
ReSim, a Trace-Driven, Reconfigurable ILP Processor Simulator

Sotiria Fytraki †‡, Dionisios Pnevmatikatos†,1
† Department of Electronic and Computer Engineering,

Technical University of Crete,
Chania, GR 73100, Greece

pnevmati@mhl.tuc.gr

‡ Parallel Systems Architecture Lab (PARSA)
Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
sotiria.fytraki@epfl.ch

Abstract — Modern processors are becoming more complex

and as features and application size increase, their evaluation
is becoming more time-consuming. To date, design space
exploration relies on extensive use of software simulation that
when highly accurate is slow.

In this paper we propose ReSim, a parameterizable ILP
processor simulation acceleration engine based on
reconfigurable hardware. We describe ReSim’s trace-driven
microarchitecture that allows us to simulate the operation of a
complex ILP processor in a cycle serial fashion, aiming to
simplify implementation complexity and to boost operating
frequency. Being trace driven, ReSim can simulate timing in an
almost ISA independent fashion, and supports all SimpleScalar
ISAs, i.e. PISA, Alpha, etc.

We implemented ReSim for the latest Xilinx devices. In our
experiments with a 4-way superscalar processor ReSim
achieves a simulation throughput of up to 28MIPS, and offers
more than a factor of 5x improvement over the best reported
ILP processor hardware simulators.

I. INTRODUCTION
Modern processors are becoming more complex and as
features and application size increase, their evaluation is
becoming more time-consuming. Chip-multi-processors
exacerbate this problem requiring the simultaneous
simulation of tens or hundreds of cores, an intensive task no
matter how simple the individual cores are. To accelerate
the design process and increase their understanding in
properties of modern processors, architects and systems
designers rely on simulation tools - traditionally in software.
Important characteristics of simulation models are flexibility
and detail and of course performance, i.e. simulation speed.
However these are conflicting goals and it is difficult to
achieve all these characteristics simultaneously in one
simulator.

Simulators can be categorized according to several
attributes. Functional simulators are faster and just execute a
program and collect simple statistics such as number of
instructions, etc, but do not offer any timing information. On
the other hand, timing simulators implement detailed models
of processor’s microarchitecture and their execution speed is
much slower compared to that of functional simulators: on a
2.4GHz Xeon workstation SimpleScalar out-of-order timing
simulator can simulate a set of SPEC CPU2000 benchmarks
[13] at a speed of about 300K instructions per second.

In this paper we focus on improving the speed of ILP
processor simulation. We propose ReSim, a cycle-accurate,
trace-driven timing simulation engine, aimed to accelerate

timing-simulation of a high-performance, modern out-of-
order processors supporting speculative execution. We
structure ReSim in a manner similar to SimpleScalar, and
actually can use the functional simulator of the SimpleScalar
tool set for trace generation. Since ReSim is trace-driven, it
does not execute instructions, it merely simulates their
timing. This way it requires significantly fewer resources,
and executes faster. To achieve good operating frequency
and facilitate future extensibility, we pipeline our simulator
implementation, defining a major cycle that corresponds to
the simulated cycle, and minor cycles in which ReSim itself
is pipelined. The simulated processor (micro-) architectural
semantics are enforced only between major cycles. ReSim
for a 4-way out-of-order simulated processor fits easily in a
small Xilinx FPGA device, and sustains a simulation
throughput of about 23 MIPS, outperforming by more than a
factor of 5 all reported, state-of-the-art hardware simulators.

ReSim can be used with traces that are prepared off-line
(for example for bulk simulations with varying design
parameters), or can be used in combination with a fast
functional software simulator to efficiently add the timing
information on the fly, much like the FAST approach [3].

In the following two sections we first discuss related
works, and then we present the ReSim simulator overview.
Section 4 analyzes ReSim’s pipeline, and Section 5 presents
the implementation and evaluation results. Finally, in
Section 6 we offer our conclusions.

II. RELATED WORK
There are a number of available simulators widely used

in academia and industry that can be categorised as
software, hardware and hybrid.

Software simulators offer the best flexibility at the cost
of low simulation speeds. SimpleScalar [2] is a set of
software simulators supporting a range from functional to
detailed, timing simulation of an out-of-order, superscalar
processor for several ISAs. SimpleScalar’s code can be
configured via predefined parameters or by adding
handcrafted code.

Mambo [1] is a full-system software simulator which
models PowerPC based systems. It provides a range of
simulation models ranging from fast, functional simulation
up to a detailed timing simulator modeling the PowerPC
processor micro-architectural state. Mambo provides also a
cycle-approximate model which uses probabilistic
measurements to improve simulation speed.

1 Dionisios Pnevmatikatos is also with FORTH-ICS.

978-3-9810801-5-5/DATE09 © 2009 EDAA

536

Figure 1 ReSim Block Diagram.

Asim [6] is a cycle-accurate, functional/predictive
partitioned simulator that runs the x86 ISA and has been
used within DEC/Compaq/Intel. Its performance is very low
in cycle-accurate mode, between 1KHz and 10KHz, as
reported in [3]. PTLsim [12] is the only publicly available
tool supporting cycle-accurate modeling of real x86
microarchitectures. GEMS [7] is a set of modules that work
with Virtutech Simics [10] that enable detailed simulation of
Sparc uni- or multi-processor systems.

The same simulation functionality can be provided by
hardware, usually reconfigurable so as to adapt to changing
needs and parameters. The RAMP project and FPGA
platform [11] aims to accelerate performance models for
large multiprocessor and multicore systems.

FAST [3] is a hardware-based, cycle-accurate computer
system simulator, modelling SoCs, embedded systems and
standard desktop/server computer systems, which is
partitioned into a functional and a predictive (timing) model.
It uses a DRC platform, boots unmodified Linux and runs
SPECINT2000 benchmarks at an average rate of about 1.2
MIPS (or about 2,79 Muops) and a top performance rate
exceeding 3 MIPS for some benchmarks.

HASim [5] is a recent Intel project intending to produce
a hardware version of Asim. It combines both, timing and
functional model, in hardware. However, it implements a
simple ISA instead of a realistic one and no implementation
results have been reported. A-ports [8] extend this approach
with generic interfaces designed to optimize both the
flexibility and the amount of parallelism within the
simulator, and with an instruction set that is a subset of
MIPS achieve a simulation rate of 4.7 MIPS for an out-of-
order processor on a Virtex 2Pro device.

Hybrid approaches are also possible: Suh et. al. [9]
proposed a hardware/software co-simulation method based
on an off-the-shelf Pentium-III system that communicates
with an FPGA via the Front-Side-Bus. A simple memory
function (mem_access_latency) from SimpleScalar has been
ported to the FPGA, as a proof of concept. Similarly,
ProtoFlex [4] is an FPGA-accelerated, hardware-software
simulator, intended to be used in large-scale multiprocessor
research. It models a uniprocessor UltraSPARC III
workstation with a simple 5-stage pipeline having up to
16MIPS maximum simulation speed. The processor
frequently exercised behaviors are implemented in FPGA,

while the remaining processor behaviors are support by
embedded software simulation.

III. RESIM OVERVIEW
ReSim aims to accelerate timing-simulation of high-

performance, modern out-of-order processors supporting
speculative execution. The simulated architecture is based
on reservation stations and supports all the related features,
such as branch prediction, load/store queues, etc, as shown
in Figure 1. ReSim is designed to be parametarizable. We
achieve this goal in two ways: coding ReSim in
parametarizable VHDL, and supporting automatic
generation of VHDL code whenever possible. An example
is the Branch Predictor that includes a Direction Predictor,
Branch Target Buffer (BTB) and a Return Address Stack
(RAS). We use a script to produce VHDL code for the
desired Branch Predictor according to the user parameters
that include: the RAS size, the number of entries and
associativity of the BTB, etc.

The main simulated stages are as follows. Fetch is the
simulator’s front end, fetching instructions from the trace
until a control flow bubble is encountered or Instruction
Fetch Queue (IFQ) is full. It performs target resolution of
control flow instructions and checks for misfetches (i.e.
when a control flow instruction is predicted taken but the
predicted target PC is incorrect). On misfetch PC is set to
the next sequential address, a misfetch delayed penalty is
imposed. During Fetch Instruction Cache is also accessed.
Dispatch allocates Load/Store Queue (LSQ) and Reorder
Buffer (RB) entries, and accesses the Rename Table. The
Issue stage examines the ready instructions and schedules
them if there are available functional units. Load operations
marked as ready by Lsq_refresh are issued and a read port is
allocated if their value has not been forwarded in the LSQ.
Issue also schedules a Writeback event. Loads can be issued
only after their effective address has been calculated, and
there are no unresolved memory dependencies. These
checks are performed by Lsq_refresh. Writeback selects the
oldest completed instruction(s) and broadcasts their results
and wakes up all their dependent instructions. Finally,
Commit commits the oldest RB entry releasing Store
Operations to memory, if a memory write port is available,
and updates the Branch Predictor in case of branch. Since
ReSim is trace-driven, it only keeps track of instruction

537

Figure 2 ReSim simple pipeline splits one simulated (major) cycle
into several minor cycles. Shown for a 4-wide processor, the
processing of instructions happens sequentially within the
simulated pipeline stage, but overlapped with the other pipeline
stages. In a Major-cycle Writeback and Lsq_refresh execution
cycles precede Issue execution cycles. DPL and CA stand for
Decouple and Cache Access respectively.

Figure 3 ReSim efficient pipeline for a 4-wide processor including
L1 D-Cache. A major cycle for a N-wide processor is N+4 minor-
cycles.

timing. Hence, issuing and executing instructions is
combined, and the EX stage is shown grey in Figure 1.

While the simulated structure is close to many
commercial processors, ReSim can be adapted to other
pipelines. The closer the simulated processor to the
“reference” pipeline, the easier it is to map it to the existing
ReSim infrastructure.

IV. RESIM INTERNAL PIPELINE
ReSim’s pipeline is the result of analysis of the

interactions between the various pipeline stages execution
having as a primary goal to maximize the execution overlap,
and maintain the simulated architecture semantics. We have
structured ReSim at two levels: first is the simulated
architecture, where all the ISA and micro-architectural state
must be maintained while the second corresponds to the
internal pipeline of ReSim.

Our initial attempt was to provide a truly parallel
implementation in order to simultaneously simulate the N-
instructions executed in the simulated processor. Such an
approach requires the parallel/wide access to all internal
structures: IFQ, RF, RB, rename table, etc and increase in
sequential circuit delay. We have actually implemented the
4-wide parallel Fetch stage and found that besides the four-
fold increase in cost, the unit was also 22% slower than
fetching a single instruction. Other, more complicated
structures would be even slower, while others are possibly
prohibitively expensive in FPGA technology that does not
support memory blocks with more than two access ports.

These observations lead us to adopt a serial execution
model in ReSim. We define as a Major cycle the simulated
processor cycle; this is the boundary were we enforce the
simulated processor’s (micro-) architectural semantics. We
split each major cycle into several Minor cycles that are
used to pipeline the internal ReSim’s operation. We went
one step further and. pipelined long operations in multiple
operations (Fetch, Writeback and Commit) to achieve better
operating frequency. The following subsections describe the
exact operation of ReSims internal pipeline, starting with an

initial simple solution, and improving it to achieve better
processing throughput.

A. Simple Serial Execution

In this section we describe how the internal pipeline of
ReSim is organized. In serial execution model, if fetch
bandwidth is N, ReSim’s Issue stage will be executed N
times in N minor-cycles during one major-cycle. This stands
for all stages apart from Lsq_refresh, which is executed
once per Major-cycle. The amount of different stages
overlapped execution is constrained by both the
architectural relationships as well as by implementation
constraints. In general, datapath stage dependence
decoupling occurs naturally; for example, Fetch and
Dispatch communicate through the Decouple Buffer that
allows their overlapped execution. However, this is not the
case for the control. In particular, instructions waken up by
their producer may be issued during the same simulated
cycle. Hence at the circuit level there is dependence between
writeback of one instruction to the issuing of its dependent
one(s).

Figure 2 shows a simple approach to the internal pipeline
for a 4-wide out-of-order superscalar processor. Within a
major cycle, the stage chain involves the interdependence
between writeback of the previous instruction, the LSQ
update, and the scheduling of newly ready instructions in
Issue. In the depicted pipeline, first Writeback is performed
that broadcasts and wakes up all the dependent instructions.
Then Lsq_refresh updates the LSQ to indicate possible new
resolved memory dependencies. Then Issue can proceed
with the scheduling of ready instructions. Outside this
dependence chain, a separate minor-cycle is needed for load
instructions in order to access the memory hierarchy (D-
Cache). We have split Issue in two steps independently of
instruction type, in order to have fixed latency major-cycle.
D-Cache is also accessed when store instructions are
committed. The dependence chain determines the duration
of a major cycle in terms of minor cycles which in this case
is 2*N+ 3, or 11 for our 4-wide example.

538

Figure 4 Optimized ReSim pipeline organization for a 4-wide out-
of-order processor. Lsq_refresh and first Issue are executed during
the same minor-cycle. The first Issue does not consider load
Instructions and consequently it is not followed by a Cache
Access. Latency for an N-wide processor is N+3 cycles.

B. Improved Serial Execution

The description of the simple pipeline in the previous
Section offers insight in ReSim key issues and
implementation details. To improve performance we
reorganized ReSim internal pipeline in a more efficient way,
aiming at reducing in major-cycle latency. The key idea is
again that ReSim does not actually execute instructions but
merely simulates their execution. To improve performance
we have to overlap the Issue and Writeback stages. This is
allowed as long as the results of an executed instruction are
broadcast and their dependencies updated before the
beginning of a cycle. This is the well-known technique of
pipelined control where the scheduling of the broadcast bus
happens (one cycle) before the actual instruction
completion, i.e. we have to perform Writeback in ReSim
one cycle before its actual execution in the simulated
pipeline. When the operation latency is greater than 1 this is
straightforward.

For operation latency equal to one the consequence is
that Issue and Writeback may have to occur in the same
major cycle. To ensure correct timing, the Issue minor-cycle
is performed before the Writeback minor-cycle during a
major-cycle. We use a flag to prevent Commit from
considering such instructions within the same major cycle –
despite the fact that the instructions may be marked
completed. The necessary bookkeeping tasks are performed
during the last minor-cycle of simulated cycle so that their
effects will be visible to Lsq_refresh at the beginning of the
next major-cycle. A cache access occurs before writeback to
determine whether there is a hit, or the writeback must be
postponed. Taking into account all the issues analyzed
above, the major-cycle latency is N+4 minor-cycles and the
pipeline is shown in Figure 3 for a 4-wide out-of-order
processor.

In the general scenario discussed in this Section, up to N
load/stores can be issued/committed every major-cycle, as
per the processor configuration. Typical N-wide processor
will provide less than N memory ports. Based on this
observation, we have further optimized ReSim internal

pipeline. Without affecting the overall timing results, we
disallow the issue and execution of a load instruction in the
first slot of the major cycle, and hence we allow the
execution of Lsq_refresh and of the first Issue to be
performed in parallel. The optimized pipeline shown in
Figure 4, has a major-cycle of N+3 cycles for a N-wide
processor with the restriction that the simulated processor
has up to N-1 memory ports.

V. RESIM IMPLEMENTATION AND EVALUATION
Next we describe important implementation details and

evaluate ReSim in terms of performance and cost.

A. Mis-speculation Handling

ReSim’s input trace consists of a record for each dynamic
instruction in a pre-decoded format. Three formats are used:
Branch (B), Memory (M) and Other (O), each with its own
fields and length. Since the trace format is decoded and
generic, ReSim supports all ISAs that can be described by it.
The trace is produced by a modified (SimpleScalar)
functional simulator, and all formats include a Tag Bit field
used for mis-speculation handling.

To produce a trace that includes incorrect path
instructions and simulate the effects of mis-speculation we
use a functional simulator which includes branch predictor
(sim-bpred). More specifically, our trace generation code
inserts in the trace a number of incorrectly fetched
instructions called wrong path block after each mis-predicted
branch instruction. These instructions are tagged as mis-
speculated, e.g. Tag Field is set to one. Upon reaching the
mis-prediction point, ReSim will fetch the instructions from
the wrong path and model their effects in instruction
processing, caches, etc. Tagged instructions that have not
been fetched by the branch resolution point at Commit, are
discarded. A very conservative assumption for the wrong
path block size is equal to Reorder Buffer size plus IFQ size.

B. Collecting Statistics

During simulation, ReSim collects various statistics that
are similar to the ones found in sim-outorder timing
simulator of SimpleScalar Tool Set. To avoid overflow
problems we use 64-bits registers for statistics. We collect
general information such as Total Number of instructions,
memory operation, branches, cache hits etc. ReSim also
gathers statistics about IFQ, Reorder Buffer and LSQ and
collects detailed information about branches. Additional
statistics can be easily added to ReSim’s code.

C. Performance Evaluation

ReSim implementation is based on serial execution
model of Figure 3 for a 4-way superscalar processor with 16
Reorder Buffer entries and 8 LSQ entries, four ALUs, one
Multiplier and one Divider with one, three and ten cycle
latency respectively. Misfetch and misspeculation penalty
are parameters, set to three in the current implementation.
The Branch Predictor is fully parametric and various

539

Table 1. In the left portion, ReSim’s Simulation Performance with perfect memory on Virtex 4 (xc4vlx40) and Virtex 5 (xc5vlx50t)
devices for SPECINT CPU2000 (input=train). Major-cycle latency is N+3 minor-cycles. In the right portion, ReSim’s Simulation
Performance for the same FPGA devices and a 2-issue processor with 32K L1 Instruction and Data Cache, with associativity of 8 and
block size 64 bytes,. ReSim Major-cycle latency is N+4 minor- cycles. In the last column, FAST [3] Simulation Performance is
reported in for perfect branch prediction, scaled from x86 MIPS into simulated Muops per second.

SPEC
Program

Perfect Memory System 32KByte L1 Cache
ReSim

4 issue, 2-lev BP
Sim. Speed (MIPS)

ReSim
2 issue , perfect BP
Sim. Speed (MIPS)

FAST
2 issue, perfect BP

Sim. Speed (MuOps)
Virtex 4 Virtex 5 Virtex 4 Virtex 5 Virtex 4

gzip 23.26 29.07 20.44 25.55 2.95
bzip2 27.55 34.44 18.53 23.16 3.51
parser 19.94 24.92 16.70 20.88 2.82
vortex 23.57 29.46 16.83 21.04 2.19

vpr 20.38 25.48 19.16 23.95 2.48
Average 22.94 28.67 18.33 22.92 2.79

configurations can be produced according to a full set of
user parameters as explained in Section III. The Branch
Predictor included in ReSim contains a Return Address
Stack with 16 entries, a direct-mapped BTB with 512
entries. The Branch History Table size, History Register
length and PHT are 4, 8 and 4096 respectively. We evaluate
ReSim with two memory system configurations: (i) perfect
memory system, and (ii) 32KByte, two-way associative
level-1 instruction and data caches.

We implemented ReSim in a Virtex 4 (xc4vlx40) and a
Virtex 5 (xc5vlx50t) devices using Xilinx ISE 9.1i. The
operating frequency we achieved for minor-cycles is 84 and
105 MHz for Virtex 4 and Virtex 5 devices respectively.

In the left portion of Table 1, we show the simulation
throughput of ReSim for a 4-issue out-of-order processor
with perfect memory and a two-level branch predictor using
five of SPECINT CPU2000 programs. The pipeline latency
is N+3=7 cycles in this configuration. The average
simulation throughput is 22.94 and 28.67 MIPS for Virtex 4
and Virtex 5 respectively.

Table 2 Architectural Simulator Performance

Simulator ISA Speed
(MIPS)

PTLSim x86-64 0.27
sim-outorder PISA 0.30

GEMS Sparc 0.07
FAST x86, gshare BP 1.2
FAST x86, perfect BP 2.79

A-Ports MIPS subset, 4-wide 4.70

ReSim PISA, 2-wide,
perfect BP, Virtex5 22.92

ReSim PISA, 4-wide, 2-lev
BP, Virtex5 28.67

In the right portion of Table 1, we attempt a fair
comparison with FAST [3]. We use instruction and data L1
caches of 32Kbytes, associativity of 8 and block size of 64
bytes, same as the L1 cache configuration of [3], and we
simulate a 2-issue out-of-order processor with perfect

branch predictor. The pipeline latency is N+4=6 cycles, in
this configuration, and the average simulation throughput is
18.33 MIPS and 22.92 MIPS for Virtex 4 and Virtex 5
devices respectively. ReSim best performance is over 20
MIPS and 25 MIPS for the benchmark bzip2 for Virtex 4
and Virtex 5 FPGA technology respectively. We scale the
reported x86 MIPS simulation speed results into simulated
Muops per second, and find that for a common
implementation technology, ReSim improves the simulation
speed 6,57 times over FAST. However, these results do not
include the generation/transfer time for the trace that may
slowdown the simulation speed, while FAST is a complete
system simulator that includes these overheads.

A direct comparison with A-ports [8] is not possible due
to different implementation technologies. A-ports
implement a subset of the MIPS instruction set and [8]
reports a simulation speed of 4.7 MIPS on a Virtex2Pro
device for an MIPS R10K 4-way superscalar, out-of-order
issue processor. It is unclear whether they include a cache or
a memory system. Based on the published information, we
estimate the ReSim’s speedup roughly at a factor of 5x
compared to A-ports.

In Table 2, we present simulation speed of four
simulators as reported in [3], A-Ports, and two ReSim
configurations using Virtex 5 FPGA technology. FAST and
A-ports outperform software simulators by orders of
magnitude. Furthermore, ReSim outperforms FAST and A-
ports, the best reported ILP processor hardware simulators
by at least a factor of 5.

Table 3 Resim Throughput Statistics

SPEC bits
/Instr.

Simulation
Throughput

(MIPS)

Trace
Throughput
(MByte/sec)

gzip 41.74 26.37 137.56
bzip2 41.16 29.43 151.39
parser 43.66 22.83 124.58
vortex 47.14 24.47 144.20

vpr 43.52 24.44 132.94
Average 43.44 25.51 138.13

540

Table 4 Area Cost on a Virtex 4 (xc4vlx40) device
FPGA

resources
Stage-Structures Area (%) of Total Design Total

Area Costfetch disp issue lsq wb Cmt RT RB LSQ BP D-C I-C
Slices 25 9 5 14 3 2 3 13 6 2 17 1 12273

4-input LUTs 23 5 7 19 4 2 4 14 4 2 15 1 17175
BRAMs 0 0 0 0 0 0 0 0 0 71 0 29 7

A performance concern for ReSim is the input trace
throughput demands. We gathered statistics in our
experiments and summarize our findings in Table 3 for the
five SPECINT CPU2000. We have used ReSim having a
perfect memory system in Virtex 4 technology. The table
lists the average number of trace bits per instruction for the
five benchmarks and ReSim’s simulation throughput
including mis-speculated instructions. This corresponds to
the total trace instruction demands and also gives an
indication of the cost due to mispredictions which is about
10%. In the last column, we list the required ReSim input
trace throughput in MBytes per second. While this
throughput (1.1Gbps) exceeds the available bandwidth of
regular Gigabitr Ethernet network, tightly coupled CPU-
FPGA systems –such as the DRC board- are available and
use busses that offer substantially higher I/O bandwidth.

Finally, ReSim area cost is analyzed in Table 4. We
present the area cost of the entire design and of each
individual stage as a percentage of the total cost. We used
Block RAMs only in the Branch Predictor, and used
distributed RAMs that are more efficient for other structures
such as Rename Table. In Table 4, Fetch and Dispatch area
costs include the IFQ and decouple buffer respectively. The
total area reported in this table does not include instruction
and data caches (I-C and D-C). Since we do not store the
actual data, we need to provide only the hit/miss indication
and simulate the access latency, so the actual cache
requirements are in the range of 1000 slices plus a few
memory blocks for the tags. The area cost of 4-wide FAST
configuration implemented in Virtex 4 FPGA technology is
29230 Slices and 172 BRAMs, which is 2.4 times and 24
times larger than ReSim corresponding Area Cost.

VI. CONCLUSIONS – FUTURE WORK
In this paper we presented ReSim, trace-driven simulator

geared to accelerate timing simulation of a high-
performance, modern out-of-order ILP processors supporting
speculative execution. We present the micro-architecture and
ReSim’s internal pipeline, the key to achieve good
simulation performance. Our approach is simple to extend
and many blocks are parametric. We are investigating the
creation of a software tool that would automatically produce
custom ReSim versions according to user parameters.

The performance of ReSim exceeds by more than a
factor of 5 that of the best reported ILP processor simulation
speed. ReSim is also very small and fits within about 10K
Xilinx FPGA slices and uses just a few memory blocks.
Therefore it is possible to fit multiple ReSim instances in a
single FPGA and simulate multi-core systems. We are
evaluating the modifications and extensions that need to be
made to ReSim in order to support multi-core simulation.

We also investigate ways to produce the trace on the fly
directly from a functional simulator, an idea proposed in [3].

REFERENCES
[1] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith,

R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E.
Speight, K. Sudeep, E. Van Hensbergen, and L. Zhang.
“Mambo: A Full System Simulator for the PowerPC
Architecture,” SIGMETRICS Perform. Eval. Rev., 31(4):8–12,
2004.

[2] D. Burger and T. Austin. “The SimpleScalar Tool Set Version
2.0,” Technical Report 1342, Computer Sciences Department,
University of Wisconsin–Madison, May 1997.

[3] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, D.
Johnson, Z. Xu, “The FAST Methodology for High-Speed
SoC/Computer Simulation”. In Proceedings of the 2007
International Conference on Computer-Aided Design, pp.
295-302, November 2007.

[4] E. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi and K. Mai.
“Virtualized Full-System Emulation of Multiprocessors using
FPGAs,” 2nd Workshop on Architectural Research
Prototyping, June 2007.

[5] N. Dave, M. Pellauer, Arvind, and J. Emer, “Implementing a
Functional/Timing Partitioned Microprocessor Simulator with
an FPGA,” in Proceedings of the Workshop on Architecture
Research using FPGA Platforms, Feb. 2006.

[6] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S.
Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R.
Espasa, and T. Juan, “Asim: A performance model
framework,” Computer, vol. 35, no. 2, pp. 68–76, 2002.

[7] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A.
Alameldeen, K. Moore, M. Hill, D. Wood, “Multifacet's
General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” Computer Architecture News (CAN), Sept. 2005.

[8] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, J. Emer:
“A-Ports: An Efficient Abstraction for Cycle-Accurate
Performance Models on FPGAs”, FPGA, 2008.

[9] T. Suh, H.-H. S. Lee, S.-L. Lu, and J. Shen, “Initial
Observations of Hardware/Software Co-Simulation using
FPGA in Architectural Research,” in Proceedings of the
Workshop on Architecture Research using FPGA Platforms,
held at HPCA-12, Feb. 2006.

[10] Virtutech Simics. http://www.virtutech.com/
[11] J. Wawrzynek, D. Patterson, M. Oskin, L. Shin-Lien C.

Kozyrakis, J.C. Hoe, D. Chiou, K. Asanovic, “RAMP:
Research Accelerator for Multiple Processors,” IEEE Micro,
vol.27, no.2, pp.46-57, March-April 2007.

[12] M. Yourst. PTLSim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. ISPASS, Jan. 2007.

[13] http://www.spec.org/cpu2000/

541

