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Abstract — Modern processors are becoming more complex 

and as features and application size increase, their evaluation 
is becoming more time-consuming. To date, design space 
exploration relies on extensive use of software simulation that 
when highly accurate is slow. 

In this paper we propose ReSim, a parameterizable ILP 
processor simulation acceleration engine based on 
reconfigurable hardware. We describe ReSim’s trace-driven 
microarchitecture that allows us to simulate the operation of a 
complex ILP processor in a cycle serial fashion, aiming to 
simplify implementation complexity and to boost operating 
frequency. Being trace driven, ReSim can simulate timing in an 
almost ISA independent fashion, and supports all SimpleScalar 
ISAs, i.e.  PISA, Alpha, etc.  

We implemented ReSim for the latest Xilinx devices. In our 
experiments with a 4-way superscalar processor ReSim 
achieves a simulation throughput of up to 28MIPS, and offers 
more than a factor of 5x improvement over the best reported 
ILP processor hardware simulators.  

I. INTRODUCTION 
Modern processors are becoming more complex and as 
features and application size increase, their evaluation is 
becoming more time-consuming. Chip-multi-processors 
exacerbate this problem requiring the simultaneous 
simulation of tens or hundreds of cores, an intensive task no 
matter how simple the individual cores are. To accelerate 
the design process and increase their understanding in 
properties of modern processors, architects and systems 
designers rely on simulation tools - traditionally in software.  
Important characteristics of simulation models are flexibility 
and detail and of course performance, i.e. simulation speed. 
However these are conflicting goals and it is difficult to 
achieve all these characteristics simultaneously in one 
simulator. 

Simulators can be categorized according to several 
attributes. Functional simulators are faster and just execute a 
program and collect simple statistics such as number of 
instructions, etc, but do not offer any timing information. On 
the other hand, timing simulators implement detailed models 
of processor’s microarchitecture and their execution speed is 
much slower compared to that of functional simulators: on a 
2.4GHz Xeon workstation SimpleScalar out-of-order timing 
simulator can simulate a set of SPEC CPU2000 benchmarks 
[13] at a speed of about 300K instructions per second. 

In this paper we focus on improving the speed of ILP 
processor simulation. We propose ReSim, a cycle-accurate, 
trace-driven timing simulation engine, aimed to accelerate 

timing-simulation of a high-performance, modern out-of-
order processors supporting speculative execution. We 
structure ReSim in a manner similar to SimpleScalar, and 
actually can use the functional simulator of the SimpleScalar 
tool set for trace generation. Since ReSim is trace-driven, it 
does not execute instructions, it merely simulates their 
timing. This way it requires significantly fewer resources, 
and executes faster. To achieve good operating frequency 
and facilitate future extensibility, we pipeline our simulator 
implementation, defining a major cycle that corresponds to 
the simulated cycle, and minor cycles in which ReSim itself 
is pipelined. The simulated processor (micro-) architectural 
semantics are enforced only between major cycles. ReSim 
for a 4-way out-of-order simulated processor fits easily in a 
small Xilinx FPGA device, and sustains a simulation 
throughput of about 23 MIPS, outperforming by more than a 
factor of 5 all reported, state-of-the-art hardware simulators.  

ReSim can be used with traces that are prepared off-line 
(for example for bulk simulations with varying design 
parameters), or can be used in combination with a fast 
functional software simulator to efficiently add the timing 
information on the fly, much like the FAST approach [3]. 

In the following two sections we first discuss related 
works, and then we present the ReSim simulator overview. 
Section 4 analyzes ReSim’s pipeline, and Section 5 presents 
the implementation and evaluation results. Finally, in 
Section 6 we offer our conclusions. 

II. RELATED WORK 
There are a number of available simulators widely used 

in academia and industry that can be categorised as 
software, hardware and hybrid.  

Software simulators offer the best flexibility at the cost 
of low simulation speeds. SimpleScalar [2] is a set of 
software simulators supporting a range from functional to 
detailed, timing simulation of an out-of-order, superscalar 
processor for several ISAs. SimpleScalar’s code can be 
configured via predefined parameters or by adding 
handcrafted code.  

Mambo [1] is a full-system software simulator which 
models PowerPC based systems. It provides a range of 
simulation models ranging from fast, functional simulation 
up to a detailed timing simulator modeling the PowerPC 
processor micro-architectural state. Mambo provides also a 
cycle-approximate model which uses probabilistic 
measurements to improve simulation speed. 
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Figure 1 ReSim Block Diagram. 

Asim [6] is a cycle-accurate, functional/predictive 
partitioned simulator that runs the x86 ISA and has been 
used within DEC/Compaq/Intel. Its performance is very low 
in cycle-accurate mode, between 1KHz and 10KHz, as 
reported in [3]. PTLsim [12] is the only publicly available 
tool supporting cycle-accurate modeling of real x86 
microarchitectures. GEMS [7] is a set of modules that work 
with Virtutech Simics [10] that enable detailed simulation of 
Sparc uni- or multi-processor systems. 

The same simulation functionality can be provided by 
hardware, usually reconfigurable so as to adapt to changing 
needs and parameters. The RAMP project and FPGA 
platform [11] aims to accelerate performance models for 
large multiprocessor and multicore systems. 

FAST [3] is a hardware-based, cycle-accurate computer 
system simulator, modelling SoCs, embedded systems and 
standard desktop/server computer systems, which is 
partitioned into a functional and a predictive (timing) model. 
It uses a DRC platform, boots unmodified Linux and runs 
SPECINT2000 benchmarks at an average rate of about 1.2 
MIPS (or about 2,79 Muops) and a top performance rate 
exceeding 3 MIPS for some benchmarks. 

HASim [5] is a recent Intel project intending to produce 
a hardware version of Asim. It combines both, timing and 
functional model, in hardware. However, it implements a 
simple ISA instead of a realistic one and no implementation 
results have been reported. A-ports [8] extend this approach 
with generic interfaces designed to optimize both the 
flexibility and the amount of parallelism within the 
simulator, and with an instruction set that is a subset of 
MIPS achieve a simulation rate of 4.7 MIPS for an out-of-
order processor on a Virtex 2Pro device. 

Hybrid approaches are also possible: Suh et. al. [9] 
proposed a hardware/software co-simulation method based 
on an off-the-shelf Pentium-III system that communicates 
with an FPGA via the Front-Side-Bus. A simple memory 
function (mem_access_latency) from SimpleScalar has been 
ported to the FPGA, as a proof of concept. Similarly, 
ProtoFlex [4] is an FPGA-accelerated, hardware-software 
simulator, intended to be used in large-scale multiprocessor 
research. It models a uniprocessor UltraSPARC III 
workstation with a simple 5-stage pipeline having up to 
16MIPS maximum simulation speed. The processor 
frequently exercised behaviors are implemented in FPGA, 

while the remaining processor behaviors are support by 
embedded software simulation. 

III. RESIM OVERVIEW 
ReSim aims to accelerate timing-simulation of high-

performance, modern out-of-order processors supporting 
speculative execution. The simulated architecture is based 
on reservation stations and supports all the related features, 
such as branch prediction, load/store queues, etc, as shown 
in Figure 1. ReSim is designed to be parametarizable. We 
achieve this goal in two ways: coding ReSim in 
parametarizable VHDL, and supporting automatic 
generation of VHDL code whenever possible. An example 
is the Branch Predictor that includes a Direction Predictor, 
Branch Target Buffer (BTB) and a Return Address Stack 
(RAS). We use a script to produce VHDL code for the 
desired Branch Predictor according to the user parameters 
that include: the RAS size, the number of entries and 
associativity of the BTB, etc. 

The main simulated stages are as follows. Fetch is the 
simulator’s front end, fetching instructions from the trace 
until a control flow bubble is encountered or Instruction 
Fetch Queue (IFQ) is full. It performs target resolution of 
control flow instructions and checks for misfetches (i.e. 
when a control flow instruction is predicted taken but the 
predicted target PC is incorrect). On misfetch PC is set to 
the next sequential address, a misfetch delayed penalty is 
imposed. During Fetch Instruction Cache is also accessed. 
Dispatch allocates Load/Store Queue (LSQ) and Reorder 
Buffer (RB) entries, and accesses the Rename Table. The 
Issue stage examines the ready instructions and schedules 
them if there are available functional units. Load operations 
marked as ready by Lsq_refresh are issued and a read port is 
allocated if their value has not been forwarded in the LSQ. 
Issue also schedules a Writeback event. Loads can be issued 
only after their effective address has been calculated, and 
there are no unresolved memory dependencies. These 
checks are performed by Lsq_refresh. Writeback selects the 
oldest completed instruction(s) and broadcasts their results 
and wakes up all their dependent instructions. Finally, 
Commit commits the oldest RB entry releasing Store 
Operations to memory, if a memory write port is available, 
and updates the Branch Predictor in case of branch. Since 
ReSim is trace-driven, it only keeps track of instruction 
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Figure 2 ReSim simple pipeline splits one simulated (major) cycle
into several minor cycles. Shown for a 4-wide processor, the
processing of instructions happens sequentially within the 
simulated pipeline stage, but overlapped with the other pipeline
stages. In a Major-cycle Writeback and Lsq_refresh execution
cycles precede Issue execution cycles. DPL and CA stand for
Decouple and Cache Access respectively. 

Figure 3 ReSim efficient pipeline for a 4-wide processor including
L1 D-Cache. A major cycle for a N-wide processor is N+4 minor-
cycles. 

timing. Hence, issuing and executing instructions is 
combined, and the EX stage is shown grey in Figure 1. 

While the simulated structure is close to many 
commercial processors, ReSim can be adapted to other 
pipelines. The closer the simulated processor to the 
“reference” pipeline, the easier it is to map it to the existing 
ReSim infrastructure. 

IV. RESIM INTERNAL PIPELINE 
ReSim’s pipeline is the result of analysis of the 

interactions between the various pipeline stages execution 
having as a primary goal to maximize the execution overlap, 
and maintain the simulated architecture semantics. We have 
structured ReSim at two levels: first is the simulated 
architecture, where all the ISA and micro-architectural state 
must be maintained while the second corresponds to the 
internal pipeline of ReSim. 

Our initial attempt was to provide a truly parallel 
implementation in order to simultaneously simulate the N-
instructions executed in the simulated processor. Such an 
approach requires the parallel/wide access to all internal 
structures: IFQ, RF, RB, rename table, etc and increase in 
sequential circuit delay. We have actually implemented the 
4-wide parallel Fetch stage and found that besides the four-
fold increase in cost, the unit was also 22% slower than 
fetching a single instruction. Other, more complicated 
structures would be even slower, while others are possibly 
prohibitively expensive in FPGA technology that does not 
support memory blocks with more than two access ports. 

These observations lead us to adopt a serial execution 
model in ReSim. We define as a Major cycle the simulated 
processor cycle; this is the boundary were we enforce the 
simulated processor’s (micro-) architectural semantics. We 
split each major cycle into several Minor cycles that are 
used to pipeline the internal ReSim’s operation. We went 
one step further and. pipelined long operations in multiple 
operations (Fetch, Writeback and Commit) to achieve better 
operating frequency. The following subsections describe the 
exact operation of ReSims internal pipeline, starting with an 

initial simple solution, and improving it to achieve better 
processing throughput. 

A. Simple Serial Execution 

In this section we describe how the internal pipeline of 
ReSim is organized. In serial execution model, if fetch 
bandwidth is N, ReSim’s Issue stage will be executed N 
times in N minor-cycles during one major-cycle. This stands 
for all stages apart from Lsq_refresh, which is executed 
once per Major-cycle. The amount of different stages 
overlapped execution is constrained by both the 
architectural relationships as well as by implementation 
constraints. In general, datapath stage dependence 
decoupling occurs naturally; for example, Fetch and 
Dispatch communicate through the Decouple Buffer that 
allows their overlapped execution. However, this is not the 
case for the control. In particular, instructions waken up by 
their producer may be issued during the same simulated 
cycle. Hence at the circuit level there is dependence between 
writeback of one instruction to the issuing of its dependent 
one(s).  

Figure 2 shows a simple approach to the internal pipeline 
for a 4-wide out-of-order superscalar processor. Within a 
major cycle, the stage chain involves the interdependence 
between writeback of the previous instruction, the LSQ 
update, and the scheduling of newly ready instructions in 
Issue. In the depicted pipeline, first Writeback is performed 
that broadcasts and wakes up all the dependent instructions. 
Then Lsq_refresh updates the LSQ to indicate possible new 
resolved memory dependencies. Then Issue can proceed 
with the scheduling of ready instructions. Outside this 
dependence chain, a separate minor-cycle is needed for load 
instructions in order to access the memory hierarchy (D-
Cache). We have split Issue in two steps independently of 
instruction type, in order to have fixed latency major-cycle. 
D-Cache is also accessed when store instructions are 
committed. The dependence chain determines the duration 
of a major cycle in terms of minor cycles which in this case 
is 2*N+ 3, or 11 for our 4-wide example. 
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Figure 4 Optimized ReSim pipeline organization for a 4-wide out-
of-order processor. Lsq_refresh and first Issue are executed during
the same minor-cycle. The first Issue does not consider load
Instructions and consequently it is not followed by a Cache
Access. Latency for an N-wide processor is N+3 cycles. 

B. Improved Serial Execution 

The description of the simple pipeline in the previous 
Section offers insight in ReSim key issues and 
implementation details. To improve performance we 
reorganized ReSim internal pipeline in a more efficient way, 
aiming at reducing in major-cycle latency. The key idea is 
again that ReSim does not actually execute instructions but 
merely simulates their execution. To improve performance 
we have to overlap the Issue and Writeback stages. This is 
allowed as long as the results of an executed instruction are 
broadcast and their dependencies updated before the 
beginning of a cycle. This is the well-known technique of 
pipelined control where the scheduling of the broadcast bus 
happens (one cycle) before the actual instruction 
completion, i.e. we have to perform Writeback in ReSim 
one cycle before its actual execution in the simulated 
pipeline. When the operation latency is greater than 1 this is 
straightforward.  

For operation latency equal to one the consequence is 
that Issue and Writeback may have to occur in the same 
major cycle. To ensure correct timing, the Issue minor-cycle 
is performed before the Writeback minor-cycle during a 
major-cycle. We use a flag to prevent Commit from 
considering such instructions within the same major cycle – 
despite the fact that the instructions may be marked 
completed. The necessary bookkeeping tasks are performed 
during the last minor-cycle of simulated cycle so that their 
effects will be visible to Lsq_refresh at the beginning of the 
next major-cycle. A cache access occurs before writeback to 
determine whether there is a hit, or the writeback must be 
postponed. Taking into account all the issues analyzed 
above, the major-cycle latency is N+4 minor-cycles and the 
pipeline is shown in Figure 3 for a 4-wide out-of-order 
processor.  

In the general scenario discussed in this Section, up to N 
load/stores can be issued/committed every major-cycle, as 
per the processor configuration. Typical N-wide processor 
will provide less than N memory ports.  Based on this 
observation, we have further optimized ReSim internal 

pipeline. Without affecting the overall timing results, we 
disallow the issue and execution of a load instruction in the 
first slot of the major cycle, and hence we allow the 
execution of Lsq_refresh and of the first Issue to be 
performed in parallel. The optimized pipeline shown in 
Figure 4, has a major-cycle of N+3 cycles for a N-wide 
processor with the restriction that the simulated processor 
has up to N-1 memory ports. 

V. RESIM IMPLEMENTATION AND EVALUATION 
Next we describe important implementation details and 

evaluate ReSim in terms of performance and cost. 

A. Mis-speculation Handling 

ReSim’s input trace consists of a record for each dynamic 
instruction in a pre-decoded format. Three formats are used: 
Branch (B), Memory (M) and Other (O), each with its own 
fields and length. Since the trace format is decoded and 
generic, ReSim supports all ISAs that can be described by it. 
The trace is produced by a modified (SimpleScalar) 
functional simulator, and all formats include a Tag Bit field 
used for mis-speculation handling. 

To produce a trace that includes incorrect path 
instructions and simulate the effects of mis-speculation we 
use a functional simulator which includes branch predictor 
(sim-bpred).  More specifically, our trace generation code 
inserts in the trace a number of incorrectly fetched 
instructions called wrong path block after each mis-predicted 
branch instruction. These instructions are tagged as mis-
speculated, e.g. Tag Field is set to one. Upon reaching the 
mis-prediction point, ReSim will fetch the instructions from 
the wrong path and model their effects in instruction 
processing, caches, etc. Tagged instructions that  have not 
been fetched by the branch resolution point at Commit, are 
discarded. A very conservative assumption for the wrong 
path block size is equal to Reorder Buffer size plus IFQ size. 

B. Collecting Statistics 

During simulation, ReSim collects various statistics that 
are similar to the ones found in sim-outorder timing 
simulator of SimpleScalar Tool Set. To avoid overflow 
problems we use 64-bits registers for statistics. We collect 
general information such as Total Number of instructions, 
memory operation, branches, cache hits etc. ReSim also 
gathers statistics about IFQ, Reorder Buffer and LSQ and 
collects detailed information about branches. Additional 
statistics can be easily added to ReSim’s code. 

C. Performance Evaluation 

ReSim implementation is based on serial execution 
model of Figure 3 for a 4-way superscalar processor with 16 
Reorder Buffer entries and 8 LSQ entries, four ALUs, one 
Multiplier and one Divider with one, three and ten cycle 
latency respectively. Misfetch and misspeculation penalty 
are parameters, set to three in the current implementation. 
The Branch Predictor is fully parametric and various 
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Table 1. In the left portion, ReSim’s Simulation Performance with perfect memory on Virtex 4 (xc4vlx40) and Virtex 5 (xc5vlx50t) 
devices for SPECINT CPU2000 (input=train). Major-cycle latency is N+3 minor-cycles. In the right portion, ReSim’s Simulation 
Performance for the same FPGA devices and a 2-issue processor with 32K L1 Instruction and Data Cache, with associativity of 8 and 
block size 64 bytes,. ReSim Major-cycle latency is N+4 minor- cycles. In the last column, FAST [3] Simulation Performance is 
reported in for perfect branch prediction, scaled from x86 MIPS into simulated Muops per second.  

SPEC 
Program 

Perfect Memory System 32KByte L1 Cache 
ReSim 

4 issue, 2-lev BP 
Sim. Speed (MIPS) 

ReSim 
2 issue , perfect BP 
Sim. Speed (MIPS) 

FAST 
2 issue, perfect BP 

Sim. Speed  (MuOps) 
Virtex 4 Virtex 5 Virtex 4 Virtex 5 Virtex 4 

gzip 23.26 29.07 20.44 25.55 2.95 
bzip2 27.55 34.44 18.53 23.16 3.51 
parser 19.94 24.92 16.70 20.88 2.82 
vortex 23.57 29.46 16.83 21.04 2.19 

vpr 20.38 25.48 19.16 23.95 2.48 
Average 22.94 28.67 18.33 22.92 2.79 

 
configurations can be produced according to a full set of 
user parameters as explained in Section III. The Branch 
Predictor included in ReSim contains a Return Address 
Stack with 16 entries, a direct-mapped BTB with 512 
entries. The Branch History Table size, History Register 
length and PHT are 4, 8 and 4096 respectively. We evaluate 
ReSim with two memory system configurations: (i) perfect 
memory system, and (ii) 32KByte, two-way associative 
level-1 instruction and data caches. 

We implemented ReSim in a Virtex 4 (xc4vlx40) and a 
Virtex 5 (xc5vlx50t) devices using Xilinx ISE 9.1i. The 
operating frequency we achieved for minor-cycles is 84 and 
105 MHz for Virtex 4 and Virtex 5 devices respectively. 

In the left portion of Table 1, we show the simulation 
throughput of ReSim for a 4-issue out-of-order processor 
with perfect memory and a two-level branch predictor using 
five of SPECINT CPU2000 programs. The pipeline latency 
is N+3=7 cycles in this configuration. The average 
simulation throughput is 22.94 and 28.67 MIPS for Virtex 4 
and Virtex 5 respectively.  

 
Table 2 Architectural Simulator Performance 

Simulator ISA Speed 
(MIPS) 

PTLSim x86-64 0.27 
sim-outorder PISA 0.30 

GEMS Sparc 0.07 
FAST x86, gshare BP 1.2 
FAST x86, perfect BP 2.79 

A-Ports MIPS subset, 4-wide 4.70 

ReSim  PISA, 2-wide, 
perfect BP, Virtex5 22.92 

ReSim  PISA, 4-wide, 2-lev 
BP, Virtex5 28.67 

In the right portion of Table 1, we attempt a fair 
comparison with FAST [3]. We use instruction and data L1 
caches of 32Kbytes, associativity of 8 and block size of 64 
bytes, same as the L1 cache configuration of [3], and we 
simulate a 2-issue out-of-order processor with perfect 

branch predictor. The pipeline latency is N+4=6 cycles, in 
this configuration, and the average simulation throughput is 
18.33 MIPS and 22.92 MIPS for Virtex 4 and Virtex 5 
devices respectively. ReSim best performance is over 20 
MIPS and 25 MIPS for the benchmark bzip2 for Virtex 4 
and Virtex 5 FPGA technology respectively. We scale the 
reported x86 MIPS simulation speed results into simulated 
Muops per second, and find that for a common 
implementation technology, ReSim improves the simulation 
speed 6,57 times over FAST.  However, these results do not 
include the generation/transfer time for the trace that may 
slowdown the simulation speed, while FAST is a complete 
system simulator that includes these overheads. 

A direct comparison with A-ports [8] is not possible due 
to different implementation technologies. A-ports 
implement a subset of the MIPS instruction set and [8] 
reports a simulation speed of 4.7 MIPS on a Virtex2Pro 
device for an MIPS R10K 4-way superscalar, out-of-order 
issue processor. It is unclear whether they include a cache or 
a memory system. Based on the published information, we 
estimate the ReSim’s speedup roughly at a factor of 5x 
compared to A-ports. 

In Table 2, we present simulation speed of four 
simulators as reported in [3], A-Ports, and two ReSim 
configurations using Virtex 5 FPGA technology. FAST and 
A-ports outperform software simulators by orders of 
magnitude. Furthermore, ReSim outperforms FAST and A-
ports, the best reported ILP processor hardware simulators 
by at least a factor of 5. 

 
Table 3 Resim Throughput Statistics 

SPEC bits 
/Instr. 

Simulation 
Throughput 

(MIPS) 

Trace 
Throughput
(MByte/sec)

gzip 41.74 26.37 137.56 
bzip2 41.16 29.43 151.39 
parser 43.66 22.83 124.58 
vortex 47.14 24.47 144.20 

vpr 43.52 24.44 132.94 
Average 43.44 25.51 138.13 
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Table 4 Area Cost on a Virtex 4 (xc4vlx40) device 
FPGA 

resources 
Stage-Structures Area (%) of Total Design Total  

Area Costfetch disp issue lsq wb Cmt RT RB LSQ BP D-C I-C 
Slices 25 9 5 14 3 2 3 13 6 2 17 1 12273 

4-input LUTs 23 5 7 19 4 2 4 14 4 2 15 1 17175 
BRAMs 0 0 0 0 0 0 0 0 0 71 0 29 7 

A performance concern for ReSim is the input trace 
throughput demands. We gathered statistics in our 
experiments and summarize our findings in Table 3 for the 
five SPECINT CPU2000.  We have used ReSim having a 
perfect memory system in Virtex 4 technology. The table 
lists the average number of trace bits per instruction for the 
five benchmarks and ReSim’s simulation throughput 
including mis-speculated instructions. This corresponds to 
the total trace instruction demands and also gives an 
indication of the cost due to mispredictions which is about 
10%. In the last column, we list the required ReSim input 
trace throughput in MBytes per second. While this 
throughput (1.1Gbps) exceeds the available bandwidth of 
regular Gigabitr Ethernet network, tightly coupled CPU-
FPGA systems –such as the DRC board- are available and 
use busses that offer substantially higher I/O bandwidth. 

Finally, ReSim area cost is analyzed in Table 4. We 
present the area cost of the entire design and of each 
individual stage as a percentage of the total cost. We used 
Block RAMs only in the Branch Predictor, and used 
distributed RAMs that are more efficient for other structures 
such as Rename Table. In Table 4, Fetch and Dispatch area 
costs include the IFQ and decouple buffer respectively. The 
total area reported in this table does not include instruction 
and data caches (I-C and D-C). Since we do not store the 
actual data, we need to provide only the hit/miss indication 
and simulate the access latency, so the actual cache 
requirements are in the range of 1000 slices plus a few 
memory blocks for the tags. The area cost of 4-wide FAST 
configuration implemented in Virtex 4 FPGA technology is 
29230 Slices and 172 BRAMs, which is 2.4 times and 24 
times larger than ReSim corresponding Area Cost. 

VI. CONCLUSIONS – FUTURE WORK 
In this paper we presented ReSim, trace-driven simulator 

geared to accelerate timing simulation of a high-
performance, modern out-of-order ILP processors supporting 
speculative execution. We present the micro-architecture and 
ReSim’s internal pipeline, the key to achieve good 
simulation performance. Our approach is simple to extend 
and many blocks are parametric. We are investigating the 
creation of a software tool that would automatically produce 
custom ReSim versions according to user parameters. 

The performance of ReSim exceeds by more than a 
factor of 5 that of the best reported ILP processor simulation 
speed. ReSim is also very small and fits within about 10K 
Xilinx FPGA slices and uses just a few memory blocks. 
Therefore it is possible to fit multiple ReSim instances in a 
single FPGA and simulate multi-core systems. We are 
evaluating the modifications and extensions that need to be 
made to ReSim in order to support multi-core simulation. 

We also investigate ways to produce the trace on the fly 
directly from a functional simulator, an idea proposed in [3]. 
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