generation of training patterns are presented
in Table 5.1. Typical correlations between eo and λ for clayey soils reported in
Dascal and Laroque (1973); Dzwilewski and Richards (1974); Rendon-Herrero
(1980); Krizek et al. (1977); Leroueil et al. (1983a) can be taken between the
upper and lower bounds, cf. Figure 5.2. Observable relationship between λ
and κ represented through the plastic volumetric strain ratio Λ = 1− κ/λ may
typically fall into an interval Λ ∈ 〈0.5; 0.95〉 (Mayne, 1980). The intervals for
the remaining model characteristics, M and ν were set according to commonly
observable values for clays.

Generally, a regular distribution of training data points in the parameter
space improves further network predictions. In the case of using a numerical
solver as the pattern generator, the parameter combinations which are used to
generate experimental measurements can be chosen through the sample selec-
tion method. The methods such as orthogonal array, full factorial, hypercube1,
aim to reduce the size of training dataset by a regular sampling which preserves
efficiency of NN training for a small number of patterns (Chang et al., 2002).
In this study, the random method of selecting training patterns was adopted
to avoid introducing unnecessary degree of complexity which would arise from
parameter intercorrelations. Typically, the random selection method gives sat-
isfactory results, however, it may be computationally expensive.
Parameter and stress state distributions within the intervals were assumed uni-

1For details refer to Chang et al. (2002).
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Figure 5.2: Typical observable relationship between eo and λ.
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form except for the voids ratio eo, for which the exponential probability density
function (pdf) was adopted to generate random numbers due to the logarithmic
approximation of the upper bound of λ (Figure 5.2). The exponential distribu-
tion is given by:

P (x|µ) =

∫ x

0

1

µ
e

t
µ dt = 1 − e

−x
µ (5.2)

where µ is the mean value and σ is the standard deviation while x denotes the
random value from uniform distribution. The log-normal distribution of eo is
to ensure a uniform distribution in the λ interval.

5.1.2 Parameter identification for isotropic consolidation
test

For the purpose of the identification of soil properties from the CI test, a
two-hidden layer FFNN was optimally designed for the 5-component input as
NN(5|7−7|3), i.e. 7 neurons in each hidden layer for 3-output parameters. The
optimal number of neurons was reduced to a minimum to avoid an over-fitting
tendency of the network (Flood and Kartam, 1994a). Apart from the training
set containing NS(t) = 130 numerical patterns, a set of 70 pseudo-experiments
was prepared additionally to illustrate the efficiency of the approximation. For
each numerical experiment p′A, p

′
B, p

′
C and the corresponding εv were measured.

Thus, the dimensionless input vectors corresponding to measured variables and
the outputs regarded as unknown parameters are respectively given as:

pt = [εv
A, ε

v
B, ε

v
C , p

′
A/p

′
B, p

′
C/p

′
B]T 7→ NN 7→ ot = [κ, λ, pco/p

′
B]T (5.3)

where t = 1, . . .,NS(t). Note, that the proper value of pco is obtained by mul-
tiplying the dimensionless component by the maximum applied mean pressure
p′B. To improve the performance of the NN training, the input and output vec-
tors were scaled so that their components fall into 〈−1, 1〉 interval.

The quality of the approximation performance was assessed by presenting
unknown measurements to the trained network (Figure 5.3). The linear regres-
sion analysis performed after 70 activations of the NN exhibited a satisfactory
agreement between accurate and NN-predicted values of pco, λ, κ, with the cor-
relation coefficient R equal 0.99 for each parameter and small values of mean
squared error MSE (cf. Equation (3.12)). Moreover, the NN inverse models
exhibit the best linear fits which overlap the perfect linear fits o = t. A visual
inspection of post-training analysis shown in Figure 5.3 confirms the acceptable
degree of approximation, generally falling in 10% bounds of the relative error for
target values. An example of the parameter identification for real experimental
measurements is presented in Section 5.2.2.

5.1.3 Parameter identification for the drained compres-
sion test

For each numerical simulation, three groups of variables were incrementally
computed, i.e. axial strain εa, deviatoric stress q, and volumetric strain εv.
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Figure 5.3: Isotropic consolidation problem: post-training regression analysis for the
data set never presented to the trained network.
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From among 32 equilibrium paths for εa ∈ 〈−0.2, 0〉, the post-failure results
were skipped, i.e. εa ∈

〈
0, εa

f

〉
where εa

f corresponds to qf = qmax. Then, 31
discrete observational points ε̃a were randomly chosen with corresponding inter-
polated variables q̃, ε̃v. Moreover, q̃ was normalized into dimensionless variable
q̃N (Equation (5.1)). In order to avoid the overfitted solutions and improve gen-
eralization, the artificial noise was introduced into ”smooth” numerical results
for each discrete observation of q̃, ε̃v (see Figure 5.4). The random noise was in-
troduced using Gaussian pdf, with the coefficient of variation COV = σ/µ equal
to 3% for any numerical measurement. This artificially burdens the numerical
results with testing uncertainties i.e. device measurement errors, geometrical
imperfections and natural variability of an individual specimen. Each training
pattern consisted of 3-element target vector representing the identified parame-
ters M,λ, κ and the dimensionless input vector that comprised of the normalized
variables (cf. Equation (3.8)), i.e. Poisson’s ratio ν, initial voids ratio eo and
overconsolidation ratio Rp, and the noisy measurements of 3 state variables:

p̂t = [ν̂, êo, R̂p, ε̂
a
1, . . . , ε̂

a
ND, ε̂

v
1, . . . , ε̂

v
ND, q̂

N
1 , . . . , q̂

N
ND]T (5.4)

where ND=31 discrete measurements. Therefore, the extensive dimension of
the 96-component input vectors for NS=175 training patterns was reduced by
invoking the PCA before NN training. The empirical correlation matrix (Equa-
tion (3.9)) and the transformation matrix were calculated (Equation (3.10)).
The input vector was thus reduced from 96 to NR=15 components. The cal-
culated eigenvalues of the corresponding 15 dominant principal components for
the training set under study were 90.510, 71.287, . . . , 4.128 for which the total
variability explained by dominant principal components was 82.76% (Figure
5.5). The reconstruction error Er (Haykin, 1999) corresponding to the variance
of 16th principal component is thus:

Er = E
[∥∥X − WTY

∥∥] = 3.262 (5.5)

1  3  5  7  9  11  13  15  17  19
0

20

40

60

80

100

Principal Component

v,
  E

ig
en

va
lu

e 

(a)

1  3  5  7  9  11  13  15  17  19
0

10
20
30
40
50
60
70
80
90

Principal Component

V
ar

ia
nc

e 
E

xp
la

in
ed

 [%
]

T
ot

al
 V

ar
ia

nc
e 

E
xp

la
in

ed

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

(b)

Figure 5.5: Summary of the input data reduction using the PCA: (a) principal compo-
nents and corresponding eigenvalues v, (b) variances explained by dom-
inant principal components and the cumulative percentage of the total
variability.
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where the matrix X = [x̂1, x̂2, . . . , x̂NS] contains all data with m = 96 scaled
observations in each vector, while the matrix Y = [y1,y2, . . . ,yNS] contains
NS dimensionally reduced vectors where each NR-component vector is the pro-
jection of the corresponding data vector from matrix X onto the basis vectors
contained in the columns of matrix W = [w1,w2, . . . ,wNR]. Thus, taking into
account only 15 principal components the extensive 96 data input is significantly
reduced preserving a small reconstruction error.

Then, a two-hidden layer neural network with the input vectors projected
on the principal axes was optimally designed with 6 neurons in each hidden
layer and the training set comprised of 175 training sets. The identification can
thus be expressed as:

p̂t 7→ (PCA)pt 7→ NN(15|6 − 6|3) 7→ ot = [M,κ, λ]T (5.6)

The quality of the network performance was assessed with a set of 75 results of
the random pseudo-experiments comprising of noisy measurements never pre-
sented to the network. The results of the performed regression analysis pre-
sented in Figure 5.6, indicate the fair correctness of the parameters prediction
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Figure 5.6: Drained compression test: post-training regression analysis for the data
set never presented to the trained network.
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in terms of the correlation coefficient R and the mean squared error MSE. It is
also indicated that the best linear fits and the perfect models o = t exhibit con-
formity. A visual inspection of M predictions shows an excellent performance
of the estimator while the predictions of remaining parameters reveal a slight
scatter outside of 10% of relative error of target values. This can be explained
by the fact that the measurements comprised artificial noise. However, such
accuracy is absolutely sufficient to find a neighborhood of the global solution.
An example of parameter identification for real experimental measurements is
presented in the following section.

5.2 Parameter identification for real experimen-

tal data

The following section demonstrates an application of the identification strat-
egy for real experimental data. Model parameters are conventionally evaluated
based on measurements coming from laboratory tests carried out by the authors
of this paper, using a triaxial chamber. The compressed specimens were subject
to boundary conditions as described above in Section 5.1.

5.2.1 Material and test procedure

A series of isotropic consolidation and drained triaxial compression tests was
performed on the Bioley clayey silt samples (liquid limit wL = 31.8%; plastic
limit wP = 16.9%; unit weigth of solid particles γs = 27.1 kN/m3; clay fraction
27%). The remoulded and homogenized specimens were initially formed in
a 80 mm-diameter tube. The 120mm high specimens were first isotropically
consolidated with the pressure of pc = 100 kPa and then unloaded and carefully
trimmed into the standard dimensions of 38x76 mm. The experiment comprised
of: (i) one triaxial CI test with the following sequence of isotropic loads p′ =
15, 30, 60, 120, 240, 480 kPa and unloading to p′ = 280 kPa and (ii) three triaxial
drained shear tests preceded by the isotropic consolidation of specimens to p′B =
150, 210, 180 kPa and unloading with the same overconsolidation ratio p′B/p

′
C =

1.25. In the case of CIDC, the standard shear paths dq/dp′ = 3 were applied
(Figure 5.1(b)). The initial value of voids ratio for CI test was eo = 0.535, while
for CIDC tests eo at the beginning of shearing paths was respectively equal to
0.478, 0.488 and 0.482. Based on the measured variation of ε3 against ε1, the
calculated mean value of the Poisson’s ratio was equal ν = 0.368.

5.2.2 Example of parameter identification for the isotropic
consolidation test

An identification of three variables κ, λ and pco was carried out by presenting
to the trained network the variations of the volumetric strain εv of last three
measurements and corresponding mean pressures p′ normalized with respect to
the maximal one. An illustrative comparison of the test measurements and
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the model response using the NN-predicted parameters is shown in Figure 5.7.
Values of NN-identified parameters are also compared with the values which
were back-calculated using the conventional method, i.e. the linear regression
of loading curves.

The results presented in Table 5.2 show a good approximation of the
identified parameters with the maximal relative error of 3.79% corresponding
to pco. Note that the identified pco is smaller than the real consolidation pressure
(pco = 100 kPa) due to the earlier mobilization of plastic strains and possibly
the trimming effect.

Table 5.2: Identified parameters for isotropic consolidation test.

Variable Analytical back-calculation NN prediction

Value Value Error (%)

κ 0.0060 0.0060 0.00
λ 0.0440 0.0452 0.27
p∗co 77.00 kPa 74.08 kPa 3.79
∗The specimen preconsolidated with real pressure pc = 100kPa.

5.2.3 Example of parameter identification for the drained
compression test

A numerical identification of three variables κ, λ and M was carried out sep-
arately for each test by presenting to the trained network variations of three
measured variables, i.e. axial strain εa = ε1 and corresponding volumetric
strain εv and normalized deviatoric stress qN taken within εa ∈ 〈−0.12, 0). 31
measurements of each variable completed with the values of the Poisson’s ra-
tio, voids ratio and preconsolidation ratio were collected in the input vector p.
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Then, using the transformation matrix WT
i the normalized input p̂T

t (Equation
(5.4)) was projected onto the subspace spanned by the eigenvectors and pre-
sented to the network. The NN determined parameters, their mean values and
relative errors with reference to optimal values are presented in Table 5.4.

The identified parameters of the second test were taken to illustrate the
quality of the prediction in comparison to the values obtained through the opti-
mization. This analysis shows the effect of the measured data discretization on
the evaluated parameters. Two optimization runs were invoked, i.e. (i) for all
31 discrete points along the whole interval of ε1, and (ii) for the chosen points
within elastic and failure domain (the points in between were skipped). Equal
importance of q and εv measurements was assumed by introducing weights as
the inverse of error variance where the errors were adopted as equal to eq = 0.5
kPa and eε = 0.0001 (cf. Calvello and Finno, 2002). During iterations, only
identified parameters were updated.

The results presented in Figure 5.8 show that the fitting of all discrete points
leads to the underestimating of M with reference to the maximal value of q/p′.
The relative error that appeared reaches 4.5%, see Table 5.3. On the other
hand, the fitting of arbitrarily chosen fitting zones leads to the value of M for
the maximal q/p′ with a loss of the degree of the fitting in the middle of ε1 − q
curve.

Clearly, the choice of the discretization approach will depend on the as-
sumed criterion imposed by a further geotechnical problem. It is worthy noting
that the model response with the NN gives a very close prediction especially
for ε1 − q variation (the error of the identified parameter M is equal 0.16%).
This demonstrates that an NN additionally preceded by the PCA is able to
extract itself the most important information from the whole family of mea-
surements. It also means that the network weights provide the sensitivity of
model parameters. Morover, the NN considers the overall material behavior,
and not only its specific state, which can be illustrated by the sensitivity of the
NN to the dilatant behavior of the soil at the final part of ε1−εv curve. The NN
considers the overall variation of εv, providing an averaged value of λ, which is
smaller than the value identified for the maximal volume change (cf. Table 5.4).

Table 5.3: Comparison of the identified parameter M by means of the analytical
back-calculation, NN prediction and optimization with important discrete
points and an entire vector of measurements.

Maximal Optimal: chosen Optimal: all

q/p′ NN prediction discrete measurements discrete measurements

Variable value Value Error (%) Value Error (%) Value Error (%)

M 1.223 1.221 0.16 1.218 0.41 1.168 4.50
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Figure 5.8: Optimization with the NN-predicted initial vector of parameters for the
drained compression test ( p′o = 120kPa ). A comparison of fitting for
the discrete points of the arbitrarily significant importance and for all the
discrete measurements.
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Figure 5.9: Optimization with the NN-predicted initial vector of parameters: (a-b)
model calibration with experimental data for 3 drained compression tests,
(c) convergence rate of the GBO, (d) convergence rate of NN-assigned
parameters.
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Hereafter, the fitting procedures are carried out merely for chosen discrete
points in the elastic and failure regions. The results of three separate parameter
identification runs and one mutual optimization containing data of three tests
are presented in Table 5.4. In the table, the relative errors of the identified pa-
rameters for the NN predictions and analytical calculations are calculated with
respect to the values obtained through the subsequent GBO runs. A surpris-
ingly large error of the evaluated value of κ can be explained by the high order
of the identified parameter and this is not significantly reflected in the model
response presented in Figure 5.9. The NN-recognized parameters are quickly
updated with the minimum computational cost within 2 iterations. Figure 5.9
reveals limitations of the MCC model which make it impossible to obtain a
perfect agreement between experimental and numerical data. For example, the
MCC is not able to reflect the shear strain induced dilatancy observed in the
tested material.

It can be noted that the optimal values of κ and λ obtained from consol-
idation and compression tests are inconsistent. This is due to prescribing the
value of Rp = 1.25 with the measured confining pressures p′B and p′C . This state
parameter could be incorporated into the optimized vector under condition that
additional results of isotropic consolidation are included.

5.2.4 Efficiency test

The quantitative test of efficiency of the proposed two-level scheme was per-
formed on one of the compression tests starting from different remote points
chosen arbitrarily. Since a large change of parameters may lead to an instability
of optimization, convergence was controlled by the scaling parameter prescribed
in each run equal ρr = 0.5. The rate of the convergence was measured for the
optimization with the NN-assigned and 3 testing the user-specified initial vec-
tors. Testing patterns comprised the values of M , λ, κ given respectively as
b1 = [0.8, 0.1, 0.01], b2 = [1.6, 0.1, 0.01], b3 = [0.8, 1.0, 0.1]. Each minimization
converged to the same optimal solution. Note that starting from remote initial
points, instabilities of the solution may often occur, for instance, in the case of
calibration of hydro-mechanical problems (cf. Figure 2.7).

Figure 5.10(a) clearly shows the fast convergence of the optimization with
the NN-assigned parameters. Automated minimization is accomplished within
2 iterations while optimizations regarded as trial-and-error examples with user-
assigned parameters require at least 4 iterations. Note that in each iteration,
beside the error function computation, the number of FE runs is expanded by
the number of optimized parameters if the forward finite difference method is
used to evaluate of the sensitivity matrix. This number can be multiplied if the
model calibration is carried out for several experimental tests simultaneously2.
Consequently, the increasing number of iterations results in the increase of com-
putational cost which was augmented for the considered testing sets about 2÷4
times (Figure 5.10(b) presents CPU time which is normalized with respect to
the CPU time measured for the NN-enhanced optimization).

2Each test requires running an individual model due to different initial stress conditions.
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Figure 5.10: Efficiency test of the optimization preceded by the NN prediction in com-
parison with 3 optimization runs with the user-specified initial vector:
(a) rate of convergence, (b) computational effort.

Clearly, the number of iteration may also increase with the enhancement of
the constitutive model resulting in an increase of the number of parameters and
experimental curves.

5.3 Summary

This chapter demonstrated the efficient generic scheme of the automated cal-
ibration procedure for multi-parameter constitutive models. The potential of
the hybrid parameter identification method combining the GBO technique sup-
ported by the feed-forward neural network FFNN algorithm is presented in
detail. The efficiency of the presented strategy has been proved by means of a
test calibration of the Modified Cam clay model using experimental measure-
ments from the benchmark triaxial drained compression test. Some general
conclusions can thus be drawn:

• The application of the NN technique to solve an inverse problem provides
an efficient and accurate search of the vicinity of a global solution skipping
local minima. The close approximation of parameters preserves the mini-
mal computational expense during the subsequent optimization (here two
iterations) and helps the user to avoid performing time consuming trial-
and-error runs. This is a crucial feature, if the complex multi-variable
models are considered to be calibrated with the subsequent direct line
search.

• The choice of an admissible space of parameters plays an important role
in NN training leading to the reduction of the multi-dimensional space of
parameters and a significant decrease of the number of generated pattern
population with a simultaneous improvement of the accuracy of predic-
tions.

• Incorporating the PCA into NN training results in significant reduction
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of large-dimensional data with no significant loss of accuracy of evaluated
parameters.

• The choice of discrete points during curve fitting has a significant impor-
tance on calibrated parameters unless the constitutive model is able to
precisely reproduce experimental curves. The examples presented in this
chapter demonstrate that the NNs possess the ability to extract mean-
ingful information about the parameters’ sensitivity from the numerical
training dataset. The model responses with the input parameters pro-
vided by an NN, revealed that the NN mapping atypical experimental
measurements is able properly extract soil properties for the considered
constitutive law.

• A potential application of the NN-based technique for the parameter iden-
tification of enhanced constitutive models basically involves delivering rel-
evant data which illustrates the physical phenomena that are considered
in the model. Obviously, in the case of a calibration of more complex
soil models, the parameters which can be directly estimated with the high
degree of confidence, can constitute a part of the NN input vector (e.g.
the Poisson’s coefficient or the friction angle), while the characteristics of
no physical meaning for a given BVP become the objects of optimization.

Using a well-designed interface, the proposed parameter identification can be
adapted to any constitutive model or BVP with only few modifications. Differ-
ent models or structural tests can be attached as modules to the fully-automated
pattern generator. The numerical results are used once to properly adjust net-
work weights which are stored with negligible storage cost. Since NNs are
trained with broad intervals of parameters, they are able to correctly map any
experimental set of measurements. Thus, the trained NNs can be part of the au-
tomated optimization module incorporated into numerical solution applications
like FE packages. This can show to be of particular value for multi-parameter
models characterized by the nontrivial parameter assessment.

Further chapter is devoted to adopting the method for complex BVPs where
the efficiency of the existing closed-form solution is restricted by imposed the-
oretical assumptions.
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Chapter 6

BVPs of Selected In Situ Tests

The ability to treat the results of cone penetration and
pressuremeter tests in sand and clay on a realistic theoretical

basis enhances their value for site characterization
and determination of relevant soil mechanical properties.

James K.Mitchell

6.1 Overview of in situ tests

Field testing provides a great opportunity to investigate soil in natural stress
conditions with minor soil disturbances. Generally, field tests are well suited for
site classification, soil profiling and evaluating spatial variability of soil proper-
ties (Jamiolkowski et al., 1985; DeGroot and Sandven, 2004). As an economical
means for large scale soil investigations, field tests are often used to estimate
specific soil properties. Field tests can be divided into three general categories
(Mayne, 2006), i.e. (i) geophysical tests for mapping relative variances across a
site, (ii) tests allowing vertical subsoil profiling and parameter estimation, and
(iii) drilling and sampling techniques which provide site-representative speci-
mens for laboratory tests. The second category of tests includes a variety of
mechanical device tests and the standard penetration test (SPT), the piezo-
cone test (CPTU) also with seismic sensor (SCPTU), the flat dilatometers test
(DMT), the self-boring pressuremeter test (SBPT), the field vane test (FVT)
are the most popular. Extensive reviews of the most common standardized field
tests are published by Wroth (1984); Jamiolkowski et al. (1985); Lunne et al.
(1989). Generally, interpretation of field measurements involves a distinct in-
terpretation method with respect to both the type of test and the specific soil
property. Recently, Schnaid (2005); Yu (2006) provided an extensive review of
theoretical analyzes for interpretation of test measurements for SBPT, CPTU
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and DMT. Other summary studies also provide the reviews of generalized inter-
pretation techniques, which additionally include empirical formulas for CPTU
data (Lunne et al., 1997; Mayne, 2006, 2007).

This chapter is divided into two main sections related to the SBPT and the
CPTU test respectively. In these parts, the main concepts of self-boring pres-
suremeter and piezocone testing are recalled. As regards the pressuremeter test,
a concept of the undrained cavity expansion is presented in detail including an
extension to the MCC model. The section also contains a review of interpre-
tation methods for both the expansion and the holding tests. Finally, possible
sources of inaccuracy of parameters derived from the pressuremeter test are
discussed. The part related to the piezocone test includes a compact review
which investigates the existing approaches and the interpretation formulas for
this boundary value problem. An effect of partial drainage during penetration
is finally discussed.

6.1.1 Self-boring pressuremeter test

Figure 6.1: A detailed construction of the Camkometer (after Mair and Wood, 1987).

The concept of the self-boring probe and its first prototypes were developed
and introduced into geotechnical practice independently by the Cambridge Uni-
versity in the early 1970’s by Wroth and Hughes (1973, Camkometer, see Figure
6.1) and by a group of French researchers led by Baguelin and Jézéquel (1973).
The main objective of this system is to install the probe with a minimum level
of disturbance of the adjacent soil. Among the available mechanical field de-
vices used today, the self-boring pressuremeter (SBP) is considered to cause
minor disturbances of adjacent soil during installation (Wood and Wroth, 1977;
Baguelin et al., 1978; Jamiolkowski et al., 1985; Mair and Wood, 1987; Mayne,
2006). The cylindrical instrument is introduced into the ground by simulta-
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neously cutting and flushing up the underlaying soil layers by a cutting shoe.
Then, with an inflating membrane under constant rate of strain or pressure, the
continuous readings of applied pressure and radial displacements are monitored
producing the strain-stress response of investigated soil. With the measurements
of elastically and plastically deformed soil during the pressuremeter expansion
test (PET), the stiffness and strength soil characteristics can be evaluated. Fur-
thermore, the in situ total horizontal stress σ′

ho can be directly estimated from
the so-called lift-off pressure.

As the expansion test results in an increase of excess pore water pressure at
the cavity wall, subsequent strain or pressure holding tests can be performed
to evaluate consolidation characteristics of soil. While in the strain holding test
(SHT), the decay of excess pore water pressure is measured with no further ex-
pansion of the membrane (Clarke et al., 1979), the pressure holding test (PHT)
results in a further expansion due to the compensation of the applied pressure,
which remains constant during the test (Fahey and Carter, 1986). Typical re-
sults of the PHT test in clay are presented in Figure 6.2.
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Figure 6.2: Typical results of PHT in clays: expansion under constant pressure, cavity
strain variation and excess pore water pressure in time (after Fioravante
et al., 1994).

6.1.2 Piezocone penetration test

The cone penetrometer test with pore pressure sensors (CPTU) was introduced
into geotechnical site investigations in the late 1970’s. Initially used as a re-
search device, the CPTU gained a common acceptance in commercial engi-
neering and its potential was firstly applied to soil investigations for offshore
structures (Karlsrud et al., 2005). The CPTU is an economical tool which
provides continuous and repeatable data records along the soil profile within a
short-time period. The continues piezocone measurements can be used for soil
profiling and estimation of a number of soil parameters related to shear strength,
stress history or soil stiffness. In clays, consolidation characteristics can also be
derived by performing the dissipation tests at discrete depths. In the CPTU,
the electronic cone is pushed into the ground with a series of rods and, typi-
cally, measurements of cone resistance qc, sleeve friction fs and pore pressure u2
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Figure 6.3: Standardized electric piezocone penetrometer.

(including t50 for dissipation test) are recorded. In the case of seismic piezocone
(SCPTU), a set of measurements can also be extended with shear wave veloc-
ity measurements Vs (Campanella et al., 1986). In this study, the analysis is
restricted to the standardized cone with the 60 degree apex angle, the diameter
of 35.7mm (10cm2 cross-sectional area), the friction sleeve area 150cm2, and the
constant rate of penetration of 2cm/s (see Figure 6.3, ISSMGE, 1999).

The CPTU is mostly used to (i) determine soil stratigraphy, ground water
conditions and to identify deposited materials, (ii) evaluate geotechnical prop-
erties, (iii) provide results for direct geotechnical design (Jamiolkowski et al.,
1985; Lunne et al., 1997). The CPTU can provide guidance on critical weak
zones and mechanical behavior of particular substrata. Since the advent of
the electric cone (CPT) and CPTU, many classification charts have been pro-
posed to identify soil behavior type along a subsoil profile (e.g. Schmertmann,
1978; Douglas and Olsen, 1981; Robertson et al., 1986; Robertson, 1990; Eslami
and Fellenius, 1997; Zhang and Tumay, 1999). These charts help to deter-
mine the degree of subsoil heterogeneity and to precisely establish investiga-
tion programme which may include other field tests or sampling for laboratory
tests. The piezocone results are often accompanied by laboratory tests since
the derivation of parameters is typically based on semi-empirical correlations
against parameters evaluated through conventional tests such as triaxial ap-
paratus, oedometer or direct simple shear box (Karlsrud et al., 2005; Mayne,
2006). The laboratory tests may provide verification for local correlations or
enable the calibration of the CPT results accounting for partial drainage con-
ditions (Lunne et al., 1997).

In clayey soils, the application of CPTU for the identification of geotechni-
cal parameters mainly deals with the estimation of preconsolidation pressure,
undrained shear strength, constrained modulus and consolidation characteris-
tics. However, the complexity of piezocone BVP makes the theoretical analysis
demanding and uncertain. A brief review of existing interpretation methodolo-
gies is provided in Section 6.3.
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6.2 Analytical analysis of self-boring pressureme-

ter test

In general, theoretical interpretations of the expansion test in saturated clay are
based on the cavity expansion theory, which assumes that an expansion of an
infinite cylindrical cavity takes place under perfectly undrained conditions, in
homogeneous soil. In the case of a less complex model, the well-defined bound-
ary conditions allow an analytical interpretation of the experimental data. The
load-deformation relief and the time-dependent (clay) response provide the re-
sults, which once interpreted may result in an assessment of in situ stress state,
stiffness, strength and consolidation characteristics (Baguelin et al., 1978; Clarke
et al., 1979). Examples of theoretical interpretations based on the total stress
analysis include a solution for elastic/perfectly plastic soil (Gibson and An-
derson, 1961), hyperbolic equations for the stress-strain behavior (Prevost and
Hoeg, 1975; Denby and Clough, 1980), non-linear elastic/perfectly plastic soil
(Bolton and Whittle, 1999), the sub-tangent method that allows the deduction
of a complete shear stress-strain curve (Palmer, 1972; Ladanyi, 1972; Baguelin
et al., 1972), etc. Finally, using the effective stress analysis, analytical solutions
for elastic/plastic critical state models have been proposed by Collins and Yu
(1996); Cao et al. (2001).

The following sections will recall analytical solutions used to interpret pres-
suremeter test results. Although in this study a numerical identification of
model parameters is presented, understanding of these formulas is of great im-
portance for selecting appropriate input variables for the development of effec-
tively operating NN-based inverse models. Some fundamental analytical solu-
tions can be adopted in order to transform test measurements onto a relevant
network input. Hence, the following brief review of theoretical analyzes mainly
deals with solutions for the elastic/plastic soil with special reference to the
Modified Cam clay (MCC) model.

6.2.1 In situ state of soil

The initial in situ stress state is indispensable in the designing process as the
non-linear constitutive behavior highly depends on the stress anisotropy related
to the stress history (Sivakumar et al., 2001). While the vertical effective stress
σ′

vo can be derived based on depth, unit weight and groundwater information,
the estimation of the horizontal effective stress σ′

ho requires the use of some em-
pirical correlations for the coefficient of earth pressure ”at rest” Ko. In the case
of SBPT, the in situ total horizontal stress can be directly estimated from the
”lift-off” pressure (Jamiolkowski et al., 1985; Clough et al., 1990; Amar et al.,
1991). The ”lift-off” pressure corresponds to the internal cavity pressure ψo

when the membrane starts to deform the wall of a borehole, therefore ψo
∼= σ′

ho

(Figure 6.4). The ”lift-off” is typically estimated based on the averaging pro-
cedure including the measurements of three feeler arms spaced at 120◦ around
the instrument (Dalton and Hawkins, 1982; Mair and Wood, 1987). The relia-
bility of the derived horizontal stress highly depends on the undisturbed probe
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installation. The incorrect installation or device imperfections may lead to erro-
neous results. Benoit and Clough (1986) showed a 20% underestimation of the
lateral pressure for SBP tests conducted with 1.1% oversized cutting shoe. In
general, the lateral stress measurements can be considered as fairly accurate in
clays, particularly in soft deposits (Jamiolkowski et al., 1985). The increasing
soil stiffness may procure large differences between feeler arm measurements
(Dalton and Hawkins, 1982).

Figure 6.4: Example of the total horizontal stress estimation from the lift-off pressure
in soft clay at Panigaglia site (after Jamiolkowski et al., 1985).

6.2.2 Cavity expansion test

The cavity expansion theory for cohesive soils assumes that an expansion of an
infinite cylindrical cavity takes place under perfectly undrained conditions, in
homogeneous and saturated soil. The first assumption allows us to adopt plain
strain conditions (εz = 0) and therefore, the cylindrical coordinates imply the
principal stresses: radial σr, circumferential σθ and vertical σz (Figure 6.5(a)).
The initial equilibrium state is defined by the initial radius of cavity, ao, and
internal pressure, ψo, which compensates the total horizontal stress, σho, acting
on the cavity wall (Figure 6.5(b)). The pressure increment from ψo to ψ induces
cavity deformation from radius configuration ao to a. At the same time, the
element at the initial radius, ro, moves to a new position r = ro + ur, where ur

denotes the radial displacement. The plastic zone with radius rp arises with soil
yielding. The elements beyond this zone remains in elastic state. The second
assumption implies no volume changes in adjacent soil during expansion, i.e.
εv = εr + εθ + εz = 0 with εθ = ur/r and εr = dur/dr or in other words, no
seepage of the fluid may occur.
Due to εz = 0 and axial symmetry conditions:

εr + εθ =
dur

dr
− ur

r
(6.1)
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and the equation of equilibrium can be written as follows:

dσr

dr
+
σr − σθ

r
= 0 (6.2)

Replacing σr − σθ by the shear stress τ which corresponds to the shear strain,
γ = εr − εθ = dur/dr + ur/r = 2ur/r, Equation (6.2) yields:

r
dσr

dr
+ 2τ = 0 (6.3)

According to the Tresca’s failure criterion, the plastic yielding occurs when:

σr − σθ = 2cu (6.4)

where undrained shear strength is denoted by cu.

Stiffness in linear elasticity

Assuming linear elasticity, the soil obeys the Hooke’s law at the beginning of
expansion. The radial displacement is thus inversely proportional to the radius:

ur = uc
a

r
= εc

aoa

r
(6.5)

where uc denotes the cavity wall displacement and εc is the cavity strain:

εc =
a− ao

ao

=
uc

ao

(6.6)

As the deformation takes place with no volume changes, the radial and circum-
ferential strains are equal and have opposite signs, Equation (6.1), and they
vary inversely with the square of the radius:

εθ = uc
a

r2
= −εr (6.7)
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Figure 6.5: Scheme of cylindrical cavity expansion: (a) stress components in cylin-
drical coordinates and (b) boundary conditions of cavity.
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In the elastic material principal strains are related to the changes of principal
stresses. Hence in the cylindrical coordinate system:

E∆εz = ∆σz − ν(∆σθ + ∆σr) (6.8a)

E∆εr = ∆σr − ν(∆σz + ∆σθ) (6.8b)

E∆εθ = ∆σθ − ν(∆σz + ∆σr) (6.8c)

where E, is the Young’s modulus and ν denotes Poisson’s coefficient under
drained conditions. Due to ∆εz = 0 and ∆εv = 0 conditions:

∆σz = 0 (6.9a)

∆σr = σr − σho = 2Gεc
aoa

r2
(6.9b)

∆σθ = σθ − σho = −2Gεc
aoa

r2
(6.9c)

where the shear modulus is defined as G = E/2(1 + ν). Hence, the radial and
circumferential stresses change by equal and opposite values from the in situ
horizontal stress and in the elastic phase:

∆σr + ∆σθ + ∆σz = 0 (6.10)

This implies that no excess of pore water pressure occurs during the expansion
in the elastic material and, in consequence, material stiffness is independent of
drainage conditions. At the cavity wall, r = a, and total radial stress is equal
to the applied pressure, σr = ψ, so Equation (6.9b) can be written as follows:

ψ − σho = 2Gεc
ao

a
(6.11)

The shear modulus can be derived directly from the initial response of the cavity
wall on the applied pressure under condition that the probe is installed without
severe disturbances (Figure 6.6). At the beginning of the test, a = ao, so the
initial tangent stiffness parameter is:

Gt =
1

2

dψ

dεc

= Vo
dψ

dV
(6.12)

Sometimes, in the case where disturbance effects occur during the installation
of the SBP probe, the shear modulus may be more representative when de-
rived from a slope of the hysteresis for an unloading/reloading cycle (Jami-
olkowski et al., 1985). Assuming that soil responds elastically during the un-
loading/reloading cycle, the shear modulus is evaluated from Equation (6.11):

Gur =
1

2

a

ao

dψ

dεc

= V
dψ

dV
(6.13)

where the change of cavity volume is ∆V = V − Vo with Vo corresponding to
ao.
However, observations show that the shear modulus tends to be smaller than
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the initial value since cyclic loadings gradually decrease a tangent modulus
until its stabilization after a few cycles (Benoit and Clough, 1986). It can be
explained by the well-known decrease of stiffness with the amplitude of the
shear strain (non-linear relationship G/p′ − ln γ). Taking into account the fact
that the soil elements undergo different strain amplitudes at different distances
from the pressuremeter, Houlsby (1998) demonstrated that the measured Gur

is dominated by the stiffness of the soil in the close vicinity of the cavity wall.
Since in the MCC model, an isotropic material obeys the Hooke’s law until
reaching yield locus, Equation (6.11) can be rewritten for the cylindrical and
spherical cases as (Yu et al., 2000; Cao et al., 2001):

ψ − po = 2mG

(
1 − ao

a

)
(6.14)

with m = 1 and m = 2 respectively, and po denotes the initial total mean stress
and G is expressed as the function of the voids ratio, Poisson’s coefficient and
effective mean stress (see Equation (4.4)).

Shear strength in elastic/perfectly plastic material

The methods commonly used to date to estimate the soil shear strength cu,
under perfectly undrained conditions, are based on solutions proposed by Gib-
son and Anderson (1961) and Baguelin et al. (1972), Ladanyi (1972), Palmer
(1972). The first solution allows cu to be determined in the elastic/perfectly
plastic cohesive soil using the expression for the total pressure acting at the
cavity wall:

ψ = σho + cu

[
1 + ln

(
G

cu

)
+ ln

(
∆V

V

)]
(6.15)

and the corresponding maximum excess pore water pressure is expressed as:

∆umax = cu ln

(
G

cu

∆V

V

)
(6.16)
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where ∆V/V , is the volumetric strain expressed by the cavity strain:

∆V

V
=
a2 − a2

o

a2
= 1 − (1 + εc)

−2 (6.17)

The meaning of Equation (6.15) is that clay which is deforming plastically has
no shear stiffness, and it may deform infinitely (Figure 6.7). Theoretically, the
pressuremeter expansion reaches the so-called limit pressure (ultimate cavity
pressure) ψu at the limiting condition of ∆V/V = 1 (cf. Clarke, 1995; Mair and
Wood, 1987):

ψu = σho + cu

[
1 + ln

(
G

cu

)]
(6.18)

Equation (6.18) is graphically presented in Figure 6.7.

Baguelin et al. (1972); Ladanyi (1972); Palmer (1972) independently pro-
posed the sub-tangent method which allows the reproduction of the relation
between deviatoric stress (σr − σθ = 2τ) and cavity strain εc (Figure 6.8(a)).
Based on the expansion curve, the method produces a complete stress-strain soil
response at the cavity wall with the assumptions of fully undrained conditions
through the following expression:

τ =
1

2
εc(1 + εc)(2 + εc)

dψ

dεc

(6.19)

For small strains the above equation can be rewritten as:

τ = εc
dψ

dεc

(6.20)

For large deformations, the above equation becomes:

τ =
dψ

d(ln (∆V/V ))
(6.21)

An example of the stress-strain curve for an ideally smooth relationship ψ−εc is
presented in Figure 6.8(b).

Silvestri (1998) proposed a similar approach, i.e. the sub-tangent method
for the hollow cylinder expansion. The method gives essentially the same results
as the previously presented approach.

The sub-tangent method depends notably on the smoothness of measure-
ments causing some curve oscillations and irregularities. The data obtained from
SBPT can be smoothed, however, it should be considered that small changes of
the gradient on loading path do not have to be random. Therefore, the curve
fitting is not recommended in this case. Moreover, the method is highly sensi-
tive to the disturbance effect. It can appear in apparent peaks in the beginning
of the stress/strain relationship. Therefore, the sub-tangent method can only
be useful in understanding soil behavior, but cannot be used directly to provide
information for the NN training.

76



σho

ψ  

dψ

εc

dεc

(a)

εc

τ  

cu.peak cu.ult

(b)

Figure 6.8: Derivation of the undrained shear strength cu using the sub-tangent
method: (a) undrained expansion curve, (b) derived deviatoric curve.
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Figure 6.9: Numerical simulations of the strain controlled undrained pressuremeter
test with the MCC model: (a) effective stress paths in the p′ − q plane,
(b) deviatoric stress-cavity strain plane.

Shear strength in the critical state model

In the MCC, the undrained shear strength cu depends on the shape of the
yield surface which is defined by two independent variables M and Rp (Figure
6.9). For the overconsolidated soil, the shear strength reaches its maximum
(cu,peak) at the yield point and if the expansion continues, the soil undergoes
softening and reaches the ultimate state (cu). Hence, cu which corresponds to
the ultimate deviatoric stress qu, can be obtained for plain strain expansion and
initially isotropic stress state as (cf. Cao et al., 2001):

cu =
qu√

3
=
Mp′o√

3

(
Rp

2

)Λ

(6.22)

where Λ is the plastic volumetric strain ratio which describes the ratio between
the slopes of the normal consolidation line λ, and unloading-reloading line κ:

Λ = 1 − κ

λ
(6.23)

The previous consideration for elastic/perfectly plastic material showed that
the undrained expansion problem deals with total stresses. In the MCC, the
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function describing the yield locus is given in terms of effective stresses (cf.
Equation (4.1)). It means that total stress analysis does not take into account
an effect of the stress history. The analysis of the cavity expansion in the MMC
requires considering four equations: the equilibrium (Equation (6.2)), the plastic
potential (Equation (4.1)), the flow rule (Equation (4.8)), and the equation of
mass conservation (Equation (4.18)). The latter is satisfied if the expansion
takes place in undrained conditions. The effective stresses can be determined
by integrating Equation (4.1) and Equation (4.8) and the excess pore water
pressure is then computed by means of equilibrium equation (Collins and Yu,
1996; Cao et al., 2001). An increase of the internal pressure has consequences in
a yielding and increasing range of a plastic region of surrounding material. When
the boundary surface is reached obeying Equation (4.1), increasing pressure
extends the plastic zone described by a radial distance rp, Figure 6.5(b).

Rearranging Equation (4.1) and introducing the mean effective stress at the
yield surface as p′p = p′o the corresponding deviatoric stress at the cavity wall is
equal to:

qp = Mp′o
√
Rp − 1 (6.24)

In every case, the infinite expansion in undrained conditions leads to reaching
the critical state of soil for ultimate stresses p′u and qu (see Figure 6.10). With
the assumption of no volume change qu can be calculated as (Cao et al., 2001):

p′u = p′o

(
Rp

2

)Λ

(6.25a)

qu = Mp′u = Mp′o

(
Rp

2

)Λ

(6.25b)

Finally, the maximum deviatoric stress qm corresponding to the effective mean
stress p′m can be obtained from (Cao et al., 2001):

p′m = p′o

[
(2Λ − 1)Rp

2Λ

]Λ

= p′u

(
2 − 1

Λ

)Λ

(6.26a)

qm = Mp′o(2Λ − 1)−1/2

[
(2Λ − 1)Rp

2Λ

]Λ

(6.26b)

Cao et al. (2001) demonstrated that integrating the total deviatoric strain
composed of reversible and irreversible parts, the relationship between effective
stresses and the radial distance from the center of cavity can be expressed as:

ln

(
1 − am+1 − am+1

o

rm+1

)
= − q

G
√
m+ 2

−

−2
√

3
m

m

κΛ

νM

[
β − tan−1

( η
M

)
tan−1

√
Rp − 1

]

(6.27a)
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where:

β =
1

2
ln

[
(η +M)(

√
Rp − 1 − 1)

(η −M)(
√
Rp − 1 + 1)

]
and η = q/p′ (6.27b)

with m assigned for the cylindrical and the spherical case equal to 1 and 2
respectively. The graphical interpretation of Equation (6.27) is presented in
Figure 6.11. In order to estimate the total stress in the plastic region, Equation
(6.27) has to be integrated with Equation (6.2). Since the direct integration in
case of the MCC is not possible, Cao et al. (2001) proposed to calculate the
radial stress with the radial distance from the center of cavity by a numerical
integration of the following expression:

σr = σrp −
2√
m+ 2

∫ r

rp

q

r
dr (6.28)

Since the deviatoric stress, q, calculated from Equation (6.27), is dependent
on the radius distance from the center of cavity r, the total radial stress in the
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Figure 6.10: Effective stress path for the cavity expansion in overconsolidated soil.
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plastic region σr can be obtained through the numerical integration of Equation
(6.28). Having determined the mean effective stress, p′ and the total mean stress,
p = (σr + σθ)/2, the excess pore water pressure can be established from:

∆u = u− uo = (p− po) − (p′ − p′o) (6.29)

Examples of numerical integration of Equation (6.28) are presented in Figure
6.12 for various overconsolidation ratios, Rp. The results show that the heavily
overconsolidated soil exhibits suction during yielding, i.e. negative value of ex-
cess pore water pressure ∆u. The figures clearly demonstrate a large influence
of the overconsolidation ratio. The increase of Rp leads to reduction of both the
radius of plastic region and the pore pressure at the yield locus.

Cao et al. (2001) introduced a simplification of the above solution by as-
suming that the deviatoric stress q in the plastic zone is equal to the ultimate
deviatoric stress qu as the differences between qp, qm and qu are relatively small.
Hence, in the plastic zone, the radial total stress at the cavity wall σr corre-
sponding to the applied pressure ψ may be evaluated as:

ψ = po +
m√
3

m qu

{
1 + ln

[
G
√
m+ 2

qu

(
am+1 − am+1

o

am+1

)]}
(6.30)

while the excess pore water pressure corresponding to the approximated total
stress at the cavity wall may be obtained from:

∆u =
m√
3

m qu ln

[
G
√
m+ 2

qu

(
am+1 − am+1

o

am+1

)]
+ p′o

[
1 −

(
Rp

2

)Λ
]

(6.31)

Note that for Rp = 2, Equation (6.30) and (6.31) reduce to the expressions for
elastic/perfectly plastic soil obtained by Gibson and Anderson (1961, Equations
(6.15) and (6.16)).

6.2.3 Analysis of dissipation test

Consolidation characteristics can be derived based on SHT measurements, using
a closed-form solution proposed by Randolph and Wroth (1979) for the consol-
idation around driven piles. This solution was adopted for SHT because of the
similarity to the pressuremeter boundary problem (Clarke et al., 1979).

Stress Holding Test

Assuming that the relaxation of the adjacent soil takes place in the elastic
homogeneous medium in plain strain horizontal conditions, the coefficient of
consolidation can be calculated using a non-dimensional time factor T50:

T50 =
cht50
a2

o

where ch =
k

γw

2G
1 − ν

1 − 2ν
(6.32)
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means of numerical simulations (from Fioravante et al., 1994).

where t50 is the time of 50% excess pore water pressure decay, ao is the cavity
radius at the beginning of the dissipation, γw is the unit weight of water, ν ′ de-
notes Poisson’s coefficient under drained conditions. The time factor T50 can be
obtained using the ratio ∆umax/cu (Equation (6.16)) and the graphical solution
presented in Figure 6.13.

Pressure Holding Test

To the author’s knowledge, a closed-form solution does not exist for PHT.
This can be explained by the complexity of the problem which includes the
plastic soil flow during the test. Thus, the test can only be interpreted through
numerical methods and curve-fitting procedures (Carter et al., 1979; Fioravante
et al., 1994).

Surprisingly, there is no evidence in the literature, of any attempt to deter-
mine the characteristics of virgin compressibility through PHT measurements.
In this study, it is suggested to evaluate the slope of normal consolidation line,
λ , using the variation of cavity strain radius which occurs due to increasing
effective radial stress accompanying the pore pressure decay in the adjacent
soil. Assuming that soil responds plastically at the end of the expansion test,
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Figure 6.15: Example of a numerical simulation of the pressure holding test: (a)
dissipation of the normalized excess pore water pressure in time, (b)
variation of the cavity strain in time.

maintained constant pressure during the holding test may result in soil hard-
ening along the normal consolidation line. Thus, the difference between the
initial and the actual cavity radius corresponds to the difference between the
minimal effective stress at the beginning of consolidation and the current state.
In the context of numerical assessment of λ, the variation of cavity strain ∆εc

in the dissipation time (Figure 6.15) may be fit to experimental measurements.
As this may seem impractical in the case of a less permeable soil to entirely
complete the long dissipation test, it is suggested to fit the cavity strain which
corresponds to the time of 50% excess pore water pressure decay, i.e. εc(t50).
Examples of the numerical determination of λ through PHT will be presented
in Sections 8.1.5 and 9.1.2.

6.2.4 Overestimation of determined parameters

It is commonly known that some soil characteristics such as cu can be overesti-
mated compared to other reference test results, e.g. to triaxial test (Eden and
Law, 1980; Penumadu and Chameau, 1997). The derived parameters can be
affected by many factors such as partial drainage, strain rate, soil disturbance
during pressuremeter installation, material and stress anisotropy, uniqueness
of stress-strain relationship, radial cracking (Baguelin et al., 1972; Benoit and
Clough, 1986; Wroth, 1984; Penumadu et al., 1998). Several researchers inves-
tigated potential factors having the greatest impact on the overestimation of
characteristics derived from SBPT. It is believed that soil disturbance during
probe installation and partial drainage during expansion are the most impor-
tant factors affecting soil properties derived from the SBPT (Benoit and Clough,
1986; Wood and Wroth, 1977). Benoit and Clough (1986) reported that a slight
oversizing of a cutting shoe (around 1.1%) can lead to a significant overestima-
tion of the derived shear strength in order of magnitude of 60-100%.

The analyzes presented in Section 6.2.2 are developed with the assumption
that the expansion test is carried out in undrained conditions implying no vol-
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ume changes. In practice, the expansion test in clays should thus be performed
fast enough to avoid the possible partial drainage. On the other hand, the high
expansion rate may affect stress paths due to rheological effects (e.g. Figure
6.16). It has been reported that cu increases linearly with the logarithm of the
shear strain rate (Bjerrum, 1972; Nakase and Kamei, 1986; Penumadu et al.,
1998, cf. Figure 2.3). Consequently, a similar effect can be observed for the
derived values of preconsolidation pressure σ′

p. The study carried out by Ler-
oueil et al. (1983b) revealed the increase of about 10-14% for σ′

p per log cycle of
volumetric strain rate ε̇v in the constant rate of strain oedometer test (CRS).
The strain rate effect on cu can be taken into account using a general expression
(e.g. Prapaharan et al., 1989; Chang et al., 2001; Schnaid, 2005):

cu
crefu

= 1 + βε log

(
ε̇

ε̇ref

)
(6.33)

where βε is the strain rate coefficient (typically ranging between 0.08 and 0.15
and the mean value of about 0.10), cu and crefu are the values of the undrained
shear strength that correspond to the strain rate for a given test ε̇ and the strain
rate ε̇ref for a reference test respectively.
On the other hand, the strain rate does not affect derived values of M (Penu-
madu et al., 1998, see Figure 6.16). The strain rate effect can also be observed for
the initial part of pressuremeter stress-strain curves (Penumadu and Chameau,
1997). In consequence, the shear modulus G can increase with rising strain
rate. This effect is more pronounced in the normally consolidated clay than in
overconsolidated deposits. Vinale et al. (2001) showed the increase of G around
6% for each log cycle increase of the shear strain rate in resonant column and
torsional shear tests.

Prapaharan et al. (1989) pointed out, however, that the strain-rate effect is
not as significant as the disturbance effect. They reported that the pressureme-
ter tests at 1%/min of strain rate increased the undrained shear strength of
about 8-13% with regards to the reference rate of 0.1%/min.

In practice, a decrease of the rate of cavity strain would increase the prob-
ability of partial drainage occurrence during the expansion. Wood and Wroth
(1977) strongly affirmed that even for quick expansion, some drainage is in-
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Figure 6.16: Effect of strain rate ε̇ on stress paths (from Penumadu et al., 1998); no
influence on the slope of critical state line M .
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evitable. Clearly, the occurrence of partial drainage affects the stress-strain
relationship and, in effect, the derived parameters. The further discussion on
the effect of partial drainage is provided in Section 6.2.5.

6.2.5 Hydro-mechanical coupling of pressuremeter tests

The analytical solutions for the expansion test are developed with the assump-
tion that the expansion test is carried out in undrained conditions. Numerical
simulations of the expansion at the standardized rate of ε̇c = 1%/min reveal
that the assumed undrained conditions may be violated if the coefficient of per-
meability is larger than 10−10m/s (cf. Fioravante et al., 1994)1. This means
that partially drained conditions may occur even for clays, cf. Figure 6.17. In
effect, the partial drainage may affect the stress paths (Figure 6.18(a)) and, as
proved expirementally, the shape stress-strain curve (Fukagawa et al., 1990).
Consequently, instead of tending to the ultimate value of the undrained shear
strength cu (Figure 6.18(b)), the soil may locally harden at the cavity wall, due
to volume changes that may occur with the partial consolidation. The occur-
rence of hydro-mechanical coupling may lead to an overestimation of cu which
may thus result in a feedback affecting an assessment of consolidation character-
istics (Rangeard et al., 2003). For example, the determination of the coefficient
of permeability k using Equation (6.32) requires an estimation of T50 which,
in turn, depends on cu. The laboratory small-scale, triaxial cell simulations of
pressuremeter testing carried out by Ali (1989) confirmed that consolidation
which occurs during the expansion, leads to erroneous results if the analytical
methods assume deformations under undrained conditions. For further discus-
sion on the influence of partial drainage on parameter identification refer to
Section 7.1.2.

In conclusion, the occurrence of partial drainage requires a coupled hydro-
mechanical analysis, which makes the problem too complicated to be solved
analytically. Hence, it seems that parameter identification for the pressureme-
ter BVP requires the use of a numerical modeling. Furthermore, the calibration
of model characteristics should be considered as a parallel fitting of all the avail-
able experimental measurements as the parameter feedback exists. The use of

1Numerical simulations performed in the present study leads to the same conclusion, please
refer to Section 7.1.2.
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numerical simulation of SBPT will be thus enforced in the further part of this
study (see Section 7.1).

6.3 Analysis of the piezocone penetration test

The application of CPTU to evaluate geotechnical parameters in clayey soils is
focused mainly on the determination of stress history (OCR), undrained shear
strength (cu), constrained modulus (MD) or consolidation characteristics (k and
ch), etc. Different levels of confidence for derived parameters can be expected
when interpreting CPT data. Lunne et al. (1997) provided a summary of per-
ceived applicability of CPT for the determination of typical soil properties with
a qualitative evaluation of the level of confidence for estimated characteristics.
A modified summary is presented in Table 6.1.

In general, interpretation approaches can be divided into three general cat-
egories including: (i) empirical and statistical methods, (ii) analytical or semi-
analytical inverse solutions, and (iii) numerical simulations. The first approach

Table 6.1: Perceived applicability of CPT for estimation typical soil parameters in
clays (based on Lunne et al., 1997).

Initial state Strength Deformation Flow
parameters parameters characteristics charact.

γ Ko OCR cu φ′ E, G MD Go k ch

3-4 4-5 2-3 1-2 3-4 4-5 4-5 4-5 2-4 2-3

Reliability rating: 1 High; 2 High to moderate; 3 Moderate; 4 Moderate to low; 5 Low.
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shear tests: (a) calibration of Nkt (based on Mayne, 2006), (b) various
cu from different CKoU tests (from Jamiolkowski et al., 1985).

allows a generalized empirical formula to be developed based on a regression
analysis involving a large number of results from various characterization sites
(e.g. Chen and Mayne, 1994; Mayne and Rix, 1995; Mayne, 2007). However,
the site-specific calibration of generalized correlations is necessary when dealing
with non-textbook geomaterials (e.g. loess, silts or sensitive structured clays,
etc.) and it is recommended to assure satisfying accuracy of estimations for
particular geological deposits. In such a case, the reference benchmark value
of parameter is required to calibrate the particular empirical formula. Such
an approach can be advantageous because it may take into account the factors
which can be neglected in the solutions developed based on theoretical consid-
erations (e.g. rate, boundary or drainage effects, etc.). On the other hand, the
determination of the reference parameter can be proved to be time-consuming
as it requires sampling, transportation and laboratory procedures. The refer-
ence parameters can also be underestimated due to the effect of disturbances.
Sometimes, engineers have to tackle the problem of selecting the benchmark test
for which the reference value of parameter is established (Mayne, 2006). For
example, the calibration of the benchmark value cu requires prior knowledge of
an appropriate shear mode which is expected for a particular designing problem
(see Figure 6.19). Sometimes, the average value of parameter can be assigned
if many reference tests are involved.

The theoretical analysis of piezocone penetration is rigorous and uncertain
owing to material, boundary and geometrical nonlinearities. The penetration
mechanisms is extremely complex as it involves a continuous rotation of prin-
cipal stresses, including many shear modes which are relevant to various tests
such as triaxial compression, direct simple shear and pressuremeter (cf. Figure
6.20). Baligh (1985) affirmed that ”realistic closed-form solutions to installa-

tion problems are not conceivable”. Due to complexity of piezocone BVP, the
analytical analyzes such as the cavity expansion method, are usually limited
to rather simple linear-elastic/perfectly-plastic or plastic models which do not
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Figure 6.20: Predominant failure modes during cone penetration in clays (after Keav-
eny and Mitchell, 1986).

reflect the observed non-linear elasticity of natural soils. Uncertainty may also
be associated with lack of the full stress-strain relief of the penetrated material
or data normalization in terms of the vertical stress rather than the mean or
horizontal stress. Such a normalization form follows the practical reasons since
there is much of uncertainty and difficulty in the precise estimation of the hor-
izontal stress. This approach may lead to inaccuracies as the cone resistance is
much more related to the horizontal stress than the vertical stress (Lunne et al.,
1997; Houlsby, 1998).

In the following subsections, the existing methods for interpretation of CPTU
data will be briefly reviewed. Section 6.3.1 presents a brief review of theoretical
approaches for the analysis of cone resistance, whereas Section 6.3.2 provides
selected solutions from theoretical and empirical analyzes for interpretation of
CPTU data in clays with reference to the commonly used geotechnical param-
eters. For a broad spectrum of interpretation guidelines, refer to the general
reports on CPTU investigations provided by Lunne et al. (1997); Mayne et al.
(2001); Mayne (2007).

6.3.1 Theoretical analysis of cone resistance

The theoretical analysis of cone resistance is demanding and difficult. As regards
only pure mechanical aspects of the penetration, the cone resistance depends
on many factors such as soil rigidity, shear strength, stress history, initial stress
anisotropy, shear strength anisotropy, friction at the cone-soil interface, etc. A
realistic interpretation of the penetration mechanism thus requires taking into
account both the geometry of the cone with its frictional nature and mate-
rial non-linearities. Mayne (2007) affirmed that ”no uniform and consistent

methodology currently exists to interpret all necessary soil engineering parame-

ters within a common framework”. The existing theoretical approaches that are
used to analyze the penetration test can be divided into four main categories:
(i) bearing capacity methods, (ii) cavity methods, (iii) strain path methods,
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and (iv) numerical modeling that includes the finite element method. The inter-
pretation procedures rely either on the solutions which are based on individual
theories or on their combinations.

The following section briefly reviews these approaches. For additional de-
tails, refer also to the review provided by Yu and Mitchell (1998).

Figure 6.21: Examples of assumed failure mechanism under deep foundations (after
Vesić, 1967).

Bearing capacity method (BCM). In this analysis, the cone resistance is
regarded as the ultimate bearing capacity of a deep circular foundation in rigid
plastic material. The analysis is performed for an assumed incipient failure
mechanism (e.g. Figure 6.21) and the system equilibrium associated with the
failure load is determined. Some solutions for the axis-symmetric foundation
were provided by (Meyerhof, 1961). Durgunoglu and Mitchell (1975) adopted
a number of other failure patterns to investigate deep penetration problems.
Despite its simplicity, the method presents, however, some shortcomings. The
influence of soil stiffness and compressibility on cone resistance is ignored. In
consequence, the horizontal stress which depends on soil deformations and in-
creases with cone penetration, is not taken into account. Moreover, the derived
solutions for cone factors are represented by constant values.

Cavity expansion method (CEM). The cone penetration can be consid-
ered as an expanding spherical cavity in an infinite soil mass. Unlike the BCM,
the cavity expansion method accounts for material compressibility (cf. Section
6.2.2). Hence, in the case of elastic-plastic material, the cone resistance is the
function of soil compressibility and shear resistance. Determination of cone re-
sistance thus requires developing a theoretical limit pressure solution which is
related to the pressure around the cone tip. As regards the spherical cavity ex-
pansion problem in cohesive soils, some solutions for different types of materials
have been proposed. Vesić (1972) provided a generalized analytical solution for
the Mohr-Coulomb material obeying associated flow rule. Carter et al. (1986)
provided the analytical solution for the non-associated M-C, extended by Yu
and Houlsby (1991) with large strains in the plastic region. The semi-analytical
solutions for the critical state material with large strains have been provided
by Collins and Yu (1996) and Cao et al. (2001). Some practical examples of
using the spherical cavity expansion approach concerns the evaluation of soil
stress history (Mayne, 1991; Chang et al., 2001), or recovering soil permeability
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profiles from standardly normalized CPTU records (Elsworth and Lee, 2007).
Cone penetration can also be modeled by means of the cylindrical cavity

approach. In such case, the cavity is radially expanded to a radius which corre-
spond to the cone radius dimension. An example of such an approach combined
with the FE analysis can be found in Silva et al. (2006). Combining the cylin-
drical expansion approach and anisotropic undrained shear strength models,
Su and Liao (2002) obtained a set of cone factors that account for material
anisotropy.

The main disadvantages of CEM is that the proper geometry of cone cannot
be modeled. The spherical expansion only approximates the shape of cone and
the deformation patterns are different from real displacement fields. In conse-
quence, correct strain paths corresponding to different shear modes cannot be
obtained.

Strain path method (SPM). In order to account for the shape of the pen-
etration flow, Baligh (1985) proposed a steady state approach. In the strain
path method, the penetration process is considered as a steady state flow of soil
passing around a stationary cone. In the first step, approximate velocity fields
are evaluated and differentiated with respect to spatial coordinates in order to
obtain strain rates. Then, integration of the strain rates along the streamlines
defines strain paths for individual soil elements around the cone (Van der Berg,
1994). The final step includes introducing a relevant constitutive model, find-
ing equilibrium and calculating stress field around the cone. Yu and Mitchell
(1998) concluded that ”although promising in theory, the application of the

steady state approach to the analysis of cone penetration in soils has not been

entirely satisfactory”; the method is limited to undrained penetration.

Finite-element method (FEM). The developments of robust numerical pro-
cedures allow researchers to model the penetration process with a greater dose
of realism. In order to simulate the penetration mechanism, the incremental
displacement FE analysis is mostly used2. Some first attempts to modeling
penetration in soil type material by means of FEM were provided by de Borst
and Vermeer (1982, 1984); Griffiths (1982). These studies present the analysis
of cone indentation (not penetration) in purely cohesive material with the small
strain formulation. In these analyzes the cone is introduced into a ”pre-bored”
hole and the surrounding initial stress state is taken as the homogeneous in situ
stress. Cone resistance was interpreted as the ultimate indentation pressure.
Such solution can be considered as a rough approximation because a correct
analysis requires a large deformation approach for the penetrating cone, i.e. a
distance of penetration should be several times greater than the cone diameter
in order to establish a realistic stress field which is built up around the advanc-
ing cone (Van der Berg, 1994). While the solution of the small strain analysis
can be acceptable for a purely cohesive model, the frictional, stress-dependent
materials require modeling in the large strain regime. The penetration process
indeed involves large deformations and large strains exceeding 100%. The large

2Details of FEM modeling of penetration test are provided in Section 7.2.
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strain formulation is necessary to obtain a reliable stress field in the plastic re-
gion around the advancing cone.

One of the first examples of penetration modeling with the large strain ap-
proach in conjunction with Updated Lagrangian (UL) formulation (Bathe et al.,
1975) were proposed by Cividini and Gioda (1988) for the Drucker-Prager ma-
terial and frictional interface, and by Kiousis et al. (1988) for the frictional cap
model and the perfectly smooth cone. Van der Berg (1994) concluded that the
disadvantage of these models is that after each calculation step, a new location
of the boundary nodes needed to be determined (cf. also Abu-Farsakh et al.,
1998). The degree of complexity arises if the frictional interface is taken into
account. Examples of cone penetration modeling in the UL description are
also provided by Huang et al. (2004) for cohesive soil obeying non-associated
Mohr-Coulomb criterion, Sheng et al. (1997); Abu-Farsakh et al. (1998) for
MCC model, Wei et al. (2005) for the anisotropic MCC model. Voyiadjis and
Kim (2003) also used the UL formulation to demonstrate penetration in the
anisotropic elastoplastic-viscoplastic bounding surface model which is able to
take into account strain rate effects. Using the finite sliding scheme for fric-
tional interface, Huang et al. (2004) modeled the penetration process from the
top surface of mesh so that a heterogeneous stress field around the cone shaft
was built up in the expanding soil. The so-called steady state3 was obtained in
a penetration depth of several diameters of the cone.

The use of large deformation and finite sliding frictional elements has to be
treated carefully. In the case of penetration problems, the UL formulation may
suffer from severe loss of accuracy with the occurrence of highly distorted ele-
ments induced by local, very large deformations (e.g. Susila and Hryciw, 2003)4.
Large element distortions occur even for relatively small values of friction coef-
ficient, i.e. around µ = 0.1 (e.g. Sheng et al., 2006).

Van der Berg (1994) proposed a large deformation analysis using Eulerian
formulation as an alternative approach to UL. Unlike the Lagrangian approach
where the material points are coupled with the nodal points of the finite ele-
ment mesh, in the Eulerian the material flows through the finite element mesh
and the geometry is fixed (i.e. material and nodal points are uncoupled). In
this approach, however, the treatment of moving boundaries, constitutive equa-
tions and time derivatives may prove to be complicated (Belytschko et al., 2000,
Chapter 7).

In order to maintain a high-quality mesh throughout the analysis, Van der
Berg (1994) proposed a large strain analysis using the Arbitrarily Lagrangian-
Eulerian formulation which combines the pure Lagrangian and pure Eulerian
analyzes. The ALE adaptive meshing maintains the topologically similar mesh
thanks to introducing additional continuous state variable fields (e.g. stress,
strain, hardening parameter) by interpolation of nodal stresses and strains.
Distorted regions are then remeshed and the interpolated state variable fields

3The steady state is defined by a constant cone resistance vs. increasing penetration depth
for the smooth soil-cone interface.

4The problem of mesh distortion under large deformations and its effect on accuracy of
results is further discussed in Section 7.2.2.3.
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are remapped to the new mesh. The features of the remeshing approach were
also presented using the explicit iteration technique to simulate the cone pen-
etration in sand obeying Drucker-Pruger criterion (Susila and Hryciw, 2003)
and in a purely cohesive material (Walker and Yu, 2006). Although the ALE
method seems to be suitable for large deformation problems with highly dis-
torted meshes, its application to the coupled hydro-mechanical analysis of the
penetration problem is extremely difficult and still limited due to the necessity
of handling both deformations and fluid flow (Nazem et al., 2008). An effective
coupled analysis of cone penetration thus requires a robust remeshing procedure
which satisfies stability of calculations for each time increment. Lu et al. (2004)
used the remeshing and interpolation with small strain technique (RITSS, Hu
and Randolph, 1998) to tackle the large deformation problem of penetration in
Tresca material. In this approach, small strain analysis increments are followed
by remeshing and interpolation of state variables. Markauskas et al. (2005) pre-
sented a combined FE remeshing technique for the coupled penetration analysis
in Drucker-Pruger/Cap model. The remeshing method involves superconver-
gent patch recovery technique for Gauss point state variables and polynomial
interpolation for pore pressure nodes.

Despite many advancements in the existing numerical procedures, the real-
istic coupled analysis of the penetration problem in cohesive soil still remains
challenging. To recapitulate, an effective FE model should simultaneously in-
volve large strain and deformation analysis using the frictional cone-soil inter-
face, the efficient remeshing technique and, finally, a realistic soil model which
would account for factors such as stress history, anisotropy and even soil sensi-
tivity.

Combined analyzes. Since the individual interpretation theories may include
particular assumptions and limitations, the combination of two approaches may
lead to more realistic solutions. Some examples can be found in the literature
such as combinations of SPM-FEM (Teh and Houlsby, 1991), SPM-CEM (Yu
and Whittle, 1999) or CEM-FEM (Abu-Farsakh et al., 2003).

6.3.2 Interpretation of CPTU measurements

The following section mainly reviews the most standardized and common ap-
proaches to the interpretation of soil characteristics from CPT data in fine-
grained materials. The review is also limited to the solutions that are used
in this study to compare results obtained using the existing methods and NN-
based predictions (see Sections 8.2 and 9.2). For extended reviews of interpreta-
tion approaches for CPT and further comprehensive discussions on the existing
methods, please refer to general reports on the topic (Jamiolkowski et al., 1985;
Lunne et al., 1997; Schnaid, 2005; Mayne, 2006, 2007).

The evaluation of geotechnical properties based on the standard cone mea-
surements is based on three independent measurements of cone resistance qc,
sleeve friction fs and pore pressure u2. In practice, qc is corrected in order to
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account for ”the unequal area effect”. The corrected cone tip resistance qt is
calculated as:

qt = qc + (1 − an)u2 (6.34)

where an is the net area ratio of the cone (see Lunne et al., 1997). While the
values of qt and u2 are typically used to evaluate mechanical or consolidation
characteristics, the fs records are mainly used for soil type classification and
assessment of the unit weight γ (Lunne et al., 1997; Mayne, 2007).

6.3.2.1 Normalization of CPTU data

Conceptually, normalization of data in terms of initial stress conditions removes
the effect of depth. Although the mechanism of penetration is mainly influenced
by the effective horizontal stress, the normalization of cone resistance is com-
monly carried out in terms of vertical effective stress σ′

vo, since there is often
little information about σ′

ho (Robertson, 1990). The following is the standard
calculation of the normalized cone resistance:

Qt =
qt − σvo

σ′
vo

(6.35)

The friction resistance is normalized using the net cone resistance qn = qt −σvo:

Fr =
fs

qt − σvo

(6.36)

where Fr denotes the normalized friction ratio.
As recommended by Wroth (1984), the remaining measured variable u2 can be
normalized using the pore pressure ratio:

Bq =
u2 − uo

qt − σvo

(6.37)

where uo is the in situ pore pressure.
Bq is analogous to the Skempton’s pore pressure parameter (Af ) referred to the
triaxial shear test (Mayne and Bachus, 1988).

6.3.2.2 Undrained shear strength

As already discussed in Section 2.1, no unique undrained shear strength exists.
The value of cu depends on many factors such as soil history, material and
stress anisotropy, strain rate, and shear failure mode, etc. As presented in the
theoretical background the analytical solutions for cone resistance are based on
the bearing capacity method, cavity expansion method, strain path method,
numerical methods such as finite element method or finite difference method.
The common relation which links the cone resistance qc and cu for all these
approaches is related to the bearing capacity theory and can be written as:

qc = Nccu + σo ⇒ cu =
qc − σo

Nc
(6.38)
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where σo, depending on the theory, can be σvo, σho or po, and Nc denotes a cone
factor.
As pointed out by Lunne et al. (1997) and Houlsby (1998), the in situ horizontal
effective stress σ′

ho has the dominant effect on the cone tip and friction sleeve
resistance. In practice, however, normalization in terms of σvo is preferable
because a reliable evaluation of σho is often not available. Using σvo, the cone
factor can be defined in terms of the cone tip resistance qt and cu as:

Nkt =
qt − σvo

cu
(6.39)

As recognized in previous studies (e.g. Teh and Houlsby, 1991; Van der Berg,
1994; Yu et al., 2000; Su and Liao, 2002; Lu et al., 2004), Nkt depends on
relative soil rigidity, stress anisotropy, strength anisotropy, cone roughness, cone
geometry and other factors:

Nkt = Nkt(Ir,∆, Ar, αf ,Ω, ...) (6.40)

where Ir = G/cu denotes the rigidity index, ∆ is the initial stress anisotropy
parameter, ∆ = (σvo − σho)/2cu (Teh and Houlsby, 1991), Ar is the strength
anisotropy ratio, αf is the cone roughness and Ω represents the geometry.
Since the cone factor is calibrated for a specific site using the benchmark val-
ues of cu, the value of Nkt is also affected by the shear mode of a particular
test. Using FVT as a reference test for the normally consolidated marine clays,
Lunne and Kleven (1981) obtained the values falling between 11 and 19 with
the average value of 15. Rad and Lunne (1988), for variously overconsolidated
marine clays obtained the values of Nkt between 8 to 29 referencing to cu from
the triaxial test. It must also be noted that an underestimated cu due to, for
example, disturbance effects may lead to an overestimation of Nkt.

Over the years, many theoretical interpretations of Nkt have been proposed
in the literature. Some solutions, collected in Table 6.2, clearly present the de-
pendence of stress anisotropy (∆), soil strength and stiffness (Ir), and the cone
roughness (αf ) on Nkt. The values of Nkt for Ir = 25 ÷ 1000 vary from 6 to 21.
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Another relationship that can be established for cu is based on the cavity
expansion theory and includes excess pore water pressure:

N∆u =
∆u

cu
(∆u = u2 − uo) (6.41)

The results for the cavity expansion solution give the values of N∆u from 2 to
20. The experimental evidence based on triaxial tests provides values of N∆u

between 4 and 10 and shows its dependence on the overconsolidation ratio and
soil sensitivity (Lunne et al., 1997; Karlsrud et al., 2005). By analogy to Nkt, a
higher level of confidence for cu values is obtained by a specific-site calibration
of N∆u.

The undrained shear strength can also be estimated using the cone factor
Nke which corresponds to the ”effective” cone resistance qe:

Nke =
qe
cu

=
qt − u2

cu
(6.42)

According to experimental evidence, the value of Nke may vary between 1 and
13. In practice, this approach shows much uncertainty in soft normally con-
solidated clays as the measured u2 is often 90% or more of the measured cone
resistance leading to small numbers of qe (Lunne et al., 1997). In effect, the
interpretation is sensitive to small errors in qc.

6.3.2.3 Effective stress strength

The estimation of effective stress parameters from the total stress analysis of
undrained penetration is difficult. The solution needs to account for excess pore
water pressure for which the distribution around the cone is highly complex and
difficult to model analytically. Interpretation methods can be thus viewed as
rather approximative.

The effective friction angle φ′ can be estimated using the solution which is
based on the bearing capacity theory (Sandven et al., 1988)5:

qt − σvo = Nm(σ′
vo + a) with Nm =

Nq − 1

1 +NuBq
(6.43)

where a′ denotes the attraction (a′ = c′ cotφ′), β is the angle of plastification,
Nq and Nu are the bearing capacity factors (Nq = Nq(φ

′, β) and Nu
∼= Nu(φ)).

Mayne (2005, 2007) proposed a simplified expression applying to the ranges of
20◦ ≤ φ′ ≤ 45◦ and 0.1 ≤ Bq ≤ 1.0. By setting for the above method the
effective cohesion intercept c′ = 0 and plastification angle β = 0, the values
of φ′ were evaluated line-by-line and the following approximate expression was
obtained:

φ′ ≈ 29.5◦B0.121
q (0.256 + 0.336Bq + logQt) (6.44)

5The approach proposed by researchers from the Norwegian University of Science and
Technology (NTNU) is referred to NTNU method in Section 8.2.5.2.
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6.3.2.4 Stress history

Over the years, many different approaches have been proposed for interpreting
the stress history (see e.g. Mayne, 1991; Lunne et al., 1997; Mayne et al., 2001;
Demers and Leroueil, 2002). The stress history is typically represented by the
overconsolidation ratio OCR which is defined as the ratio of the gross effective
yield stress and the actual effective overburden stress (OCR = σ′

p/σ
′
vo).

One of the best working approaches relates the preconsolidation pressure to
the net cone resistance:

OCR = kσt
qt − σvo

σ′
vo

= kσtQt (6.45)

where kσt is an empirical coefficient which falls in the interval from 0.1 to 0.5
for non-fissured clays (Larsson and Mulabdić, 1991; Hight and Leroueil, 2003).
The higher values are suggested for cemented, aged and heavily consolidated
soils (between 0.9 and 2.2). Clearly, this coefficient needs to be calibrated for
specific site conditions. However, the first-order approximates of OCR can be
obtained using the values of kσt from multiple regression analyzes which are
based on historical syntheses from many characterization sites (see Table 6.3).
Mayne (2006) suggests assuming kσt = 0.30 for first-order estimates. However,
even well correlated data in terms of the coefficient R2 may present large scatter
and should also be evaluated in terms of the mean squared error MSE.

Table 6.3: Comparison of the empirical coefficients obtained from multiple regression
analyzes for non-fissured clays.

Results of regression analysis
Ref. Geographical Number Number

region of sites/points kσt R2 of sites/points kσe R2

[1] Sweden 9/110 0.292 - 9/110 0.50 -
[2] Canada 31/153 0.294 0.90 31/153 0.546 0.96
[3] Worldwide 123/1121 0.305 0.84 84/811 0.50 0.75

[1] Larsson and Mulabdić (1991); [2] Demers and Leroueil (2002);
[3] Chen and Mayne (1994, 1996)

Another approach combines measurements of cone resistance and pore pres-
sure by means of the effective cone resistance:

OCR = kσe

(
qt − u2

σ′
vo

)
= kσe

qe
σ′

vo

(6.46)

with kσe being obtained through site-specific correlations. By analogy to the
previous approach, the first-order approximates of OCR can be obtained using
the values of kσe through regression analyzes (see Table 6.3). Mayne (2006,
2007) suggested assuming kσe = 0.60 for the first-order estimates. This ap-
proach is often used as a comparative to the previous one and local correlations
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are strongly recommended. The formula is also viewed as less reliable in soft,
lightly overconsolidated clays the qt results accompanied by large values of u2

yield in a small number for qt − u2 (Houlsby, 1988; Lunne et al., 1997).

A method combining the solution for the spherical cavity expansion with
the undrained shear strength related to the critical state concept of the MCC
was proposed by Mayne (1991). Adopting the undrained shear strength for the
spherical expansion case as (Wroth, 1984; Cao et al., 2001):

cu =
Mp′o

2

(
Rp

2

)Λ

(6.47)

and introducing some simplifications, Mayne (1991) obtained the following ex-
pression to interpret the overconsolidation ratio:

OCR = 2

[
1

1 + 1.95M

(
qt − u2

σ′
vo

)] 1
Λ

(6.48)

where the mean value for Λ can be assumed for the first-order estimates as
around 0.75 ÷ 0.80 (Wroth and Houlsby, 1985; Mayne, 1991).

Fairly recently, a similar expression was proposed by Chang et al. (2001)
based on a rigorous closed-form analysis of the undrained cavity expansion in
the MCC (Cao et al., 2001, see Section 6.2.2). For pore pressure measurements
behind the cone tip, Chang et al. (2001) proposed using the solution based on
the cylindrical expansion for most clays:

OCR = 2

[
1

1 + 0.67M

(
0.866qt + 0.134σvo − u2

αεσ′
vo

)] 1
Λ

(6.49)

while for the sensitive and special clays, they suggested using the solution for
the spherical expansion:

OCR = 2

[
1

αε(1 + 0.67M)

(
qt − u2

σ′
vo

)] 1
Λ

(6.50)

Such an approach was explained by the fact that the spherical expression gives
values of Bq larger than 0.75 which are observed in the sensitive clays6. A
coefficient αε which appears in both expressions is introduced to account for
the strain rate effect and is expressed as:

αε =
cCPT
u

crefu

(6.51)

In the above expression cCPT
u is the value of the undrained shear strength that

corresponds to the strain rate related to the advancing cone (ε̇CPT), whereas
crefu is the undrained shear strength obtained for a reference test. The question
arises how the true strain rate for the penetration test can be calculated. The

6Bq = 0.75 is the upper bound of the cylindrical solution for Ir = 300.
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CPT pseudo-strain rate for a standard 10cm2 cone (D = 35.7cm) with
the advancing rate of v = 2cm/s can be estimated as v/D (Mayne, 2006),
providing the value of ε̇CPT is equal to 2 · 105%/h . By assigning the reference
strain rate as for a typical triaxial compression test rate of ε̇TC = 1%/h and
using Equation 6.33, the coefficient αε is equal to 1.53 (i.e. 53%-overstimation
of cu for the five orders of magnitude a large strain rate). The CPT strain
rate can also be calculated using the radial strain rate for the spherical cavity
expansion as (Chang et al., 2001):

ε̇c =
dεc

dt
=

2

a

da

dt
(6.52)

For the standard cone, the above expression leads to the strain rate ε̇CPT equal
to 8 · 105 %/h which gives the coefficient αε equal to 1.59.

Assuming that the strain rate factor αε for cu is equal to 1.53, the strain
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Figure 6.22: Theoretical assessment of strain rate effect on OCR from CPTU.

factor for overconsolidation ratio (OCRCPT/OCRTC) can be theoretically eval-
uated from Equation (6.50) (Λ = 0.75) to be equal around 1.76 (see Figure
6.22).

6.3.2.5 Horizontal stress

The horizontal in situ stress can be represented by the coefficient of earth pres-
sure at rest Ko = σ′

ho/σ
′
vo. At present, no reliable method exists for the CPT

data. Rough evaluations related directly to CPTU measurements can be made
using various approximative methods.

Observing that the pore pressure distribution around the cone is a function
of σ′

ho, Sully and Campanella (1991) proposed to approximate Ko based on a
linear regression analysis using the normalized difference between pore pressure
measured behind the cone tip and sleeve shoulder (PPSV= (u1 − u2)/σ

′
vo).

Masood and Mitchell (1993) proposed the estimation of Ko based on fs mea-
surements. In this method, Ko is a function of the normalized sleeve friction
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Figure 6.23: General Ko correlation for CPTU data proposed by Kulhawy and Mayne
(1990) (from Lunne et al. (1997)).

fs/σ
′
vo and the overconsolidation ratio OCR. Thus the approach requires prior

evaluation of OCR and reliable measurements of fs.
The most popular technique for estimating Ko employs an empirical formula

which is based on the normalized cone resistance:

Ko = kK

(
qt − σvo

σ′
vo

)
(6.53)

where kK is an empirical parameter. Using the regression analysis, Kulhawy and
Mayne (1990) obtained the value of kK = 0.1 for several Ko values estimated
from SBPT (Figure 6.23). However, a considerable scatter for this correlation
is observed and kK should be calibrated for a specific site.

6.3.2.6 Stiffness characteristics

The group of deformation characteristics for clays includes one dimensional con-
strained modulus MD, the Young’s modulus for undrained compression Eu, the
secant shear modulus G, the small-strain shear modulus Go (or Gmax), etc. The
identification of the latter applies strictly to nondestructive geophysical meth-
ods which are associated with measurements of the shear wave velocity (Vs). As
regards penetration testing, the measurements of Vs are typically made using
the seismic cone (SCPT, Campanella et al., 1986) and the small-strain shear
modulus is obtained through Go = ρV 2

s .
The one-dimensional constrained modulus is obtained for steady state mea-

surements based on the oedometer test through the expression:

MD =
∆σ′

v

∆εv

(6.54)
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Figure 6.24: General MD correlation for CPTU data proposed by Kulhawy and
Mayne (1990) (from Lunne et al., 1997).

which can also be expressed as:

MD =
2.3(1 + e)σ′

v

Cc

=
(1 + e)σ′

v

λ
(6.55)

where Cc is the compression index (Cc = 2.3λ).
The constrained modulus can be interpreted from the CPTU using the net cone
resistance:

MD = αn(qt − σvo) (6.56)

where αn is observed for most clays between 5 and 15 while for normally con-
solidated clays, it is between 4 to 8 (Sandven et al., 1988; Senneset et al., 1989).
A more general correlation was suggested by Kulhawy and Mayne (1990) (cf.
Figure 6.24):

MD = 8.25(qt − σvo) (6.57)

As discussed be Lunne et al. (1997), the estimation of ”drained” parameter MD

from an undrained penetration test using general empirical correlations may
suffer from errors as large as ±100%. An individual site-specific calibration is
thus recommended for αn. They also concluded that it is difficult to correlate
”drained” parameters without accounting for the pore pressure measurements
as the cone resistance is measured in total stress.

6.3.2.7 Rigidity index and consolidations characteristics

In general, the consolidation characteristics of clays are usually represented by
the consolidation coefficient c or the permeability coefficient k which can be
related through:

c = k
MD

γw

(6.58)

where γw is the unit weight of water and MD is the constrained modulus rele-
vant to the modeled problem.
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The consolidation characteristics which can be interpreted from the CPTU dis-
sipation test are usually predominately associated with the direction that is
perpendicular to the cone axis, typically horizontal: ch and kh. Typically, in
natural soft homogeneous clays ratio kh/kv is smaller than 1.5 while larger val-
ues are expected in sedimentary and varved clays7.

Over the years, several analytical and numerical solutions have been pro-
posed to estimate ch from the monitored decay of excess pore water pressure
in time (after the penetration has been paused). These methods are based
on the solutions for the one-dimensional cavity expansion (Torstensson, 1977;
Randolph and Wroth, 1979, see Equation (6.32)) or the two dimensional strain
path analysis (Levadoux and Baligh, 1986; Baligh and Levadoux, 1986; Teh and
Houlsby, 1991; Burns and Mayne, 1998). Based on the solution for an elasto-
plastic soil model for which the soil stiffness can be expressed by the rigidity
index Ir, Teh and Houlsby (1991) suggested a modified dimensionless time fac-
tor T ∗ for the consolidation process:

T ∗ =
cht

a2
√
Ir

(6.59)

where a is the probe radius and t denotes the dissipation time. The above solu-
tion was graphically interpreted by Robertson et al. (1992) to estimate ch from
the measured time t50 required for 50% of consolidation.

The soil permeability, if not predicted approximatively based on the soil
behavior type (see Lunne et al., 1997), can be back-calculated using Equation
6.58. This approach requires the estimation of Ir to determine ch and evaluated
MD. Alternative approaches for interpreting k from CPTU concern on-the-fly
measurements (e.g. Song et al., 1999; Voyiadjis and Song, 2003; Elsworth and
Lee, 2007).

The knowledge about the value of rigidity index Ir is generally required to
predict cu, ch or k from piezocone data. Formally, the rigidity index is defined
as the ratio of shear modulus and undrained shear strength Ir = G/cu. If
any other approach to evaluate rigidity index is not available (e.g. laboratory
compression test or pressuremeter test), Ir can be approximated through the
expression derived from a combination of the solution for the spherical cavity
expansion, cu for the MCC concept and Equation (6.48) (Mayne et al., 2001):

Ir = exp

[(
1.5

M
+ 2.925

)(
qt − σvo

qt − u2

)
− 2.925

]
(6.60)

An empirical formula obtained for series of triaxial CKoUC tests (Keaveny and
Mitchell, 1986) can also be used as the first-order approximation (Mayne et al.,

7Refer to Lunne et al. (1997); Leroueil and Hight (2003) for the discussion on anisotropy
of consolidation and flow characteristics.
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2001):

Ir =
exp

(
137−PI

23

)
{

1 + ln
[
1 + (OCR−1)3.2

26

]}0.8 (6.61)

where PI is the plasticity index (here in %).

6.3.3 Effect of drainage conditions on penetration results

It is commonly recognized that in the case of in situ tests, the drainage con-
ditions cannot be precisely controlled as in the case of laboratory tests. The
interpretation methods for clays or sands can be unreliable when interpreting
silty soils for which partial drainage may occur during penetration (Lunne et al.,
1995; Schnaid, 2005). According to the experimental field evidence provided by
McNeilan and Bugno (1984, see Figure 6.25), the effect of partial drainage is
believed to occur at the standard penetration rate (20mm/s) in materials with
the permeability coefficient between 10−9 to 10−5 m/s. Such range of perme-
ability coefficients is observed for silty clays to clayey sands (cf. Figure 6.17).

Since drainage conditions also depend on other consolidation character-
istics, Finnie and Randolph (1994) suggested a non-dimensional analysis of
the partial drainage effects on penetration resistance using normalized veloc-
ity which is defined as:

V =
v · d
cv

(6.62)

where v denotes penetration velocity and d is the probe diameter. Based on
Equation (6.58), the vertical coefficient for normally consolidated soil cv can be
expressed as:

cv =
k(1 + e)

λ

σ′
vo

γw

(6.63)

Figure 6.25: Effect of permeability on measured values of cone resistance in clayey
silts to sandy silts (after McNeilan and Bugno, 1984).
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Figure 6.26: Effect of penetration rate on piezocone measurements, (a) net cone resis-
tance, (b) excess pore water pressure, (c) pore pressure parameter (after
Randolph and Hope, 2004).

Normalization introduced by means of V is thus relevant in laboratory tests be-
cause experiments can be performed in different drainage conditions by varying
the penetration rate in the same type of soil instead of preparing different soil
permeability mixtures (Randolph and Hope, 2004).

A number of laboratory studies has been carried out to examine the partial
drainage effect on piezocone measurements (Randolph and Hope, 2004; Chung
et al., 2006; Schneider et al., 2007). These studies confirm a gain in cone re-
sistance with an occurrence of drainage, while measured pore pressures can
undergo partial dissipation decreasing values of Bq as demonstrated in Figure
6.26. In their study, Randolph and Hope (2004) noted undrained conditions in
normally consolidated kaolin for normalized velocity V larger than 30 ÷ 100,
while Schneider et al. (2007) obtained undrained penetration for V larger than
100 for kaolin and highly overconsolidated mixture of silica flour and bentonite
slurry. Fully drained conditions can be expected when V is less than 0.01 (Hight
and Leroueil, 2003).

6.3.4 Remarks

The interpretation of field tests requires a rigorous analysis which involves both
deep bases of mechanics and practical geotechnical knowledge. The existing in-
terpretation methods encompass simple, basic empirical formulas, as well as de-
manding numerical solutions including complex constitutive laws. Rational the-
oretical solutions can only be obtained through rigorous analyzes which should
take into account many factors that may appear in the analyzed process. How-
ever the number of factors is often reduced due to mathematical restrictions
and capabilities of the interpreting approach. The interpretation of field tests
is thus subject to a large dose of uncertainty. The inaccuracies and uncertainty
for interpreted parameters may stem from many reasons such as:

• negligence of partial drainage effects resulting in the mutual feedback for
interpreted parameters;

• negligence of strain rate effects resulting in the increase of parameter val-
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ues with respect to those obtained through laboratory tests;

• existence of various shear modes corresponding to different tests resulting
in the non-uniqueness of parameters;

• negligence anisotropy of stress or measured parameters;

• representative selection of the relevant mathematical approach, constitu-
tive model and boundary conditions adopted in the analysis of a specific
test;

• existence of intercorrelations between parameters in both empirical, ana-
lytical or numerical solutions.

Although much effort was made to propose the closed-form solutions for the
SBPT, the use of numerical simulations that would account for complex consti-
tutive laws and a possible occurrence of partial drainage is necessary.

As regards the CPTU testing, the first-order assessment of geotechnical pa-
rameters is mostly based on general empirical or semi-empirical correlations
which provide approximative estimations. A higher degree of accuracy requires
correlating empirical coefficients with the results obtained for high-quality, in-
tact samples from time-consuming laboratory testing. The use of analytical
or numerical solutions is rather restricted to the materials for which observed
behavior is closely related to the constitutive model considered in the inverse
solution. However, the numerical models should include many factors affecting
cone penetration such as material and geometrical non-linearities, stress and
strength anisotropy, partial drainage and friction effects.
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Chapter 7

Numerical Modeling of Selected
Field Tests

The progression of a painter’s work
as it travels in time from point to point,

will be toward clarity . . .
toward the elimination of all obstacles

between the painter and the idea . . .
and the idea and the observer . . .

To achieve this clarity is inevitably to be understood.

Mark Rothko

As previously discussed in Sections 2.4 and 3.2, for the purpose of this study,
neural network-based identification models are developed based on numerical
pseudo-experiments representing a boundary value problem of a specific field
test. The generation of NN training database thus relies on solving a number
of example tests by means of a numerical model. In this study, an incremental
finite element technique has been adopted to model and solve the boundary
value problems of two commonly applied in situ tests, i.e. the self-boring pres-
suremeter and the piezocone.

The chapter is divided into two main sections related to the SBPT and the
CPTU test respectively. Each section contains a detailed description of the
developed numerical model as well as additional investigations including sensi-
tivity analyzes of a specific model. For each model, the partial drainage effect on
field measurements is also investigated. As regards the piezocone model, com-
parative analyzes with existing numerical models and experimental evidence are
also presented. Finally, an equivalent semi-numerical model for the piezocone
test is proposed, owing to the loss of accuracy observed when applying a ”rough”
frictional interface.
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7.1 Numerical model of pressuremeter test

The main advantage of FE modeling of the pressuremeter test is that a BVP
model is able to combine both a complex constitutive model and a time-dependent,
hydro-mechanical coupling. The following section presents a simplified pres-
suremeter test model that accounts for possible partial drainage during cavity
expansion.

7.1.1 Finite element model

Numerical parameter identification based on SBPT measurements was worked
out for the elastic/plastic MCC model. The set of parameters to be identi-
fied by means of coupled hydro-mechanical analysis can be collected in vector
b = [ν,M,Rp, κ, λ, k, eo]. Since the elastic part of the pressuremeter expansion
curve is affected by two independent variables, namely ν and κ, both appearing
in Equation (4.4), the solution of parameter identification can be non-unique.
However, for clayey soils, the parameter κ exhibits a larger range of values than
ν, and thus, in the present parameter identification, Poisson’s coefficient is as-
sumed to be constant and equal to ν = 0.32. This value was chosen as the
designing average for clayey soils.

In order to analyze the coupled hydro-mechanical problem of the pres-
suremeter test, a finite element code Z Soil v.6 has been adopted as a numerical
solver (ZACE, 2003). The finite element mesh of the pressuremeter test, shown
in Figure 7.1, was discretized with the aid of 4-node axisymmetric quadrilateral
finite elements. Thus, it was assumed that the model reflects soil behavior in
the centered unit of the pressuremeter membrane. The finite element mesh was
built with the full awareness of the existing analyzes of the L/D geometry effect
(e.g. Yu et al., 2005). It was also assumed that the expansion takes place in a
fully saturated medium. The radius of the outer boundary (30ao) is far enough
from the inner radius, ao, so that it does not affect numerical results at the
cavity wall.

On the top and bottom boundaries of the FE model, vertical displacements
and fluid flux in the vertical direction are precluded. At the external edge bound-
ary condition, equivalent to the initial total radial stress σho, and pore pressure
boundary condition, equivalent to the initial pore pressure uo, are enforced dur-
ing the simulation. At the cavity wall, the hydraulic boundary conditions enable

CL
Imposed radial 

displacements

ao 30ao

σho

Pressure 

BC

Figure 7.1: FE mesh of simplified axis-symmetrical model of the pressuremeter test.
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the unconstrained development of excess pore water pressure so that the fluid
flow, both in a normal and tangential direction, is precluded. The initial con-
ditions consist of the initial effective stress state, which takes into account the
effect of stress anisotropy, and the initial pore pressure. In the case of SBPT,
we assume that disturbances due to probe installation can be neglected.

The loading programme is assumed to be displacement-controlled with re-
sulting cavity strain rate of ε̇c = 1%/min, following suggestions by Baguelin
et al. (1978); Clarke et al. (1979). As typically for the expansion test, the cav-
ity strain was increased up to εc = 8 ÷ 10% (Benoit and Clough, 1986).

Simulations of the holding test were modeled by fixing displacements at the
inner radius for SHT or, in the case of PHT, by holding the maximum cavity
pressure constant.The latter is the maximal pressure obtained at the end of the
expansion.

7.1.2 Effect of soil permeability

An analysis of the permeability influence on the PET was performed by means
of a parametric study for the pressuremeter model developed in Section 7.1.1.
Simulations were carried out for various values of permeability coefficient k = kh

in range 10−12 ÷ 10−8m/s, while the remaining model parameters were kept
constant. The numerical results shown in Figure 7.2 reveal partial dissipation
of excess pore water pressure during expansion for k larger than 10−11m/s. A
similar effect was observed by (Fioravante et al., 1994). This indicates that the
partial drainage may practically occur even for low-permeable clays (cf. Figure
6.17) as the undrained conditions are satisfied for k less than 10−11m/s.

As previously demonstrated in Figure 6.18, the drainage affects the shape of
the effective stress paths. Partial consolidation leads to a local hardening in the
soil elements adjacent to cavity wall and, in effect, may increase an apparent
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Figure 7.2: Effect of permeability on excess pore water pressure in the PET with the
cavity strain rate of 1.0%/min.
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Figure 7.3: Sensitivity of the pressuremeter expansion curve shape to changes of the
slope of a normal consolidation line λ in different drainage conditions.

undrained shear strength. Since the undrained shear strength cu is a function
of the preconsolidation pressure pco and the slope of critical state line M , the
identification of strength parameters may result in their overestimation. Thus
the use of numerical simulations is recommended instead of relying on analytical
solutions that are based on assumptions of an undrained expansion.

In the following analysis, the influence of the consolidation parameter λ on
the shape of the pressuremeter expansion curve εc − ψ was investigated with
respect to partial drainage conditions. The reference value λref (see Table B.1)
was perturbed from 0 to 40% for three different drainage conditions defined
by k. The influence of λ was measured in terms of the least-squared objective
function (Equation (2.6), ω = I) which was computed in each case for all dis-
crete measurements and with respect to the measurements corresponding to the
undrained case. The analysis is graphically presented in Figure 7.3, wherein the
vertical axis represents the magnitude of the objective function, S(λ), and the
horizontal axis is plotted as the normalized slope of the normal consolidation
line, λ/λref . It can be concluded that λ has negligible influence, or no influence
at all, on the pressuremeter expansion curve if k is less than k = 10−9m/s. In
such a case the identification of other parameters can be performed even for an
imprecisely estimated value of λ because it does not change the shape of the
stress-strain curve (εc − ψ). On the other hand, in the case of k > 10−9m/s,
the identification of κ, M , pco should be preceded by the precise evaluating
the parameter λ or include the results from the PHT (see Section 6.2.5). The
presented results indicate growing sensitivity of the expansion curve to both
increasing soil permeability and inaccuretly evaluated λ.
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7.1.3 Non-uniqueness and sensitivity of strength param-
eters

Non-uniqueness of model parameters in the identification process is often ob-
served in the case of non-linear problems. Non-uniqueness may lead to several
combinations of values of parameters providing the same response of a system
(e.g. Hicher and Michali, 1996; Ledesma et al., 1996a; Gens et al., 1996; Zentar
et al., 2001; Calvello and Finno, 2002). The non-uniqueness of the strength
parameters in the MCC is the result of model properties. The elliptical yield
surface, described in Equation (4.1), combines two parameters M and pco. Since
both parameters define the undrained shear strength of the MCC (see Equation
(6.22)), their identification from a single εc − φ curve may lead to the same
solution for different parameter combinations (see Figure 7.4(a)). In the con-
text of parameter identification, this problem can be viewed as an existence of
equivalent minima in the space of parameters (see Figure 7.4(b)). On the other
hand, two pairs of parameters produce different effective stress paths. Hence,
the simultaneous identification of both parameters by means of NN or GBO
requires accounting for data measured by the SBP pore pressure sensors.
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Figure 7.4: Non-uniqueness of strength parameters M and pco (a) with respect to
the total stress expansion curve εc − ψ, (b) in terms of the least square
objective function S(M,Rp).

7.1.4 Effect of stress anisotropy

The initial in situ stress is another factor that affects pressuremeter results.
The stress anisotropy can be expressed by the coefficient of earth pressure ’at
rest’ Ko = σ′

ho/σ
′
vo. The analysis of the stress anisotropy effect was performed

using ”undrained” simulations for various Ko values perturbed with respect to
Kref

o . In the analysis, preserving the reference values1 of Rp and pco described
in terms of the mean stress, required different combinations of σ′

ho and σ′
vo to

1The reference parameters values are provided in Table B.1.
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Figure 7.5: Effect of in situ stress anisotropy on the expansion curve presented in
terms of Ko: (a) evolution of the total radial stress and excess pore water
pressure, (b) evolution of the effective radial stress, (c) variation of the
least-squared error function with respect to perturbed Kref

o value.

obtain various Ko values. Consequently, in order to present quantitative results
on the same chart, the total stress and pore pressure curves were normalized by
the initial horizontal stress σ′

ho. The results of the evolution of the total stress
acting on the cavity wall and excess pore water pressure with respect to the
cavity strain are shown in Figure 7.5(a) while Figure 7.5(b) presents changes
in the effective stress. It can be noticed that with a linear decrease of Ko, an
exponential increase of the ultimate effective stress can be observed.

The influence of stress anisotropy was also measured in terms of the least-
squared objective function computed with respect to the results from the ref-
erence simulation for Kref

o . Simulations were computed for perturbed values of
Kref

o from 0 to 50%. The variation of the error function S(Ko), with respect to
the ratio Ko/K

ref
o is shown in Figure 7.5(c). The chart shows that a small error

for Ko up to about 10% may not significantly affect the pressuremeter curves.
It means that in this range an imprecise identification of Ko has a negligible
influence on other parameters to be identified. On the other hand, a strong,
exponentially increasing influence on the pressuremeter expansion curves is ob-
served for the Ko-identification error larger than 10%.
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Figure 7.6: Sensitivity of the dissipation test to mechanical properties and initial
stress anisotropy.

7.1.5 Sensitivity analysis of pressure holding test

As already shown in Section 7.1.2, soil permeability considerably affects the
pressuremeter expansion curve. What has also been presented in Section 6.2.3
is that the horizontal permeability coefficient can be evaluated from the PHT by
means of numerical simulations. Unless a coupled hydro-mechanical parameter
identification is considered, running numerical simulations of the PHT requires
arbitrarily assigned values of mechanical properties at the beginning of the anal-
ysis. Therefore, it is interesting to investigate the influence of MCC properties
on the PHT. The sensitivity analysis was carried out based on simulations of
the dissipation test under constant applied pressure and preceded by 10%-cavity
strain expansion test.

The first analysis concerns a qualitative evaluation of the dissipation curve
sensitivity for the model parameters perturbed by 25 and 50% with respect to
the reference values. The results presented in Figure 7.6 show that initial state
variables Ko and pco have a strong influence on the dissipation curve whereas a
moderate on M and a small influence on the deformation characteristics κ and
λ are observed.

Thus, in the following analysis, the attention is drawn to those parameters
which have the strongest influence on the dissipation curve, i.e. Rp(pco) and
Ko. The weighted2 least-squared objective function was used to qualitatively

2In order to make the results comparable with the previous analyzes, the elements in the
weighting matrix ω were adjusted by equalizing the magnitude of the error function S(Ko)
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Figure 7.7: Sensitivity of the dissipation test to the stress state parameters presented
measured in terms of the least-squared objective function.

analyze the magnitude of the error between measured variables obtained for
parameters perturbed up to 50% and results for the reference dissipation curve.
Figure 7.7 shows a strong exponential effect of Ko on the dissipation curve with
the error for Ko beyond 25%. In the case of Rp, the influence is not as strong
as for the erroneous Ko values, however a considerable magnitude of error can
be observed for the Rp values perturbed more than 15%.

7.2 Numerical model of piezocone test

As already discussed in Section 6.3.1, a reliable numerical modeling of cone
penetration in soil is still challenging. A successful modeling of the problem
involves an efficient framework of many coupled numerical procedures which
should deal with material and geometrical non-linearities including non-smooth
frictional law. This chapter presents the finite element model of the piezocone
penetration test in the elastic-plastic soil model. The validity of the developed
CPTU model is investigated in detail. Such verification is necessary as the model
will be used to generate a number of cone readings being used as NN training
patterns. The verification of the developed model is demonstrated through
a comparison with other solutions synthesized from literature. An analysis
of penetration in various drainage conditions will be carried out in order to
investigate soil behavior under partial drainage conditions which may occur in
intermediate soils. An analysis of limitations of adopted numerical procedures
and their effect on accuracy of numerical predictions is also presented. As the
model imperfections may also stem from shortcomings of the adopted material
model, its applicability to the NN training is also discussed.

obtained for Ko = 0.5Kref
o in this analysis with the corresponding error presented in Figure

7.5(c).
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7.2.1 Finite element model

As discussed in the introductory sections, in this study, a generation of the NN
training database relies on the collection of synthetic test results produced by
numerical simulations. Development of a reliable numerical simulation for the
penetration problem can be formulated as:

Find a numerical, coupled hydro-mechanical model that describes penetra-

tion of a saturated elasto-plastic medium by a frictional cone, obeying Darcy’s

law for fluid flow and generating excess pore pressure and stress fields with a

reasonable accuracy.

For the sake of availability, the environment of the commercial code ABAQUS
has been used to simulate the cone penetration problem as the application of-
fers many advanced built-in algorithms that can be used in the advanced FE
element modeling (ABAQUS, 2007). The code has already been found to be
suitable (with some limitations) to model penetration problems as it offers a
description of constitutive soil behavior in the regime of large strains and large
deformation contact formulation. The complex quasi-static non-linear analysis
can be solved by means of two iterative techniques, as presented in Figure 7.8.
One-phase material problems can be solved using the explicit time integration
scheme which is proved to be stable for adequate small time increments and
very well suited to complex contact problems involving frictional sliding (Prior,
1994). The explicit technique in conjunction with the efficient ALE adaptive
meshing algorithm allows the accuracy of results to be improved. Since the
adaptive meshing maintains a high quality mesh throughout the analysis in-
volving severe mesh distortions, the use of small size mesh elements around the
cone with maintained numerical stability is possible (e.g. Susila and Hryciw,
2003; Walker and Yu, 2006).

A cone insertion into a coupled hydro-mechanical system requires the use of
the implicit time integration scheme which is available in ABAQUS/Standard
(e.g. Sheng et al., 1997; Huang et al., 2004; Wei et al., 2005; Markauskas et al.,
2005; Sheng et al., 2005). However, the implicit algorithm is not well suited
to non-linear problems which include frequent changes of contact configuration
including contact opening. While the problem of contact opening in the case of
penetration problem can be avoided by smoothing the sharp cone transitions,
the convergence problems may arise with severe element mesh distortions. As
experienced by the author in preliminary tests, the use of ALE algorithm in con-
junction with both complex frictional sliding, the coupled material behavior and
the implicit technique, led to global numerical instabilities in the initial phase of
penetration. Although various mesh topologies and frequent mesh sweeps were
tested, the force and contact equilibrium was not achieved. According to the
author’s knowledge, a successful implementation of the adaptive meshing for the
penetration problem has been proposed by Markauskas et al. (2005); however,
the whole procedure does not seem to be well documented. Recently, Nazem
et al. (2008) presented the ALE technique for large deformation consolidation
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problems which has not been tested for insertion problems yet.
The inability of applying the mesh adaptivity enforces the use of the pure

Updated Lagrangian description, as well as large size mesh elements around
the cone tip in order to avoid negative Jacobians occurring for large mesh dis-
tortions (see e.g. Huang et al., 2004). Severe mesh distortions may also occur
with increasing cone roughness resulting in considerable loss of solution accu-
racy. Considering the unfavorable distortion effect, a semi-analytical solution
that accounts for the cone friction effect will be proposed in Section 7.2.2.3.
The solution is calibrated for relatively small numbers of friction coefficient for
which a good mesh quality is conserved providing acceptably consistent results.

In the proposed finite element model, the rheological effects were not con-
sidered in order to avoid an additional degree of complexity related to supple-
mentary material constants.

7.2.1.1 Cone-soil interface modeling

Modeling of the contact between the penetrating cone and the soil involves large
frictional sliding including a non-smooth frictional law. In the present model,
the widely used node-to-surface algorithm has been adopted (ABAQUS, 2007;
Fischer et al., 2007). Using this concept, the master surface is defined by the
cone geometry while the slave nodes belong to the deformable soil mesh.

NUMERICAL ANALYSIS OF

CONE PENETRATION WITH

BUILT-IN PROCEDURES OF ABAQUS 6.7-1

EXPLICIT STANDARD (IMPLICIT)

• Large strain formulation

• Finite-sliding contact algorithm

• Stable ALE formulation

  for contact problems 

possible use  of small size 

elements around cone tip

controled element distortion

increased accuracy

of results

• One - phase medium

• Large strain formulation

• Finite-sliding contact algorithm

• Two - phase medium

• Severe convergence problems for

ALE formulation due to complex 

    contact problem

large size elements required 

around cone tip to avoid 

negative Jacobians 

encountered for large element 

distortion

large element distortion for 

large friction coefficents

decreased accuracy 

of results

convergence sensitive for 

frictional sliding

convergence problems

if local instabilities occur

• Conditionally stable with respect to

   the size of time increment

Figure 7.8: Numerical modeling of cone penetration using ABAQUS environment.
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Figure 7.9: Scheme of cone-soil interface.

Kinematics at the interface

Let us define a point A on the deforming mesh, with current coordinates xA

and the closest point A′ on the rigid body surface at which the normal vector
to the surface n passes through A (Figure 7.9). Then, the overclosure distance
(or normal gap) between two bodies is calculated as:

gn = nT (−xA + xC + r) (7.1)

where gn is the gap between two bodies, xC are the current coordinates of the
reference rigid body node and r denotes the vector CA. Contact conditions
between two surfaces are governed by kinematic constraints in the normal and
tangential directions (Figure 7.10). In the normal direction, the assumed non-
adhesional interface is governed by the hard contact formulation which is given
for every possible contact pair as:

gn ≥ 0, p′n ≥ 0, gnp
′
n = 0 (7.2)

where p′n denotes the normal effective pressure at contact and is taken as posi-
tive for compression. The contact between two bodies is detected when gn = 0
and p′n > 0. Once the slave nodes are in contact with the master surface the
sliding may occur.

Frictional interface constitutive law

The frictional sliding is governed by the Coulomb’s friction contact law. A
critical shear contact stress is proportional to the normal stress at the interface
based on τf = p′n tanφi, where φi represents the friction angle of the cone-soil
interface. Unless the value of the shear stress is smaller than the critical value,
two surfaces remain in a sticking mode and no relative displacement takes place.
Otherwise, perfectly-plastic sliding occurs in the direction of the shear stress,
thus:

if |τ/µp′n| < 1 then ut = 0 (sticking mode)
if |τ/µp′n| = 1 then ut > 0 (sliding)

(7.3)

where µ is the coefficient of friction and is equal to tanφi. It is also assumed
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Figure 7.10: Constitutive behavior of the non-adhesive frictional contact (a) in the
normal direction, (b) in the tangential direction.
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Figure 7.11: Relationship between the friction coefficient and the plasticity index:
proposed values of design φi values for steel piles after (Jardine and
Chow, 1996).

that in the contact, there is no tangential fluid flow.

In the model, the Lagrange multipliers method is used to enforce the con-
tact constraints. Although the algorithm adds additional degrees of freedom
increasing the size of the problem, it satisfies the contact constraints exactly
(Sheng et al., 2007). Further details on finite element algorithms for the fric-
tional contact can be found in (Wriggers, 2002).

7.2.1.2 Experimental evidence of the steel-soil interface

Typically, the friction angle φi for the steel-clay interface is smaller than the soil
residual effective friction angle φ′

c (Lehane et al., 2000). For the friction angle at
the interface, the peak φi,p and residual (critical) φi,c may also be distinguished
depending on the relative displacement between the shaft and the soil during
penetration. Based on an extended research program including results from the
field tests and ”Bishop ring”-shear tests, the approximate design values for φi

were proposed for steel piles in Jardine and Chow (1996). As shown in Figure
7.11, in clays, the ratio tanφi,c/ tanφ′

c can be observed approximately between
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0.25 ÷ 0.5 and the dependency on the plasticity index IP is also recognized.
Koumoto (1988) reported the results of constant volume friction tests in Toyoura
sand for which the ratio tanφi/ tanφ′

c was observed between 0.22 ÷ 0.26. Since
the observed variations of φi may be large, as discussed by Ramsey et al. (1998),
the dependency on the IP will be omitted further in this study.

For the purpose of training pattern generation, the contact parameter φi will
be assigned using a randomly drawn value of cone roughness αf = tanφi/ tanφ′

c

within an interval from 0.25 to 0.35. The assumed interval will be further
justified based on Fr −Qt classification chart in Section 8.2.3.

7.2.1.3 Strength anisotropy

Natural clays usually exhibit the strength anisotropy which is the result of the
deposition process. This anisotropy may thus affect cone resistance, as the rota-
tion of principal stresses can be expected due to different shear modes involved
during penetration (see Figure 6.20). The effect is not of great importance
however, it can be taken into account in the numerical model. Based on the
results for the strength anisotropic criterion and the cavity expansion method,
Su and Liao (2002) affirmed that the anisotropy effect becomes significant for
clays which exhibit a strong anisotropy, i.e. the strength anisotropy ratio Ar

less than 0.6.
In the finite element model, in order to account for the strength anisotropy,

Equation (4.1) which defines the plastic surface can be rewritten as:

F (p′, q, r, pco) = q2 +M2r2(θ) · p′(p′ − pco) = 0 (7.4)

where θ denotes Lode angle and r(θ) describes the shape of the yield surface
in the octahedral plane and is defined in ABAQUS through the expression
proposed by Argyris et al. (1974):

r(θ) =
2ka

1 + ka + (1 − ka) sin (3θ)
(7.5)

where the coefficient of strength anisotropy ka (= Me/Mc) can be typically
related to the friction angle through the Mohr-Coulomb criterion as:

ka =
3 − sinφ

3 + sinφ
(7.6)

In the MCC, the coefficient ka is equivalent to the undrained shear strength ratio
Ar (= cue/cuc) as its magnitude is controlled by the ratio Me/Mc (cf. Equation
(6.47)).
Contrary to the formula proposed by van Eekelen (1980) which can be applied

for the friction angle up to φ = 46.55o (see Figure 7.12(a)), Equation (7.5)
preserves the convexity of the yield surface if 0.778 ≤ ka ≤ 1.0 , and thus
becomes non-convex for φ > 22.1o as shown in Figure 7.12(b). In the presented
model, the strength anisotropy is thus assumed as a constant equal to ka = 0.78
for each considered simulation or training pattern.
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7.2.1.4 Finite element discretization

An FE model of the standard cone with tip angle α = 60◦ and diameter
dc = 35.7mm was designed to study a displacement-controlled test with a stan-
dardized rate of penetration equal to 20mm/s. The cone is modeled as an axis-
symmetric rigid body which penetrates the underlying deformable soil from its
top surface. The penetration takes place in a pre-existing cavity with the initial
radius equal to 0.1mm which is introduced to allow penetration. The finite-
sliding formulation with the Coulomb’s frictional law is used for modeling the
interface between cone and soil. The FE mesh representing a fully saturated soil
is discretized using 8-node axis-symmetric quadrilateral isoparametric elements
with the reduced integration scheme, i.e. four Gauss points and is presented
in Figure 7.13(a). Higher order shape function elements are used to improve
accuracy and avoid locking effects. The soil elements near the rigid cone are
intentionally skewed at the beginning of the analysis in order to avoid severe
distortions during a subsequent deep penetration. The element distortions may
cause a loss of accuracy, especially, if the analysis is performed with a ”rough”
interface, i.e. µ > 0. The size of elements in the horizontal direction is biased
toward the outer radius of the domain, while in the vertical direction, the ele-
ments have a constant height until they reach a level slightly below the depth
of penetration.

In the FE model bottom boundaries are fixed in the vertical direction while
the top surface is loaded with the equivalent of total in situ vertical stress σvo.
At the external edge, traction boundary condition, equivalent to the initial total
horizontal stress σho, and pore pressure boundary condition, equivalent to the
initial hydrostatic pore pressure uo, are enforced. Moreover, the initial state of
the effective stress is assumed to be homogeneous through the overall height of
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Figure 7.12: Failure surface of the MCC in octahedral plane.
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the mesh at the beginning of the analysis. In the analysis, soil can be considered
as weightless since it does not affect the penetration mechanism and simplifies
capturing the so-called ”steady-state” which is characterized by a linear increase
of the cone resistance force Fc (e.g. Figure 7.15). The homogeneous geostatic
conditions, i.e. the initial vertical and horizontal effective stresses, σ′

vo and σ′
ho

respectively, are imposed over the mesh domain.

Mesh size optimization

The size of the mesh domain is designed to satisfy two requirements, i.e. that
the radius of external boundaries (R) be large enough compared to the plastic
radius and that the height of mesh H allow an unaffected steady-state to be
reached. Hence, the size of the soil domain can be specified according to the
cavity expansion theory (Vesić, 1972) which says that the range of plastic ra-
dius rp depends on the rigidity index Ir. A solution for rp based on the cavity
expansion from zero initial radius to the cone radius rc can be calculated for
cylindrical cavity as

√
Irrc (cf. Lu et al., 2004)). For the sake of the accuracy

of results, the radial extent was taken as R ≈ 2.8
√
Irrc and the mesh height

as twice of the external radius R. Three meshes were designed to deal with
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Figure 7.13: Mesh size optimization in function of Ir: (a) schematic layout of the FE
meshes for CPTU, (b) contour plots of ∆u/cu.
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various Ir, namely IR25, IR50 and IR100, and their dimensions are summarized
in Table 7.1 and illustrated in Figure 7.13(a). The optimization of the mesh
dimensions is proposed to control the total number of equations to be solved,
as well as to reduce an extended CPU time which is expected during the data
base generation of numerical samples for NN training. Figure 7.13(b) presents
exemplary simulations in two materials defined by Ir equal to 25 and 50. Tak-
ing into account properties of the MCC during the undrained compression, the
non-zero pore pressures around the penetrated zone can be identified with the
region of plastic deformations. The presented results show that in both cases,
the outer vertical boundary conditions R are far enough from the plastic radius.

Table 7.1: Summary of the finite element mesh sizes.

Mesh name Rigidity Index Range Radius Height Radius/Cone radius
Ir R (m) H (m) R/rc

IR25 10 ÷ 25 0.25 0.4 14.0
IR50 25 ÷ 50 0.35 0.6 19.6
IR100 50 ÷ 110 0.50 0.8 28.0

Optimization of penetration depth

Representative variables for a modeled penetration test can be acquired as soon
as the steady-state condition is achieved for both cone tip resistance qt, sleeve
friction fs and pore pressure u2 readings. As demonstrated in earlier studies
(e.g. Huang et al., 2004; Walker and Yu, 2006), the steady-state depth zs is re-
lated to Ir. A number of test runs was carried out to capture zs and the results
of this analysis are presented in Figure 7.14. For example, starting from the soil
surface, the steady-state is achieved at zs

∼= 0.23m with Ir = 25 corresponding
to about 6 times of dc while for Ir = 100, zs

∼= 0.41m which corresponds to
about 11 times of dc. Note that the steady-state condition is achieved earlier
for the cone resistance than for shaft resistance readings (compare, for example,
Figure 7.19(a) with Figure 7.22(a)). The latter determines the occurrence of
the steady-state. By taking only the cone resistance at the steady-state from
Figure 7.19(a) for Ir = 100 which corresponds to zs equal to 8 times of dc, the
result corresponds well with zs obtained with an explicit FE model presented
by Walker and Yu (2006).

Hence, in order to ensure the minimal CPU time of the cone penetration
simulation, a dependence between Ir and zs should be introduced. This is es-
sential to perform an ”economical” generation of NN training patterns.

Smoothing numerical measurements

In practice, continuous data readings reveal fluctuations of different magni-
tudes. Clearly, the first group of oscillations stems from the local variability of
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Figure 7.15: Non-smoothed measurements of total cone resistance Fc for linear and
quadratic elements with the height of 10mm.

soil. However, in a ”statistically homogeneous” soil layer, oscillations may be
caused by randomly encountered larger grains or soil fracturing. In the finite el-
ement model, oscillations stem from the node-to-surface contact discretization.
The sudden drops of cone resistance, e.g. Figure 7.15, take place when soil
elements pass the transition point between the cone tip and the cone shaft. The
transition mode may also be the source of numerical instabilities due to highly
distorted elements around the transition point and sudden changes of contact
stress directions (Fischer et al., 2007). In order to ensure the solution stability
and to improve smoothness of readings, the transition between the cone tip and
the cone shaft is slightly rounded.

Thus the magnitude of oscillations depends on the size of elements; Figure
7.15 presents results for the model with the element height of 10mm. In this
case, the linear elements present a more ”resistant” response to the quadratic
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elements, which can be explained by the topology of linear elements. The ampli-
tude of oscillations may be reduced by decreasing the height of elements (Figure
7.30(a) shows numerical results for the element height 7.5mm). In the present
study, smooth numerical results are obtained through the moving average fil-
tering, i.e. each ith data point is replaced with the average of the neighboring
data points through:

ỹi =
1

2N + 1
(yi+N + yi+N−1 + . . .+ yi−N) (7.7)

where ỹi denotes the smoothed value, N is the number of neighboring data
points and 2N + 1 represents the smoothing span.

7.2.2 Analysis of finite element model

As discussed in Section 6.3.1, the finite element modeling seems to be the most
appropriate to theoretically analyze cone penetration in clays since many factors
such as cone geometry, frictional sliding or advanced constitutive law, can be
taken into account. The soil elements adjacent to the cone experience complex
stress paths as a consequence of different shearing modes that are involved in
the test. Figure 7.16 presents the results of the ”undrained” cone penetration in
an isotropically consolidated material. During penetration, the cone moves the
point A to the new position A′ of a vector rA(t) disturbing the isotropic initial
stress state O (see Figure 7.16(a) and 7.16(b)). The soil element remains in
the elastic equilibrium until reaching the yielding point L which corresponds to
the location of the soil element in the zone beneath the cone tip. With the soil
yielding, a strong gradient of pore pressure u is built-up and subsequently the
deviatoric stress q accompanied by the rotation of principal stresses achieves its
ultimate magnitude (point U). This moment is also marked by the maximum
excess pore water pressure which subsequently decays as soon as the cone base
passes by the soil element. A similar pattern for pore pressure variations was
observed by Whittle and Aubeny (1991) for the MCC using the strain path
method.

Figures 7.16(c) and 7.16(d) confirm that the strength anisotropy affects
effective stress paths in the penetration process. However, a larger influence
can be expected for pore pressure readings behind the cone base u2 than for
cone resistance qt. This is due to the fact that the former is measured at cone
shaft in soil being subject to the full rotation of principal stresses, i.e. σ1 ini-
tially corresponding to the vertical stress becomes the radial stress direction as
shown in Figure 7.17(a). The record of cone resistance qt includes a mixture
of resistance forces related to both vertical and transitional compression. The
parametric study for three different values of anisotropy coefficient ka confirms
the above hypothesis, as shown in Figure 7.17(b). The measurement of qt for
fully isotropic strength is 0.6% higher with respect to the reference qref

t cor-
responding to ka = 0.78, whereas neglecting the strength anisotropy leads to
underestimation of pore pressure u2 of about 5% with respect to uref

2 .
Figure 7.18 illustrates pore pressure distributions along the cone in normally-
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Figure 7.17: Rotation of the principal stresses during cone penetration: (a) rotation
of σ1 directions (b) influence of the strength anisotropy on cone readings.
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Figure 7.18: Pore pressure distributions generated by the numerical model for various
overconsolidation ratios.

and lightly overconsolidated materials. The numerical patterns are, generally,
in agreement with the field test results summarized by Robertson et al. (1986);
Lunne et al. (1997). The largest positive pore pressures are developed at the
cone tip surface where the maximum compressive stresses are observed. Be-
hind the cone base, the positive pore pressures decrease along the shaft with a
stronger gradient marked for dilative materials. The chart shows, however, that
the pore pressure ut measured at the cone tip apex may be underestimated.
This fact can be considered as a shortcoming of the MCC model which gener-
ates no excess pore water pressure within the elastic region and, in consequence,
the pore pressure gradient at ut location can be delayed.
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7.2.2.1 Analysis of cone factors

As already discussed in 2.1, no unique undrained shear strength exists. The
value of cu depends on soil history, soil anisotropy, strain rate, interface friction
and finally on the failure mode (Wroth, 1984; Teh and Houlsby, 1991; Mayne,
2006). The common relation that links the tip cone resistance qt and cu is
expressed applying the cone factor Nkt:

qt = Nktcu + σvo (7.8)

The model developed in the present study, can be thus verified by carrying
out a comparison with results from other studies in terms of Nkt. Another
model evaluation can also be made in terms of factor N∆u (Equation (6.41)).
However, only a few studies have been made to analyze the hydro-mechanical
mechanism of penetration and no comparative solutions for N∆u have been
found in literature.

All the calculations presented throughout this section were carried out for
the saturated two-phase material with the Modified Cam clay criterion and the
compressible fluid phase. Parameters used for calculations are summarized in
Table B.2. As regards the analysis of the soil rigidity effect, the rigidity index Ir
was adjusted by changing the value of either κ, which controls the soil stiffness3,
or Rp which defines cu. Since the undrained shear strength is non-unique, two
approaches were applied to compare obtained results using Equation (6.47) and
(6.22) which refer to the three-dimensional case and the plane strain expansion
respectively. In the analysis of the initial stress anisotropy effect, the parameter
∆ was adjusted by changing σ′

vo and σ′
ho, and keeping p′o constant.

Effect of soil stiffness on cone factors

The effect of soil stiffness was analyzed for frictionless penetration in undrained
conditions and isotropic initial stress state. Values of qt were computed for var-
ious rigidity indexes Ir corresponding to three optimal size meshes, i.e. IR25,
IR50 and IR100. In order to examine the consistency of the meshes, additional
calculations were carried out for the same Ir using different meshes. The results
of this analysis, presented in Figures 7.19(a) and 7.19(c), show that the test
points calculated for various meshes and Ir varying from 10 to 110 lie exactly
on the linear correlation, affirming the consistency of the meshes. The following
correlations were obtained for different Ir values:

N s
kt = −0.55 + 2.37 ln Ir (7.9a)

for Ir obtained through variations of κ and cu calculated for a spherical expan-
sion, and:

N c
kt = −0.18 + 2.05 ln Ir (7.9b)

for cu calculated for a cylindrical expansion.
Additional computations were carried out using the model IR25 for which

3See Equation (4.4).
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Figure 7.19: Effect of soil rigidity on the cone factor Nkt, (a) evolution of the cone
resistance with depth (raw and smoothed measurements), (b) Nkt in
function of Rp, (c) Nkt in function of rigidity index in various mesh
designs.

Ir values were modified through Rp varying from 1.08 and 5.1, and cu was cal-
culated using the equation for the spherical case. Owing to different definitions
of cu, the values of Nkt for the cylindrical cu definition are smaller than for the
spherical case. Interestingly, despite using the same expression for calculating
cu, the numerical results for κ and Rp variations present different solutions.
Simulations run with the same G modulus but the variable Rp give experimen-
tal points lying along an ellipsoid-shape trend (Figure 7.19(c)). Assuming that
the change of the reference value Iref

r is inversely proportional to the change of
the reference overconsolidation ratio Rref

p (cf. Equation (6.47)):

ln

(
Iref
r

Ir

)
= ln

(
Rp

Rref
p

)Λ

(7.10)
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Figure 7.20: Comparison of the rigidity index effect on the cone factor Nkt obtained
in different studies.

the following expression can be proposed to adjust the solution presented in
Equation (7.9a) to any value of Rp:

Nkt(Rp) = N ref
kt + 0.75 ln

Rp

Rref
p

(7.11)

Figure 7.19(b) shows that the above equation fairly approximates data points
obtained in numerical simulations. Figure 7.19(c) demonstrates that the so-
lution obtained using Equation (7.9a) for Rref

p = 1.5 and shifted up applying
Rp = 2.02, passes the corresponding experimental point indicated in the dia-
gram.

Figure 7.20 shows that the general trends proposed in Equations (7.9) are
similar to solutions obtained in other studies which are summarized in Table
6.24. The slope gradient in Equation (7.9a) resembles the initial gradient of
FEM solution obtained by Van der Berg (1994). However, this solution ex-
hibits a strong non-linearity when Ir is larger than 100. It is supposed that
this inconsistency can be attributed to inefficiency of numerical procedures for
penetration in stiffer materials. Severe convergence problems and numerical
inefficiency were also experienced in the present study for Ir values larger than
110.

As regards the solution expressed by Equation (7.9b), the slope gradient is
similar to those obtained for SPM by Teh and Houlsby (1991); Van der Berg
(1994); Yu and Whittle (1999) and for FEM by Yu et al. (2000); Abu-Farsakh
et al. (2003); Walker and Yu (2006).

A similar analysis of the stiffness effect was carried out for the cone fac-
tor N∆u derived for pore pressure measurements taken behind the cone tip.
Figure 7.21(a) presents the results of u2 evolution with penetration depth for

4The graphical interpretation for expression proposed by Su and Liao (2002) was obtained
with Ar = 0.78.
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different Ir levels. Note that numerical raw readings of u2 are characterized by
larger amplitudes of oscillations than those observed for qt readings (cf. Figure
7.19(a)). The intensity of amplitudes rises with increasing Ir and the highest
amplitudes were observed in the initial phase of penetration. Figure 7.21(c)
presents the cone factors N∆u calculated from smoothed measurements corre-
sponding to steady-state penetration and plotted against Ir. Based on these
data points, the following expressions have been proposed to fit the data:

N s
∆u = 1.12 + 1.34 ln Ir (7.12a)

for Ir obtained through variations of κ and cu calculated for spherical expansion,
and:

N c
∆u = 1.14 + 1.16 ln Ir (7.12b)
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Figure 7.21: Effect of soil rigidity on the cone factor N∆u, (a) evolution of excess pore
water pressure with depth (raw and smoothed measurements), (b) N∆u

in function of Rp, (c) N∆u in function of rigidity index in various mesh
designs.
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for cu derived from cylindrical expansion case.
Owing to the occurrence of large measurement oscillations, the data points
exhibit a slight scatter with respect to the solution proposed in Equation (7.12a).
Slightly scattered data can be, however, advantageous for NN training since it
may accelerate training and also improve their ability to generalize. It is also
remarkable that data points above Ir = 75 slightly deviate from the linear
trend which can be also associated with numerical oscillations which rise with
increasing soil rigidity. This remark may partially explain severe convergence
problems encountered during numerical simulations for materials with Ir larger
than 125. It was next observed that severe numerical problems begin to occur
if the ratio G/p′o exceeds the value of about 50 with Ir larger than 110 at the
same time. Assigning the values of ν = 0.3 and eo = 0.1, the ratio G/p′o = 50
corresponds to κ = 0.01 and further decreasing this value may lead to divergence
in the numerical model before achieving the steady state. Severe problems with
convergence due to pore pressure oscillations were observed at the critical depth
of 0.08 ÷ 0.09m from the top surface. Unfortunately, the use of the developed
model for the generation of NN training patterns has been restricted to the
values of G/p′o < 70, in conjunction with Ir smaller than 110.

By analogy to Nkt, the solution for N∆u proposed in Equation (7.12a) is non-
unique and depends on the overconsolidation ratio as demonstrated in Figure
7.21(c). In order to account for this factor, the following expression has been
proposed:

N∆u(Rp) = N ref
∆u −

3

2
ln

Rp

Rref
p

(7.13)

Figure 7.21(b) shows that the above expression fairly approximates data points
obtained in numerical simulations using different values of Rp. Figure 7.21(c)
illustrates that the solution obtained using Equation (7.12a) for Rref

p = 1.5 and
shifted up for Rp = 1.08, passes the corresponding data point as indicated in
the chart.

The effect of soil rigidity was also investigated in terms of the normal effective
pressure p′n acting on the cone shaft. The values of p′n at the steady state were
taken as a sum of the normal effective pressures integrated over the cone friction
sleeve area of 150cm2 above the cone tip. Figure 7.22(a) shows that Ir has no
significant influence on the results as the penetration has reached the steady-
state. A sudden drop of effective pressures for rigid materials in the initial
phase of penetration can be explained by high amplitudes of pore pressures
as previously shown in Figure 7.21(a). The effect of material rigidity can be
quantified by plotting the ratio p′n/cu (which is similar to the cone factor N∆u)
against Ir as shown in Figure 7.22(b). In this diagram the effect of pore pressure
oscillations is notably manifested for the data point corresponding to Ir = 125
which deviates from the general trend expressed by:

p′n
cu

= 3.73 − 0.11 ln Ir (7.14)

It can be concluded that the soil rigidity marginally affects the effective pres-
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Figure 7.22: Effect of soil rigidity on the normal effective pressure acting on the cone
shaft, (a) evolution of the normal effective pressure with depth and (b)
variation of the effective pressure ratio for various Ir and mesh designs.

sure acting on the cone shaft since the observed trend gradient is significantly
smaller compared to gradients observed for other cone factors.

Effect of strength anisotropy on cone factors

Su and Liao (2002) demonstrated that the strength anisotropy included in
the material model affects the penetration process. As illustrated in Figure
7.17(b), the cone resistance derived for isotropic strength criterion is higher
than for anisotropic criterion and inversely, lower pore pressure records u2 can
be expected towards to strength isotropy state.

A series of numerical simulations for adopted strength criterion was carried
out for various anisotropy ratios ka and overconsolidation ratios Rp. The ob-
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Figure 7.23: Effect of strength anisotropy on the cone factors.
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tained results which are shown in Figure 7.23 reveal that the adopted strength
criterion marginally affects the cone factors5. In the presented model, the
strength anisotropy effect on the cone factors can thus be taken into account
using the following proposed correlations:

Nkt(ka) = Nk,iso
kt +

ka − 1

3.5
(7.15)

and

N∆u(ka) = Nk,iso
∆u +

√
ka − 1

1 + ka

(7.16)

where Nk,iso
kt and Nk,iso

∆u denote the cone factors corresponding to the isotropic
strength envelope, i.e. ka = 1.

Effect of initial stress anisotropy on cone factors

The effect of initial stress anisotropy was investigated by fixing Ir equal to
25, and changing values of parameter ∆ between -0.5 and 0.5. In each simula-
tion the strength anisotropy was enforced by setting ka = 0.78. By maintaining
the initial effective mean pressure p′o constant, the same value of cu was obtained
for each test, whereas various ∆ was obtained by changing the ratio between
horizontal and vertical stresses. The effect of stress anisotropy was analyzed in
terms of both cone factors and effective pressure ratio (p′n/cu) and the results
are plotted in Figure 7.24. As expected, the relationship between ∆u and Nkt

is basically linear and the cone factor which accounts for the stress anisotropy
Nkt(∆) can be calculated through:

Nkt(∆) = N∆,iso
kt − 2.21∆ (7.17)

where N∆,iso
kt corresponds to isotropic stress conditions and can be derived using

Equation (7.9).
The gradient of ∆ obtained for the present model exhibits consistency with the

5In the analysis, the cone factors were derived taking the values of cu obtained for the
spherical expansion criterion and the compression meridian, i.e. r(θ) = 1.
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Figure 7.24: Effect of the initial stress anisotropy on the cone factors.
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results derived from other studies which suggest the values of ∆ between -2.1
and -1.83 (refer to Table 6.2).

A non-linear relationship can, however, be observed for the factor N∆u, as
shown in Figure 7.24(b)). This observation can be explained by the fact that
u2 measurements are sensitive to the rotation of the principal stresses. Hence,
a stronger effect is observed for positive values of ∆ (i.e. σvo larger than σho)
due to rotation of the maximal principal stress σ1 initially associated with σvo

to horizontal stress components. The following non-linear expression has been
proposed to consider stress anisotropy in the present model:

N∆u(∆) = N∆,iso
∆u + 0.61 ln (1 − ∆) (7.18)

where N∆,iso
∆u corresponds to isotropic stress conditions and can be derived using

Equation (7.12).
On the other hand, as illustrated in Figure 7.24(c), the stress anisotropy has

no influence on the effective pressure acting on the cone shaft and, in conse-
quence, does not affect sleeve friction measurements fs.

7.2.2.2 Analysis of drainage conditions

The case of the pressuremeter test (Section 6.2.5) shows that the effect of par-
tial drainage may result in hydro-mechanical coupling of material properties.
This fact is clearly associated with plastic straining of the material during par-
tial consolidation. As discussed in Section 6.3.3, in the case of the penetration
test, a gain of cone resistance can be expected if partial drainage occurs. The
following analysis shows the evolution of cone resistance qt computed for various
permeability coefficients k varying from 10−10 to 10−3m/s.

In order to qualitatively compare the obtained results with other numerical
studies, the values of cone resistance were normalized using the minimal and
maximal values of qt corresponding to perfectly undrained qu

t and fully drained
penetration qd

t respectively. The results presented in Figure 7.25(a) are com-
pared with other studies of the penetration model. In the first study reported by
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Figure 7.25: Effect of partial drainage on cone resistance in the numerical model.
Evolution of qt normalized by the measurements corresponding to the
fully drained qut and the perfectly undrained qdt penetration, (a) versus
coefficient of permeability, (b) versus normalized velocity of penetration.

134



Sheng et al. (1997), the penetration is simulated using the MCC model (Ir = 32).
A relatively coarse mesh in this model could have, however, an influence on the
precision of results. The second group of results obtained by Markauskas et al.
(2005) was obtained for the Drucker-Prager/Cap model with (Ir = 43). For
the present model, transient drainage conditions may occur for k from 10−8 to
10−3 m/s. Note that the undrained threshold is similar to the field data pre-
sented in Figure 6.25. However, various thresholds for drained and undrained
penetration can be observed for different models, which can be explained by em-
ploying different consolidation characteristics (i.e. cv). Therefore, the present
model is further evaluated by means of normalized velocity of penetration V
(Equation (6.62)). The results presented in 7.25(b) exhibit considerable consis-
tency with the experimental measurements derived from laboratory centrifuge
tests, i.e. undrained conditions are met for normalized velocities larger than
approximately 100 (Randolph and Hope, 2004; Schneider et al., 2007, see Fig-
ure 6.26(a)). This number corresponds to the coefficients of compressibility cv
larger than 7.14 ·10−5m2/s, assuming both standard velocity of penetration and
the standard cone diameter (ISSMGE, 1999).

These results clearly show that for intermediate soils like silts (k ∼= 10−8 ÷
10−6m/s), cone resistance may increase up to approximately 30% with respect
to ”undrained” resistance. The simulations of penetration in less permeable
materials corresponding to silty clays (k ∼= 10−9 ÷ 10−8m/s), show that the
undrained regime is preserved.

A gain in cone resistance has its source in the partial dissipation of pore pres-
sure during penetration. Figure 7.26 demonstrates that in the case of undrained
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Figure 7.26: Excess pore water pressure (kPa) around the cone at steady state: (a)
undrained k = 10−10m/s, (b) partially drained k = 10−6m/s.
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Figure 7.27: Effect of partial drainage on pore pressure in numerical models. Evolu-
tion of ∆u2 normalized by ∆uu

2 corresponding to undrained penetration,
(a) versus coefficient of permeability, and (b) versus normalized velocity
of penetration.

penetration, soil permeability does not allow the excess pore pressure to quickly
dissipate right behind the cone and the pore pressure distribution is stretched
along the shaft. On the other hand, the dissipation which occurs in conditions
privileging partially drained conditions, reduces the zone of high pressure iso-
lines which are formed, in this case, as a round bulb.

In the further analysis, thresholds for fully drained and perfectly undrained
penetration were investigated in terms of u2 measurements. For each test, the
pore pressure record was taken as the maximal pore pressure ∆u2 built-up with
achieving the steady state. The obtained results were then normalized by the
value ∆uu

2 corresponding to the undrained penetration 7.27. Similarly to the
analysis of cone resistance, the results derived from the present model vary in
comparison to other numerical models which, again, may be attributed to vari-
ous consolidation characteristics assigned in the analyzes. For assumed material
properties in the present study, the undrained and drained thresholds are ob-
served as around k = 10−9m/s and 10−4m/s respectively. On the other hand, an
analysis in terms of the normalized velocity V reveals a high level of coherency
of the developed model with laboratory results presented in Figure 6.26(b), i.e.
transient drainage conditions can be expected for normalized velocities between
0.01 and 1000. This observation is also confirmed by the evolution of the pore
pressure parameter Bq presented which is shown in Figure 7.28.

7.2.2.3 Friction effects on piezocone measurements

During penetration, three variables can be independently measured, namely
cone resistance, shaft resistance and excess pore water pressure. In a numerical
analysis, total cone resistance qc can be calculated by dividing the total cone
pushing force Fc by the projected cone area Ac (Figure 7.29):

qc = Fc/Ac = 4Fc/πd
2
c (7.19)
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Figure 7.28: Effect of partial drainage on pore pressure parameter plotted against
normalized velocity of penetration.

Contribution of the frictional interface to the total cone resistance

The total cone pushing force can be decomposed into the resistance force at
the tip Ft and friction force on the cone shaft Fs:

Fc = Ft + Fs (7.20)

Figure 7.30 shows the evolution of the total cone pushing force with the cone
advancing downward. As the steady-state is achieved at the depth of about 5
cone diameters, no further increase of Fc is observed in the case of perfectly
smooth interface (i.e. µ = 0). An introduction of non-smooth interface leads
to a further linear increase of Fc which is associated to an increasing total re-
sistance of the interface. Clearly, the slope of Fc is proportional to the friction
coefficient µ. Note that for the smooth interface, total cone resistance is equal
to the tip force, i.e. Fc|φi=0 = Ft|φi=0 and the latter is directly the resistance
force corresponding to the actual tip resistance qt which should also include tip
frictional resistance. The actual tip resistance qt can be obtained for the friction-
less interface model by multiplying the nominal cone resistance corresponding

α

tan( )i n sp dAφ ′ ′∫

c cq A

sA

cd

2u

( )n f sp p dA′ ′+∫

( )n f cp p dA′ ′+∫
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Pore pressure

reading point

Cone sleeve

Cone tip
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t cq A

Figure 7.29: Scheme of contribution of the interface friction to the total cone resis-
tance and regions of measurements.
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to the smooth interface qt = qc|φi=0 by a tip friction factor ηt:

qt = ηtqt (7.21)

The tip friction factor ηt can be derived from the cone tip equilibrium presented
in Figure 7.29:

qtAc = sin (α/2)

∫

A′

c

(p′n + pf ) dA′
c + cos (α/2) tanφi

∫

A′

c

p′ndA′
c (7.22)

where A′
c denotes a tip area, α is the angle of the cone tip, p′n is the effective

pressure normal to the cone surface and pf is the fluid pressure. Hence, the
cone tip factor can be derived from the ratio qtAc/qtAc which leads to:

ηt = 1 + cot (α/2) tanφi

∫

A′

c

p′ndA′
c

∫

A′

c

(p′n + pf ) dA′
c

(7.23)

Hence, ηt may depend on cone roughness and the degree of fluid pressure dis-
sipation during penetration. Replacing the last component with coefficient ϑt,
the above equation can be written as:

ηt = 1 + ϑt cot (α/2) tanφi (7.24)

In order to deduce an actual ηt which accounts for different drainage conditions,
numerical tests with different friction coefficients need to be performed. As the
steady-state is reached, the tip friction factor can be obtained from numerical
results (cf. Huang et al., 2004):

ηt =
Fc − Fs

F c

(7.25)
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Figure 7.30: Evolution of (a) the total pushing force, and (b) the total shaft force
with penetration depth for various interface friction.
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Figure 7.31: Calibration of the cone tip friction factor ηt, (a) ηt derived from numer-
ical simulations, (b) approximation of the correction coefficient ϑt as a
function of soil permeability.

where F c denotes cone resistance for perfectly smooth interface, i.e. F c =
Fc|φi=0, and Fs is computed by integrating the shear stress along the interface
surface:

Fs =

∫

A′

s

p′n tanφidA
′
s (7.26)

where A′
s is the total shaft area.

Performed numerical simulations demonstrate that ϑt indeed depends on drainage
conditions, as shown in Figure 7.31(a) While for perfectly undrained and per-
fectly drained conditions ϑt remains constant, the occurrence of partial drainage
introduces variability of this coefficient from 0.52 to 1.73. The approximation
of the correction coefficient ϑt = ϑt(k), which is presented in Figure 7.31(b),
can be derived from:

ϑt(k) = ϑd
t +

ϑu
t − ϑd

t

(1 + αik)n
(7.27)

where ϑd
t and ϑu

t correspond to the results obtained for perfectly drained and
perfectly undrained conditions respectively, and the other fitted parameters are
αi = 106 and n = 0.75. Note that αi corresponds to the inverse of the mean
value of the limit permeability coefficients, which ensure the penetration under
undrained and drained conditions, i.e. k = 10−9 and k = 10−3 respectively (see
Section 7.2.2.2).

Since the partial drainage is also related to other characteristics such as e or
λ, it is thus more appropriate to make ϑt the function of normalized penetration
velocity V . The approximation of the correction coefficient ϑt = ϑt(V ) becomes
then:

ϑt(V ) = ϑu
t −

ϑu
t − ϑd

t

(1 + αiV )n
(7.28)

where αi is calibrated equal to 0.07 and n = 1.1 for the standardized rate of
penetration v = 2cm/s and the cone diameter d = 35.7mm. A graphical inter-
pretation of the above equation is shown in Figure 7.32.
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Figure 7.32: Approximation of the correction coefficient ϑt as a function of normalized
penetration velocity.
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Figure 7.33: Evolution of (a) excess pore water pressure, (b) the total shaft resistance
with the penetration depth for various interface friction.

Contribution of the frictional interface to excess pore water pressure

The frictional interface may also affect the magnitude of pore pressure mea-
surements. Performing two numerical simulations for perfectly ”smooth” and
”rough” cones, Sheng et al. (1997) revealed some differences in pore pressure
distribution around the cone. Hereafter, the friction effect on pore pressure
readings will be investigated using the developed model of penetration. Figure
7.33(a) shows the evolution of excess pore pressure during undrained penetra-
tion for various friction coefficients.
Although accounting for cone geometry is not necessary when analyzing the
effect of friction on pore pressure measurements, the pore pressure factor can
be defined similarly to ηt in order to compare magnitude of the friction effect:

ηu =
∆u2

∆u2

(7.29)

where ∆u2 denotes the excess pore water pressure at the steady-state for a

140



0 0.02 0.04 0.06 0.08 0.1
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

µ

η
u

 

 

k=1e−9 m/s
k=1e−8 m/s
k=1e−7 m/s
k=1e−6 m/s
k=1e−5 m/s
k=1e−4 m/s

ϑ
u
 = 0.6

ϑ
u
 = 1.1

(a)

0 0.02 0.04 0.06 0.08 0.1
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

µ

η
s

 

 

k=1e−9 m/s
k=1e−8 m/s
k=1e−7 m/s
k=1e−6 m/s
k=1e−5 m/s
k=1e−4 m/s

(b)

Figure 7.34: Calibration of the friction factors (a) ηu, and (b) ηs.

perfectly smooth shaft, i.e. ∆u2 = ∆u2|φi=0.
Similarly to Equation (7.24), the pore pressure friction factor can be calculated
accordingly:

ηu = 1 + ϑu cot (α/2) tanφi (7.30)

where ϑu is the correction coefficient varying between 0.6 and 1.1 as derived
from numerical results, as presented in Figure 7.34(a). Note that the increasing
friction reduces u2. Since no regular trend of drainage effect is observed for the
excess pore water pressure, a constant value for ϑu can be assumed. A further
analysis presented in Section 8.2 revealed that the value for ϑu equal to 0.60 is
more appropriate for a numerically generated database of piezocone measure-
ments.

Contribution of friction to the cone factors

Considering the results derived from two previous analyzes, the magnitude of
the friction effect on the tip cone factor Nkt and the pore pressure factor N∆u

can be evaluated. Figure 7.35 shows quantitatively a contribution of friction to
these factors for various cone roughness αf . Based on these results, the cone
factor Nkt developed in Equation (7.9a) for undrained conditions becomes:

N s
kt = −0.55 + 2.37 ln Ir + 3.81αf (7.31)

and correspondingly, the cone factor N∆u
proposed in Equation (7.12a) is ob-

tained as:
N s

∆u = 1.12 + 1.34 ln Ir − 2.00αf (7.32)

It has to be noticed that the gradient of αf in Equation (7.31) is surprisingly
high in comparison with other studies as presented in Table 6.2. However, the
final solution for the cone factor Nkt derived from the present model applying
αf equal to 0.3, reveals consistency with the typical Nkt values quoted by Lunne
et al. (1997), as shown in Figure 7.36.
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Figure 7.35: Friction contribution to cone factors in undrained conditions, (a) Nkt,
and (b) N∆u.
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Figure 7.36: Theoretical solution of the cone factor Nkt derived from the developed
model and a typically observed range quoted by Lunne et al. (1997).

Contribution of the frictional interface to the normal effective contact force at
the cone shaft

Assuming that the friction force on the shaft Fs can be evaluated from Equation
(7.26) for a numerical analysis with the zero-friction interface, it is necessary
to investigate the influence of interface friction on the effective normal contact
force P ′

n. The latter can be determined from numerical results by integrating
the effective normal contact pressure p′n along the cone shaft A′

s. The friction
effect was analyzed for different drainage conditions for which P ′

n values were
computed. Figure 7.33(b) shows examples of the evolution of total shaft resis-
tance during undrained penetration in various friction conditions.
The friction effect on the shaft resistance was measured through the shaft fric-
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tion ratio ηs defined as:

ηs =
P

′
n

P ′
n

(7.33)

where P
′
n denotes the cone resistance for a perfectly smooth interface, i.e.

P
′
n = P ′

n|φi=0.
Figure 7.34(b) shows that the interface friction on the normal effective contact
pressure can be considered as negligible for analyzes with k = 10−9 ÷ 10−6m/s.
Some influence can be observed for quasi-drained analyzes (k = 10−5÷10−4m/s).
It can be explained by an increase of effective stresses in soil, and consequently,
of the normal effective contact pressure behind the cone tip due to quick pore
pressure dissipation in this region. An example of the reduced ’pore pressure
bulb’ which stems from the quick dissipation has already been presented in Fig-
ure 7.26(b). However, the order of magnitude k = 10−5 ÷ 10−4m/s will not be
taken into consideration during NN pattern generation because such coefficients
are observed for sands.

Since the interface friction has a negligible influence on the normal effective
contact pressure, during the generation of NN training patterns, cone readings
will be computed for zero-friction interface models and the contribution to the
sleeve resistance fs will be calculated by multiplying the integrated normal
effective contact pressure p′n over the cone sleeve As (refer to Figure 7.29) by a
randomly assigned friction coefficient µ6:

fs = µ

∫

As

p′ndAs where p′n = p′n|φi=0 (7.34)

Friction-induced effect of element distortion

Since the Arbitrary Lagrangian-Eulerian formulation has not been successfully
applied in the presented FE model of cone penetration, the use of a frictional
interface may create some limitations. These are mainly related to the distorted
mesh quality which may affect either the stability of the solution or the quality
and accuracy of the obtained numerical results7.

A number of tests for various friction coefficients was performed in order to
investigate a range of applications of a ”rough” interface in the developed model.
The results derived from undrained penetrations for µ = 0÷0.12 corresponding
to φi = 0◦ ÷ 6.84◦ are presented in Figure 7.37. The figure demonstrates that
the linear influence of the increasing cone roughness on cone resistance, excess
pore water pressure and shaft resistance is observed up to certain thresholds.
The results presented in Figure 7.37(a) show that cone resistance exhibits pure
linear increase up to µ approximately equal to 0.10. The results above this point
start to deviate slightly from the linear trend. The effect of element distortion

6An interval of considered friction coefficients is assumed according to analysis presented
in Section 7.2.1.2.

7Isoparametric elements should not be distorted less than 45◦ or more than 135◦, cf.
ABAQUS (2007).
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Figure 7.37: Friction effect on numerical measurements derived from distorted ele-
ments. Evolution of friction factors in the function of the friction coef-
ficient µ: (a) cone tip friction factor ηt, (b) pore pressure friction factor
ηu, (c) shaft friction factor ηs.
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Figure 7.38: Effect of mesh distortion after cone penetration for friction coefficient µ
equal to 0.12.

for a ”rough” interface is shown in Figure 7.38. The effect of element distortion
on cone resistance is not very severe as the response of the material below the
cone tip belongs, to a large degree to undistorted elements. The noticeable
influence is thus related to the element distortions that can be observed in the
transition region including the part of the cone tip next to the cone base. On
the other hand, the diagram demonstrates high mesh distortions along the cone
shaft. High element distortions strongly affect pore pressure and shaft friction
results, as shown in Figure 7.37(b) and 7.37(c). These results reveal a linear
trend until the friction coefficient threshold of around 0.08. In particular, it can
be noticed that pore pressure results are very sensitive to element distortion.
This loss of accuracy due to high element distortion may also be attributed to
possible element locking effects.
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7.2.3 Semi-numerical model for the NN pattern genera-
tion

The above analyzes demonstrate that the rigorous FE simulation of cone pen-
etration in a two-phase soil must be carefully analyzed if ”rough” interface is
considered. An effective analysis of ”rough” interface penetration requires the
use of a robust ALE formulation which would be able to maintain a high qual-
ity mesh throughout the whole penetration. Due to limitations of the pure UL
formulation used in the presented FE model, the NN training patterns will be
computed for perfectly ”smooth” interface. In this case, the final measurements
of tip cone resistance qt and pore pressure u2 will be evaluated using Equation
(7.21) and Equation (7.29) using relevantly derived friction factors, ηt and ηu

from Equation (7.24) and Equation (7.30) respectively. Taking into account
a number of NN training patterns to be generated, such an approach can be
considered as advantageous for the CPU time which is substantially reduced for
a ”smooth” contact problem.

7.3 Summary and remarks

This chapter demonstrates that numerical modeling is suitable to solve complex
hydro-mechanical systems representing the boundary value problems of both the
pressuremeter and the piezocone tests.

The numerical model of a pressuremeter shows that a partial drainage may
occur during an expansion test even in clay, which is characterized by the co-
efficient of permeability k larger than around 10−11m/s. In effect, partial con-
solidation that occurs may strongly affect the shape of pressuremeter curves.
It has been illustrated that, owing to the non-uniqueness of strength parame-
ters in the case of the MCC model, a simultaneous identification of M and Rp

requires the use of both PET records, i.e. applied pressure and pore pressure.
Furthermore, the performed sensitivity analysis confirms coupling of deforma-
tion, strength and consolidation characteristics. The feedback between model
parameters may be strongly pronounced in the event of partial drainage occur-
rence suggesting a mutual fitting of all available pressuremeter curves in the
same optimization run.

As regards the piezocone test, the development of a rigorous FE model of
cone penetration has been presented. The model involves numerical formulation
for two-phase non-linear material including the large strain theory as well as the
finite contact formulation allowing large displacements to be applied. Despite
of the failure in incorporating the ALE technique into the model framework, the
model reliably represents the behavior of a normally- and lightly consolidated
soil revealing considerable consistency in terms of the measured cone factors
with the experimental data and numerical predictions derived from other stud-
ies. An equivalent semi-numerical approach has been proposed to account for
a frictional interface due to a severe loss of results accuracy observed in the fi-
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nite elements adhered to the ”rough” interface described by friction coefficients
µ larger than 0.08. In accordance with centrifuge laboratory tests, numerical
simulations revealed the occurrence of a partial drainage effect during penetra-
tion for soils which exhibits values of consolidation coefficient cv larger than
7.14 · 10−5m2/s roughly corresponding to the permeability coefficients larger
than about 10−8m/s.

The numerical models of the pressuremeter and piezocone will be used for
generating a synthetic database of field measurements being employed in the
NN training, according to the strategy presented in the following Section 8. In
the case of the piezocone test, a considerable computational effort is reduced
by optimizing the mesh size and steady-state depth, which both depend on
the rigidity of the material. The different mesh sizes revealed consistency in
computed measurements. Unfortunately, some shortcomings of the model have
been recognized due to the inefficiency of numerical procedures. The use of the
numerical model to generate synthetic database is thus limited to representing
rather soft soil which exhibits the rigidity index Ir less than 110 and G/p′o less
than 70. However, an extension of model applicability for Ir larger than 110
can be carried out using the proposed theoretical solutions derived from the
presented numerical simulations of the undrained penetration.
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Chapter 8

Parameter Identification for In

Situ Tests

Statistics are like bikinis.
What they reveal is suggestive,
but what they conceal is vital.

Aaron Levenstein

In this chapter, an application of the parameter identification strategy which
has been proposed in Section 2.4 is presented for the SBPT. Moreover, an ap-
plication of NNs to predict model parameters from the CPTU is demonstrated.
The FE models developed for these two field tests are used to generate a nu-
merical database of pseudo-experiments. A synthetic database can be generated
based on a large number of permutations which widely cluster the multidimen-
sional space of constitutive parameters and state variables. Test measurements
which correspond to particular parameter permutations can be then used to
perform the NN training with the aid of the back-propagation algorithm. The
trained NNs can be then used to predict model parameters from experimental
data.

The chapter is divided into two main sections related to the SBPT and the
CPTU test respectively. Each section describes in detail a numerical generation
of databases which contain synthetic measurements derived from FE models.
In the case of the piezocone test, the generated database is verified with trends
observed for real experimental data. For each considered BVP, specific defini-
tions of the NN input vectors are proposed and NN training is performed. In
the post-training analysis, regression analyzes are carried out to investigate ac-
curacy of NN predictions. Moreover, in the case of SBPT, the efficiency of the
two-level parameter identification is analyzed through numerical simulations of
the test.
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8.1 Hybrid neural network/gradient-based model

calibration based on pressuremeter tests

In the following section, an enhanced back-analysis scheme proposed in Section
2.4 is adopted for the SBPT problem in order to identify the MCC model
parameters.

8.1.1 Strategy of parameter identification

The main goal of the hybrid approach is to map field measurements, through
the neural network, onto model parameters with a decreased computational
time. Thanks to parallel processing of input data, model parameters are pre-
dicted instantly without the necessity of running FE analyzes. Such a quickly
and well-approximated vector of parameters, if needed, may then be optimized
within very few iterations using the gradient-based local update procedure in
which FE simulations of SBPT have to be carried out. The flow chart of the
proposed methodology is shown in Figure 8.1.

The numerical minimization of SBPT data requires mutual fitting of all
possible measurements due to the hydro-mechanical parameter feedback. Such
a gradient-based optimization of pressuremeter data was presented by Rangeard
et al. (2003). They suggest to prescribe a fixed value of the coefficient of per-
meability and to optimize strength and stiffness properties based on expansion
curves. Then, inversely, those optimized parameters are fixed in order to update
the coefficient of permeability by fitting the dissipation curve. The procedure
is repeated until convergence is achieved. However, as experienced by the au-
thor, this approach may sometimes sustain oscillations at the final stage of
optimization leading to long-term global iterations or causing a divergence of
the algorithm. The latter may also lead to the instability of the FE analysis
if the unconstrained optimization is considered. Divergence can be caused by
movable local minima which are a side effect of parameter fixing.

Hence, it is suggested here that all available curves from both the PET and
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Figure 8.1: Flow chart of numerical processing of SBPT measurements in the two-
level parameter identification.
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Table 8.1: Summary of parameters intervals considered in the NN training for SBPT
problem.

Parameter Unit Value or Interval Pdf or
intercorrelation f(bj)

Constants
ν 0.32
p′o [kPa] 200.0

Variables
εmax
c (for PET) [%] 〈8.5; 10.5〉 Uniform
eo 〈0.10; 3.00〉 Exponential
Λ = 1 − κ/λ 〈0.50; 0.95〉 Normal
OCR 〈1.00; 2.00〉 Uniform
β1 〈−0.18; 0.18〉 Uniform
β2 〈−0.15; 0.15〉 Uniform
Ko 〈0.35; 1.00〉 f(OCR,M, β)*

Parameters to be identified
k [m/s]

〈
10−8; 10−12

〉
Uniform of ln(k)

λ 〈0.0102; 0.499〉 Uniform, f(eo)
κ 〈0.0012; 0.226〉 f(Λ, λ)
M 〈0.70; 1.40〉 Normal
Rp 〈1.14; 3.15〉 f(M,OCR,Ko,Konc)

*Mayne and Kulhawy (1982)

the PHT test should be fitted simultaneously. The problem which may appear
during mutual fitting is that parameters with values of lower order of magni-
tude (like the coefficient of permeability k) may have a stronger influence on
the computed scaling parameter ρr which controls the magnitude of the change
of native parameters (see Appendix A). However, this can be avoided by in-
troducing a log-transformation of the native values of this kind of parameters
(Poeter and Hill, 1998).

Numerous sets of representative training patterns have to be prepared to
adjust network weights. Since these patterns are generated numerically, it is
highly desired to reduce the computational effort by a careful selection of the
parameter permutations for which the FE solver generates the measurements.
The number of training patterns can be decreased once reasonable constraints
are put on multi-dimensional space of variables Rb. Hence, parameter intervals
and correlations observed in geotechnical practice can be introduced to skip
non-physical or unlikely vectors of parameters. Furthermore, through preserv-
ing parameter constraints, the stability of an FE computation for each pattern
is assured, so that computational cost is respected. It is also desired to uni-
formly cover Rb, using relevant probability distribution functions (pdf) in order
to improve the accuracy of further NN predictions.

The selected intervals, correlations and statistics of the particular variables
are described below and are summarized in Table 8.1.

Slope of normal consolidation line vs. void ratio. Typical correla-
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tions between eo and λ are shown in Figure 5.2. In order to cover the presented
parameter space, permutations of λ were randomly drawn from the uniform pdf
with the variable constrains defined by the upper and lower observable bounds.
A random value of eo was previously drawn using the exponential pdf. Since
λ depends on eo, the distribution of λ results in exponential-like pdf which is
shown in Figure 8.2(a).

Slope of the unloading-reloading line. The observable relationship be-
tween λ and κ represented through the plastic volumetric strain ratio Λ =
1− κ/λ may fall into an interval Λ ∈ 〈0.50; 0.95〉 (Mayne, 1980, 2007). For this
variable, the normal distribution was assumed to reduce number of patterns
with higher values of κ which would be after-effect of high values of λ. A com-
bination of low value of κ and high values of M and Rp may result in no excess
pore pressure for the MCC model within a considered range of the cavity strain.
In the case of undrained or quasi undrained conditions, no excess pore pressure
would be generated as no volume change is possible in the elastic domain (cf.
Cao et al., 2001). Hence patterns which comprise zero pore pressure measure-
ments are useless by means of parameter identification based on the dissipation
test. The distribution of κ in the training pattern set is shown in Figure 8.2(b).

Slope of the critical state line. For the aforementioned reason, the
distribution of M was assumed arbitrarily as the normal within intervals which
are generally observed in geotechnical practice Figure 8.2(d).

Coefficient of earth pressure ’at rest’. Natural soil, in its history,
was subject to loading during deposition and then unloading causing change of
stress state. Hence, natural deposits, in general, remain in the anisotropic in situ
stress state which can be characterized by the coefficient of earth pressure at rest
Ko = σ′

ho/σ
′
vo . The coefficient Ko for unloaded deposit can be approximated

through the empirical correlation which takes into account stress history and
value of the coefficient Konc for normally consolidated soil:

Ko = Konc(OCR)β (8.1)

where the overconsolidation ratio is defined as OCR = σ′
p/σ

′
vo with the maximal

vertical effective stress denoted as σ′
p; and the rebound parameter, β, as pro-

posed by Mayne and Kulhawy (1982), can be estimated as β = sinφ′, where φ′

is the effective friction angle. In order to account for an observable divergence
for β (Figure 8.3(b)) random dispersals β1 were drawn using the uniform pdf
within the interval 〈−0.18; 0.18〉, so that:

β = sin(φ′) + β1 (8.2)

Furthermore, the stress path for normally consolidated material can be approx-
imated through the well-known formula Konc = 1− sinφ′ (e.g. Sivakumar et al.,
2001). Similarly to Ko, the scatter for Konc (Figure 8.3(a)) was drawn from the
uniform pdf within the range β2 ∈ 〈0.15; 0.15〉:

Konc = (1 − sinφ′) + β2 (8.3)
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Figure 8.2: Histograms of parameter distributions used to generate the NN training
patterns.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

sinφ́

K
on

c

 

 

K
onc

 = 1 − sinφ́

Error limits

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

sinφ́

β

 

 

K
o
 = K

onc
 [OCR]sinφ́

Error limits

(b)

Figure 8.3: Results reported Mayne and Kulhawy (1982) for clays: (a) observed re-
lationship between Konc and sinφ′ with the error limits used in the NN
training patterns, (b) observed relationship between ’at rest’ rebound
parameter β and sinφ′ with the error limits used in the NN training
patterns.

With the assumption of the uniform pdf for OCR, the distribution of Ko as
the function of OCR, M and β results in normal-like pdf which is presented in
Figure 8.2(e).
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Figure 8.4: Relationship between Rp and OCR in the Modified Cam clay model.

Overconsolidation ratio. The assumption that Rp is equal to OCR may
lead to significant errors as the relationship between Rp and OCR is expressed
as (see Appendix C):

Rp = OCR
9(1 −Konc)

2 +M2(1 + 2Konc)
2

M2(1 + 2Ko)(1 + 2Konc)
(8.4)

The graphical interpretation of the above equation is presented Figure 8.4. The
distribution of Rp in training patterns is thus a function of M , OCR, Ko and
Konc. The obtained log-normal-like pdf is presented in Figure 8.2(f).

Coefficient of permeability. The assumed values of k for clayey soils are
in the range k < 10−8 m/s. Since the upper and lower bounds of the interval
vary in four orders of magnitude, the distribution of k was assumed uniform
for the log-transformed parameter, in order to cover wide spectrum of possible
drainage conditions (Figure 8.2(c)).

8.1.2 Numerical generation of training patterns

In the context of the SBPT, the numerical generation of training patterns was
performed according to the approach proposed in Section 3.2.2. The numer-
ical test curves are obtained with the aid of FE simulations using generated
combinations of parameters. Figure 8.5 presents 35 exemplary training samples
which consist of computed hypothetical curves for PET and PHT. It can be
noticed that curves broadly cover the space of possible measurements. Numer-
ical simulations of the holding tests provide experimental curves of excess pore
water pressure decay ∆u in time t. Additionally, PHT also provides variation of
the cavity strain εc with respect to time. These measurements combined with
variation of the applied pressure ψ during expansion test enable to train neural
networks which will be attributed to the identification of consolidation parame-
ters (see Table 8.2). Apart from provided measurements, additional initial state
variables, i.e. eo and Ko, should be defined and evaluated.
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Figure 8.5: Example of 35 training samples comprising of numerical raw measure-
ments.

Other mechanical parameters, i.e. M,Rp and κ, can be identified based on
provided measurements of applied pressure ψ and excess pore water pressure
∆u, with respect to the increasing cavity strain εc. Due to the coupled BVP, the
input data should additionally be complemented with the NN-identified consol-
idation parameters and defined initial state parameters. In case of unreliable
or inaccessible pore pressure data, it is recommended to set up slope of the
CSL line, M , first; as it is the parameter insensitive to soil sampling (a unique
void ratio at failure for a given soil) or the strain rate effect. It is commonly
known that the soil preconsolidation pressure is very sensitive to disturbances
related to soil sampling or to the strain rate. A mutual identification of M
and Rp without total and effective stress-strain relief is unreliable due to the
non-uniqueness of the solution (see Section 7.1.3).
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Figure 8.6: Normalization of numerical data of the pressuremeter expansion test for
different preconsolidation ratio Rp with respect to initial stress condi-
tions p′o: (a) applied pressure ψ, (b) excess pore water pressure ∆u (the
common legend applied).

8.1.3 Definition of network input

For practical reasons, it is desired to exclude (but not ignore) the initial stress
conditions, i.e. initial effective mean stress p′o, from the vector of input variables.
It can be achieved by normalizing the experimental measurements with respect
to the p′o. It means that identification can be carried out regardless of the
testing depth. Hence, all the simulations can be run for an arbitrarily assumed
value of p′o, here p′o = 200kPa, considering the initial stress anisotropy. Such
condition implies the necessity of pre-processing measurements contributing to
the network input.

A detailed review of analytical closed-form solutions of the cavity expansion
problem has led the author to suggest the following normalizing expressions.
Total stress/applied pressure measurements can be normalized through:

ψN =
ψ − ψo

p′o
(8.5)

Based on Equation (6.16), the normalized excess pore water pressure can be
calculated as:

∆uN =

∆u
∆V

V
+ c∗u ln

(
G

c∗u

∆V

V

)

p′o
(8.6)

where G can be derived from initial slope of the expansion curve (Equation
(6.12)) and c∗u denotes the slope of the total stress curve at the final stage of
the expansion plotted in the logarithmic scale:

c∗u =
dψ

d(ln ∆V/V )
(8.7)

Note that c∗u has no longer meaning of the undrained shear strength cu, since
the total stress curve can sustain a possible partial drainage effect.
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Figure 8.7: Normalization of numerical data of the pressure holding test by means
of the time factor T with respect to the initial stress conditions p′o for
different overconsolidation ratios Rp: (a), (b) pore water pressure decay
before and after normalization respectively (the common legend applied);
(c), (d) consolidation test before and after normalization respectively (the
common legend applied).

Examples which justify normalization with respect to p′o for different overcon-
solidation ratios are shown in Figure 8.6.

Since the coefficient of soil permeability k is unknown during the parameter
identification, normalization of the decay of pore water pressure with respect to
initial stress conditions can be proceeded similarly to Equation (6.32) as:

T =
t

a2
o

kref

γw

p′o
∆umax

ψmax

(8.8)

where the reference coefficient of permeability kref preserves the non-dimensionality
of T and can be assigned arbitrarily as a constant for all the normalized patterns.
Note that the unprocessed measurements of ∆umax and ψmax provide informa-
tion concerning soil compressibility. The normalization expression is valid for
both the SHT and the PHT. An example of normalization of numerical data
of PHT with respect to different initial stress conditions for the different pre-
consolidation ratios using Equation (8.8) is shown in Figure 8.7(a) and 8.7(b).
These plots justify the proposed normalization.
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Similarly, the cavity strain variation for the PHT can be normalized with
respect to the initial stress conditions as:

εN
c = εc ln

(
G

c∗u

)
ψmax − uo

p′o
(8.9)

where εN
c is the normalized cavity strain corresponding to the PHT. To justify

the above formula, the results of the normalization with respect to the initial
stress conditions are presented in Figure 8.7(c) and 8.7(d) for the different over-
consolidation ratios.

8.1.4 Training and post-training analysis

In this study, 240 patterns were used in NN training. This number was based
on the experience but it could be further optimized by means of a sensitivity
analysis. The patterns included computed simulations of both holding tests
which were preceded by the expansion test. Within this set of patterns, 48 sam-
ples were randomly designated to be a validation subset which is used to avoid
network overfitting during training. Additionally, 161 pseudo-experiments were
computed in order to test the post-training performance of neural networks.
The testing patterns were not presented to the NNs during the training. The
number of the testing samples was intentionally increased for demonstrative
purpose. We wanted to demonstrate the performance of NNs which are able
to capture a neighborhood of the global solution for many randomly generated
tasks.

For each expansion test, discrete incremental measurements of the cavity
strain εc

i , applied pressure ψi were drawn (i = 1, . . . ,ND). In case of the pore
pressure-based identification, the last measurements of ∆uND were additionally
captured. In order to improve generalization, the artificial noise was introduced
into smooth numerical results for each discrete observation of ψi. Random noise
was introduced using normal pdf, with the coefficient of variation COV = 0.2%
for any numerical measurement.

Simulations of both holding tests provided the discrete measurements of t50
corresponding to the time of 50% of excess pore water pressure decay (0.5∆umax).
Additionaly, discrete observations of the cavity strain εc(t50) corresponding to
t50 were captured for PHT simulations.

A couple of two-hidden layer network architectures was designed to iden-
tify individual parameters based on the results of expansion tests and holding
tests, preserving their mutual interaction. For the hidden layers, the log-sigmoid
transfer functions were adopted. The normalized components of the input and
output vectors, as well as, network characteristics are summarized in Table 8.3.
Network NN31 is designed to predict k based on SHT and PET data while
NN22 maps the results of PHT and PET onto k and λ. Two other networks,
namely NN12 and NN13, are attributed to the PET problem without and with
pore pressure data respectively. In this case, predicted or prescribed values of k
and λ are also part of the input incorporating the hydro-mechanical feedback.
Hence, an exemplary identification of all the parameters based on all possible
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Figure 8.8: Neural network parameter prediction from coupled PET and PHT data.

SBPT measurements can be proceeded as shown in Figure 8.8.
At the end of NN training, the quality of network performance was

assessed by presenting to the trained networks with a set of 161 numerical
pseudo-experiments, comprising of noisy measurements previously unknown to
the trained neural network. The results of the performed regression analyses
for four trained networks are graphically presented in Figure 8.9, 8.10 and 8.11.
These results reveal a fair correctness of the parameter prediction in terms of
the coefficient of correlation R and the mean squared error MSE. In general,
a visual inspection of the parameter predictions show, a good performance of
the NN-based parameter identification. The predictions of strength parameters
mostly fall into 10% bounds of relative error of target values. Less accuracy
is observed for the parameter λ; however, it is sufficient to assess the order of
magnitude and to capture a neighborhood of the optimal solution. The pre-
dictions of k plotted in log-scales prove that networks correctly capture the
order of magnitude of the permeability coefficient. A visible scatter can also be
observed in the case of predictions of M based on applied pressure and pore
pressure measurements; however further tests did not reveal that such an error
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Figure 8.9: Prediction of consolidation parameters based on (a), (b) PET and PHT,
(c) PET and SHT measurements by means of the network NN22 and
NN31 respectively. Post-training regression analysis for 161 data sets
previously unknown to the trained neural network.
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Figure 8.10: Prediction of strength and stiffness parameters based on PET measure-
ments by means of network NN13: post-training regression analysis for
161 data sets previously unknown to the trained neural network.
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Figure 8.11: Prediction of strength and stiffness parameters based on PET measure-
ments by means of NN12: post-training regression analysis for 161 data
sets previously unknown to the trained neural network.
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affects capturing vincitinties of the global minima.

8.1.5 Efficiency and convergence analysis

A quantitative test of effectiveness of the proposed two-level identification scheme
was performed on the numerically computed measurements for a pseudo - ex-
periment of PET and PHT. The normalized measurements were presented to
the relevant neural networks which predicted the vector of model parameters.
The quality of the predicted parameters can be then evaluated by comparing
the model response with the measurements corresponding to the optimal prop-
erties according to the scheme presented in Figure 8.1. A relatively small error
is supposed to be minimized within very few iterations by an invoked gradient-
based algorithm.

The main objectives of the performance analysis were to check the conver-
gence rate of the minimization procedure, as well as to check the quality of
optimized parameters.

The numerical experimental data for test PMTNV9 was obtained for the
following set of parameters regarded as reference optimal values: Mopt = 0.98,
Ropt

p = 1.915, κopt = 0.02, λopt = 0.08, kopt = 2.5 · 10−10m/s. Other parame-
ters characterizing the initial state of the test were assigned as p′o = 100kPa,
uo = 20kPa, Ko = 0.90, eo = 1.0.

Next, numerical measurements were back-analyzed by networks NN22 and
NN13 which instantly produced parameter estimations according to the scheme
shown in Figure 8.8. The vector of predicted parameters was then iteratively
updated using four PET and PHT curves. Using the MGN algorithm, the
NN-identified parameters quickly converged to the expected values within 2
iterations as shown in Figure 8.12. It means that neural networks closely deter-
mined the vicinity of the global minimum.

The next comparative test was performed to check the convergence rate and
the stability of the gradient-based identification without using the NN-based
prediction. Since the MGN algorithm was initialized with arbitrarily chosen
vectors of parameters, the existence of local minima was also investigated. Four
testing initial vectors of parameters were prepared by perturbing their reference
values with the error calculated based on the coefficients of variance COV ob-
servable in geotechnical practice. These observable values of COV for particular
properties make the test more realistic and can be found in Baecher and Chris-
tian (2003). The optimal and corresponding perturbed values of parameters
taken to generate the testing sets are summarized in Table 8.4. The testing sets
1 and 2 were created by respectively rising and reducing all the native values
of parameters. In two other tests, parameter values were picked alternately.
For all testing sets parameters were supposed to converge in the optimal values
under equally conditioned parameters of MGN.

The analysis presented in Figure 8.13 shows much quicker convergence of
NN-assigned parameters (2 iterations) in comparison to arbitrarily specified pa-

160



0 1 2 3
0

1

2

3

4

5

x 10
4

Consecutive iterations

S
(b

) 
O

bj
ec

tiv
e 

fu
nc

tio
n

(a) convergence of GBO

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

250

ε
c
 [−]

ψ
 −

 σ
ho

  [
kP

a]

PMTNV9 − Expansion

 

 

measured
initial
optimal

(b) PET

0 0.02 0.04 0.06 0.08 0.1
−20

0

20

40

60

80

100

120

140

160

ε
c
  [−]

∆u
  [

kP
a]

PMTNV9 − Expansion

 

 

measured
initial
optimal

(c) PET

00.20.40.60.81
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

∆u/∆u
max

 t 
[m

in
] T

im
e

PMTNV9 − Dissipation

 

 

measured
initial
optimal

(d) PHT

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 t [min] Time

∆ 
ε c  [

−
]

PMTNV9 − Consolidation

 

 

measured
initial
optimal

(e) PHT

Figure 8.12: Parameter calibration for numerical simulation of PET and PHT tests
with the initial vector of model characteristics predicted by neural net-
works.

rameters. It is worth noting that runs no. 2 and 4 are attracted by other local
minima which caused divergence and finally instabilities of FE computing at
5-th iteration due to the ill-conditioning of other parameters. In both cases,
this can mainly be attributed to the small value of k = 10−12m/s selected for
the initial vector which drive the algorithm into a local minimum. Two remain-

Table 8.4: Summary of perturbed parameters considered in efficiency and convergence
analysis.

Parameter Coefficient of variation Optimal value Perturbed value
COV (%) + −

M 20 0.98 1.13 0.84
Rp 20 1.915 2.20 1.63
κ 30 0.02 0.026 0.014
λ 30 0.08 0.104 0.026

k [m/s] 300 2.5 · 10−10 7.5 · 10−10 10−12
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Figure 8.13: Convergence test for 5 optimization runs including NN-predicted initial
vector and 4 arbitrarily specified permutations of initial parameters: (a-
e) convergence of parameters, (f) convergence of the mean squared error
for all parameters.

ing testing sets, i.e. no. 1 and 3, revealed a convergence after an elongated
minimization within 6 ÷ 7 iterations. It means that the optimization required
30 ÷ 35 FE runs to fit 4 curves. However, some of parameters did not converge
at their reference values revealing an error of up to 30%.

The analysis revealed the effectiveness of NN parameter identification with
regard to the rate of model calibration and accuracy of optimized parameter
values.

8.1.6 Effect of initial state variables

Since the numerical model, prior to identification of parameters, requires the
initial state constants, i.e. eo and σ′

vo to be specified, it is interesting to check the
effect of these variables on the identified parameters. Clearly, the initially esti-
mated σ′

vo which defines p′o, may strongly affect the identified Rp. Two separate
analyzes were carried out for the test PMTNV9 (Section 8.1.5) by perturbing
the reference values of eopt

o = 1.0 and Kopt
o = 0.9 regarded as the optimal ones.

Results of these analyzes are presented in Figure 8.14. As it was expected, eo

mainly affects parameters κ and λ, while the influence on the other parameters
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Figure 8.14: Effect of the initially specified state variables: (a) voids ratio, (b) Ko

(or vertical effective stress), on the finally identified parameters.

is negligible. Assuming a natural variation of eo in natural deposits, the varia-
tion of identified values of κ and λ may be assumed to be inversely proportional
to the variation of eo, since the variation of the error is linear.

The results of the second analysis show (see Figure 8.14(b)) a strong influ-
ence of Ko on Rp. The latter significantly decreases with an underestimation of
Ko, whereas other identified parameters differ from the reference values by up
to 10%÷ 15% correspondingly to ±40%-error of Ko. Hence, the overestimation
of Ko may less affect the estimated Rp.

8.1.7 Summary

The above section concerning the pressuremeter test demonstrates the effective-
ness of the combined computational parameter identification for the coupled
hydro-mechanical BVP of the SBPT. It has been illustrated that the character-
istics of the MCC model can be estimated fairly accurately by means of NNs
and then corrected with the minimum computational cost related to the itera-
tive parameter correction. The effectiveness of the method has been confirmed
for numerical measurements and will be further verified for real experimental
measurements in Section 9.1. The example of parameter identification based on
numerical SBP measurements reveals that, starting from a remote initial vector
of parameters, the gradient-based algorithm risks either an increased computa-
tional cost or getting trapped by a local minimum. In certain cases, the latter
can also lead to instabilities of a FE solver if a wrong search direction is cho-
sen. This analysis shows that the neural network-assigned parameters facilitate
parameter identification by substantially reducing the computational effort, as
well as by ensuring a quick convergence of the Modified Gauss-Newton algo-
rithm at the expected optimal vector of parameters.

163



8.2 Neural networks for parameter estimation

based on piezocone data

The following section presents in detail the development of a numerical tool for
the evaluation of MCC parameters from CPTU data. In the context of this
particular test, the methodology of the data mining and the NN training is
demonstrated.

8.2.1 Strategy of parameter estimation

In the context of the CPTU test, a simplified approach is proposed to determine
model parameters. The identification scheme is thus reduced to the prediction
step involving solely NN prediction (i.e. the optimization step is skipped). It
is expected that properly trained networks will be able to evaluate soil char-
acteristics with acceptable accuracy related to NN training feasibility, as well
as with possible accuracy with regards to limitations of the MCC model. It is
also expected that NNs will provide meaningful solutions regardless of drainage
conditions in which the penetration takes place. By analogy to the algorithm
presented for pressuremeter tests in Section 8.1, the training database D is
generated by means of numerical simulations. Numerical results are obtained
based on the developed FE model presented in Section 7.2. The results include
measurements of qt, u2 and fs which, when normalized, can constitute the net-
work input (Figure 8.15). Accuracy of NN model predictions both for synthetic
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Figure 8.15: A concept of neural network parameter prediction based on piezocone
measurements and auxiliary data.
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Figure 8.16: Flowchart of NN-based parameter prediction from piezocone data.

data during NN training and for real experimental data, can be improved by
complementing the input vector with other auxiliary information which can be
acquired for specific soil and which is compatible with a property defining the
FE model. An interface of the identification module for the CPTU test has been
designed in a way that it enables a dynamic upgrade of the existing database of
neural networks according to the flowchart presented in Figure 8.16. It means
that the training module can be invoked if the database of trained neural net-
works does not contain a network which is suitable for available or selected input
data. The graphical user interface (GUI) of the identification module and the
training module are presented in Appendix E.

Numerous sets of representative training patterns can be generated respect-
ing the computational effort by a careful selection of parameter permutations
for which the FE solver produces synthetic measurements (cf. Section 8.1.2).
Parameter intervals and correlations observed in geotechnical practice can be
introduced to skip non-physical or unlikely vectors of parameters. A multi-
dimensional space of model variables Rb can be uniformly clustered using rele-
vant probability distribution functions (pdf) in order to improve the accuracy
of further NN predictions. The selected intervals, correlations and statistics of
the particular variables are described below and are summarized in Table 8.5.
Moreover, a flowchart presented in Appendix D demonstrates a sequence for the
generation of parameter permutations.

Constants. In the context of numerical simulations, the parameters of
negligible influence and identifiable uniquely by means of specific laboratory
procedures, are assumed as constants. It particularly applies to the Poisson’s
coefficient ν and the strength anisotropy parameter Ar. The first variable is
assumed to equal 0.3 as an average designing value for clays and silts. The
use of various ν coefficients between 0.1 and 0.4, Sheng et al. (2005) demon-
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Table 8.5: Summary of parameters intervals considered in generation NN training
patterns for CPT problem.

Parameter Unit Value or Interval Pdf or intercorrelation f(bj)

Constants
ν 0.3
p′o (kPa) 100.0
Ar 0.78

Variables
eo 〈0.1; 3〉 uniform
Λ 〈0.60; 0.95〉 uniform
β1 〈−0.18; 0.18〉 normal
β2 〈−0.15; 0.15〉 normal
k (m/s)

〈
10−10; 3 · 10−6

〉
uniform ln k

αf
† 〈0.25; 0.35〉 uniform

Ir 〈10; 110〉 f(G, cu)

Parameters to be identified
λ 〈0.025; 1.2〉 f(κ,Λ)
κ 〈0.01; 0.2〉 exponential
M 〈0.7; 1.7〉 uniform
Rp 〈1.2; 5.0〉 f(M,OCR,Ko,Konc)
OCR 〈1.05; 4.0〉 uniform
Ko 〈0.32; 1.35〉 f(OCR,M, β)*
cu/σ

′
vo 〈0.21; 1.31〉 f(Rp,M,Λ)

* Mayne and Kulhawy (1982).
† tanφi = αf tanφ′c introduced to numerical measurements derived

from simulations of ”smooth” penetration.

strated that the parameter does not significantly affect total shaft resistance.
As regards parameter Ar, the assumed value of 0.78 is considered the average
value for clays and enforces convexity of the yielding surface (cf. Section 7.2.1.3).

Cone roughness. Since numerical simulations are performed for ”smooth”
interface conditions, the contribution of cone friction to measured data can be
introduced after numerical computations (cf. Section 7.2.3). Friction coeffi-
cient of interface tanφi can be obtained by drawing a random value of cone
roughness from the uniform pdf within the interval αf ∈ 〈0.25; 0.35〉. This in-
terval was calibrated assuming that the penetration takes place in normally-
to lightly overconsolidated clay-type material and the modeling of penetration
in structured, sensitive clay with the pure Modified Cam clay is not relevant.
The latter assumption means that the effect of reduced effective pressure act-
ing on the cone shaft due to soil destructuration can not be reliably modeled
and measured with the applied constitutive law. In this way, the interval can
be calibrated based on soil type classification charts, i.e. Fr − Qt (Robertson,
1990), for which generated numerical points should occupy the regions above
the normally consolidated zone and in accordance with the increasing OCR,
as shown in Figures 8.21(a). The assumed interval is also consistent with the
experimental data obtained from laboratory tests (cf. Section 7.2.1.2).
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Slope of the unloading-reloading line and the normal consolida-
tion line. An exponential distribution function was chosen for parameter κ.
Unfortunately, due to severe convergence problems (see discussion in 7.2.2.1),
the interval for κ was limited to 〈0.01; 0.2〉. Such a range corresponds to the
ratios of G/p′o < 70 which are observed more frequently in the case of soft soils.
As regards the slope of the normal consolidation line λ, random values were
computed through the plastic volumetric ratio Λ which was drawn from the
uniformly distributed interval 〈0.6; 0.95〉1. The distribution of κ and λ in the
training patterns is shown in Figures 8.17(b) and 8.17(c) respectively.

Slope of the critical state line. Random values of M were drawn from
the uniformly clustered interval 〈0.7; 1.7〉 (Figure 8.17(d)). This corresponds to
the interval of the friction angle which is observable for a variety of clayey soils
(cf. Mayne, 1991, 2007), i.e. φ′

c ∈ 〈18.3◦; 41.5◦〉 (Figure 8.17(e)).

Coefficient of earth pressure ’at rest’. Random values of Ko and Konc

was obtained likewise for the pressuremeter test (see Section 8.1.1), with the ex-
ception of normal pdf assumed for random dispersals β1 and β2 and a uniformly
sampled interval for OCR ∈ 〈1; 4〉 owing to the applicability of MMC to lightly
consolidated clays (Figure 8.17(f)). The distribution of Konc as the function of
M and β1 results in normal-like pdf (Figure 8.17(g)), whereas the values of Ko

as the function of OCR, Konc and β2 form log-normal-like pdf (Figure 8.17(h)).

Overconsolidation ratio. The values of Rp were obtained using Equation
(8.4) resulting in normal-like pdf between 1 and 4.6 (Figure 8.17(i)).

Coefficient of permeability. The assumed values of k for clays and silts
are in the range of k < 3 · 10−6 m/s. Since the upper and lower bounds of the
interval vary in four orders of magnitude, the distribution of k was assumed
uniform for the log-transformed parameter, in order to cover a wide spectrum
of possible drainage conditions (Figure 8.17(j)).

Undrained shear strength. Having drawn parameters which define the
strength of the MCC, the distribution in the training pool for normalized cu
can be plotted. Note that cu values were obtained using the definition in Equa-
tion (6.47). The distribution of cu/σ

′
vo reveals a log-normal pdf shape (Figure

8.17(k)). Further verification of permuted values obtained for cu/σ
′
vo can be

carried out based on the experimental data of CAUC strengths. For natural
clays, Mayne (1988) observed the following limit trends:

cu/σ
′
vo = 0.20 · OCR0.78 (8.10a)

and
cu/σ

′
vo = 0.45 · OCR0.78 (8.10b)

1Divergence of the numerical procedure was observed for most of the patterns including
Λ < 0.6.
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Figure 8.17: Histograms of parameter distributions used to generate the NN training
patterns.

168



Figure 8.18(a) and 8.18(b) show that the synthetically obtained cu are uniformly
sampled within the natural limits. The artificial cu samples normalized in terms
of the mean stress and plotted against Rp (Figure 8.18(c) and 8.18(d)) give the
following estimate for the upper limit:

cu/p
′
o = 0.52R0.78

p (8.11)

whereas the lower limit remains similar to Equation (8.10a).

Rigidity index. Since the developed numerical model revealed frequent
numerical instabilities for the cases characterized by the ratio G/p′o > 70, ran-
domly drawn vectors of parameters which led to such values were rejected and
redrawn according to the scheme presented in Figure D.1. The permutations
were also constrained by the interval for the rigidity index Ir ∈ 〈10; 110〉. Fi-
nally, an exponential pdf for Ir values was obtained, as shown in Figure 8.17(l).
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Figure 8.18: Generated permutations of normalized undrained shear strength against
overconsolidation ratio: (a-b) comparison with the observed limits for
CAUC strength in natural clays by Mayne (1988), and (c-d) proposed
relationship between Rp and cu normalized in terms of p′o.
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8.2.2 Numerical generation of training patterns

Having permuted vectors of model parameters, and enforcing optimal mesh sizes
and penetration depths (see Section 7.2.1.4), a number of FE simulations were
carried out in a batch mode. The simulations with any occurrence of numeri-
cal instability were rejected from the training set. From among 400 FE runs,
355 simulations effectively converged at the steady-state. No general reason
for non-converged FE patterns has been found using the adopted parameter
permutations (cf. Figure 8.17). A relatively large number of non-computed
patterns can be observed for low values of Λ which are smaller than 0.7 (see
Figure 8.17(a)).

Three variables corresponding to frictionless penetration, qt, u2 and p′n, were
derived from each computed simulation. Since field measurements may exhibit
a random experimental error, artificial ”noise” can be introduced into numerical
data to improve the ability of network to generalize. It was, however, assumed
that a part of ”noise” can be attributed to numerical inaccuracies and raw data
smoothing. A higher degree of experiment uncertainty was obtained by intro-
ducing random numbers for cone roughness αf when calculating the final values
of qt, u2 and fs which include rough cone effects. A certain degree of uncer-
tainty can be also related to the fact that friction effects under partial drainage
conditions are introduced using the criterion proposed in Equation (7.28) which
is developed for isotropic stress and permeability conditions. The use of this cri-
terion to find the correction coefficient ϑt as a function of V enforced consistent
calculations of the operational coefficient of consolidation cvh by introducing p′o
into Equation (6.63).

In the last step of data post-processing, three variables were standardly nor-
malized in terms of σ′

vo in order to remove depth effects (cf. Section 6.3.2.1).

In order to gain insight into the shortage of stiff soils in the FE-generated
database, additional numerical database was computed based on the proposed
theoretical solution developed in Section 7.2.2.1. The database contains
”undrained” patterns for the rigidity index from 10 to 7502. The following
section presents in detail a comparative analysis of two databases.

8.2.3 Verification of numerical database

The computed synthetic data points can be compared with geotechnical evi-
dence which was acquired for natural clays by Lunne et al. (1989); Robertson
et al. (1986). Figure 8.19 presents the normalized synthetic data derived from
n u m e r i c a l simulations (Ir = 10 ÷ 110), whereas Figure 8.20 shows data
points obtained using the t h e o r e t i c a l solution for undrained penetration
extended to the material cases defined with large rigidity indexes (Ir = 10÷750).
In accordance with experimentally observed trends, the synthetic points reveal

2The expanded range of Ir was obtained by decreasing the lower bound for parameter κ,
while the interval for OCR remained unchanged.
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Figure 8.19: Normalized numerical data (Ir = 10 ÷ 110) vs OCR compared with
empirical bounds suggested by Lunne et al. (1989) and Robertson et al.
(1986).
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Figure 8.20: Normalized theoretical data (Ir = 10 ÷ 750, undrained) vs OCR com-
pared with empirical bounds suggested by Lunne et al. (1989) and
Robertson et al. (1986).

a general increase of Qt with a corresponding decrease of Bq for the increasing
overconsolidation ratio.

As regards Qt, the numerical patterns corresponding to undrained conditions
(k < 10−9m/s) fall between the lower and the middle observed bounds due to
the assumed low values of Ir which correspond to soft clays (Figure 8.19(a)).
However, the increasing degree of consolidation for transitional drainage con-
ditions can significantly raise Qt. On the other hand, theoretical undrained
patterns for the expanded range of Ir well correlate with the observed trends
and clearly show the effect of increasing Ir (Figure 8.20(a)).

An opposite effect of partial consolidation can be observed for Bq which
is reduced with the increasing degree of consolidation (Figure 8.19(b)). The
undrained patterns of both numerical and theoretical data points (Figure 8.20(b))
are located above the lower limit suggested by Robertson et al. (1986) and ap-
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proximately cluster the lower middle part of the experimentally observed zone.
The upper part of this area cannot be covered using the simple MCC model as
its formulation does not allow soil sensitivity to be taken into account. In the
case of sensitive, normally consolidated clays, high shear-induced pore pressures
can be expected due to soil softening (Schneider et al., 2008).

In the case of Fr, the synthetic data does not reflect the trend suggested
by Lunne et al. (1989). It is likely because the proposed experimental bounds
were developed partially based on the results for sensitive, normally- and lightly
marine clays for which a decrease of effective stresses acting at the cone shaft
can be typically expected. It can also be noticed that in the case of data points
corresponding to soft clays (Figure 8.19(c)), the data points above the upper
limit observed by Lunne et al. (1989) generally represent the patterns subject
to partial drainage conditions. On the other hand, many data points from the
”undrained” population including stiffer patterns (Ir = 10÷750) also fill the re-
gion above the experimentally observed bound (Figure 8.19(c)). However, these
results have to be carefully analyzed since the data points were extrapolated
through Equation (7.14) which is proposed based on numerical results subject
to a considerable dose of numerical uncertainty (see Figure 7.22(b)).

The generated numerical database can also be verified using soil classifi-
cation charts. Many classifications for soil profiling based on CPT data have
been proposed in the past. Many researchers have made the effort to use an
extensive geotechnical evidence to provide a guide which classifies soils in terms
of the so-called soil behavior type (SBT). Using raw, corrected or transformed
records of cone and sleeve resistances, and incorporating pore pressure mea-
surements in further analyzes a number of empirical classification charts have
been developed, e.g. Schmertmann (1978); Douglas and Olsen (1981); Olsen
and Farr (1986); Robertson et al. (1986); Robertson (1990); Jefferies and Davis
(1991); Eslami and Fellenius (1997); Fellenius and Eslami (2000). Alternative
classification methods like combined statistical and fuzzy logic have also been
proposed (Zhang and Tumay, 1999). Recently, Schneider et al. (2008) presented
a novel classifying framework which combines theoretical considerations includ-
ing an analysis of soil parameters affecting cone penetration and observations
of drainage conditions during penetration.

It should be recalled that the post-processed numerical data was obtained
using smooth cone measurements (qt, u2 and p′n) for which random values of
cone roughness αf were attributed (cf. Table 8.5). The calibration of the in-
terval for αf was partially based on the commonly applied classification chart
Qt−Fr proposed by Robertson (1990). It was assumed that due to constitutive
model formulation referred to non-sensitive clays, the data points should be
located above the delineated region of normally consolidated soils, as shown in
Figure 8.21(a). Consequently, the post-processed numerical data widely covers
the region delineated as non-sensitive clays and silty clays (3) and partially the
zone of soft organic clays (2). Although the numerical database contains pat-
terns characterized by permeability coefficients which correspond to clayey silt
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Zone Soil Behavior Type Zone Soil Behavior Type Zone Soil Behavior Type
1 Sensitive, fine grained 4 Clayey silt to silty clay 7 Gravelly sand to sand
2 Organic soils-peat 5 Silty sand to sandy silt 8 Very stiff sand to clayey sand
3 Clays, clays to silty clay 6 Clean sand to silty sand 9 Very stiff, fine grained

Ia Silts and Low Ir clays Ib Clays Ic Sensitive clays

Figure 8.21: Representation of (a-b) numerical (Ir = 10 ÷ 110) and (c-d) theoret-
ical data points (Ir = 10 ÷ 750, undrained) projected on various soil
classification charts.

or silt-like soils, the corresponding regions are not represented, as the numerical
model was limited to low Ir. On the other hand, some ”stiff” patterns can be
classified as silty clay using the Qt − Bq chart, as shown in Figure 8.21(b). It
can, however, be noticed that many ”partially drained” patterns are erroneously
classified as clays. A correct membership of ”partially drained” patterns in the
silt SBT can be recognized using the novel classification method proposed by
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Figure 8.22: Trends of increasing cu/σ
′
vo and the degree of consolidation for (a) dif-

ferent characterization sites (from Schneider et al., 2008), (b) numer-
ical patterns also subject to partial consolidation, and (c) theoretical,
undrained patterns plotted in Qt − ∆u2/σ

′
vo space (gray lines represent

the soil classification system by Schneider et al., 2008).

Schneider et al. (2008). The method effectively separates the undrained and
transitional penetration conditions, taking into account the reduction of Bq due
to partial consolidation.

In the case of ”undrained” database derived from theoretical solution, the
patterns obtained for a wide range of parameters observed for clays widely cover
the region of non-sensitive clays on the Qt − Fr chart (Figure 8.21(c)). More-
over, both classification systems consistently classify the theoretical data points
as clay-like soil, as shown in Figure 8.21(d).

Numerical and theoretical data points can also be plotted in ∆u2/σ
′
vo space

which readily separates the influence of both soil overconsolidation and the
degree of consolidation (Figure 8.22). Synthetic data shows considerable con-
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Table 8.6: Notation adopted for specific parameters defining neural network input-
output pairs in parameter prediction from the CPTU data.

Basic input Additional input or output
parameters parameters

Parameter
symbol Qt Bq Fr eo ln k Λ λ OCR Rp M cu/σ

′
vo Ko

Acronym
in NN notation Q B F V K L P O R M U H

sistency with the trends observed for non-sensitive natural clays in terms of
both factors affecting cone penetration; the ”undrained” patterns are clustered
in the zone Ib referred to clays, whereas partially drained cases cover the region
Ia (silts) and transitional soils.

It can be concluded that synthetic data points obtained for the MCC model
mostly represent soil behavior of ”well-behaved” fine grained soils while the
surrounding regions which can be the case of sensitive soils and highly over-
consolidated, remain uncovered. This is clearly a derivative of the MCC model
limitations and the specified interval of OCR, respectively. The analysis of the
numerically clustered data space may also serve as a guideline for a reason-
able application of the MCC model in terms of parameter prediction using NNs
which are prepared with synthetic database.

8.2.4 Definition and notation of network inputs and out-
puts

In the context of parameter prediction from CPTU data, network input con-
sist of test measurements, i.e. Qt, Bq and Fr which can also be expanded
with corresponding available information about other soil properties. Such an
additional information may improve accuracy of NN predictions. Clearly, the
complementing data needs to be compatible with properties defining the FE
model. Hence, the input vector may consist of selected discrete piezocone mea-
surements and additional dimensionless parameters with the exception of the
permeability coefficient k provided in m/s.
The following presents the general form of NN topology notation adopted in
this study:

NN name notation: NN( input |1st layer − 2nd layer | output ) (8.12)

which provides information about the number of neurons in each hidden layer
and the type of components in the input and output vectors according to the
notation provided in Table 8.6.

During the training, a general strategy of one-component output parameter
has been chosen in order to readily separate factors improving the accuracy
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of predictions for a particular parameter. An alternative approach of multi-
component input and output network can also effectively be used to reduce the
number of trained NNs. From a practical point of view, the use of such an
approach requires detailed knowledge about input data affecting the accuracy
of particular output parameters or performing regression analysis with respect
to each output parameter for the selected NN.

8.2.5 Training and post-training analysis

In this section, a development of NN predictors for material properties will be
presented in detail. In this context, the factors influencing the accuracy of NN
predictions for specific parameters will be analyzed. The post-training analysis
will be presented based on the regression analysis using predictions provided by
trained NNs and empirical approaches presented in Section 6.3.2. Throughout
this section, all the regression analyzes are performed using testing sets which
contain results derived from numerical simulations.

355 synthetic patterns obtained through FE simulations were used in NN
training. Within this set of patterns, 80% pseudo-experiments were randomly
designated to be a training subset in each training run, while the remaining
20% (NS(s) = 71) was used to test developed NNs in the post-training analy-
sis. Additionally, 20% of the overall number of patterns was selected from the
training set in order to control network overfitting.

8.2.5.1 Undrained shear strength

A number of two-hidden layer network architectures were designed to predict
the normalized undrained shear strength cu/σ

′
vo. At the beginning of analysis,

the simplest network containing only Qt in the input vector was compared with
the related empirical method given in Equation (6.39); Figure 8.23(a) presents
the results obtained in the post-training analysis. As regards the empirical
formula, cu/σ

′
vo values were obtained for the mean value of Nkt = 8.60 which

was calculated through the theoretical solution:

Nmean
kt =

NS(s)∑

i=1

(−0.55 + 2.37 ln Iri − 2.21∆i + 3.81αf ) /NS(s) (8.13)

with αf assumed equal to 0.3.
The regression analysis reveals that both approaches present a similar correla-
tion measured in terms of the coefficient of correlation R around 0.74. On the
other hand, NN predictions in comparison with the empirical method present
about 50% improvement in the MSE. Both methods present sensitivity to par-
tially drained conditions and it is manifested by the increasing ARE for the in-
creasing soil permeability, as shown in Figure 8.23(b). In the case of undrained
results, both methods present the upper error bound for ARE around 35%.
The mean absolute relative error AREm computed for all considered patterns is
about 20% and 26.5% for NNs and empirical method respectively (see Appendix
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Figure 8.23: Partial drainage effect on predictions of cu using empirical methods
(empty triangles) and neural networks (solid circles). Post-training anal-
ysis for 71 numerical patterns previously unknown to the trained neural
network.
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F, Figure F.1).
Clearly, an improvement of NN predictions can be expected with addition-

ally provided information about pore pressure measurements (parameter Bq) or
soil permeability. Figure 8.23(c) presents the regression analysis performed for
the network containing Qt and Bq in the input, whereas the results for network
complemented by the permeability coefficient k are shown in Figure 8.23(e).
In the first case, NN predictions are compared with the ”input-related” empir-
ical approach provided in Equation (6.42) for which the operational value of
Nke was assumed equal to 8.5. Both trained NNs exhibit superior correlations
in comparison with the previously developed NN(Q|6 − 6|U) and two empiri-
cal methods. The networks present improved correlations measured in terms
of R (about 0.83) and MSE, with the mean ARE of about 15% (Figure F.1).
Furthermore, both NNs dump the effect of partial drainage which affects pre-
dictions of cu when using empirical methods, as shown in Figure 8.23(d) and
8.23(f). Although NN(QB|6 − 6|U) is not provided with k supplement, in the
case of drained patterns, the network exhibits sensitivity to the increasing Qt

and the correspondingly decreasing Bq and provides a meaningful accuracy of
predictions.

A similarly good correlation performance is exhibited by two networks where
the basic inputs, Qt and Bq are complemented with information on Ko (Figure
8.24(a) and 8.24(b)). However, it emerges that the network with no k supple-
ment achieves worse performance than NN(QBKH|6 − 6|U) due to increasing
error in the predictions for the drained patterns (Figure F.2). It explained by
the fact that when predicting cu, NN(QBH|6 − 6|U) exhibits a superior sensi-
tivity to Ko than to parameter Bq.

Improved quality of predictions can also be achieved by providing the input
vector with information on M or Fr (cf. Table 8.7). Figure 8.24(c) and 8.24(d)
show respectively the regression analyzes carried out for NN(QBM|7−7|U) and
NN(QBF|6 − 6|U). For the synthetic database, the networks provide the pre-
dictions characterized by AREm around 10 ÷ 14% (Figure F.2). However, a
practical application of NN(QBF|6− 6|U) for the real experimental data has to
be restricted to non-sensitive soils due to the formulation of the MCC model.

Table 8.7: Performance of the trained neural networks designed to predict cu (sta-
tistical features obtained for testing sets containing 71 random synthetic
patterns).

R MSE AREm AREsd

Network name (-) (-) (%) (%)

NN(Q|6 − 6|U) 0.74 2.1e− 02 20.2 16.0
NN(QB|7 − 7|U) 0.82 1.4e− 02 16.2 13.0
NN(QBK|6 − 6|U) 0.84 1.4e− 02 15.0 11.0
NN(QBH|6 − 6|U) 0.81 1.6e− 02 19.1 13.0
NN(QBKH|6 − 6|U) 0.85 1.3e− 02 14.0 11.0
NN(QBM|7 − 7|U) 0.90 8.6e− 03 13.4 11.0
NN(QBF|6 − 6|U) 0.91 7.0e− 03 10.1 9.7
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Figure 8.24: Predictions of cu using the empirical method (Equation (6.39), empty
triangles) and neural networks (solid circles).

The Fr-based predictions could be reliable for the NN predictor developed us-
ing a constitutive model accounting for bounding and destructuration effects.
On the other hand, incorporating sensitivity effects which moves the results
along the Fr axis could result in the increased uncertainty of predictions due
to the non-uniqueness of the solution. In such a case, a satisfactory accuracy
of NN predictions could be obtained using a complementary input parameter
describing soil sensitivity.

8.2.5.2 Effective stress strength

In the context of parameter prediction of M , which maps two basic variables
Qt and Bq was first designed by analogy with the input components of the
simplified NTNU method (Equation 6.44). The regression analysis performed
for numerical patterns shows that both the NN predictor and the empirical
method provide poor, highly approximate estimates (Figure 8.25(a)). This ex-
ample shows that the problem cannot be accurately modeled based merely on
two basic input variables. A quantitative analysis carried out for two methods
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Figure 8.25: Prediction of parameter M using the NTNU method (Equation (6.44),
empty triangles) and neural networks (solid circles).
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reveals low values of R and high relative errors up to about 50-60% with the
mean value AREm of approximately 18% (see Figure F.3(a)). The analysis also
shows that drainage conditions do not visibly affect predictions as the error
distribution remains uniform along the axis of permeability coefficient (Figure
8.25(c)). This observation was also confirmed in the case of subsequently trained
NNs.

Another three NN architectures were designed by including either Ko or
Fr data, and finally both information in the input vector. While the second
variable delivers information related to frictional resistance at the cone shaft,
the combination of the first variable with Qt and Bq resembles Equation (8.1)
used in random pattern generation. The results of post-training analysis for
NN(QBH|6 − 6|M), Figure 8.25(b), and NN(QBF|7 − 7|M), Figure 8.25(d), ex-
hibit noticeable improvements of predictions which are measured in terms of
R (about 0.75), MSE (decreased of about 50%) and AREm (about 12 ÷ 14%),
as shown in Figure F.3. Incorporating k in the input vector results in a minor
improvement of NN(QBKH|6 − 6|M) performance (see Table 8.8).

Finally, a contribution of both variables in the NN input results in a signifi-
cant improvement of the correlation (Figure 8.25(e)). The network NN(QBFH|3−
3|M) produces predictions of M with AREs up to 20%, and the mean value
AREm about 6.5% (Figure F.3).

8.2.5.3 Stress history

The modeling of the inverse problem for interpretation of stress history for
piezocone data is divided into two parts. The first part deals with prediction
of standardly defined overconsolidation ratio OCR, whereas the second part ex-
tends the analysis to prediction of the constitutive overconsolidation ratio for
the MCC, i.e. Rp. Finally, a summary of both analyzes is provided in Table
8.9.

The first trained network which is designed to predict OCR contains Qt and
k as the input components. Such an entry is similar to the formula given in
Equation (6.45) for which the empirical coefficient kσt = 0.3 has been adopted as
typical value assumed for the first-order estimations. A comparison of the pre-
dictions derived from NN(QK|6 − 6|O) and the empirical method is illustrated

Table 8.8: Performance of the trained neural networks and the empirical approach
designed to predict M (statistical features obtained for testing sets con-
taining 71 random synthetic patterns).

Method Neural network Equation (6.44)
R MSE AREm AREsd R MSE AREm AREsd

Network name (-) (-) (%) (%) (-) (-) (%) (%)

NN(QB|10 − 10|M) 0.40 6.0e − 02 18.6 15.0 0.47 5.9e − 02 17.8 13.0
NN(QBH|6 − 6|M) 0.76 3.0e − 02 12.1 8.6 0.25 7.6e − 02 19.3 13.0
NN(QBKH|6 − 6|M) 0.81 2.2e − 02 11.1 8.4 0.54 4.9e − 02 15.2 10.0
NN(QBF|7 − 7|M) 0.73 3.5e − 02 14.1 11.0 0.26 8.0e − 02 22.5 16.0
NN(QBFH|3 − 3|M) 0.94 9.0e − 03 6.5 5.7 0.20 9.5e − 02 22.2 14.0

Mean 0.34 7.2e − 01 19.4 13.2
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Figure 8.26: Partial drainage effect on predictions of OCR using empirical methods
(empty triangles) and neural networks (solid circles).

in Figure 8.26(a). Although the NN exhibits a slightly better performance, it
does not dump efficiently the influence of partial drainage for the patterns in
which the phenomena may occur (Figure 8.26(b)). The chart also shows that
the effect of partial drainage does not affect the empirical solution3 as signif-
icantly as in the case of other methods (e.g. Figure 8.27(d) and 8.28(b)). In
general, misinterpretation of patterns subject to partial consolidation is stronger
pronounced for low values of OCR when looking at the corresponding Figure
F.4(a).

In order to improve the accuracy of predictions, Bq was added to the input
vector in the first order. In this case, the corresponding empirical method given
in Equation (6.46) was chosen as a comparative method assuming the typically
assigned empirical coefficient kσe equal to 0.5. As shown in Figure 8.26(c) and
8.26(d), both developed NNs, NN(QB|7− 7|O) and NN(QBK|7− 7|O), achieve
reasonable performances which are slightly better than the one observed for the
empirical method. The mean AREs computed for the considered NNs oscillate
around 20%, whereas the empirical method is characterized by AREm about

3The observation was confirmed using different testing sets.
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Figure 8.27: Partial drainage effect on predictions of OCR using the empirical method
(empty triangles) and neural networks (solid circles).

26 ÷ 28% (Figure F.4).
Further improvement of accuracy can be expected using Ko as a supplemen-

tary component of the input vector since the parameter is somehow correlated
with OCR (cf. Section 8.2.1). Post-training analysis performed for two devel-
oped NNs, NN(QBH|6 − 6|O) and NN(QBKH|6 − 6|O), present a very good
performance characterized by a high value of correlation coefficient R equal to
0.91 and 0.92, respectively (Figure 8.27). The NN predictions well track the tar-
get OCRs and reveal moderate dispersal of the data points even for ”drained”
patterns. It can be noticed that the empirical method is very sensitive to an
occurrence of partial drainage. Moreover, the empirical method exhibits high
randomness of target prediction for pseudo-experimental data as high ampli-
tudes of the computed R values are noticed for different testing sets, i.e. from
0.25 to 0.63 (cf. Table 8.9). In the case of both considered NNs, the mean ARE
for OCR predictions was reduced to around 11% (Figure F.4). This analysis
shows that Ko plays a key role in improving correlation of OCR with piezocone
data.

Another group of NNs was created including parameter M by similarity

183



to the input components in the formula presented in Equation (6.48). In the
post-training analysis, NN(QBM|6−6|O) and NN(QBKM|5−5|O) demonstrate
similar statistical features, as shown in Figure 8.28(a) and 8.28(c), respectively.
Although information about soil permeability is not included, the first network
recognizes ”drained” patterns well, as illustrated in Figure 8.28(b). The chart
also indicates that the formula proposed by Mayne (1991) can be strongly sen-
sitive to drainage effects exhibiting even 100-300% errors for silt-like coefficients
of permeability. The recognition of ”drained” patterns by the NNs lead to rea-
sonably small values of the mean ARE of around 15% (Figure F.5).

A replacement of the parameter M by the measured variable Fr in the in-
put vector results in the reduction of network performance, as demonstrated in
Figure 8.28(d). In effect, the data dispersal rises and an increase of the mean
ARE to 20% is observed (Figure F.5).

The above analyzes have shown that the NN, which includes the basic piezo-
cone data complemented with Ko parameter, achieves the best correlation per-
formance. The following analysis investigates whether further supplementing
of the input vector may increase the statistical performance of correlations for
OCR. Figure 8.29 and F.5 presents the post-training analysis for two trained
networks: NN(QBMH|5 − 5|O) and NN(QBFKH|7 − 7|O). It appears that the
computed statistical features do not gain significant improvement in comparison
with the features obtained for NN(QBH|6 − 6|O) (cf. Table 8.9).

Correlating the constitutive overconsolidation ratio Rp with CPTU data is
more demanding than OCR by virtue of its definition in terms of the effective
mean stress and the fact that the piezocone measurements are normalized in
terms of the effective vertical stress. Hence, such a conclusion would suggest a
need of complementing the piezocone measurements with Ko in the input vector.
In order to verify this need, two networks were created, i.e. NN(QB|7 − 7|OR)
and NN(QBH|6− 6|OR). Figure 8.30(a)-8.30(d) present a comparative analysis
with both networks and two empirical methods. In the context of Rp prediction
using the empirical Equation (6.46), the synthetic data points better correlate
when assuming the empirical coefficient kσe equal to 0.55. As regards the second
approach, σ′

vo in Equation (6.48) was replaced with p′o. It can be noticed that
both networks better track the targets than the considered empirical methods.
The analysis also shows that the network without Ko as the input component
exhibits similar statistical features as NN(QBH|6−6|OR) (see also Figure F.6).
A slightly worse performance of the latter can be explained by the fact that the
network received a ”difficult” testing set to be correlated and it is also confirmed
by performance of the empirical formulas for which the same set was used (cf.
Table 8.9). The same reasoning can be used to explain an improvement of
statistical features of the additionally trained network NN(QBKH|6 − 6|OR).
The network presents a slightly better performance than previously considered
NNs. However, it seems that it is rather attributed to the received ”easy”
testing set than to the additional input component k. Figure 8.30(b) and 8.30(d)
reveal that the NNs without information on soil permeability also cope well with
”drained” patterns. In Figure 8.30(e), theRp values predicted by NN(QBKH|6−
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Figure 8.28: Partial drainage effect on predictions of OCR using the empirical method
(empty triangles) and neural networks (solid circles).
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Figure 8.29: Partial drainage effect on predictions of OCR using the empirical method
(empty triangles) and neural networks (solid circles).

185



1.5 2 2.5 3 3.5 4

1.5

2

2.5

3

3.5

4
R

p −
 P

re
di

ct
ed

R
p
 − Reference

 

 

NN, R=0.73, MSE=2.1e−001       
Empirical, R=0.42, MSE=1.9e+000

NN(QB|7−7|OR)
0.55q

e
/σ´

vo

(a)

10
−9

10
−8

10
−7

10
−6

0

1

2

A
R

E

 

 

NN(QB|7−7|OR)

10
−9

10
−8

10
−7

10
−6

0

1

2

A
R

E

Corresponding k [m/s]

 

 

0.55q
e
/σ´

vo

(b)

2 3 4

1.5

2

2.5

3

3.5

4

4.5

R
p −

 P
re

di
ct

ed

R
p
 − Reference

 

 

NN, R=0.65, MSE=2.7e−001       
Empirical, R=0.11, MSE=2.1e+001

NN(QBH|6−6|OR)
Mayne(1991)

(c)

10
−9

10
−8

10
−7

10
−6

0

2

4

6

8
A

R
E

 

 

NN(QBH|6−6|OR)

10
−9

10
−8

10
−7

10
−6

0

2

4

6

8

A
R

E

Corresponding k [m/s]

 

 

Mayne(1991)

(d)

2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

R
p −

 P
re

di
ct

ed

R
p
 − Reference

 

 

NN, R=0.79, MSE=2.0e−001       
Empirical, R=0.63, MSE=1.9e+000

NN(QBKH|6−6|OR)
0.5Q

t

(e)

2 3 4

1.5

2

2.5

3

3.5

4

4.5

R
p −

 P
re

di
ct

ed

R
p
 − Reference

 

 

NN, R=0.79, MSE=1.5e−001       
Empirical, R=0.39, MSE=8.2e+000

NN(QBKM|5−5|OR)
Mayne(1991)

(f)

Figure 8.30: Partial drainage effect on predictions of Rp using the empirical method
(empty triangles) and neural networks (solid circles).

6|OR) are compared with estimates obtained through Equation (6.45). In the
case of the empirical formula, significantly better first-order estimates of Rp

were obtained by tuning the empirical coefficient kσt to the value of 0.5 4.

4Typical value of kσt used for the first-order estimates of OCR is usually assigned as 0.3,
cf. Table 6.3.
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The use of M parameter instead of Ko in the input vector yield in a similar
correlation performance as for previously presented NNs (Figure 8.30(f)). In
general, the presented NNs which predicts Rp exhibit the mean ARE about
11 ÷ 15% without any significant dispersal of data points (cf. Table 8.9).

8.2.5.4 Horizontal stress

A number of NN models were investigated with regards to the estimation of the
Ko variable from piezocone data. By similarity to the empirical Equation 6.53,
the first designed topology includes in the input vector only the Qt parameter.
Figure 8.31(a) illustrates the regression analysis performed for this network, as
well as the results derived from the empirical formula for which the empirical
coefficient kK was assumed as typical for the first-order estimation and equal to
0.1. It can be noticed that both predictions are characterized by a low degree of
correlation (low R values). However, the empirical formula for the testing set ex-
hibits higher dispersal of the data points than NN predictions. While AREs for
the latter are observed up to 70% (with the mean AREm = 21%), the empirical
formula gives errors of up to 110%, and AREm around 35% (Figure F.7). Nev-
ertheless, the problem is poorly modelled by NN(Q|9 − 9|H) as data points are
significantly rotated with reference to the center of Ko interval. Figure 8.31(b)
shows that drainage conditions do not affect predictions as the error distribution
remains uniform along the axis of permeability coefficient. This observation is
confirmed by further analysis of two created networks NN(QBM|8 − 8|H) and
NN(QBFM|8 − 8|H) which supplemented with permeability component in the
input vector essentially yield the same statistical parameters, as demonstrated
in Figure 8.31(c) - 8.31(f). These charts reveal a significant improvement of NN
predictions as all the networks reasonable track the target values of Ko. Using
supplementary input information, the mean AREs for predictions are reduced
to about 10 ÷ 14%, as shown in Figure F.7. A summary of statistical features
of the trained neural networks is provided in Table 8.10.

Table 8.10: Performance of the trained neural networks and the empirical approach
designed to predict Ko (statistical features obtained for testing sets con-
taining 71 random synthetic patterns).

Method Neural network 0.1 · Qt

R MSE AREm AREsd R MSE AREm AREsd

Network name (-) (-) (%) (%) (-) (-) (%) (%)

NN(Q|9 − 9|H) 0.38 3.7e − 02 21.2 17.0 0.40 1.1e − 01 34.6 25.0
NN(QBM|8 − 8|H) 0.75 1.9e − 02 14.1 10.0 0.39 1.0e − 01 33.0 21.0
NN(QBKM|8 − 8|H) 0.74 2.0e − 02 14.2 12.0 0.37 1.0e − 01 35.1 24.0
NN(QBFM|8 − 8|H) 0.85 1.1e − 02 11.7 9.7 0.27 1.0e − 01 34.2 23.0
NN(QBFKM|6 − 6|H) 0.84 1.1e − 02 10.3 8.0 0.29 1.2e − 01 36.8 25.0

Mean 0.32 1.1e − 01 34.7 23.6
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Figure 8.31: Prediction of Ko using the empirical method (Equation (6.53), empty
triangles) and neural networks (solid circles).
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8.2.5.5 Deformation characteristics

In practice, the deformation characteristic λ can be estimated by integration
Equations (6.55) and (6.56):

λ =
(1 + eo)σ

′
vo

αn(qt − σvo)
=

1 + eo

αnQt

(8.14)

where αn needs to be calibrated for a specific site. The above formula is then
used as a comparative method for NN predictions.

The first trained network was designed using input components equivalent
to the variables included in Equation 8.14. The network presents a slightly
worse correlation of the problem than the empirical formula with applied oper-
ational coefficient αn equal 2.0 for the first-order estimates, as shown in Figure
8.32(a). Predictions of NN(QV8 − 8|P) are characterized by a larger dispersal,
and consequently, by larger values of AREm and AREsd (Figure F.8 and Table
8.11). A slight improvement of predictions can be achieved by including the
remaining piezocone measurements Bq and Fr (Figure 8.32(c)). However, a few
performed tests revealed that parameter Bq is not essential for the prediction of
λ. Moreover, partial drainage has no observable influence on NN or empirical
predictions, as demonstrated in Figure 8.32(b).

Further tests revealed the importance of including the parameter Λ in the
input vector. Although the parameter does not improve data dispersal mea-
sured by AREsd, it increases the strength of correlation in terms of R (see
NN(QVL|8− 8|P) in Table 8.11). Hence, further improvement of prediction ac-
curacy requires complementing the input vector with supplementary variables
such as Ko and M (Figure 8.32(d)-8.32(e)). However, the best accuracy was
obtained for the input defined as QFVLH for two different NN architectures,
as summarized in Table 8.11. Figure 8.32(f) and F.8(d) present an example of
the post-training analysis for NN(QFVLH|6− 6|P) which shows superior corre-
lation over the empirical formula. It is worth noting that although meaningful
accuracy of predictions is achieved by involving three auxiliary variables which
are not measured by the piezocone, none of them represents a constitutive pa-
rameter.

The following analysis explores the possibility of correlating the constitutive
parameter κ with piezocone data. By analogy with the previous analysis, pre-
dictions derived from trained NNs are compared with results obtained through
Equation (8.14). As regards the empirical formula, reasonably good correlations
for considered testing sets were found by assigning αn equal to 8.0.

A preliminary analysis shows that network NN(QV6 − 6|E) with the input
corresponding to the variables included in empirical formula achieves slightly
weaker performance than the empirical method (Figure 8.33(a) and F.9). The
analysis also shows that partial drainage does not affect NN predictions nor
empirical estimates (Figure 8.33(c)). Further tests revealed that significant
improvement of NN predictions can be achieved by complementing the input
vector with Fr and Ko. It was recognized that these variables separately deliver
amounts of information which contributes to the reduction of uncertainty of NN
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Figure 8.32: Predictions of parameterλ using the empirical method (empty triangles)
and neural networks (solid circles).
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Table 8.11: Performance of the trained neural networks and the empirical approach
designed to predict λ and κ (statistical features obtained for testing sets
containing 71 random synthetic patterns).

Method Neural network Equation (8.14), αn = 2.0
R MSE AREm AREsd R MSE AREm AREsd

Network name (-) (-) (%) (%) (-) (-) (%) (%)

NN(QV|8 − 8|P) 0.41 8.1e − 02 64.7 64.0 0.43 9.7e − 02 47.7 34.0
NN(QBFV|8 − 8|P) 0.67 4.6e − 02 49.6 44.0 0.43 8.4e − 02 45.7 30.0
NN(QVL|8 − 8|P) 0.76 3.4e − 02 58.6 66.0 0.45 7.7e − 02 56.5 61.0
NN(QVLH|8 − 8|P) 0.85 2.6e − 02 41.1 39.0 0.44 9.4e − 02 56.9 54.0
NN(QVLMH|7 − 7|P) 0.89 1.4e − 02 30.4 26.0 0.52 6.0e − 02 47.4 34.0
NN(QFVLH|6 − 6|P) 0.97 4.6e − 03 18.3 17.0 0.71 4.7e − 02 42.6 31.0
NN(QFVLH|7 − 7|P) 0.97 4.2e − 03 13.9 11.0 0.37 7.2e − 02 46.8 44.0

Mean 0.48 7.6e − 02 49.1 41.1

Neural network Equation (8.14), αn = 8.0

NN(QV|6 − 6|E) 0.56 1.2e − 03 59.1 54.0 0.66 9.1e − 04 47.3 51.0
NN(QFVH|5 − 5|E) 0.97 1.3e − 04 14.4 11.0 0.68 1.0e − 03 46.5 48.0
NN(QFVH|6 − 6|E)* 0.98 8.0e − 05 26.4 27.0 0.66 1.3e − 03 121.4 150.0
NN(QVH|6 − 6|E)* 0.71 1.1e − 03 115.5 16.0 0.63 1.5e − 03 115.4 140.0

*The network trained with the use of theoretical patterns Ir = 10 ÷ 750.

predictions. In effect, synergy of both variables results in excellent correlation
by NN(QFVH5− 5|E), as shown in Figure 8.33(b) and F.9. NN predictions are
characterized by a significantly reduced data dispersal and a low mean value
of ARE around 14%. Obviously, as soon as Fr contributes in a prediction, no
reliable estimates could be expected for natural soils which exhibit the feature
of sensitivity.

The above analysis showed feasibility of an accurate prediction of the consti-
tutive parameter κ. However, owing to the limitations of the numerical model
(cf. Section 8.2.2), an application of the developed NN is strictly limited to soft
and very soft organic clays which exhibit Ir < 110. Thus, a broad application
of the method should involve an extension of the synthetic data base. For the
purpose of this study, a theoretical database containing ”undrained” patterns
was used to verify the effectiveness of predictions for a wide range of κ. The
post-training analysis Figure 8.34 illustrates good reproduction of target values
by NN(QFVH6 − 6|E). An increase of AREs can be observed for very small
values of κ. Taking into account that the difference between the smallest and
the largest value is of two log cycles, the obtained mean AREm = 26.4 can be
considered as a satisfactory result.

8.2.6 Knowledge extraction

The following analysis presents a feasibility of knowledge extraction from the
trained NNs. For this purpose, a problem of Rp correlation with piezocone and
other available input data is taken as an illustrative example. In the analysis six
different combinations of input parameters were investigated by means of three
various approaches, i.e. weight partitioning, ”connection weights” and input
perturbation (see Section 3.4). Since each NN training provides a unique NN,
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Figure 8.33: Predictions of parameterκ using the empirical method (empty triangles)
and neural networks (solid circles).
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Figure 8.34: Predictions of parameter κ using the empirical method (empty triangles)
and the neural networks (solid circles) trained with the aid of theoretical
patterns (Ir = 10 ÷ 750).
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Figure 8.35: Example of knowledge extraction from different NNs designed to predict
the overconsolidation ratio Rp.

five different one-layer networks for each input combination were trained5. The
relative importance of particular input parameters was thus calculated as the
mean value. In the case of input perturbation method, the input components of
testing patterns were perturbed from 85 to 115% with regards to the reference
values.

Figure 8.35 presents the results of the analysis. In general, three applied
methods similarly estimate the contribution of particular inputs. It can be no-
ticed that contribution weights of auxiliary input data such as Ko or M exhibit
similar importance as the piezocone input. On the other hand, information on
soil permeability contributes to a lesser extent probably because the parameters
Qt and Bq contain enough information about drainage conditions. Moreover,
in the case of the input perturbation method, the small contribution of k stems
from small perturbation with regards to the log cycle.

8.2.7 Summary

The above section related to the piezocone test presents the effectiveness of
correlating constitutive parameters with cone measurements by means of the NN
modeling. The NN training is based on the results derived from FE simulations
with the applied constitutive law of the MCC. It has been proven that the MCC
model can provide a synthetic database which exhibits a meaningful consistency

5Weight partitioning and ”connection weights” algorithms are suitable to analyze one-layer
networks.
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with experimental trends observed in the behavior of natural soils subject to
the penetration. The numerical database, which has been generated with wide
intervals of constitutive parameters and different drainage conditions, provide
piezocone results that correspond to the SBT of soft organic deposits, clays
and silts. Some general conclusions related to the NN training with the aid of
numerical database can be drawn as follows:

• NNs which contain only basic parameters derived from penetration test,
i.e. Qt and Bq, provide a similar or somewhat better accuracy of pre-
dictions than the empirical methods which employ average coefficients of
correlation. A significant improvement of accuracy can be achieved by
increasing the amount of information in the input vector.

• Auxiliary input components such as Ko, Fr and M , can significantly con-
tribute to the increase of quality of correlation and to reducing the dis-
persal of predictions. Meaningful accuracy of predictions can often be
achieved based merely on the basic piezocone parameters complemented
with state variables such as Ko or eo. The NNs with the smallest possi-
ble number of additional parameters are recommended when applying the
method to real experimental data in order to avoid ”over-fitted” predic-
tions.

• Owing to the formulation of the MCC model, predictions with the use of
Fr as the input parameter, can be considered as reliable in the case of
non-sensitive soils.

• The effect of partial drainage during penetration mostly affect the inter-
pretation of cu, OCR and Rp. In the case of parameters M , λ, κ or Ko,
errors for NN predictions are not dependent on drainage conditions.

• In general, NN predictors correctly detect the patterns which were subject
to partial consolidation during penetration. In such cases, NNs exhibit
sensitivity to increasing Qt and correspondingly decreasing Bq and provide
the solutions which are free of drainage-induced errors.

• During NN training it was observed that the influence of NN topology (i.e.
number of hidden neurons and number of hidden layers) was insignificant
compared to the results obtained by an increasing amount of input infor-
mation (i.e. number of input components). In other words, different NN
topologies resulted in a very similar quality of predictions for the same
input configuration.

Finally, Table 8.12 summarizes the quality of correlations obtained in this
study for different parameters and for various input configurations. In this
summary, the quality rating is defined in terms of the coefficient of correlation
R.
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Table 8.12: Perceived quality of correlations obtained in this study for different pa-
rameters and for various input configurations.

Input Identified parameter
configuration cu M OCR Rp κ λ Ko

Q 3 5
QK 3
QB 2 4 2 3
QBF* 1 3 3
QBFH* 1 x
QBFM* 2
QBFV* 3
QBFKH* 1 x
QBFKM* 2
QBK 2 3
QBKH 2 1 2 x
QBKM 2 2 3
QBH 2 2 1 3 x
QBM 1 x 2 2
QBMH x 1 x
QFVH 1 x
QFVLH 1 x
QV 4 4
QVL 2
QVLH 2 x
QVLMH x 2 x

*Fr does not account for the effect of soil sensitivity.

Quality rating: 1 High (R ≥ 0.9)

2 High to moderate (0.9 > R ≥ 0.75)

3 Moderate (0.75 > R ≥ 0.6)

4 Moderate to low (0.6 > R ≥ 0.4)

5 Low (R < 0.4)

Empty - not assigned or not satisfactory
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Chapter 9

Validation of Enhanced
Parameter Identification

The man of science has learned to believe in justification,
not by faith, but by verification.

Thomas Huxley

This chapter presents an application of developed NN inverse models to
parameter assessment from real testing measurements derived from both pres-
suremeter and piezocone tests. Efficiency of NN predictors is verified by per-
forming comparative analyzes for obtained NN predictions and observable ev-
idences collected for specific characterization sites. Experimental evidence of
each site consists of parameter estimates derived from various laboratory and
field tests, as well as different interpretation methods.

The chapter is divided into two main sections related to the SBPT and the
CPTU test respectively. In the case of SBPT, an application of the parameter
identification strategy which has been proposed in Section 2.4 is presented for
SBP experimental data measured in the Fucino clay characterization site. As
regards the CPTU, experimental piezocone measurements derived from a num-
ber of characterization sites are mapped onto soil properties using various NN
models. The obtained parameter profiles are compared with discrete parameter
estimates derived from laboratory tests, as well as other field tests. NN pre-
dictions are also compared with first-order estimates obtained through existing
empirical formulas based on piezocone records. Finally, general conclusions are
drawn separately with regards to analyzes presented for two considered field
tests.
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9.1 Model calibration using pressuremeter test

The following section demonstrates an application of the combined parameter
identification for the field pressuremeter experimental data obtained for Fucino
clay. Results of both holding and expansion tests are back-analyzed in order
to derive the MCC model parameters. The quality of evaluated parameters
is compared with soil properties obtained through various field and laboratory
tests.

9.1.1 Experimental data

The investigated characterization site contains a deep clayey deposit placed in
the Fucino basin in Italy. A well-documented test descriptions and field results
are reported in detail by Fioravante (1988). The results of pressuremeter tests
were adapted from the testing programme of 36 tests performed in two bore-
holes V1 and V2. The objective site was comprehensively investigated by means
of other in situ and laboratory tests for which results are comprehensively re-
ported by Burghignoli et al. (1991).

The investigated stratum consists of plastic clay of lacustrin origin. The
deposit was subject to overconsolidation due to dessication and ground water
fluctuations resulting in a light preconsolidation. It was also found that the clay
was structured and possessed cemented particle bounds due to the presence of
CaCO3. The results of four cone penetration tests revealed substantial spatial
homogeneity of the area under study.

Two holding tests and three expansion tests from the Fucino clay site were
adopted for the purpose of this research. The tests were selected from the tests
performed at depths between 9.10 and 14.0m and are presented in Table 9.1.
The strain-controlled expansion tests, namely V1P5, V2P7 and V2P8, were car-
ried out up to the cavity strain εc ≈ 10%, with a constant rate of 1%/min . The
strain and pressure holding tests, V1P6 and V2P6 respectively, were performed
right after the soil yielded at the cavity expansion of about 2%. The strain

Table 9.1: Reference pressuremeter tests and geotechnical properties of Fucino clay
(from Fioravante, 1988).

Strain Depth Initial stress conditions
Test Test Rate ε̇c z σ′

ho σ′
vo uo Ko Konc

No. name type (%/min) (m) (kPa) (kPa) (kPa)

1 V1P5 SC PET 1.00 9.10 58.21 60.10 80.07 0.97
2 V1P6 SC PET-SHT 0.30 10.55 50.14 68.20 95.00 0.74
3 V2P6 PC PET-PHT ≈ 0.30 9.50 61.14 62.30 84.00 0.98 0.65
4 V2P7 SC PET 1.00 11.00 68.70 70.40 99.00 0.98
5 V2P8 SC PET 1.00 14.00 78.91 70.40 129.00 0.91

SC - stress controlled, PC - pressure controlled
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rate was evaluated as approximately 0.3%/min . Since the test conditions of
two latter tests differ from those commonly applied and adopted in NN training
presented in Section 8.1.2, the neural networks were retrained with the training
patterns respecting these boundary conditions.

Table 9.2 presents a summary of mechanical geotechnical properties of the
Fucino clay evaluated through various laboratory tests such as triaxial compres-
sion tests: consolidated isotropic undrained (CIUC), consolidated isotropically
drained (CIDC) , as well as oedometer tests with incremental loading (IL) and
constant rate of strain (CRS). The undrained shear strength was estimated
through field tests such as piezocone penetration (CPTU), SBP tests and field
vane tests (FVT) and in the laboratory with the triaxial unconfined undrained
shear test (UU).

The CIUC and CIDC compression tests were performed on samples recov-
ered at the depth of 9m. Since the specimens were isotropically consolidated
with pressures larger than the preconsolidation stress, the soil was considered
as destructured and revealed a considerable underestimation of the undrained
strength ratio on average equal to cu/σ

′
vo = 0.350 . As discussed by Burghig-

noli et al. (1991), the results of cu/σ
′
vo from field tests CPTU or in some extent

FVT can be underestimated due to the destructuration caused by the probe
insertion.
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9.1.2 Parameter identification

In each numerical simulation, the initial state of soil was defined through the
mean value of void ratio eo at a given depth and the initial anisotropic stress
conditions as shown in Table 9.1. Depending on the measured data and the
type of the performed pressuremeter test, some parameters had to be prede-
termined and considered as optimal because of the non-uniqueness. Because of
the lack of pore pressure measurements for the expansion tests, the average and
constant value of M = 1.20 obtained through the triaxial tests was assumed
for each simulation. The initial vector of parameters was approximated using
neural networks and then corrected by running the MGN algorithm to obtain a
better fit between experimental and numerical data. In the case of dissipation
tests, the curves were fitted using only one discrete point corresponding to 50%
of the excess pore water pressure decay.

The identification of Rp, κ, λ and k was carried out based on the measure-
ments of V2P6 PHT test. The NN-assigned parameters were used as the initial
vector for the gradient-based optimization. Since, the model response for the
predicted parameters was close to the optimal one (Figure 9.1), all the curves
were effectively fitted in 4 iterations. The results of the identification are sum-
marized in Table 9.3 where italic and bold fonts represent NN-identified and
optimized parameters respectively. It is worth noting that λ was successfully
evaluated mainly through the variation of ∆εc in dissipation time and the ob-
tained value is comparable with those derived through laboratory tests. The
optimal value 0.86 is close to the upper value obtained for structured soil, prob-
ably because the holding test was initialized right after the soil yielded.

In the case of V1P6 SHT test, the identification concerned Rp, κ and k while
λ was assigned as the average value evaluated for the structured soil equal to
0.60. Despite the relatively inaccurate NN-prediction revealed by the model re-
sponse (Figure 9.2), parameters were quickly corrected within 4 iterations. The
inaccurate prediction was most probably occurred because the soil compress-
ibility for an NN input was mapped through the initial part of the expansion
curve (Figure 9.2(a)).
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Figure 9.1: Fucino clay test V2P6: simultaneous fitting of (a) expansion test and
(b-c) pressure holding test measurements.
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Table 9.3: Fucino clay properties derived by means of the numerical parameter iden-
tification.

Parameter assignment: initially specified - User or Neural Network ;
Test Depth optimized - MGN

z eo k M Rp cu/σ
′
vo κ λ

(m) (-) ·10−10(m/s) (-) (-) (-) (-) (-)

V1P5 9.10 1.29 0.0130
2.40 8.42 1.39 0.488 0.0177 0.60

V1P6 10.55 2.69 1.29 0.0140
2.70 8.42 1.40 0.459 0.0189 0.60

V2P6 9.50 13.7 1.2 1.47 0.0225 0.49
2.30 16.0 1.40 0.487 0.0238 0.86

V2P7 11.00 1.27 0.0159
2.60 16.0 1.41 0.486 0.0217 0.60

V2P8 14.00 1.30 0.0167
2.30 16.0 1.58 0.519 0.0252 0.60

The analysis of three remaining PETs, namely V1P5, V2P7 and V1P8,
aimed to identify Rp and κ. The other parameters were assumed as optimally
identified. The coefficients of soil permeability were assigned according to the
values identified for V1P6 and V2P6, and corresponding to the boreholes. Note
that for each NN-identified vector of parameters, an initial model response al-
most overlaps with experimental data as shown in Figure 9.3. Hence, the MGN
minimization converged within 3 iterations.

9.1.3 Analysis of obtained results

The quantitative analysis of the numerically predicted and optimized parame-
ters reveals a correct agreement between conventionally obtained parameters as
presented in Table 9.2. Generally, the optimized values of permeability char-
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Figure 9.2: Fucino clay test V1P6: simultaneous fitting of (a) expansion test, and (b)
strain holding test measurements.
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Figure 9.3: Fucino clay expansion tests fitting: (a) V1P5, (b) V2P7, (c) V2P8.

acteristics for both the SHT and the PHT, are similar to the values obtained
numerically by Fioravante et al. (1994). Their parametric study shows values
in the range of 1 ÷ 3 · 10−10m/s for V2P6 and k = 10−9m/s for V1P6.
The optimized values of κ are generally smaller than those obtained for ce-
mented samples by means of oedometer tests. This could be attributed to the
destruction of a natural soil structure due to sampling. As discussed before, the
latter may have an influence on underestimation of OCR through oedometer
tests. Consequently, the optimized values of Rp may tend to be higher than
those evaluated through laboratory tests. However, the comparative analysis
may be less reliable because the estimates of Rp for laboratory tests were ob-
tained through the correlation presented in Equation (8.4). The numerically
optimized values of Rp may also sustain the geometry effect since all of the ana-
lyzes were carried out with the simplified numerical mesh representing a unit of
pressuremeter membrane. As reported by Yu et al. (2005), the effect of geom-
etry in lightly-consolidated soil may have an influence on the derived strength
parameters resulting in the overestimation of cu and, consequently, Rp. The
geometry effect could be thus overcome by linking the MGN algorithm with a
large scale model of the pressuremeter test. On the other hand, the numeri-
cally evaluated values of cu/σ

′
vo ratio show a close agreement with the values

obtained through FVT. It is also considerable that the values of the undrained
shear ratio obtained by Burghignoli et al. (1991) are higher than those derived
numerically, which can be attributed to the assumed undrained conditions in
their work.

The evaluated values of cu/σ
′
vo ratio can be also diminished owing to the

strain rate effect (see Section 6.2.4, Equation (6.33)). In the case of pressureme-
ter test, the correction can be typically assumed around −10%. Such a correc-
tion is however an approximative approach since it omits parameter coupling
which has been considered in the simultanous curve fitting. The use of a model
that could account for the strain rate effect should be considered at the level of
numerical identification.
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9.1.4 Summary

The effectiveness of the method has been confirmed for real experimental mea-
surements. By applying the neural network parameter prediction for the real
SBPT data, the trial-and-error guessing was avoided during the calibration of
the multi-parameter constitutive model. In each identification run, the gradient-
based algorithm robustly converged within 3-4 iterations only. The numerically
evaluated parameters of the Fucino clay revealed considerable agreement with
characteristics derived conventionally from laboratory and field tests. This con-
firms the correctness of the double-level parameter identification for the complex
boundary value problem. Hence, such enhanced computational identification
seems to be reasonable and suitable for solving inverse problems linking ad-
vanced soil models and hydro-mechanical feedback.
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9.2 Parameter estimation using piezocone test

The following section explores the applicability of developed NN inverse models
to profiling soil parameters from piezocone data. Efficiency of NN predictions
is verified using soil properties measured through various laboratory and field
tests. Profiling constitutive parameters for the MCC, as well as other variables is
demonstrated for a number of characterization clay sites: (i) Bäckebol, (ii) Sk̊a-
Edeby, (iii) Port Huron, (iv) Amherst and (v) Bothkennar. Depending on the
availability and reliability of complementary input data, different configurations
of NN input vectors are analyzed for specific testing sites.

9.2.1 Estimation of OCR for a worldwide database

The first analysis demonstrates an application of the developed NNs to a global
database of piezocone measurements in normally- and lightly overconsolidated
clayey soils and corresponding OCR derived from oedometric tests. The database
used in this study is extracted from a worldwide database collected by Chen
and Mayne (1994) (see Appendix G.1). The data points were carefully selected
so that they correspond to solution limits obtained for the generated training
database.

Figure 9.4 presents a comparison of predicted values of OCR by means of
two neural networks for which the input components correspond to the entry
variables of two empirical approaches. The input values of permeability coef-
ficients were approximatively assigned according to the soil type. As regards
the empirical coefficients, the typical values for the first-order estimates were
assumed, i.e. kσt = 0.30 and kσe = 0.50 (cf. Table 6.3). The results show
that NNs exhibit smaller dispersal than empirical formulas. However, it can
be noticed that NN(QK|6 − 6|O) presents inefficiency of predictions for OCR
larger than 3. In general, the correlations by NNs achieve superior statistical
features compared to empirical estimates (see Table 9.4). While empirical first-
order predictions generally underestimate OCR, the neural networks reveal a
tendency to overestimate OCR values. The overestimation can be due to ne-
glecting viscous effects in the FE model formulation but a part of it can also be
attributed to disturbance effects which affect results of laboratory tests.

The following analysis compare another two empirical methods with the
corresponding NN models (Figure 9.5). These four models involve the M pa-
rameter as complementary input information. In the case of the formula by
Mayne and Kulhawy (1982) and NN(QBMH|5 − 5|O), the input additionally
requires an estimation of parameter Ko. For the purpose of this study, Ko were
collected from historic data for particular characterization sites or they were
estimated using the method by Sully and Campanella (1991) (see Table G.1).
The results presented in Figure 9.5(a) show a fair correlation of experimental
data by the NN in contrast to the formula by Mayne (1991) which, in general,
strongly underestimates OCR values. The second considered network presents
a similar performance to the corresponding empirical model. Both NNs exhibit
relatively small magnitudes of relative errors measured in terms of the reference
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Figure 9.4: Comparison of predicted OCR for 135 piezocone data points using neural
networks and the empirical formulas: (a) Equation (6.45), (b) Equation
(6.46), (c) a comparison of predictions in terms of relative errors.

OCR values (see summary of statistical features in Table 9.4).
An important contribution of Ko to the quality of NN predictions was next

investigated with two other NN models, as shown in Figure 9.6. An analysis
of the results shows that both NN models provide a number of underestimated
predictions for OCR between 2 and 3. It can be attributed to operational ineffi-
ciency of these models for real data or simply, it is a derivative of misinterpreted
Ko values.

9.2.2 Parameter estimation for Bäckebol site, Sweden

Bäckebol testing site area is situated on the island of Hisingen in the north-
ern part of the city of Gothenburg. The site was extensively explored by the
Swedish Geotechnical Institute (SGI) in terms of the behavior of long driven
piles (Larsson and Mulabdić, 1991). The clay layers in this area are about
40m deep and reveal around 60% of clay content. The upper layer consists of
one-meter dry crust followed by overconsolidated gray clay down to 10m with
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Figure 9.5: Comparison of predicted OCR for 58 piezocone data points using neural
networks and empirical formulas: (a) Equation (6.48) (Mayne, 1991), (b)
Equation (8.1) (Mayne and Kulhawy, 1982), (c) comparison of predictions
in terms of relative error.

Table 9.4: Summary of OCR predictions from piezocone data for a worldwide
database.

Correlating Model Number of R MSE AREm AREsd

samples (%) (%)

0.3 ·Qt 141 0.68 0.891 29.6 22.1
0.5 · qe/σ′

vo 141 0.54 2.369 38.4 37.2
NN(QK|6 − 6|O) 141 0.79 0.359 26.5 16.2
NN(QB|7 − 7|O) 141 0.68 0.441 22.6 15.5

Mayne (1991) 58 0.51 4.338 60.3 89.4
Mayne and Kulhawy (1982) 58 0.76 0.255 23.4 22.0
NN(QBM|6 − 6|O) 58 0.68 0.152 19.9 12.8
NN(QBMH|5 − 5|O) 58 0.85 0.086 17.0 12.4

0.3 ·Qt 82 0.71 0.408 31.2 20.6
NN(QBH|6 − 6|O) 82 0.69 0.251 19.7 14.6
NN(QBKH|6 − 6|O) 82 0.70 0.239 18.3 14.6
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Figure 9.6: Comparison of predicted OCR for 82 piezocone data points using neural
networks and the empirical formula: (a-b) Equation (6.45), (c) compari-
son of predictions in terms of relative error.
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OCR = 1.2 ÷ 2.5. The preconsolidation pressure was determined from CRS
tests and full-scale field tests. The overconsolidated layer is then followed by
normally consolidated clay. The ground water level was about 0.4m below the
soil surface.
The piezocone testing programme was executed down to 20m depth. Typi-
cal piezocone measurements collected from Larsson and Mulabdić (1991) were
firstly smoothed and then normalized and are presented in Figure G.1 (Ap-
pendix G.2) with corresponding overburden stress profile. In general, the CPTU
results are uniform and smoothing concerned only slight irregularities due to
presence of shells.
The coefficient of earth pressure at rest was estimated from laboratory and field
tests such as Modified Glötzl-cell and SBPT.
The investigation of undrained shear strength involved field tests FVT and
DMT, and laboratory tests including TXC and DSS tests. The average friction
angle derived from laboratory tests was reported as 30◦. The soil sensitivity
was measured around 17. The tests revealed a sudden increase of cu about 10m
level with a similar jump observed in the piezocone measurements.
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Figure 9.7 shows a number of NN predictions for cu, OCR and Rp. In this
analysis, supplementary input data M and k were assigned as constants and
equal to 1.2 and 10−9m/s, respectively. A similar profile of cu is observed be-
low the level of 5m for all the applied networks. It can be noticed that the
predictions supported with Ko and k data give a very similar profile to the
results obtained by FVT and Anderson(1979). On the other hand, except for
NN(QB|7 − 7|U), the NN predictions accordingly provide higher cu than FVT
or DSS from 2.5 to 5m. This difference could be attributed to the shear modes
of FVT and DSS which may sometimes result in a small gradient of cu/σ

′
vo with

the increasing overconsolidation ratio (cf. Jamiolkowski et al., 1985). However,
the obtained lower cu/σ

′
vo profiles for FVT and DSS correspond to lower values

of OCR measured by OED1. At the considered depth interval, the piezocone
data predicts higher OCR than obtained in laboratory, as observed accordingly
for two empirical approaches and predictions by NN(QBK|7 − 7|O). However,
by supplementing the input content of the latter model, NN(QBKH|6 − 6|O)
and NN(QBKM|5 − 5|O) bring closer the NN predictions to the laboratory
measurements. On the other hand, the considered empirical and NN mod-
els yield similar profiles for OCR below the level of 5m with the exception of
NN(QB|7 − 7|O) which considerably overestimates expected values. Following
the good performance of NN(QBKH|6−6|O) for the Bäckebol site, the same in-
put configuration was used to predict Rp values. As was expected for OCR < 2,
the network correctly predicts the Rp values to be higher by around 30 ÷ 40%
than OCR (cf. Figure 8.4). The obtained Rp profile was also controlled by
NN(QB|6 − 6|OR) which provides very similar results. Furthermore the ob-
tained profile of Rp/OCR is akin to the profile evaluated through Equation
(8.4) using the values of OCR and Ko derived from empirical correlations; the
correlation coefficients for Equation (6.46) and (6.53) were previously calibrated
for the considered testing site.

The next analysis deals with the prediction of Ko by means of three vari-
ous well-operating NN models. The obtained results are compared in Figure 9.8
with Ko profiles evaluated from other in situ tests and the first-order prediction
by 0.1Qt. A similar shape of Ko profile can be observed for all piezocone pre-
dictions. In general, the NN predictions correspond well to the profile approxi-
mated by other tests. The empirical approach gives underestimated predictions
with regards to the NN predictions. Interestingly, low values of Fr which are re-
lated to sensitive soil and which were not encompassed in the training database,
do not significantly affect Ko predictions, which signifies greater importance of
M for these networks (cf. Table 8.10).

An identification of the parameter M was carried out using three NNs which
require Ko in the input vector. Figure 9.8 shows that two different networks
with Qt, Bq and Ko as inputs track the average M derived from laboratory
tests. Severe result inconsistencies obtained by these networks can, however,
be noticed above the depth of 4.5m. It can possibly be attributed to relatively
high values of Qt (> 13) which were sparsely represented in the training popu-

1cu/σ
′
vo and OCR can be related by the well-known relationship cu/σ

′
vo = S (OCR)

m
,

where S is the undrained strength ratio for normally consolidated soil (OCR=1).

211



0.5 1 1.5 20

5

10

15

20

K
o

de
pt

h 
[m

]

 

 

0.
1Q

t

in situ tests − approx.
NN(QBM|8−8|H)
NN(QBFM|8−8|H)
NN(QBFKM|6−6|H)

0.8 1.2 1.6

M

 

 

avg. TXC and DSS
NN(QBH|5−5|M)
NN(QBH|6−6|M)
NN(QBFH|3−3|M)

10
−2

10
−1

10
0

λ

 

 

α n=
4

α n=
8

NN(QFKVLMH|6−6|P)
NN(QFVLH|6−6|P)
NN(QVLMH|6−6|P)

10
−2

10
−1

10
0

λ

 

 

α n=
4

α n=
8

NN(QFKVLMH|7−7|P)
NN(QFVLH|7−7|P)
NN(QVLMH|7−7|P)Eq.(6.44)

Eq.(8.14)

Figure 9.8: Predictions of Ko, M and λ for Bäckebol site from laboratory tests and
field tests using empirical formulas and neural network predictors.

lation of measurements for OCR from 1 to 3 (cf. Figure 8.19). Contrary to Ko

predictions with Fr as a supplementary data, low values of Fr which were not
presented to the network during training, lead to underestimated M . Finally,
the empirical method given in Equation (6.44) give significantly overestimated
predictions for the considered testing site.

The last two charts presented in Figure 9.8 show an attempt to predict the
parameter λ from piezocone data. Since no reference value of λ derived from
laboratory tests was retrieved for the Bäckebol site, the analysis investigates
the consistency of results obtained for different input and NN topology config-
urations. In this case, predictions of the richest network regarding the amount
of input information can be assumed as the reference ones. For the purpose of
this analysis, the parameter Λ which is required for a reliable estimation of λ
(cf. Section 8.2.5.5) was assumed as 0.75, whereas eo was assumed equal to 2.0
along the test profile. It can be noticed that, irrespectively to provided input
data, all the considered networks provide very similar λ profile below 4m. This
profile corresponds to the results obtained through Equation (8.14) assuming
the empirical coefficient αn = 4. Some differences between NN predictions and
empirical estimates can, however, be observed above the depth of 4m, where
NNs generally provide an opposite trend to the empirical equation. At these
depths, considerable differences can also be noticed for the NNs with the same
input vector. Similarily to predictions of M , this uncertainty can be attributed
to relatively high values of Qt (> 13) which were sparsely represented in the
training population of measurements.
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9.2.3 Parameter estimation for Sk̊a-Edeby site, Sweden

The Sk̊a-Edeby testing area is located on Svartsjölandet lake island near Stock-
holm. The field was used by SGI mainly for observation of long-term settlements
and a large number of in situ investigations (Larsson and Mulabdić, 1991). In
this area, the soft clay layer of 10-15m is deposited on rock or till. The subsoil
consists of the upper layer of overconsolidated, post-glacial organic clay with
OCR from about 4 to 1.3 down to 4m, and underlying lightly overconsolidated
varved glacial clay. The clay content between 2.5 and 10m is about 70%. The
free ground water level was observed to vary seasonally from the ground surface
to 1.0m below, and during the piezocone test was found as 0.8m.
The overconsolidation ratio for the layer between 4 and 10m is about 1.2, and
increases to 1.3 at the level of 12m.
The undrained shear strength profile was obtained by means of testing pro-
gramme including FVTs. The soil sensitivity was measured and it equals about
15. The coefficient of earth pressure was obtained through earth pressure cells.
The piezocone testing programme was executed down to the firm bottom, at
the depth of about 11m. Typical piezocone measurements collected from Lars-
son and Mulabdić (1991) were firstly smoothed and then normalized and are
presented in Figure G.2 (Appendix G.2) with a corresponding overburden stress
profile.

In the following analysis, the application of NNs for profiling the Sk̊a-Edeby
testing site is restricted to the piezocone data below 2.0m. High Qt data ob-
served above this depth were not represented in the training dataset and their
interpretation could be erroneous.

The interpretation of cu from piezocone data was investigated with four dif-
ferent NN models, as shown in Figure 9.9. The Ko values appearing in the
inputs of two networks were interpreted from piezocone data for which empir-
ical coefficient kK = 0.11 correlates well Qt and measurements derived from
earth pressure cells (Figure G.2). The coefficient of permeability was assumed
to be equal 10−9m/s. Similar cu profiles were obtained for two networks includ-
ing k in the input. These profiles correspond to the profile obtained with FVT.
Two other NN models predict higher values of cu than the previous ones. It
can particularly be noticed below 4.8m where high values of Qt and Bq were
recorded at the same time for lightly consolidated soil. Such combination of
measurements which characterize sensitive soils exhibiting high Ir where not
represented in the training population. Owing to relative importance of k on
the NN output, the enforced undrained conditions for NN(QBK|6 − 6|U) and
NN(QBKH|6 − 6|U) reduced predicted cu/σ

′
vo.
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Following the same reasoning, predictions of OCR without k in input gen-
erally exhibit higher values than the estimates of NNs which include this infor-
mation. As shown in Figure 9.9, NN(QB|7− 7|O) overestimates OCR, whereas
NN(QBK|7 − 7|O) and NN(QBH|6 − 6|O) produce the profiles which are simi-
lar to the empirical 0.3Qt. The OCR trend reported by Larsson and Mulabdić
(1991) is reproduced by NN(QBKH|6 − 6|O) and the empirical 0.5qe/σ

′
vo. Low

values of Fr which are characteristic to sensitive clay were next used to check
the importance of this factor on NN predictions. Despite the fact that low Fr

values were not represented in training population, NN(QBFKH|6 − 6|O) gives
results which resemble the profile derived from 0.5qe/σ

′
vo. Significant differences

between these predictions can, however, be observed above the depth of 4.0m.
Reliable results of QBKH input configuration prompted the author to apply
NN(QBKH|6 − 6|OR) to the prediction of Rp. The obtained results reveal an
almost constant profile of Rp for considered depths and similar results were also
obtained with NN(QB|7 − 7|OR). As expected for low OCR, the network cor-
rectly predicts the Rp values higher by around 24% than OCR (cf. Figure 8.4).
The obtained Rp/OCR profile was also controlled by NN(QBH|7−7|OR) which
provides very similar results from about 3.6m down to the bottom of the profile.

An attempt to profiling Ko was carried out assuming M = 1.2. Figure 9.9
shows that NN(QBM|6 − 6|H) gives a similar prediction to the upper part of
the profile reported by Larsson and Mulabdić (1991). First-order approximation
with kK = 0.10 provides a profile which is shifted by about 0.2 with respect to
the NN predictions.

9.2.4 Parameter estimation for Port Huron site, USA

The testing area is located in Port Huron, Michigan. The site subsoil consists
of glacial and lacustrine sediment formed during late Pleistocene (Chen and
Mayne, 1994). Deep deposits from 3 to 30m below the ground surface con-
sist of soft gray silty clays to clayey silts of low to moderate plasticity. The
groundwater level was reported to be at 1.5 to 2m below the soil surface. A
laboratory program executed in 1985 by a commercial laboratory consisted of
one-dimensional consolidation tests on soil specimens obtained from split-barrel
and thin-walled tube samples. The second site characterization took place in
1992 and included carrying out consolidation and CIUC tests by a commercial
laboratory on representative specimens obtained from thin-walled tube sampler.
The average value of M was reported as equal to 1.11 (φ′

c = 28◦). The testing
program also included a number of CPTU and DMT soundings (for details see
Chen and Mayne, 1994). The results of laboratory and field test, as well as
stress history stratigraphy of site characterization are presented in parallel with
piezocone data interpretations in Figure 9.10 and 9.11.
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The prediction of soil parameters with the use of NNs were restricted to
piezocone results measured from 5m below the ground surface in order to avoid
uncertainty related to high Qt values which were not densely represented in the
training population. Moreover, predictions for a thin sand layer around 13m
can be considered as worthless since the soil presents negative Bq and very high
Qt records.

The prediction of the normalized cu was carried out based on mapping
piezocone data by means of three different NN models, i.e. NN(QB|7 − 7|U),
NN(QBM|7−7|U) and NN(QBK|7−7|U). In the analysis, two different profiles
of the permeability coefficient were applied in order to investigate the influ-
ence of this factor. The first assumes ”undrained” penetration (k = 10−9m/s),
while the second was approximatively assigned according to soil stratigraphy, as
shown in Figure 9.10. Both, NN(QB|7 − 7|U) and NN(QBM|7 − 7|U) generate
profiles are similar to the trend obtained for Nkt = 10 with the exception of the
layer between 5 and 6m and the thin sand layer at around 13m. In general, NNs
provide higher predictions for cu than CIUC measurements. It is difficult to un-
ambiguously judge whether the differences stem from the quality of collected
samples or unavoidable errors which can be committed by considered NNs (cf.
Table 8.7). Nevertheless, NN predictions are similar to the cu/σ

′
vo values derived

from DMT measurements and Marchetti’s correlation (Marchetti, 1980):

cu/σ
′
vo = 0.22(0.5KD)1.25 (9.1)

where KD is the horizontal stress index which is calculated based on the first
dilatometer reading po (KD = (po − uo)/σ

′
vo).

The analysis of k factor in the case of NN(QBK|6− 6|U) revealed no significant
influence on cu predictions below 14m from the ground surface. Some differences
can, however, be observed for the layer between 5 and 9m.

Figure 9.10 also presents Ko predictions derived from CPTU and DMT.
As regards DMT, Ko values were obtained using the correlation suggested by
Lacasse and Lunne (1988):

Ko = 0.34K0.44÷0.64
D (9.2)

where the lower exponent value is associated with highly plastic clays. For the
purpose of this analysis, the value 0.50 was adopted.
A comparison of predictions reveals similar profiles obtained through DMT mea-
surements and NN(QBM|8 − 8|H), whereas first-order estimates using 0.1Qt

achieve lower Ko values.
In the next analysis, three different configurations of input data were consid-

ered in the predictions of OCR by NNs. The results presented in Figure 9.11 re-
veal, in general, similar predictions using various NNs. In the case of an assumed
constant, ”undrained” permeability coefficient, predictions by NN(QBKM|5 −
5|O) exhibit higher OCR values below the depth of 14m than those predicted
with approximated permeability. The latter predictions generally correspond
to the results provided by NN(QB|7 − 7|O) and NN(QBM|6 − 6|O). It can be
also noticed that below the level of 9.0m general trends generated by NNs are,
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Figure 9.11: Predictions of OCR and Rp for Port Huron site from laboratory tests
(from Chen and Mayne, 1994) and CPTU test using empirical formulas
and neural network predictors.

in general, consistent with the profiles obtained through the empirical 0.5qe/σ
′
vo

and DMT.
As expected for upper layers which exhibit OCR around 3, the predicted ratio
Rp/OCR is close to 1.0 (cf. Figure 8.4). In the case of lower layers, the ratio
varies between 1.0 and 1.2 according to OCR which changes from 1.5 to 3.0.

The above analysis shows consistent profiling of the variable clay subsoil
of the Port Huron site by all the considered NNs. In general, NNs predic-
tions reveal similar parameter profiles to those derived from DMT correlations.
Furthermore, NN predictions exhibit considerable consistency with laboratory
measurements of cu and OCR.

9.2.5 Parameter estimation for Amherst site, USA

The deposit of Connecticut Valley Varved Clay (CVVC) is located in Amherst,
Massachusetts and is the National Geotechnical Experimentation Site of the
USA. DeGroot and Lutenegger (2003) provided an extensive summary of results
from field and laboratory testing carried out for this site. CVVC is lacustrine
clay for which estimation of unique geotechnical properties is challenging owing
to its varved nature with alternating layers of clays and silts. Individual clay
layers show a clay fraction content of up to 80%, whereas silt layers have a silt
fraction in excess of 80%. Therefore, the deposit exhibits a high anisotropy of
material properties such as undrained shear strength which can be less in the
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horizontal direction than across the varves. Likewise, because of the silt layers,
hydraulic conductivities, derived from laboratory testing for the horizontal di-
rection, vary between 2 · 10−9 and 10−8m/s, while across the vertical one they
vary from around 2 · 10−10 to 10−9m/s.
The uppermost layer, down to about 3.1m, consists of low to plastic varved clay.
This is underlain by deep deposits of plastic to highly plastic varved silts and
clays, as delineated according to the Unified Soil Classification System (USCS).
The field measurements revealed the transition from the upper crust to the soft
clays below 5m from the ground surface (cf. DeGroot and Lutenegger, 2003).
The average level of ground water table was measured by standpipe piezometers
as around 2m below the ground surface.

A number of laboratory instruments such as triaxial cell, direct shear box
and oedometer were employed to measure soil properties from high quality sam-
ples. The most reliable results for cu was derived from DSS and CAUC tests
conducted on Laval block samples. Evaluations of Ko were carried out using
instrumented oedometer ring for measurement of lateral stress during IL con-
solidation. Estimates of preconsolidation pressure σ′

p were obtained based on
CRS and IL consolidation tests performed on specimens obtained from a piston
sampler (76mm tube) and block samples (Laval and Sherebrooke). The aver-
age values of the effective friction angle φ′

c were reported for CIUC, CAUC and
CKoUC were equal to 25◦, 22◦ and 21◦, respectively.

The field testing programme included the field vane, dilatometer and piezo-
cone tests. Interpreted results will be provided in subsequent charts. After the
source paper, the presented DMT results are correlated with clay properties
through original formulas suggested by Marchetti (1980). As regards CPTU
measurements, DeGroot and Lutenegger (2003) reported the average factor Nkt

back-calculated based on DSS, CAUC and FVT tests were reported respectively
equal to NDSS

kt = 23, NCAUC
kt = 14 and NFVT

kt = 16. The authors also revealed a
significant variability of kσt used in profiling OCR from Qt data. The reported
values vary between 0.25 and 0.40 with the average value equal to 0.30.

For the purpose of this study, typical piezocone measurements were firstly
smoothed and then normalized. The results are presented in Figure G.3 (Ap-
pendix G.2) with corresponding overburden stress and Ko profiles. It can be
noticed that typical nature of the varved clay is manifested in significant fluc-
tuations of Bq below 5m from the ground surface.

Estimation of cu from piezocone data by means of NNs was carried out for
five different NN models, as shown in Figure 9.12. The following complementary
input data were used in the analysis:

• k according to the profile approximated from the horizontal coefficient
of permeability evaluated from SBPT and laboratory testing (see Figure
G.3),

• M as constant value taken as 0.92 (φ′ = 22.5◦),

• Ko according to the profile estimated from laboratory testing.
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Figure 9.12: Predictions of cu, Ko and M for Amherst site from laboratory and field
tests (from DeGroot and Lutenegger, 2003), and CPTU test using em-
pirical formulas and neural network predictors.

The results produced by NN(QB|7 − 7|U) generally follow the profile obtained
for DMT measurements. However, much uncertainty can be expected for pre-
dictions between 15 and 20m since the oscillating Bq sometimes goes beyond
magnitudes considered in the training population. Hence, the predictions for
Bq > 0.7 result in excessive drops of cu/σ

′
vo which can be observed around the

depths of 16, 17, 19 and 20m. On the other hand, a smooth response for cu in
this region can be observed for predictions generated by NN(QBK|6 − 6|U). It
can be attributed to k input contribution which decreases relative importance
of Bq input. Above 15m, NN(QBK|6−6|U) generates predictions which are sen-
sitive to Bq oscillations and generally fall between CIUC and FVT estimates.
Further addition of Ko for NN(QBKH|6−6|U) slightly moves the upper part of
cu/σ

′
vo profile towards DSS estimates, while the lower part seems to be under-

estimated. Further two tests with the imposed parameter M show a significant
influence of k on NN predictions above 15m. While NN(QBM|7 − 7|U) follows
the trends obtained from DSS, NN(QBKM|6− 6|U) tracks the results of DMT.
Minor differences are observed below 15m as both sets of predictions are similar
and track laboratory estimates.

The above analysis showed that, although one of the input components falls
out of the training set interval (here Bq), meaningful solutions can be obtained
thanks to higher relative importance of other input parameters.

Predictions of Ko were obtained by mapping piezocone data by means of two
NN models, i.e. NN(QBM|8−8|H) and NN(QBKM|(8−8|U). As shown in Fig-
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Figure 9.13: Predictions of OCR and Rp for Amherst site from laboratory tests, DMT
test (from DeGroot and Lutenegger, 2003) and CPTU test using empir-
ical formulas and neural network predictors.

ure 9.12, both sets of NN predictions within the depth interval from 5 to 15m,
fall between the profiles derived from laboratory and DMT testing. However,
the original Marchetti’s relationship may overestimate Ko (Lacasse and Lunne,
1988; Powell and Uglow, 1988) and Equation 9.2 could apply here. Meaningful
consistency of predictions was obtained in the lower part of the Ko profile with
the exception of the first-order predictions by 0.1Qt which significantly under-
estimates Ko.
A comparison of NN results reveals no significant influence of k on NN predic-
tions. The observation is consistent with the results presented in Figure 8.31(b)
where k does not legibly affect prediction errors.

A conceptual attempt at estimating M from piezocone data was made using
three NN models. The analysis can be considered to have qualitative meaning
because low Fr values which characterize the Amherst clay were not represented
in the training population. As shown in 9.12, NN(QBH|6− 6|M) and empirical
Equation (6.44) significantly overestimate predictions in comparison with the
average M derived from CAUC and CIUC tests. The use of supplementary
Fr in the input vector attracts generated results to the triaxial measurements.
It can thus be concluded that reliable Fr measurements can be an important
factor which may raise confidence of M predictions from piezocone data.

Reliefs of stress history parameters were generated by means of a number
of NN models. Figure 9.13 presents comparisons of OCR predictions based on
OED, DMT and piezocone testing results. It can be noticed that basic input
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NN(QB|(7 − 7|O) gives significantly overestimated predictions. Although they
are similar to DMT interpretation, the original Marchetti’s formula:

OCR = (0.5KD)1.56 (9.3)

may overestimate OCR. Hence, the interpreted data points provided by DeGroot
and Lutenegger (2003) were reanalyzed with the relationship recommended by
Lacasse and Lunne (1988):

OCR = 0.225K1.35÷1.67
D (9.4)

in which the lower empirical exponent applies to plastic clays, whereas the upper
one to low plastic materials. The results were reanalyzed assuming the exponent
coefficient equal to 1.45 which fits OED data and 0.5qe/σ

′
vo interpretations.

Additional information provided to NN(QBK|7 − 7|O) and NN(QBH|6 − 6|O)
bring NN predictions closer to laboratory data. NN(QBH|6 − 6|O) produces
a similar relief to the empirical 0.3Qt with the exception of larger fluctuations
observed for NN model. Obviously, the pattern of fluctuations stems from
oscillating Bq measurements and is similar to the relief computed with 0.5qe/σ

′
vo.

Essentially, similar OCR profiles were also obtained with NN(QBKH|6− 6|OR)
and NN(QBKM|5−5|OR). It is worth noting that all the considered NN models
correctly react on an abrupt drop ofBq at around 9m producing increased OCRs.
Interestingly, no similar peak was measured at this depth by a series of DMT
tests, as verified with different KD profiles in DeGroot and Lutenegger (2003).

As regards predictions of Rp, three employed NN models provide essentially
similar profiles with the exception of the layer from 5 to 9m. In this region,
it seems that NN(QBKH|6 − 6|OR) underestimates Rp, which is also reflected
in the upper part of the Rp/OCR profile produced by the NN. Meaningful
consistency in predictions by NN(QBKH|6 − 6|OR) and NN(QBKM|5 − 5|OR)
can be observed between 9 and 15m. In general, down to 15m, NNs provide
Rp/OCR profiles which differ in shape from those estimated based on Equation
(8.4)2.

The above analysis showed the efficiency of NN profiling in difficult varved
subsoil. NN models revealed meaningful sensitivity to the fluctuating Bq profile
which is mirrored in variable stress history profiles.

9.2.6 Parameter estimation for Bothkennar site, UK

The Bothkennar Clay is situated between Glasgow and Edinburgh in Scotland.
This soft clay deposit was the subject of extensive cooperative site investigations
carried out by British Universities. A wide range of results have been reported
in the June 1992 issue of Géotechnique and other papers, particularly in the
summarizing paper by (Hight and Leroueil, 2003).

It is acknowledged that the Bothkennar Clay is constituted of post-glacial
deposits of clays, silts and sands. Further details about the geological setting

2Rp/OCR was calculated with the aid of the lab-estimated Ko profile, constant value of
M and Konc computed as 1 − sinφ′.
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can be found in Hight et al. (1992b); Nash et al. (1992a); Hight et al. (2003).
The clay bads exhibit relative uniformity which results from the post-glacial
history of the region.

The hydrostatic ground water table is located between 0.5 and 1.0m below
ground level. Figure G.4 (Appendix G.2) presents the in situ vertical total
stress, the measured eo profile and typical piezocone measurements, both col-
lected from Nash et al. (1992a,b).

Undrained shear strength of the Bothkennar clay was measured directly in
laboratory tests, whereas cu profiles were derived from a range of field tests
including FVT, DMT and SBPT (Hight et al., 2003). Figure 9.15 presents
normalized cu measured on piston, Laval and Sherbrooke samples in triaxial
compression CKoUC and in the constant volume DSS test.

Stress history of Bothkennar clay was investigated by means of laboratory
and field tests. The laboratory tests included three types of one-dimensional
compression tests, i.e. IL, CRS and restricted flow (RF), as described in Nash
et al. (1992b). The soil is characterized by low expansibility when swelling back
from pre-yield and post-yield states (Hight et al., 2003), i.e. high values of Λ
can be expected. Typical values of Cc recalculated to λ are presented in Figure
9.16. Stress history profiling by field tests involved CPTU and DMT sounding.
The OCR profile interpreted from DMT and provided by Hight et al. (2003) is
omitted in the following comparative analysis since it essentially resembles the
profile obtained from CPTU using Mayne’s formula, Equation (6.48).

Low value of Fr derived from CPTU indicates the sensitive nature of Both-
kennar clay. The average sensitivities with FVT were estimated as equal to
around 5, whereas laboratory cone fall tests revealed soil sensitivity 6 ÷ 8 be-
tween 3 and 7m, and 8 ÷ 13 from 7 to 18m (Hight et al., 2003).

The triaxial tests on reconstituted soil samples revealed the effective friction
angle φ′

c = 34◦ (Allman and Atkinson, 1992), which is also the lower bound
of the values measured for intact samples for which the values range between
36◦ and 45◦. The constant volume simple shear tests, direct shear box test on
intact normally consolidated specimens and ring tests on remoulded soil gave
φ′ respectively around 34◦, 27◦ and 30◦ ÷ 33◦ (Hight et al., 2003).

As regards parameter profiling by means of NNs, the following complemen-
tary information about soil properties was provided to input vectors:

• k according to the profile of radial permeability coefficients at in situ
voids ratio evaluated from OED tests on block samples (see Hight et al.,
1992b); in the assumed profile, kh fluctuates insignificantly from 9 · 10−10

to 2.7 · 10−9m/s,

• M as constant value corresponding to lower observed bound for TXC tests,
i.e. 1.33 (φ′ = 34◦),

• Ko according to the profile approximating measurements derived from
SBPT and provided in Hight et al. (1992b) (see σho in Figure G.1),

• eo according to the profile approximating laboratory measurements (see
Figure G.1),
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• Λ estimated based on laboratory measurements of Cc (from Nash et al.,
1992b) and SBPT-based estimations of κ; in the assumed profile, Λ fluc-
tuates insignificantly from 0.93 to 0.97.

A number of various NNs was used to delineate profiles of apparent precon-
solidation pressure. The results presented in Figure 9.14 show that all the NNs
produce very similar profiles of OCR down from 2.5m. Inconsistencies in pre-
dictions above this depth have their source in large Qt values rarely represented
in the training set. In general, NN predictions fall between the upper bound
determined in IL tests and CRS measurements. The NN products are also
consistent with the first-order estimates computed with the ”effective” cone
resistance method and the equation suggested by Mayne (1991). It is worth
noting that, although some low Fr were not encompassed in the training popu-
lation, NN(QBFKH|6 − 6|O) generates meaningful predictions because relative
importance of particular factors is distributed over all the input variables.
Meaningful consistency of NN predictions can also be observed for Rp profiles.
It can be noticed that Mayne’s formula with σ′

vo replaced with p′o (cf. Equation
(6.48)) gives larger estimates than NNs. The variation of Rp/OCR obtained
with the empirical formula indicates an overestimation of Rp since this ratio
should theoretically be obtained of about 1.2 for soil exhibiting OCR of around
2 (cf. Figure 8.4). Such values were obtained with NN predictors.

Meaningful accuracy of NN models has also been obtained for cu/σ
′
vo es-

timates. Figure 9.14 presents a comparison of NN predictions with various
laboratory and field testing results.

Predictions of Ko were obtained by mapping piezocone data by means of
two NN models, i.e. NN(QBM|8 − 8|H) and NN(QBFM|8 − 8|H). A compari-
son of obtained results with other field testing estimates is presented in Figure
9.16. The chart shows that NN(QBM|8 − 8|H) determines the upper bound
for reasonable predictions derived from SBPT (Hight et al., 1992b), DMT mea-
surements correlated with Equation (9.2) applying the exponent coefficient 0.55
suggested by Powell and Uglow (1988) for UK clays, and CPTU data. The em-
pirical profiles of Ko were derived from two empirical formulas, i.e. 0.1Qt and
the formula suggested for the normalized pore pressure difference (PPSV, Sully
and Campanella, 1991). The analysis also shows that Fr legibly contributes to
NN predictions. Its low values which are ”unknown” to NN(QBFM|8 − 8|H)
lead to an overestimation of Ko, and so does Marchetti’s expression for DMT.

Profiling of parameter M was carried with three different NNs. Figure 9.16
presents the obtained results recalculated to φ′ as they are compared with the
values derived from shear tests. Similarly to Ko, low values of Fr have unfa-
vorable influence on the quality of NN predictions showing importance of this
factor. NN(QBFH|3−3|H) which includes Fr in the input provide visibly under-
estimated φ′. Two other NNs generate estimates between the bounds derived
from DSS and TXC tests on remoulded specimens. However, it seems that
there is much uncertainty in these predictions as differences between the esti-
mates seem to be too high. On the other hand, Equation (6.44) gives a similar
profile to NN(QBKH|6 − 6|M).
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Figure 9.14: Predictions of OCR and Rp for Bothkennar site from laboratory tests
(based on Nash et al., 1992b) and CPTU test using empirical formulas
and neural network predictors.
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Figure 9.16: Predictions of Ko, M and λ for Bothkennar site from laboratory tests
and field tests (based on Hight et al., 2003; Nash et al., 1992b), and
CPTU test using empirical formulas and neural network predictors.

Figure 9.16 also presents the results of profiling parameter λ. It can be seen
that four applied NNs provide the results which are similar to λ values obtained
through OED testing by Nash et al. (1992b). Both NNs which operate merely
with Qt, eo, Λ and Ko slightly overestimate λ, while including Fr bring NN
predictions closer to laboratory results. In this case, this consistency can be
considered as fortunate owing to uncertainty associated with low values of Fr.
The chart also shows relative importance of parameter Λ which assumed as 0.75,
significantly moves the profile towards low values of λ.

An attempt at profiling parameter κ was carried out by means of NNs which
were trained based on the training set encompassed by Ir = 10 ÷ 750 (cf. Sec-
tion 8.2.5.5). NN predictions are presented in Figure 9.16 and are compared
with κ profiles estimated for the purpose of this study based on Gmax derived
from SCPTU and Gp from SBPT (see Nash et al., 1992a). NN(QVH|6 − 6|E)
reasonably predicts values of κ which are, however, larger than those estimated
from SBPT. Similarly to the analysis presented for parameter λ, Fr can affect
predictions of κ. However, the influence of Fr on NN(QFVH|6−6|E) predictions
is stronger than in the case of NN(QFVLH|6 − 6|P) due to a smaller number
of input variables contributing to the final NN product. The strong influence
of the fluctuating Fr profile (Figure G.4) is thus mirrored by an irregular relief
of predicted κ. Predictions by NN(QFVH|6 − 6|E) which are close to those
estimated with Gmax, can be considered here as fortunate.
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9.2.7 Conclusions

The above analysis showed that the NNs trained based on a synthetic training
database provide meaningful parameter predictions from piezocone data. De-
tailed comparative analyzes of NN predictions were performed for a number of
characterization sites. In general, NNs proved to be particularly efficient in pro-
filing parameters cu, OCR, Rp and Ko. Predicting deformation characteristics
λ and κ can also be viewed as promising. On the other hand, much uncertainty
is associated with predictions of the effective strength parameter M (Table 9.5
provides a qualitative evaluation of the level of confidence for estimated charac-
teristics obtained in this study. NNs applied together with empirical approaches
may thus reduce uncertainty related to the first-order interpretation of param-
eters from field testing measurements.
Based on presented analyzes, some general remarks can be drawn:

• Satisfactory accuracy ofRp predictions can be achieved merely based onQt

and Bq measurements. Such input configuration gives essentially similar
results to those generated using expanded input information.

• In general, NN predictions constitute the upper bound of cu and OCR
predictions with regards to laboratory measurements. However, it is dif-
ficult to unambiguously judge whether this is a derivative of unavoidable
disturbances associated with specimen sampling and field testing in undis-
turbed natural conditions, or a shortcoming of the FE model taken as a
generator of training patterns.

• The applied NNs networks confirmed reduced ability to meaningfully ap-
proximate outputs from inputs which are rarely or not represented in the
training dataset, e.g. high Qt and Bq, or low, sensitive soil-like Fr. In
the cases where Fr considerably contributes to NN predictions, NNs do
not provide reliable results for sensitive clays. It was particularly visible
in predictions of parameters Ko and M , for which the sleeve friction re-
sistance can be an important factor affecting the magnitude of derived
parameters. However, this drawback can be removed by considering a

Table 9.5: Perceived applicability of CPT and NN predictors for estimation initial
state variables and MCC parameters in normally- and lightly overconsoli-
dated clays.

Initial state Strength Deformation
parameters parameters characteristics

Ko OCR Rp cu φ′ κ λ

1-2 1-3 1-2 1-2 3-5 need further
validation

Reliability rating: 1 High; 2 High to moderate;

3 Moderate; 4 Moderate to low; 5 Low.
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constitutive law for soil which accounts for structuration effects. Low rel-
ative importance of Fr in the case of NN models predicting cu or OCR
affected parameter estimates in a minor degree.

• Enforcing ”undrained” penetration conditions in the case of partially drained
penetration may result in higher estimates of parameters such as cu or
OCR.

• In the case of natural clays, using the NNs with specified soil permeability
seems to be advantageous.

228



Chapter 10

Final Conclusions and
Recommendations

10.1 Conclusions

The present study aimed at combining finite element modeling and the neu-
ral network (NN) technique in order to enhance parameter identification for
an elasto-plastic constitutive model of soil. In practice, soil properties can be
deduced from experimental measurements derived from a large number of var-
ious laboratory and field tests. Field testing makes it possible to perform soil
characterization in situ, on a representative soil mass. By reducing soil distur-
bances to a minimum, field tests should enable capturing the response of virgin
soil, allowing a reliable identification of parameters which may be sensitive to
sampling procedures.

Self-boring pressuremeter tests (SBPT) and standard piezocone tests (CPTU)
are widely used to deduce properties of clayey soils through analytical and
empirical correlations between soil properties and experimental measurements.
Empirical correlations usually require some tuning based on reference laboratory
data because first-order estimates for typical correlation coefficients may give
unreliable evaluation of soil properties. Analytical correlations are mostly based
on cavity expansion methods which are restricted to either fully drained or per-
fectly undrained problems, so that inverse closed-form solutions for relatively
simple constitutive models can be derived. In practice, however, depending on
physical and consolidation properties of the soil, partially drained conditions
may occur during field testing, and may lead to an erroneous estimation of clay
characteristics. Therefore, the following research aimed at elaborating a generic
parameter identification framework which is based on the NN technique and
which can improve the reliability of soil properties derived from experimental
data under complex drainage conditions.

Although the proposed strategy of parameter prediction is first adapted to
the triaxial compression test, the study is focused mainly on the application of
NN inverse models to the selected field tests. The research consists of four main
parts related to the application of NNs to parameter identification in which:

1. A generic framework for the enhanced calibration of multi-parameter con-
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stitutive models was elaborated by introducing NN predictors into the
classical back analysis scheme. The strategy makes it possible to avoid
potential pitfalls which are related to the gradient-based optimization, as
well as to reduce the computational effort of the iterative scheme.

2. Two FE models to represent the coupled hydro-mechanical boundary value
problems (BVP) of the pressuremeter and the piezocone tests were devel-
oped. Numerical simulations allowed the examination of the effect of
partially drained conditions and of its impact on stress paths occurring
in soil elements around the probes. As regards the piezocone test, the
parametric study carried out using the FE model enabled metamodeling
of the penetration problem, delineating properties of the FE model.

3. Methodology for the generation of the NN training dataset based on nu-
merical modeling which accounts for possible partially drained conditions,
is proposed.

4. Based on the pseudo-experimental data and the specified normalizing for-
mulas, a number of NN inverse models are developed, first for the triaxial
compression test, and then for the pressuremeter and the piezocone tests.

This chapter summarizes the main findings of this study and provides some
recommendations for future research. For the sake of clarity, conclusions are
presented according to three main fields being the subject of this dissertation:
(i) enhanced parameter identification, (ii) model calibration with SBPT, and
(iii) soil profiling with CPTU. Finally, the original contributions are summa-
rized in a separate section.

10.1.1 Enhanced parameter identification

The NN method was proposed to enhance the automated numerical procedure
for calibrating multi-parameter constitutive models. The potential of the two-
level parameter identification method combining the standard gradient-based
optimization (GBO) technique supported by the feed-forward NN algorithm was
presented in detail. The efficiency of the presented strategy has been proved
by means of test calibration of the Modified Cam Clay model (MCC) using
experimental measurements from the benchmark triaxial drained compression
test.

The application of the neural network technique to solve an inverse problem
provides a quick and accurate search of the vicinity of a global minimum in
the space avoiding local minima which are present on the surface of possible
solutions. The close approximation of parameters preserves the minimal com-
putational expense during the subsequent GBO (typically 2-3 iterations) and
helps the user to avoid the necessity to perform time-consuming trial-and-error
runs. This is a crucial feature, if the large-scale FE analyses required in the case
of modeling of non-homogeneous stress state BVPs, are considered (e.g. field
tests are considered during the subsequent direct searching with GBO).
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Since NN inverse models are developed based on training patterns which are
generated through numerical simulations, it is important to reduce the com-
putational effort by carefully permuting FE input parameters. The number of
training patterns can be decreased once reasonable constraints are imposed on
the multi-dimensional space of variables.

It has been demonstrated that the pre-processed NN input vector can include
a large number of discrete observational points, i.e. entire reliefs of experimental
results. Applying principal component analysis (PCA) to the unprocessed input
dataset results in a significant reduction of the large-dimensional input dataset
with no significant loss of accuracy of evaluated parameters.

The choice of discrete points during curve fitting has a significant importance
on calibrated parameters unless the constitutive model is able to precisely repro-
duce experimental curves. The examples presented on the triaxial compression
test demonstrate that NNs possess the ability to extract meaningful informa-
tion about the parameters’ sensitivity from the numerical training dataset. The
responses of the model with the input parameters provided by an NN revealed
that an NN mapping experimental measurements, is able to properly extract
soil properties.

A potential application of the NN-based technique for the parameter iden-
tification of enhanced constitutive models involves basically delivering relevant
data that illustrates the physical phenomena that are considered in the model.
Obviously, in the case of a calibration of more complex soil models, the pa-
rameters that can be directly estimated with the high degree of confidence can
constitute a part of the NN input vector (e.g. the Poisson coefficient or the
overconsolidation ratio in the presented example), whereas the parameters of
non-physical meaning for a given BVP become the objects of optimization.

Using a well-designed interface, the proposed parameter identification can
be adapted to any constitutive model or BVP with only few modifications. Dif-
ferent models, element or structural tests can be attached as modules to the
fully automated pattern generator. The numerical results are used once in or-
der to properly adjust network weights that are stored with negligible storage
cost. As NNs are trained with broad intervals of parameters and a sufficient
number of training patterns, they are able to map any experimental set of mea-
surements correctly. Therefore, the trained NNs can be a part of the automated
optimization module incorporated into numerical solution applications such as
FE packages. This can be of particular value for multi-parameter models char-
acterized by nontrivial parameter assessment. The use of trained NNs involves
no special expertise and requires only a relevantly specified input.

10.1.2 Model calibration with SBPT

Literature review revealed that partial drainage which may occur in clay even for
a quick pressuremeter expansion test, affects the stress-strain relationship and,
in effect, the derived parameters. Therefore, a numerical model representing the
BVP of two pressuremeter tests, i.e. the expansion and the holding test, was
developed. The coupled hydro-mechanical FE formulation for the MCC allowed

231



any generated excess pore water pressure to dissipate during simulations of the
expansion test and the subsequent holding tests. Numerical simulations showed
that partially drained conditions may occur in a material characterized by the
coefficient of permeability k larger than 10−11m/s.

Numerical simulations demonstrated that due to volume changes accompa-
nying partial drainage during expansion test, the soil may locally harden near
the cavity wall. This may affect parameter interpretation for both coupled pres-
suremeter tests. It was concluded that the use of numerical simulations is neces-
sary during the parameter identification for complex constitutive relationships
particularly in occurrence of the partial drainage. The performed sensitivity
analysis confirmed coupling of deformation, strength and consolidation charac-
teristics. The use of numerical inverse modeling was also justified by the lack of
analytical solutions for the pressure holding test (PHT). It was concluded that
the calibration of model characteristics should be considered as a mutual fitting
of all the available experimental measurements in the same optimization run as
the parameter feedback exists.

In the context of PHT, it was suggested that an evaluation of the slope
of normal consolidation line, λ, can be performed using the variation of cavity
strain radius which occurs due to increasing effective radial stress accompanying
the pore pressure decay around the probe.

As the numerical model, prior to the identification of parameters, requires
the initial state variables, i.e. eo and σ′

vo (Ko) to be specified, the influence of
these variables on the identified constitutive parameters was also examined. The
results revealed that the error for identified values of κ and λ may be inversely
proportional to the error of input eo, while a strong influence of Ko on Rp was
observed when Ko was underestimated.

The development of NN inverse models which take into account a possi-
ble partial drainage was based on a set of synthetic test samples which were
generated by the developed numerical model. Numerical measurements were
obtained based on constrained random permutations of input model character-
istics. In the light of in situ stress anisotropy, the relationship between the
typical overconsolidation ratio from the one-dimensional compression test and
the constitutive overconsolidation ratio for the MCC, was clarified. Thanks to
the proposed normalizing formulas for all pressuremeter curves, the depth effect
was removed allowing NN predictors to operate regardless of the in situ mean
effective stress.

It has been illustrated that the characteristics of the MCC can be estimated
fairly accurately by means of NNs and then corrected with a minimum compu-
tational cost related to the iterative parameter correction (max. 3-4 iterations).
The effectiveness of the method was confirmed for both numerical and real ex-
perimental measurements. The example of parameter identification based on
the numerical SBP measurements revealed that starting from a remote initial
vector of parameters, the GBO risks either the increased computational cost
or getting trapped by the local minimum. In certain cases, the latter can also
lead to instabilities of an FE solver if a wrong search direction is chosen. This
analysis shows that the NN-assigned parameters facilitate parameter identifica-
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tion by substantially reducing the computational effort, as well as by ensuring
a quick convergence of the GBO algorithm at the expected optimal vector of
parameters.

By applying NN parameter prediction for real SBPT data, the trial-and-error
guessing of the initial vector of parameters was avoided during the calibration
of the multi-parameter constitutive model. The numerically evaluated param-
eters of the Fucino clay revealed considerable agreement with characteristics
evaluated conventionally through laboratory and field tests. This confirmed the
correctness of the double-level parameter identification for the complex bound-
ary value problem. Hence, such enhanced computational identification seems
to be suitable for solving inverse problems linking advanced soil models and the
hydro-mechanical feedback.

The drawback of using NNs in this method is that considerable cost is re-
quired to produce the numerical training database. This cost is, however, borne
only once because the NN is trained with a broad range of controlled param-
eter permutations. Thus, newly trained NNs may enrich the existing base of
already trained NNs for a number of standardized test geometries and mostly
used constitutive models.

10.1.3 Soil profiling with CPTU

The use of many complementary interpretation methods may decrease uncer-
tainty of evaluated parameters from piezocone test data. This study demon-
strated an application of NN predictors to profiling soil parameters. By similar-
ity to the SBPT problem, a number of NN inverse models was developed based
on the results derived from rigorous FE analyzes.

The FE model of piezocone penetration involved a numerical formulation
for the double-phase material obeying the MCC law including the large strain
theory, as well as the finite contact formulation. It has been demonstrated that
a considerable computational effort related to the generation of the training
database can be reduced by optimizing the mesh size and ”steady-state” depth
in function of soil rigidity index which determines the radius of the plastically
deformed region. Different mesh sizes revealed meaningful consistency in com-
puted measurements of qt and u2.

An extended parametric study including analysis of the influence of strength
and stress anisotropy, rigidity index and cone roughness on two cone factors,
provides new insights into the analysis of cone penetration.

Due to the failure in incorporating the arbitrary Lagrangian-Eulerian (ALE)
technique into the FE model framework, an equivalent semi-numerical approach
was proposed to account for frictional effects in different drainage conditions
which were delineated from a number of numerical simulations. It was ob-
served that the ”rough” interface described by friction coefficients µ larger than
0.08 lead to a severe loss of measurement accuracy observed in the finite ele-
ments passing by the cone body. The validity of the developed semi-numerical
penetration model was verified in detail by means of comparisons with other
theoretical solutions and parametric studies synthesized from literature, as well
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as experimental evidence for both undrained and partially drained scenarios.
In accordance with centrifuge laboratory tests, numerical simulations re-

vealed the occurrence of a partial drainage effect during the penetration for
soils which exhibits values of consolidation coefficient cv larger than 7.14 ·
10−5m2/s roughly corresponding to the permeability coefficients larger than
about 10−8m/s.

Unfortunately, some shortcomings of the model were caused by the ineffi-
ciency of numerical procedures. The use of the numerical model to generate
synthetic database was thus limited to representing rather soft soil which ex-
hibits the rigidity index Ir less than 110 and G/p′o less than 70. However, an
extension of model applicability for Ir larger than 110 can be carried out using
the proposed theoretical solutions derived from the presented numerical simu-
lations of the undrained scenario.

The numerical database destined for NN training which was generated with
broad intervals of constitutive parameters and different drainage conditions,
provided piezocone results that correspond to the soil behavior type of soft
organic deposits, and non-sensitive clays and silts. It was proven that the semi-
numerical model obeying the MCC law is able to provide a synthetic database
which exhibits a meaningful consistency with experimental trends observed in
the behavior of natural soils in terms of parameters Qt and Bq.

Different configurations of input variables, including standard normalized
piezocone metrics and other available soil characteristics were investigated in
terms of the feasibility of effective NN training. Post-training regression ana-
lyzes were performed for numerical data allowing the assessment of impact of
specific input variables on the accuracy of parameter estimates. Some main con-
clusions related to NN training with the aid of numerical database were drawn
as follows:

• Consistent numerical database of piezocone measurements combined with
the NN technique allows different configurations of input variables and
the examination of their influence on the quality of predictions.

• NNs which contain only basic parameters derived from the penetration
test, i.e. Qt and Bq, provide a similar or somewhat better accuracy of
predictions than the empirical methods which employ average coefficients
of correlation. A significant improvement of accuracy can be achieved by
increasing the amount of information in the input vector.

• Auxiliary input components such as Ko, Fr and M , can significantly con-
tribute to the increase of quality of correlation and to the reduction of the
dispersal of predictions. Meaningful accuracy of predictions can often be
achieved based solely on the basic piezocone parameters complemented
with state variables such as Ko or eo. The NNs with the smallest possi-
ble number of additional parameters are recommended when applying the
method to real experimental data in order to avoid ”over-fitted” predic-
tions.

• Owing to the formulation of the MCC model, predictions with the use of
Fr as the input parameter, can be considered as reliable in the case of
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non-sensitive soils.

• The effect of partial drainage during penetration mostly affect the inter-
pretation of cu, OCR and Rp. In the case of parameters M , λ, κ or Ko,
errors for NN predictions are independent on drainage conditions.

• In general, NN predictors correctly detect patterns which were subject to
partial consolidation during penetration. In such cases, NNs exhibit sen-
sitivity to increasing Qt and correspondingly decreasing Bq and provide
the solutions which are free of drainage-induced errors.

• During NN training it was observed that the influence of NN topology (i.e.
number of hidden neurons and number of hidden layers) was insignificant
compared to the results obtained by an increasing amount of input infor-
mation (i.e. number of input components). In other words, different NN
topologies resulted in a very similar quality of predictions for the same
input configuration.

Finally, the developed NN models were applied to parameter profiling from
field measurements for a number of characterization clay sites: Bäckebol, Sk̊a-
Edeby, Port Huron, Amherst and Bothkennar. It was demonstrated that the
NNs trained based on a synthetic training database provide meaningful first-
order parameter predictions from piezocone data. In general, NNs have proved
to be particularly efficient in profiling parameters cu, OCR, Rp and Ko. Pre-
dicting deformation characteristics λ and κ can also be considered promising.
On the other hand, much uncertainty is associated with predictions of the ef-
fective strength parameter M . NNs applied together with empirical approaches
may thus reduce uncertainty related to the first-order interpretation of param-
eters. The following general conclusions summarize the analysis dealing with
the application of NNs to real experimental data:

• Satisfactory accuracy of Rp predictions can be achieved merely based on
Qt and Bq measurements. Such input configuration gives essentially sim-
ilar results to those generated using expanded input information.

• In general, NN predictions constitute the upper bound of cu and OCR
predictions with regards to laboratory measurements. However, it is dif-
ficult to unambiguously judge whether this is a derivative of unavoidable
disturbances associated with specimen sampling and field testing in undis-
turbed natural conditions, or a shortcoming of the semi-numerical model
taken as a generator of training patterns.

• The applied NNs networks confirmed the reduced ability to meaningfully
approximate outputs from inputs which are rarely or not represented in
the training dataset, e.g. high Qt and Bq, or low, sensitive soil-like Fr. In
the cases where Fr considerably contributes to NN predictions, NNs do
not provide reliable results for sensitive clays. It was particularly visible
in predictions of parameters Ko and M , for which sleeve friction resistance
can be an important factor affecting the magnitude of derived parameters.
However, this drawback can be removed by considering a constitutive law
for soil which accounts for structuration effects. Low relative importance
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of Fr in the case of NN models predicting cu or OCR affected parameter
estimates in a minor degree.

• Enforcing ”undrained” penetration conditions in the case of partially drained
penetration may result in higher estimates of parameters such as cu or
OCR.

• In the case of natural clays, the use of NNs with specified soil permeability
seems to be advantageous.

10.1.4 Summary of original contributions

The following part summarizes the original contributions of this study:

1. A development of NN inverse models based on numerically generated pop-
ulations of reference results representing in situ test measurements.

2. A constrained permutation of model parameters allowing the generation
of a numerical population of NN training data sets (Section 8.1.1 and
8.2.1).

3. Evaluation of the slope of a normal consolidation line, λ, using the varia-
tion of cavity strain radius which occurs during the pressure holding test
due to increasing effective radial stress accompanying the pore pressure
decay around the SBP membrane (Section 6.2.3).

4. Normalization of pore pressure and cavity strain measurements from SBPT
with respect to the mean effective stress, which allows removing depth ef-
fects (Section 8.1.3).

5. Prediction of the MCC parameters from SBPT measurements in complex
drainage conditions with the aid of NN models.

6. A suggested framework of parallel curve-fitting accounting for hydro-
mechanical coupling of SBPT measurements (Section 6.2.5).

7. An original parametric metamodeling of the CPTU test including different
definitions of undrained shear strength cu and the effect of Rp, an analysis
of strength anisotropy effect on cone factors and novel formulas for the
cone factor N∆u (Section 7.2.2.1).

8. An extended numerical analysis of drainage effects for the cone penetration
problem (Section 7.2.2.2) and a simplified approach for modeling the pene-
tration problem which consists of combining an analysis of frictional effects
in various drainage scenarios with measurements derived from ”smooth”
interface penetration (Section 7.2.2.3 and 7.2.3).

9. Parametric study of the influence of different input configurations on the
quality of parameter predictions by means of NN models from the CPTU
test.

10. Multi-parameter soil profiling for the MCC model using NN models and
CPTU measurements in various drainage scenarios.
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10.2 Outlook for future research

The study reveals several needs of further improvements, as well as fields of
possible developments.

As regards laboratory testing, the library of NNs for the hybrid parame-
ter identification (NN-GBO) can be expanded by further advanced constitutive
models for which parameter assessment is not straightforward (e.g. models
incorporating small strain stiffness or rotation of bounding surface). Such a li-
brary should also comprise inverse models designed for a variety of standardized
laboratory tests.

Further development paths may consist of extending the library of numeri-
cal models representing other commonly applied field tests such as Marchetti’s
dilatometer or cone (push-in) pressuremeter (e.g. Yu et al., 1996), also in coarse
type soils. In the case of DMT, its relevant FE modeling requires 3D discretiza-
tion of the probe geometry and should also include a pre-penetration mechanism.
As regards modeling of the cone pressuremeter test, a simulation of expansion
should be carried out deep enough so that measurements are not affected by
”immature” stress fields in overlain layers. The modeling of cone penetration
can also be extended by an analysis of thinly interbedded subsoil where par-
ticular layers vary in terms of relative stiffness. Such analysis could make it
possible to account for an influence of the material ahead and behind the cone
(cf. Lunne et al., 1997). Hence, in order to capture correct mechanical prop-
erties, NN input could also contain measurements from over- and underlying
layers.

However, an effective FE modeling of field tests requires some improvements
in numerical procedures which are essential in modeling of penetration prob-
lems. Therefore, a robust formulation of the mesh adaptivity (e.g. arbitrary
Lagrangian-Eulerian (ALE) technique) for coupled hydro-mechanical problems
including contact elements should be incorporated in order to efficiently cope
with severe mesh distortions (e.g. Nazem et al., 2008). The FE simulations
of the piezocone test in two-phase materials also demand the incorporation of
efficient stabilization algorithms which could cope with cone penetration into
stiffer materials than those presented in this study. Obviously, other numerical
methods can be used to model penetration problems such as the material point
method (MPM), also known as particle-in-cell (PIC) method which is a variant
of the FEM formulated in the ALE description of motion (Wie֒ckowski, 2004).

With the availability of robust mesh adaptivity, the presented model of the
piezocone penetration should be reanalyzed. Furthermore, in order to improve
the reliability of Bq measurements, the constitutive relationship should include
a small-strain formulation which could allow excess pore water pressure to be
generated yet before yielding. This is an important future when shear tests take
place in undrained conditions. In the context of reproducing high Bq observed
in natural sensitive and structured clays, the constitutive model should include
concepts which integrate bonding and destructuration effects (Gens and Nova,
1993). These concepts could also allow a reliable incorporation of parameter
Fr into the parameter identification for natural clays. Further improvements of
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the penetration model may concern incorporating a viscous formulation which
takes into account strain rate effects that affect cone measurements.

It could be also interesting to study the effect of partial soil saturation, also
in different drainage conditions.

Regarding the SBPT model, large scale simulations accounting for the pres-
suremeter membrane length/diameter ratio could be considered in order to avoid
geometry effects (e.g. Houlsby and Carter, 1993; Yu et al., 2005). Incorporat-
ing a viscous formulation could be also advantageous in order to obtain more
realistic numerical results corresponding to reference model properties.

Assuming that a constitutive model can reasonably represent real soil be-
havior, it could be also interesting to analyze a well monitored study case using
an FE model reflecting boundary conditions of a construction. Such a study
could reveal to what extent apparent parameters inferred by NNs from piezo-
cone data and applied to an FE model fit experimental measurements during
various stages of construction.

Finally, the developed methodologies, i.e. hybrid model calibration and NN-
based parameter predictors, can be used to develop commercial stand-alone
modules supporting the automated system identification for the existing FE
packages. In this context, some improvements can be foreseen such as an in-
creasing number of training patterns in order to ensure commercial efficiency of
predictions. Considering that NN modeling is characterized by inherent non-
uniqueness and so their approximations are not unique even for the same mod-
eled problem, the use of many NN models in the context of a specific inverse
problem could also be considered in order to ensure higher degree of confidence
for predicted properties. Furthermore, the use of a number of NN models, also
for different possible input configurations can provide a statistical evaluation of
predicted parameters. Thus obtained statistical features could be then used in
stochastic numerical analyzes for engineering study cases.
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holding tests. Géotechnique, 44(2):227–238. 8, 13, 69, 82, 85, 109, 203

Fischer, K., Sheng, D., and Abbo, A. (2007). Modeling of pile installation using contact
mechanics and quadratic elements. Computers and Geotechnics, 34(6):449–461. 116, 123

Flood, I. and Kartam, N. (1994a). Neural networks in civil engineering. I: principles and
understanding. J Comp Civ Engng, 8(2):131–147. 27, 30, 36, 38, 41, 42, 54

Flood, I. and Kartam, N. (1994b). Neural networks in civil engineering. II: systems and
application. J Comp Civ Eng, 8(2):149–161. 9

Fukagawa, R., Fahey, M., and Ohta, H. (1990). Effect of partial drainage on pressuremeter
test in clay. Soils and Foundations, 30(4):134–146. 13, 85

243



References

Garson, D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4):46–51.
42, 43

Gens, A., Ledesma, A., and Alonso, E. (1996). Estimation of parameters in geotechnical
backanalysis - II. application to a tunnel excavation problem. Computers and Geotechnics,
18(1):29–46. 111

Gens, A. and Nova, R. (1993). Conceptual bases for a constitutive model for bonded soils and
weak rocks. In Proc. 1st Int Symp on Geotech of Hard Soils-Soft Rocks, volume 1, pages
485–494, Athens. 237

Gevrey, M., Dimopoulos, I., and Lek, S. (2003). Review and comparison of methods to study
the contribution of variables in artificial neural network models. Ecological Modelling,
160(3):249–264. 42, 43

Ghaboussi, J. (2001). Biologically inspired soft-computing methods in structural mechanics
and engineering. Struct Engng and Mech, 11(5):485–502. 9, 10, 30

Ghaboussi, J., Garrett, J., and X., W. (1991). Knowledge-based modeling of material behavior
with neural networks. J Engng Mech, 117:132–151. 28

Ghaboussi, J., Pecknold, D., Zhang, M., and Haj-Ali, R. (1998). Autoprogressive training of
neural network constitutive models. Int J Numer Meth Engng, 42:105–126. 28

Ghaboussi, J. and Sidarta, D. (1998). New nested adaptive neural networks (NANN) for
constitutive modelling. Computers and Geotechnics, 22(1):29–52. 28, 38

Gibson, R. and Anderson, W. (1961). In-situ measurements of soil properties with the pres-
suremeter. Civ Engng Public Works Review, 56(658):615–618. 71, 75, 80

Gioda, G. and Sakurai, S. (1987). Back analysis procedure for the interpretation of field
measurements in geomechanics. Int J Numer Anal Meth Geomech, 11:555–583. 15, 17, 18

Goh, A. (1994). Seismic liquefaction potential assessed by neural networks. J Geotech Engng
ASCE, 120(9):1467–1480. 29, 43

Goh, A. (1995). Modeling soil correlations using neural networks. J Comp Civ Eng ASCE,
9(4):275. 29

Goh, A. (1996a). Neural-network modeling of CPT seismic liquefaction data. J Geotech Eng
ASCE, 122(1):70–73. 29

Goh, A. (1996b). Pile driving records reanalyzed using neural networks. J Geotech Eng ASCE,
122(6):492–495. 28

Goh, A. (2002). Probabilistic neural network for evaluating seismic liquefaction potential.
Can Geotech J, 39(1):219–232. 29

Goh, A. and Kulhawy, F. (2005). Reliability assesment of serviceability performance of braced
retaining walls using a neural network approach. Int J Numer Anal Meth in Geomech,
29(6):627–642. 24, 28

Goh, A., Kulhawy, F., and Chua, C. (2005). Bayesian neural network analysis of undrained
side resistance of drilled shafts. J Geotech Geoenv Engng ASCE, 131(1):84–93. 29

Goh, A., Wong, K., and Broms, B. (1995). Estimation of lateral wall movements in braced
excavations using neural networks. Can Geotech J, 32(6):1059–1064. 28, 30

244



References

Graham, J. (2006). The 2003 R.M. Hardy Lecture: Soil parameters for numerical analysis in
clay. Can Geotech J, 43:187–209. 1, 8, 12

Griffiths, D. (1982). Elasto-plastic analysis of deep foundations in cohesive soil. Int J Num
Anal Meth Geomech, 6:211–218. 90

Hagan, M., Demuth, H., and Beale, M. (1996). Neural network design. PWS Publishing
Company, Boston, MA. 40

Hanna, A., Morcous, G., and Helmy, M. (2004). Efficiency of pile groups installed in cohe-
sionless soil using artificial neural networks. Can Geotech J, 41(6):1241–1249. 28

Hanna, A., Ural, D., and Saygili, G. (2007). Evaluation of liquefaction potential of soil
deposits using artificial neural networks. Int J Computer-Aided Engineering and Software,
24(1):5–16. 30

Hashash, Y., Jung, S., and Ghaboussi, J. (2004). Numerical implementation of a neural
network based material model in finite element analysis. Int J Numer Meth Engng, 59:989–
1005. 28

Hashash, Y., Marulanda, C., Ghaboussi, J., and Jung, S. (2003). Systematic update of a deep
excavation model using field performance data. Computers and Geotechnics, 30(6):477–488.
28, 30

Haykin, S. (1999). Neural Networks. A Comprehensive foundation. Prentice Hall, Upper
Saddle River, New Jersey, 2nd edition. 24, 27, 37, 40, 56

Hicher, P. and Michali, A. (1996). Identfying soil parameters by means of laboratory and in
situ testing. Computers and Geotechnics, 19(2):153–170. 111
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Hight, D., Bond, A., and Legge, J. (1992b). Characterization of the Bothkennar clay: an
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Appendix A

Modified Gauss-Newton
Algorithm

In this study, model calibrations have been carried out using Modified Gauss-Newton
minimization algorithm (Cooley and Naff, 1990; Hill, 1998). This method is an it-
erative type of standard linear regression and, therefore, the use of the scaling pa-
rameter and the Marquardt parameter is necessary. For the purpose of this study,
the algorithm has been coupled with the Z Soil v6 FEM code during the parameter
optimization process in order to improve the quality of identified parameters for self-
boring pressuremeter tests. In the following, the main elements of the algorithm are
presented.

Weighted least-squares objective function

The problem of calibration is defined as follows: minimize the difference between the
vector of experimental measurements y and the computed predictions y’(b). The
latter is a response of the model with a given set of parameters b, representing the
real system. The objective function is a measure of the fit between simulated values
and the observations that are being matched by the regression. The formal expression
of the objective function is:

S (b) =
1

t1 − t0

∫ t1

t0

∥∥y(t) − y′(b, t)
∥∥dt (A.1)

where:

‖. . .‖, is a norm in the space of the observable variables,

(t1 − t0), is the length of observation,

b, is a vector containing values of each of the NP parameters being estimated,

y(t) − y′(b, t), represents the difference between experimental results and cal-
culated values which is a function of b and corresponds to the observations.

While measurements are taken in discrete points, then the integral can be expressed
as the weighted least-squares error (Equation (A.2)) for the finite number of ob-
servations, and so y(t) and y′(b, t) become vectors containing the ND number of
measurements.
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S (b) = [y − y’(b)]T · ω · [y − y’(b)] = eT · ω · e (A.2)

where:

ω, is a diagonal weighting matrix, introduced to transform the observable vari-
ables into dimensionless quantities, wherein the weight of every observation is
taken as the inverse of its error variance,

e, is a vector of residuals.

Normal Equations

The Quasi-Newton optimization procedure combines two minimization algorithms:
the steepest decent method at the very beginning1 is to improve initial estimates of
parameters, while the modified Gauss-Newton method is to accelerate convergence of
the minimization performance. Figure A.1 presents a detailed flowchart of the algo-
rithm which is described below. As a regression is nonlinear, the values of parameters
that minimize the objective function are calculated and updated in the sequence of
iterations using linear equations (A.3) and (A.4). The gradient of update in each
iteration is computed by solving the following system of equations:

(CTXT
r ωXrC + I ·mr)C−1 · dr = CTXT

r ω(y − y’(br)) (A.3)

br+1 = ρr · dr + br (A.4)

where:

dr, is the vector which updates the parameter estimates br and the number of
its elements is equal to the number of estimated parameters,

r, subscript denotes the number of consecutive iteration,

Xr, is a sensitivity matrix evaluated at parameter estimates br, with elements
equal: Xij = ∂yi/∂bj , i, j = 1,NP, NP denotes the number of parameters,and
calculated using, for instance, forward differences,

XT
r ωXr, is a symmetric, square matrix of dimension equal to the number of

parameters,

Cr is a diagonal scaling matrix with element cjj equal to: cjj = (XT ·ω ·X)
−1/2
jj

I is an identity matrix,

mr, is the Marquardt parameter,

ρr, is a scaling parameter.

1Marquardt parameter is initially set to 0.
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Figure A.1: Detailed flowchart of the Modified Gauss-Newton optimization algo-
rithm.
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Marquardt parameter

The Marquardt parameter is used to accelerate the convergence of the nonlinear re-
gression in the final stages of the iteration (Marquardt, 1963). Initially this parameter
is set equal to mr = 0 and rises with each, consecutive iteration in which the vector
dr defines parameter changes that are unlikely to reduce the value of the objective
function (Cooley and Naff, 1990; Hill, 1998). Its new value is calculated, until the
condition of the convergence is no longer met, using equation:

mr+1 = 1.5mr + 0.001 (A.5)

Scaling parameter

The scaling parameter is used ensure that the absolute values of fractional parameter
value changes are less than user-specified value of maximal percentage change dmax:

max

∣∣∣∣
br+1
j − brj
brj

∣∣∣∣ = max

∣∣∣∣
dr

j

brj

∣∣∣∣ < dmax; j = 1,NP (A.6)

where:

brj , is the jth element of vector br, at estimation r,

br+1
j , is calculated from Equation (A.4) with ρr = 1.0.

In the case that the parameter bj is log-transformed (bj = ln(x)), the fractional change

of parameter becomes
[
exp(br+1

j ) − exp(brj)
]
/ exp(brj) = exp(dr

j) − 1. If the largest

absolute value of the NP values is bigger than dmax, then ρr is calculated as:

ρr =
dmax

|dr
i | / |bri |

(A.7)

where the ith parameter is the parameter for which Equation (A.6) has the largest
value; otherwise is calculated with ρr = 1.0. In the case of a log-transformed param-
eter, ρr is determined as:

ρr =
dmax

|exp(dr
i ) − 1| (A.8)

however, if and dmax < 1.0 then ρ = 1.0. The scaling parameter is a scalar so the
gradient of the vector dr is preserved. Maximal percentage change dmax is typically
assigned between 1.0 and 2.0. The value 1.0 reduces excessive parameter value oscil-
lations (Hill, 1998) whereas values less than zero do not prohibit values from changing
sign because b0i replaces bri when calculating ρr if |bri | <

∣∣b0i
∣∣ /103 as discussed below.

Moreover, the scaling parameter is introduced to avoid an oscillation that can oc-
cur when the i-th element with the smallest ρr in iteration r is defined by the opposite
directions of di (Cooley, 1993). Thus, if the following condition is not satisfied:





r > 0
ir = ir−1

−0.7 ≤ dr−1
i

dr
i

≤ −1.3

(A.9)
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oscillations are minimized using the scaling parameter which is calculated according
Cooley and Naff (1990); Hill (1998) as follows:

DMXr =
dr

i

|bri |
(A.10)

Then, if the following condition is executed r > 0 and jr = jr−1, where jr is the
parameter with the smallest ρr in iteration r, the parameter s is calculated from:

s =
DMXr

ρr−1 · DMXr−1
(A.11)

And depending on the value of s, a preliminary scaling parameter ρ∗r is calculated.

ρ∗r =





3 + s
3 + |s| if s ≥ −1

1
2 |s| if s < −1

(A.12)

When the scaling parameter is finally established, the updates for the parameters
are assigned according the Equation (A.4). Sometimes, it is useful to improve param-
eters increasing when they are calculated near zero, |bri | <

∣∣b0i
∣∣ /103, by substituting

b0i in the place of bri .

Convergence criteria

The performance of the optimization algorithm is terminated when one of two con-
vergence conditions is achieved:

1. The weighted least-squares objective function S(b) changes less than user-
defined amount εII = ∆S(b)min for three sequential iterations.

2. The largest and absolute change of the parameter is less than the percentage
of the value of the parameter at the previous iteration. It is suggested that
the optimization is well done with the percentage value no larger than 1%
(εII ≤ 0.01).

Efficiency and convergence test of algorithm

Numerical methods of optimization are standardly tested on benchmark problems.
The efficiency, stability and convergence of algorithms can be verified by special
mathematical functions for which the minimization should be effectively achieved
(Medynski, 2003). The convergence and stability of the implemented Gauss-Newton
algorithm was performed on four functions with known vectors containing arguments
for which these functions reach the minimum. The following test functions were used
to check the algorithm:

1. Rosenbrock’s function - the minimum of the function is reached at the point
x∗ = (1, 1) and f(x∗) = (0); initial vector x0 = (−1.2, 1.0),

f(x1, x2) = 100(x2 − x2
1)2 + (1 − x1)2 (A.13)
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2. Fletcher - Powell’s function - the minimum of the function is reached at the
point x∗ = (1, 0, 0) and f(x∗) = (0); initial vector x0 = (−1, 0, 0),

f(x1, x2) = 100

{
[x3 − 5θ(x1, x2)]2 +

[√
x2

1 + x2
2 − 1

]2
}

+ x2
3 (A.14a)

θ(x1, x2) =





1
π arctan

(
x2
x1

)
if x1 > 0

1 + 1
π arctan

(
x2
x1

)
if x1 < 0

(A.14b)

3. Powell’s function - the minimum of the function is reached at the point x∗ =
(0, 0, 0, 0) and f(x∗) = (0); initial vector x0 = (3,−1, 0, 1),

f(x1, x2, x3, x4) = (x1+10x2)2+5(x3−x4)2+(x2−2x3)4+10(x1−x4)4 (A.15)

4. Wood’s function the minimum of the function is reached at the point x∗ =
(1, 1, 1, 1) and f(x∗) = (0); initial vector x0 = (0.2,−1.2, 4,−3),

f(x1, x2, x3, x4) = 100(x2 − x2
1)2 + (1 − x1)2 + 90(x4 − x2

3)2+
+(1 − x3)2 + 10.1

{
(x2 − 1)2 + (x4 − 1)2

}
+

+19.8(x2 − 1)(x4 − 1)
(A.16)

In order to check the efficiency of the optimization code, the results from first
three verification tests are compared with the results from tests performed by Ou and
Tang (1994). In their work two algorithms were employed: the conjugate method of
Fletcher and Reeves to find the direction of the minimum value, and Powell’s quadratic
interpolation method to determine the optimum scaling parameter. Figures A.2, A.3,
A.4 and A.5 present the comparisons of optimization records for four functions using
the Modified Gauss-Newton algorithm and the conjugate algorithm. It can be seen
that the Modified Gauss-Newton and the conjugate method algorithm converge in
the analogous number of iterations for Rosenbrock’s and Powell’s function, whereas
in the case of the Fletcher-Powell’s function the first algorithm is six times faster.
An additional test on the Wood’s function with some local minimums confirms the
stability of the algorithm. On the basis of the above benchmark tests, the effectiveness
and convergence of the implemented Modified Gauss-Newton optimization code have
been verified.

262



APPENDIX A. MODIFIED GAUSS-NEWTON ALGORITHM

0 2 4 6 8
−2

−1

0

1

2

3

Consecutive iterations
V

al
ue

 o
f x

 

 

0 2 4 6 8
0

5

10

15

20

25

Consecutive iterations

S
(b

) 
 O

bj
ec

tiv
e 

fu
nc

tio
n

x
1

x
2

(a) Modified Gauss-Newton

0 2 4 6 8
−2

−1

0

1

2

3

Consecutive iterations

V
al

ue
 o

f x

 

 

x
1

x
2

0 2 4 6 8
0

5

10

15

20

25

Consecutive iterations

S
(b

) 
 O

bj
ec

tiv
e 

fu
nc

tio
n

(b) Conjugate algorithm

Figure A.2: Minimization of the Rosenbrock’s function.
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Figure A.3: Minimization of the Powell’s function.
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Figure A.4: Minimization of the Fletcher-Powell’s function.
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gorithm.
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Appendix B

Material Data for Numerical
Simulations

Table B.1: Reference parameters for numerical model of SBPT used for parametric
study in Section 7.1.1.

Parameter Symbol Value

Poisson’s ratio ν 0.32
Slope of primary consolidation λ 0.1
Slope of secondary consolidation κ 0.05
Preconsolidation pressure pco 200 kPa
Slope of critical state line M 1.0
Coefficient of earth pressure ’at rest’ Ko 1.0
Overconsolidation ratio Rp 2.0
Initial void ratio eo 1.0
Degree of saturation S 1.0
Fluid bulk modulus Kf 2.2 GPa
Unit weight of water γf 10 kN/m3

Cavity strain rate ε̇c 1.0 %/min

Table B.2: Reference model parameters (Ir = 25) adopted in the analysis of the cone
penetration model in Section 7.2.2.

Parameter Symbol Value

Poisson’s ratio ν 0.3
Initial voids ratio eo 1.0
Coefficient of earth pressure ’at rest’ Ko 1.0* kPa
Initial effective vertical stress σ′

vo 100* kPa
Initial total vertical stress σvo 100* kPa
Initial mean effective stress p′o 100 kPa
Slope of unloading-reloading curve κ 0.1**
Plastic strain ratio Λ 0.75
Overconsolidation ratio Rp 1.5**
Slope of critical state line M 1.0
Strength anisotropy ratio (= Me/Mc) ka 0.78
Soil unit weight γ 0.0 kN/m3

Fluid bulk modulus Kf 2.2e6 kPa
Unit weight of water γf 10 kN/m3

* adjustable to various initial stress anisotropy parameters ∆
** adjustable to various rigidity index Ir
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Rp versus OCR in the MCC

q
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pco p'

Konc line

p'o p'nc
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in

g
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Figure C.1: Definition of initial preconsolidation pressure pco and overconsolidation
ratio Rp in terms of the mean effective stress.

In the MCC, the overconsolidation ratio is defined as Rp = pco/p
′
o . The re-

lationship between Rp and OCR can be established using expression for the plastic
surface of the MCC (Figure C.1). The virgin loading during formation of the deposit
expands the yield surface due to the plastic straining and reaches the point A. This
point corresponds to the maximum vertical effective pressure acting on the soil, σ′vnc

so the effective stress at this point can be derived in the following form:

p′nc = 1
3σ

′
vnc(1 + 2Konc) and qnc = σ′vnc(1 −Konc) (C.1)

By introducing p′nc and qnc into the equation of the yield surface (Equation (4.1)):

σ′2vnc(1 −Konc)
2

1
3σ

′
vo(1 + 2Ko)

−M2 1

3
σ′vnc(1 + 2Konc)(Rp −

p′nc

p′o
) = 0 (C.2)

and defining OCR = σ′vnc/σ
′
vo:

9OCR(1 −Konc)
2

M2(1 + 2Ko)(1 + 2Konc)
−
(
Rp −

p′nc

p′o

)
= 0 (C.3)

the relationship between Rp and OCR can be written as:

Rp = OCR
9(1 −Konc)

2 +M2(1 + 2Konc)
2

M2(1 + 2Ko)(1 + 2Konc)
(C.4)
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Appendix D

Pattern Generation for CPTU

The scheme presents an algorithm for generation of parameter permutations used in
numerical generation of training patterns for CPTU test (see Section 8.2.2). Param-
eter intervals are provided in Table 8.5.

SEQUENCE FOR GENERATIONOF PARAMETER PERMUTATIONS

Konc = f(M,β2)
β2

normal

Rp = f(M, OCR, 

Konc , Ko)
cu = f(M , Rp , Λ)

κ
exponential

Λ  
uniform

λ  = f(κ, Λ)

eo

uniform

G = f(κ, ν, eo , p'o)

p'o
constant

σ’vo = f(p'o, Ko)

σ’ho = f(p'o, Ko)

ν  

constant

IR = f(G, cu )

Plastic Radius 

and

Mesh Size 

Initial

conditions 

MCC model

parameters

Hydraulic 

parameters

ln(k)

uniform

Interface 

parameter

OCR

uniform

tanφi = 0

smooth 

interface

Ko = 

f(OCR,Konc,β1)

β1

normal

M

uniform

10<Ir <110
YES 

NO

DRAW ANOTHER PERMUTATION 

G/p'o< 70
NO

YES 

FE MODEL

INPUT DATA

Figure D.1: Algorithm for generation of parameter permutations used in training
pattern generation.
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Appendix E

GUI for CPTU Data

This appendix demonstrates a graphical user interface (GUI) designed for parameter
prediction from CPTU data according to the flowchart presented in Figure 8.16. Two
modules simplify the process of input data treatment, selection of a suitable neural
network, its activation, as well as a dynamic upgrade of existing database of trained
NNs.

Figure E.1: Graphical user interface for treatment of available CPTU input data,
selecting neural networks and activating a suitable neural network.

271



Appendix E

Figure E.2: Graphical user interface for NN training based on collected CPTU data
and other available information.
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Appendix F

NN Training for CPTU Data

The appendix provides supplementary results of post-training analyzes presented in
Section 8.2.5.
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Figure F.1: Comparison of predictions and absolute relative errors for cu derived from
the empirical method and the neural networks. Post-training analysis for
71 numerical patterns previously unknown to the trained neural network.
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Figure F.2: Comparison of predictions and absolute relative errors for cu derived from
the empirical method and the neural networks. Post-training analysis for
71 numerical patterns previously unknown to the trained neural network.
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Figure F.3: Comparison of predictions and absolute relative errors for parameter M
derived from the NTNU method (Equation (6.44)) and neural networks.
Post-training analysis for 71 numerical patterns previously unknown to
the trained neural network.
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Figure F.4: Comparison of predictions and absolute relative errors for parameter
OCR derived from the empirical methods and neural networks. Post-
training analysis for 71 numerical patterns previously unknown to the
trained neural network.
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Figure F.5: Comparison of predictions and absolute relative errors for parameter
OCR derived from the empirical methods and neural networks. Post-
training analysis for 71 numerical patterns previously unknown to the
trained neural network.
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Figure F.6: Comparison of predictions and absolute relative errors for parameter Rp

derived from the empirical methods and neural networks. Post-training
analysis for 71 numerical patterns previously unknown to the trained
neural network.
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Figure F.7: Comparison of predictions and absolute relative errors for parameter Ko

derived from the empirical method (Equation (6.53)) and neural net-
works. Post-training analysis for 71 numerical patterns previously un-
known to the trained neural network.
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Figure F.8: Comparison of predictions and absolute relative errors for parameter λ
derived from the empirical method and neural networks. Post-training
analysis for 71 numerical patterns previously unknown to the trained
neural network.
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Figure F.9: Comparison of predictions and absolute relative errors for parameter κ
derived from the empirical method and neural networks. Post-training
analysis for 71 numerical patterns previously unknown to the trained
neural network.

280



Appendix G

Material Data

G.1 Database of discrete piezocone results from

clay sites

This appendix provides results from piezocone tests in normally- and lightly overcon-
solidated clays used in 8.2 to perform regression analysis for trained neural networks.
The results for 49 characterization sites were selected from the extensive database
compiled in Chen and Mayne (1994). Each of 141 data points which corresponds
to a given testing depth, contains the values of overconsolidation ratio obtained by
oedometer tests (OCR = σ′c/σ

′
vo) and the piezocone measurements: corrected cone

tip resistance qt and the pore pressure measured behind the tip u2
1. The database

also provides the values of the in situ total and effective vertical stresses, σvo and
σ′vo which are necessary to normalize cone measurements. Additional information for
tested soils was compiled by the author from available sources. This data includes
the values of slope of critical state line M obtained through the laboratory tests
and estimations of Ko. Some of M values were directly found in Chen and Mayne
(1994), others in the source publications (refer to the footnotes). As regards Ko, the
estimates were collected from either reference sources or estimated through current
interpretation methods (refer to the footnotes).

1Chen and Mayne (1994) provided also measurements of u1 which were used in certain
cases to estimate Ko by means of formula Ko = 0.11(u1−u2)/σ′

vo+0.5 (Sully and Campanella,
1991).
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Table G.1: Database of piezocone results from clay sites extracted from Chen and
Mayne (1994).

Soil Clay Data OCR σvo σ′

vo qt u2 M Ko

Site Type Point OED (kPa) (kPa) (kPa) (kPa) (-) (-)

Alex Fraser Bridge silt 1 1.38 740 362 1855 810
Arnprior intact 2 1.60 180 80 594 459
Arnprior intact 3 1.60 252 112 824 608
Arnprior intact 4 1.60 324 144 946 702

Bakklandet intact 5 3.30 91.8 82 616 470 0.584

Bakklandet intact 6 1.90 326.5 199 920 728 0.554

Bakklandet intact 7 1.80 406 238 1096 905 0.554

Baton Rouge fissured 8 4.00 524.5 290 3123 31 1.13 1.354

Baton Rouge fissured 9 3.40 620.5 336 3453 1281 1.13 0.854

Boston Blue Clay intact 10 2.96 214.7 102.8 680 394 1.062 0.903

Boston Blue Clay intact 11 1.98 304.7 141.7 1013 688 1.06 0.733

Boston Blue Clay intact 12 1.48 352.6 162.5 1080 798 1.06 0.633

Boston Blue Clay intact 13 1.37 521.2 235.5 1401 1013 1.06 0.603

Boston Blue Clay intact 14 1.29 521.9 235.8 1401 1013 1.06 0.593

Boston Blue Clay 2 intact 15 3.40 233 104 895 554 1.06 0.953

Boston Blue Clay 2 intact 16 2.20 320 150 1078 714 1.06 0.753

Boston Blue Clay 2 intact 17 1.60 372 173 1036 767 1.06 0.653

Boston Blue Clay 2 intact 18 1.40 425 196 1074 774 1.06 0.613

Boston Blue Clay 2 intact 19 1.20 476 217 1226 844 1.06 0.563

Bothkennar intact 20 3.54 41.4 30 295 127
Charles City County intact 21 2.95 383.2 203.2 2873 1394
Colebrook Road intact 22 1.59 94 52 353 64
Colebrook Road intact 23 1.19 212 117 592 299
Colebrook Road intact 24 1.10 268 120 640 340
Colebrook Road intact 25 1.00 326 145 698 461

Cowden fissured 26 2.80 387 227 2366 472 0.954

Drammen silty clay 27 1.50 122 65 405 280 1.232 0.683,4

Drammen silty clay 28 1.50 157 80 462 345 1.23 0.683,6

Drammen silty clay 29 1.20 229 113 563 405 1.23 0.563,5

Drammen silty clay 30 1.20 178 91 521 303 1.23 0.563,5

Drammen 2 silty clay 31 1.53 140 73 473 263 1.23 0.683,3

Drammen 2 silty clay 32 1.48 105 58 384 197 1.23 0.683,3

Drammen 2 silty clay 33 1.33 208 102 494 310 1.23 0.605

Drammen 2 silty clay 34 1.08 288 143 631 463 1.23 0.545

Drammen 2 silty clay 35 1.17 320 155 755 531 1.23 0.565

Eberg intact 36 2.78 55 40 230 183
Eberg intact 37 2.19 87 52 319 200
Emmerstad quick clay 38 3.90 107 73 370 200

Emmerstad quick clay 39 2.40 163 108 450 325 1.61 0.626

Emmerstad quick clay 40 1.90 221 144 460 350 1.61 0.556

Emmerstad quick clay 41 1.50 278 179 475 390 0.546

Emmerstad 2 quick clay 42 3.29 69.3 35 350 115
Emmerstad 2 quick clay 43 2.84 93.6 45 430 185
Emmerstad 2 quick clay 44 2.50 120.7 52 500 255
Fort Road intact 45 1.60 260 126.6 814 448
Fort Road intact 46 1.28 420 185.5 1050 700
Glava intact silt 47 4.10 200 105 852 581

Glava intact silt 48 2.60 333 168 1050 799 1.19 0.624

Gloucester aged NC leda 49 3.22 21 21 475 8 1.116 0.935

Gloucester aged NC leda 50 2.68 74 39 517 254 1.11 0.855

Grangemouth soft alluv. 51 3.00 32 32 365 136 1.427 0.904

Grangemouth soft alluv. 52 1.43 112 63 417 249 1.42 0.624

Haga 2 marine 53 4.00 88 88 1045 662 1.21 1.298

Haga 2 marine 54 2.20 118 118 885 654 1.21 0.828

Haga 2 marine 55 2.00 135 135 924 735 1.21 0.768

Halsen silt 56 2.00 190 100 673 225 0.678

Hamilton AFB buy mud 57 3.03 39.5 36.8 350 -30 1.20 0.919

Hamilton AFB buy mud 58 1.43 88.5 52.5 310 43 1.20

Hamilton AFB buy mud 59 1.22 159.5 75.5 367 233 1.20 0.709

Hamilton AFB buy mud 60 1.54 221.1 95.4 510 360 1.20 0.759

Inchinnan intact 61 1.52 133 84 355 219
Inchinnan intact 62 1.27 171 102 445 283
Keelung River intact 63 2.74 135 63 314 86
Keelung River intact 64 1.43 211 98 607 288
Keelung River intact 65 1.72 213 99 540 247
Kobe City 1 intact 66 1.00 94 42 113 66
Kobe City 1 intact 67 1.00 161 72 299 141
Kringalik Plateau fisured 68 4.30 531 126 1485 248

2Mayne and Kulhawy (1982)
3Mayne and Kulhawy (1988)
4Estimated using Sully and Campanella (1991) formula
5Estimated using Ko = 0.515OCR0.508 (Mayne and Kulhawy, 1988)
6Konrad and Law (1987)
7Mayne (1991)
8Estimated using Ko = 0.44OCR0.77 (Mayne and Kulhawy, 1988)
9Masood and Mitchell (1993)
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Table G.1 – Continued

Soil Clay Data OCR σvo σ′

vo qt u2 M Ko

Site Type Point OED (kPa) (kPa) (kPa) (kPa) (-) (-)

Kringalik Plateau fisured 69 2.70 686 206 2054 857
Kringalik Plateau fisured 70 2.50 813 271 2483 679

Lierstranda intact 71 2.50 90 60 294 227 0.839

Lierstranda intact 72 2.50 163 93 724 367 0.469

Lierstranda intact 73 1.75 236 126 851 524 0.729

Lierstranda intact 74 1.10 318 158 872 605 0.519

Lierstranda intact 75 1.00 391 191 982 699 0.499

Louiseville aged NC leda 76 3.32 32.3 26 204 60
Louiseville aged NC leda 77 1.90 180 90 671 492
Louiseville aged NC leda 78 1.60 324 154 1047 712
Lower 232nd ST. clay silt 79 3.27 86.5 36.5 502 254
Lower 232nd ST. clay silt 80 1.00 352 147 824 643

Munkedal intact 81 2.27 78 46 570 331 0.624

Munkedal intact 82 1.15 311 161 826 598 0.644

Munkedal intact 83 1.12 384 259 958 716 0.544

Museum Park intact 84 1.30 327 147 875 509
Museum Park intact 85 1.00 381 171 862 618
Museum Park intact 86 1.00 436 196 1073 796

Norco intact 87 1.18 162.5 84 255 190 1.04 0.534

Norco intact 88 1.03 238.7 119 470 296 1.11 0.534

Norco intact 89 1.60 530.7 256 1153 680 1.10 0.534

Norco intact 90 1.58 623.6 295 1145 784 1.10 0.534

Norkfolk Road intact 91 1.66 97 69 253 132 1.05 0.675

Norkfolk Road intact 92 1.60 162 102 413 182 1.10 0.655

Norkfolk Road intact 93 1.40 444 244 933 647 1.15 0.615

Norrkoping intact 94 1.51 185 80 470 318 1.29 0.594

North Sea GC marine 95 2.50 68 34 295 175 1.46 0.825

North Sea GC marine 96 2.18 114 57 444 265 1.46 0.775

North Sea GC marine 97 2.55 148 74 544 318 1.46 0.835

North Sea S intact 98 1.40 922 410 2502 1427 1.46 0.624

NRCC leda 99 2.84 160 72 827 526
NRCC leda 100 2.26 208 90 993 614

Onsoy 2 marine 101 1.20 404 164 1020 730 1.37 0.749

Ottawa STP leda 102 4.07 114 77 1276 821
Ottawa STP leda 103 3.29 212.5 124 1660 1083
Ottawa STP leda 104 3.17 297.7 164 1843 1205
Pontida intact 105 3.60 142.5 80.7 705 420
Pontida intact 106 2.95 256.5 135.8 859 550
Pontida intact 107 2.95 389.5 200.2 2018 1600
Port Huron intact 108 3.80 33 28 890 -3
Port Huron intact 109 2.56 170 112.7 1077 278
Port Huron intact 110 2.15 287.2 170.1 1188 444
Port Huron intact 111 2.40 433.8 241.9 1779 754
Port Huron intact 112 2.27 527.5 287.9 2365 846

Porto Tolle intact 113 2.39 231.2 118.4 672 227 0.6910

Porto Tolle intact 114 1.47 426.7 210.3 1163 515 0.4510

Porto Tolle intact 115 1.26 490 240 1387 560 10

Prince George Coun intact 116 2.50 91.5 72 700 19
Prince George Coun intact 117 1.58 176 111 700 107
Singapore intact 118 2.05 306 131 969 562
Singapore intact 119 1.75 506 231 1276 812

St. Alban leda 120 2.85 22.9 14.6 190 88 1.1612 0.633,4

St. Alban leda 121 2.69 25.3 15.4 182 87 1.16 0.633,4

St. Alban leda 122 2.12 48 23.1 276 121 1.16 0.553,4

St. Alban leda 123 2.13 60.8 27.4 321 155 0.543,4

St. Alban leda 124 2.12 92.1 37.9 406 229 1.16 0.5563,4

St. Alban leda 125 2.51 111.1 44.3 512 302 1.16 0.533,4

Strong Pit clay silt 126 3.90 122 122 2170 1200 0.954

Tiller intact 127 3.30 126 81 524 158
Tiller intact 128 2.62 316 171 1246 928

Tokyo intact 129 3.08 51 51 401 189 0.703

Tokyo intact 130 1.88 119 99 563 218 0.553

Tokyo intact 131 1.50 255 155 921 434 0.473

Tongji intact 132 1.50 298 140 873 461
Tongji intact 133 1.50 320 152 861 466
Tongji intact 134 1.50 333 155 1002 544

Troll East, Area 2 intact 135 1.50 127.3 48.8 347 239 1.24 0.704

Troll East, Area 2 intact 136 1.40 206.7 79.1 552 417 1.24 0.614

Troll East, Area 2 intact 137 1.30 323 126.8 884 587 1.24 0.604

Upper 232nd St. silty NC 138 1.00 144 94 254 194 1.30 0.504

Valoya intact 139 2.64 380 215 1679 1007 1.07 0.694

Vancouver intact 140 1.60 348 178 960 522 0.614

Vancouver intact 141 1.50 441 221 1150 675 0.613

10Jamiolkowski et al. (1985)
12Demers and Leroueil (2002)
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G.2 Database of continuous CPTU results from

clay sites
This appendix provides profiles of continuous piezocone data from Bäckebol, Sk̊a-
Edeby, Amhrest and Bothkennar sites. The charts include stress profiles of soils, as
well as the smoothed and normalized cone measurements Qt, Bq and Fr. The proce-
dure of smoothing was performed on raw measurements of qt, u2 and fs respectively.
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Figure G.1: Stress soil profile and normalized smoothed results from piezocone tests
at Bäckebol site (based on Larsson and Mulabdić, 1991).

284



APPENDIX G. MATERIAL DATA

0 50 100 1500

4

8

12

Stress [kPa]
de

pt
h 

[m
]

 

 

σ´
vo

u
o

0 1 2

K
o

 

 

from σ´
ho

CPT best fit 0.13Q
t

0 10 20

Q
t

0 0.4 0.8

B
q

0 50 100 1500

4

8

12

Stress [kPa]
de

pt
h 

[m
]

 

 

σ´
vo

u
o

0 1 2

K
o

 

 

from σ´
ho

CPT best fit 0.13Q
t

0 10 20

Q
t

0 0.4 0.8

B
q

0 50 100 1500

4

8

12

Stress [kPa]
de

pt
h 

[m
]

 

 

σ´
vo

u
o

0 1 2

K
o

 

 

from σ´
ho

CPT best fit 0.13Q
t

0 10 20

Q
t

0 0.4 0.8

B
q

0 1 2 3 4

F
r
 [%]

Figure G.2: Stress soil profile and normalized smoothed results from piezocone tests
at Sk̊a-Edeby site (based on Larsson and Mulabdić, 1991).
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Figure G.3: Stress soil profile and normalized smoothed results from piezocone tests
at Amhrest site (based on DeGroot and Lutenegger, 2003).
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Figure G.4: Profiles of voids ratio, in situ stress and normalized smoothed results
from piezocone tests at Bothkennar site (based on Nash et al., 1992a,b).
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