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ABSTRACT

This interdisciplinary research project presents a corporation of architects, mathematicians and computer
scientists. The team researches new methods for the efficient realization of complex architectural shapes. The
present work investigates methods of iterative geometric design inspired by the work of Barnsley. Several
iteratively constructed geometric figures will be discussed in order to introduce to the notion of transformation
driven geomeiric design. The design method studied allows interacting with the design forming affine
transformations and generates discrete geometries.

Further, the handling of specific constraints is discussed. Geometrical and topological constraints aim to
Jacilitate production of architectural free form objects. A surface method based on vector sums is studied. It
allows designing free form surfaces that are entirely composed of planar quadrilateral elements. The
combination of the proposed surface method and transformation driven iterative design provides new form-
finding possibilities while satisfving a certain number of material and construction constraints.

Finally, the findings are tested on a series of applications. The studied test scenarios aim to evaluate the
advantages of discrete geometric design in terms of efficient integrated production of free form architecture.

Keywords: architecture, applied discrete geometry, IFS, timber construction

historical examples will be discussed. This will
introduce the reader to the methods of iterative
geometric design. The relation between the
mathematical method of geometric surface design
and the physically constructed building will be
shown by examples in the second part of this
presentation.

L. MATHEMATICAL BACKGROUND
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Figure 1. Example of a free-form object designed using the

presented surface method The Cantor set (cf. figure 2), also called Cantor
: dust, is named after the German mathematician
LINTRODUCTION Georg Cantor. It describes a set of points which lies

on a straight line. In the end of the 19th century,
this figure attracted the attention of mathematicians
because of its apparently contradictory properties.
Cantor himself described it as a perfect set, which is

In order to present the geometric design method
studied, some mathematical background needs to be
explained. Before explaining the principles of
transformation driven geometric design, a series of
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nowhere dense [1]. Further properties, such as self-
similarity, compactness and discontinuity, have
been studied years later.

Figure 2. Cantor Set

The geometrical construction of the Cantor set can
be explained as follows: Take a straight line
segment, divide it into three parts of equal length
and remove its middle third; divide again each of
the resulting line segments and keep removing their
middle thirds. If you repeat this for each of the new
line segments, you will end up with the Cantor set.

The Von Koch curve belongs among the first found
and best known fractal objects. In 1904, the
Swedish mathematician Helge Von Koch described
it for the first time in [2]. The Curve is constructed
stepwise. Beginning from a straight line, there
results a meandering curve with strange properties:

e [t does not possess a tangent, which means
that it can not be differentiated

e The length of any of its sections is always

444

Figure 3. Von Koch Curve

The geometrical construction of the Von Koch
curve is iterative, where each of the construction
steps consists of four affine geometric
transformations. The primitive is a section of a
straight line, which is scaled, rotated and displaced
by each of the transformations {7)..7}. Per
12

construction step, four duplicates are generated of
which each will produce four more duplicates in the
next construction step (cf. figure 3).

2.2 ... and Iterative Geometric Figures

The strange properties of the aforementioned
objects led the mathematicians to name them
“monster curves”, In 1981, based on Hutchinson's
operator [3], Barnsley defined a formalism which
was able to describe such objects in a deterministic
way [4]. His IFS-method (cf. section 2.3 Iterated
Function Systems) consists in a set of contracting
functions that are applied iteratively. In our case, a
function is an affine geometric transformation.
Iterative means that the construction is done step by
step. The input of a construction step is the result of
the step before.
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Figure 4. Sierpinski triangle and Von Koch curve
according to Barnslev's IFS-formalism

What is really new in Barnsley's detection is that
the resulting geometric figures are not defined by
the primitive used, but rather by its transformations.
As shown in figure 4, the construction of a
Sierpinski triangle may use a fish as primitive.
Analogous to this, the Von Koch curve might be
constructed based on the letter "A", The result we
end up with remains strictly the same.

The conclusion, that it is theoretically possible to
use any form of primitive for the construction of
such geometric figures, led us to the hypothesis that
it is basically possible to use construction elements
as primitives. Instead of using fishes like Bamnsley,
we would rather use construction elements such as
beams or panels etc.
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Figure 5. lterative construction of a Bezier curve
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In order to top off this series of introductory
examples, we would like to address briefly the
Bezier curve. In 1959, De Casteljau discovered a
method for the construction today called the Bezier
curve, De Casteljau's method [5] is based on
iterative construction (cf. figure 5), which is highly
similar to the construction of a Von Koch curve.
The actual Bezier curve was analytically described
by Bezier in 1961 as a polynomial function, which
presents the headstone of today's CAD software.

2.3 Iterated Function Systems (IFS)

The geometric figures of the examples shown in the
beginning of this section are all defined by a set of
transformations {7;}. As Barmnsley teaches us, the
result is indifferent to the initial object on which is
applied the set of transformations. This is true for
the limit state, also called attractor 4, which is the
resulting figure if the set of transformation (T} is
applied an infinite number of times. The attractor A
is the unique non-empty compact such that

A=JT4
i

The attractor is a theoretical object, which we will
not discuss any further. We will work on the
intermediate construction steps that are given by the
following sequence:

IK's'lwl:: ld'T: E:H
i

Where K represents the initial figure, the so called
germ. K might be any arbitrary object as for
example a fish, as shown in figure 4, or a straight
line segment, as used for the construction of a von
Koch curve or a Bezier curve (cf. figures 3 and 5).
Finally, the following equation shall be mentioned,
which relates the geometric figure K at construction
step n—s to the attractor 4:

lim(K, )= 4

n—sm

Within the following, the modeled objects will be
defined as the projection of an IFS via a projection
operator P.
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3. DISCRETE
DESIGN

ITERATIVE GEOMETRIC

The strange properties of the geometric figures
discussed in section 2.1 and 2.2 are concerning the

limit state, the attractor. For practical applications,
the theoretical object of the attractor is far less
relevant than its intermediate construction state K.
In the scope of this work, the construction state K,
has following properties, which are beneficial for
the application of free-form geometries in
architecture:

e K, is computational point by point

e The resulting geometry is always expressed
by a finite number of elements

3.1 Transformation driven Geometric Design

As stated in section 2.3, the final aspect of the
iteratively constructed geometry is defined by the
transformations. In order to control the resulting
figure, the geometric design method has to provide
solutions, which will allow acting on the
transformations used for the construction of the

figure.
P F‘:(A. P
/\ / \
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Figure 6. First construction steps of a Bezier curve

Let us discuss the example of an iteratively
constructed Bezier curve as shown in figure 6. The
figure shows the first construction steps of a Bezier
curve with three control points P shown in red.

pl.r PJJ P:‘J
P={P..P:fpyj= Fl,p p!.r P!.r
FI,: P:J pl’.:

At the beginning (n = (), the initial figure K
consists in the line connecting the end points of the
control polygon [p;, p:]. Per construction step, two
transformations {7T,, T;} are applied on each
clement. Below, the first three steps of the
construction sequence are shown.
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PK, = PK
PK, = PTK, UPT,K, = PTK UPT.K

PK, = PT.K, UPTK, = PITK UPTT,K U PLTK UPTTK

PK, = PTK, UPTK, = PTTTK U...u PT,T.T,K

Each element of PK; can be computed by following
the construction tree shown in figure 7.

Figure 7. Construction sequence: Tree representation

For our work, transformation matrices are used to
describe affine geometric transformations. We work
with barycentric coordinates, which means that
each computed point is based on a combination of
the entry points. In the present example of a Bezier
curve with three control points, each transformation

can be expressed by one 3x3 matrix:
(1 05 0.25
T =(¢.0.6,)=|0 05 05
0 0 025
(025 0 0
T, =(c,,65,6,)=| 05 05 0
(025 05 1

The above shown transformation matrices are pretty
standard. They work with fixed values conducting
always to the same result: a smooth Bezier curve
with three control points,

A closer look at the transformation matrices of the
Bezier curve shows that they have certain values in
common. For example: The column ¢; of T, as well
as the last column ¢, of T3 is fixed. Further, the last
column of 7, is identical to the first column of 7.
These dependencies guarantee that the resulting
curve will be continuous. The rest of the values are
free and can be modified at the designer’s desire.

If we want to generalize the above mentioned
findings, we can say that certain values of the
transformation matrices are constrained whereas
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others are free. Based on the example of an
iteratively constructed continuous curve with two
transformations and three control points, the general
scheme of the transformation matrices is:

l ¢y & 6, ¢ 0
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In order to act on the free values of the

transformation matrices, we defined a graphical
data input method. We introduce the set of points
{5/}, which we call "subdivision points" (cf. figure
8). Each point s, corresponds to the projection via P
of a column ¢;.

s, = Pe,

Figure 8 Representation of control and subdivision points

By this relation, the values of the columns ¢; can be
obtained by the position of the subdivision points s,
relative to the position of the control points P (cf.
figure 9), using the equation below:

_ p-l
¢, =P,

s
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P

Figure 9. Acting on the transformation matrices by
manipulating the subdivision points (blug)

321 Potential
geometric design

of transformation driven

Whether a figure is smooth or rough depends only
on the affine geometric transformations. The same
curve might be smooth or rough. By changing the
subdivision  parameters,  respectively  the
smoothness and the roughness can be adjusted, as
shown in figure 10. The input of the subdivision



parameters is given by the position of what we
named subdivision points. Alongside the control
points, which are widely known in classical CAD-
software, subdivision points augment the variety of
design possibilities. They provide a graphical way
to manipulate the affine geometric transformations,
which are expressed in the user-unfriendly form of
n-dimensional matrices that work under the skin of
the graphical user interface.
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Figure 10. IFS-Curve curve design: adjustment of
roughness / smoothness

3.3 Constrained Geometric Design

The goal is to develop design strategies that make
the design and the production of free-form surfaces
easier. Therefore, the geometric design should meet
certain topological and geometrical constraints, The
constraints are mainly dictated by physical and
production conditions, coming from the field of
construction. Within the following, a few examples
of different constraints are presented.

E.g. an important point might be that the free-form
object will be built out of planar timber panels.
According to this, the geometrical constraint
demands that the virtual 3D-model must be
constituted completely of planar parts. We will
work on this constraint in the sections 3.4 and 4.2,

In section two, we have presented a series of
iteratively constructed objects. Not all of them are
suitable for physical realization. The Cantor set for
instance, is just a set of discontinued line fractions.
Since we generally need material continuity (unless
designing ormaments or such), we will have to
verify that the created elements building up the
geometric figure are connected with each other.
Continuity represents a topological constraint.

In order to avoid complex detailing of the nodes of
a wire frame structure, it is advantageous to know

the number of bars coinciding in one node. To fix
the number of bars per node to 6, we might work
with surfaces which are entirely composed of
regular triangular faces. This is a topological
constraint,

On the one hand, constraints will make the physical
realization of free-form objects easier. On the other
hand, they may limit the design possibilities, and
therefore restrict the form-finding process, which
we want to avoid as far as possible,

34 A constrained surface model

Figure 11, Surface design by vector sum

In order to create iterative surfaces, which are
entirely composed of planar elements, we will work
on so-called vector sums. Generally, classical CAD-
software computes NURBS-surfaces by tensor
products, which have the unsuitable property of
being composed locally of double curved faces.
Great effort is needed for their production. The
principle of using vector sums, more percisely
Minkowski sums [6], for the generation of free-
form surfaces has already been studied by Schlaich
[7] and Glymph [8]. Such surfaces are combinations
of two curves. Figure |1 shows the curves a and b.
The vector sum of any two segments of the curves
(a,b) creates a parallelogram, which is part of the
entire surface. The surface is completely composed
of parallelograms and therefore it meets the
geometrical constraint which requires that all its
parts must be planar.

The discrete curves @ and b used for the
construction of the surface are represented by two
list of points 4 and B. The resulting vector sum
surface is represented by the quad mesh M:

M,,=M,,+ 4,4 + BB,
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Note: My, is the origin of the quad Mesh. It may be
any arbitrary point in the design space.

The design possibilities of vector sums are limited
compared to NURBS surfaces. As it, the quad mesh
generated by vector sums is composed entirely of
parallelograms. In order to augment the design
capabilities, Schlaich [7] and Glymph [8] extended
the method such that the resulting quad mesh is
composed not only of parallelograms but also of
trapezoids.

w>| rﬁ
w<|
Figure 12. Deformation of vector sum meshes by editing
the weight of certain points.

In order to extend the design capabilities, we
employ methods of projective geometry. The IFS-
formalism will be extended by the possibility of
assigning different weights to its control and
subdivision points. Each point will be defined by
four coordinates (w.x,»,z). Assigning different
weights w to the points allows deforming the quad
mesh more or less locally. Hereby, the resulting
quad mesh is no longer composed of parallelograms
only but more generally speaking of convex planar
quadrilaterals. To illustrate the effect of point
weight editing on vector sums, figure 12 shows the
simple case of a regular quad mesh where two point
weights have been edited. Figure 13 shows the
same principle applied to more complex meshes.

Within the scope of projective geometry, the
coordinates ( w, x. v, z ) are called homogeneous
coordinates. A point ( x, v, z ) in the model space
R' with a weight w has the corresponding
homogeneous coordinates ( w , xw , yw , zw ),
Reciprocally, each point of homogeneous
coordinates ( w , x, v, = ) has corresponding R’
coordinates ( x/w , ww , z/w ) . The passage from
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homogeneous coordinate to R*-coordinates is called
projection.

In order to work with IFS-subdivision in
homogeneous coordinates, the control points P
must be defined in homogeneous coordinates.
Hereon, the IFS-subdivision and the computation of
the quad mesh M are done using homogeneous
coordinates. Finally, the obtained result is projected
back to the model space R’

The proposed surface method works with any pair
of discrete curves. However, the use of IFS-curves
allows controlling the global shape of the surface
via its control points. In addition to that, the
subdivision points allow acting on the local aspect
of the surface: smoothing / roughening.

This surface method offers high design potential. It
unifies, in one formalism, the hitherto separate
paradigms of the “smooth™ and the “rough”.
Furthermore, it verifies a certain number of
geometric constraints, allowing the optimization of
the production of free-form architecture. Within the
following, this will be shown by examples.

¥

L i #ffm& :

; ‘-Jl" ‘,‘;} uf* *Jl-.-rf-*-?!j_t:' # B Y
14 5{%‘% s o8 H-F.,.;W o8 IlF*I 5 -*le i
. b5 I " IL“t-—.... ‘I...*i-r" o et e *.'JT f

W Rt b2l AT e oy g bt
s L o y 1_ " o, 1
o 1t 1Y 1 N 1 . Y Aty it

A1 'fr'.'i-_ (% .,‘_‘E‘.. ;_I
A o T_.-‘._ R '-l-'-r#.
g u-

|’ 1“1-
it
ny i*e S
ERRRVE
g T
s ol
i7isieis

1
(T
Figure 13. Point weight editing of smooth and rough
vector sum surfoces.

4. APPLICATIONS

In order to realize physical buildings out of discrete
virtual geometries, the elements, which constitute
the 3D-models, are replaced by constructional
elements. For an iteratively designed curve, the line
sections will be substituted by linear constructional
clements, such as planks or beams. In the case of a
discrete surface, we replace its faces by planar
constructional elements (panels, plates etc.). The
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substitution of  geometric  elements by
constructional elements poses a certain number of
questions as the geometric figures do not have
physical dimensions like thickness. We will first
discuss the more demonstrative case of a two-
dimensional figure: the Bezier curve.

4.1 Discrete Bezier vault structure

Figure I4. Iterative Bezier Curve

In this example, we build a vault structure based on
an iteratively constructed Bezier curve with four
control points (cf. figure 14). The straight line
sections which build up the curve will be replaced
by raw sawn timber planks. The vault is composed
of a series of curves which are put jointlessly one
next to the other. The planks are then screwed
together in order to compose a massive timber vault
structure. The shape of the vault's section can be
controlled via the control points of the Bezier curve.
Figure 15 shows a shape study where the curve's
control points have been deformed such that the
resulting shape is a meandering element with
inflection points. The line segments of the
underlying discrete Bezier curve have been replaced
by constructional elements.
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Figure 15, Shape Study

Once the shape has been defined, the curve will be
subdivided into its parts until we will obtain
adequate length for the constructional elements. On
the one hand, the lengths of the elements should not
be longer than the prevalent planks existing on the
market. On the other hand, the subdivision should
be fine enough to obtain a smooth rendering of the
curve,

The relevant dimensions, which are necessary for
the production of the constructional elements, are
directly induced by the geometric figure. The
lengths of the planks correspond to the lengths of
the curve's line sections. The chamfer angle can
also be deduced from the geometric model (bisector
angle of two adjacent line segments). The design is
therefore limited to two steps:

e Shape control, via the control points
control

* Subdivision by choosing the

adequate level of iteration

Figure 16. Reduced Scale Model

Figure 16 shows a reduced scale model of such a
massive timber vault structure. The different planks
have been cut by a computer numerically controlled
routing table.

The question of how to partition a free-form object
into a coherent set of constructional elements
becomes obsolete because it is directly given by the
iterative geometrical construction method. A direct
link from design to production plans has been
established, which is an important cost and time
factor for the production of free-form architecture,

4.2 Shell structure — feasibility test

In this section we will discuss the application of an
iteratively constructed free-form surface as a panel
construction. The surface method used for the
design of the free-form objects has been described
in section 3.4, The design used for the realization of
the larger prototype (cf. figure 21 in section 4.3),
was mainly driven by following parameters: On the
one hand, we wanted to realize a small domelike
structure, presenting a smooth arc in its longitudinal
section. On the other hand, we designed a rough
curve, providing folds to the transversal section of
the structure.
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Figure 17. Parallel Offset Mesh generation

In the present example, the faces that compose the
surface are replaced by planar timber panels. The
choice of the thickness of the timber panel is
important as the virtual 3D-surface does not present
any thickness. A volume model has to be derived
from the surface model. The thickening process is
illustrated by figure 17. First, we generate a parallel
offset surface, which holds a constant distance to
the initial surface. The distance corresponds to the
thickness of the timber panel. Second, the bisector
planes are calculated, we will use them later for the
chamfer cut of the panels. In this way, we design
free-form objects that are entirely built up of planar
constructional elements. Figure 18 shows an
example of an IFS-surface whose faces have been
entirely replaced by thickened constructional
elements.

Figure 18. Thickened IFS-surface

4.3 Integrated Manufacturing

In order to test the established digital production
chain, we did first produce an extract of an
iteratively designed free-form surface by a 5-axis
CNC-machine. The procedure to get from the
geometry data of the constructional elements to the
machine code has been mainly automated. To
realize the parts of such complex shapes, the
following work steps are necessary:

¢ A unique address for each constructional
element is necessary for the logistical
reason that the different elements can be
assembled in the right place.

e Each element has to be oriented according

to the coordinate system of the CNC-
machine, the dimensions of the raw
material and fiber direction of the plywood

panel.

* Automatic generation of the machine code
for each element: The material properties,
the type of machine and the nature of the
cutting tools are of the highest importance
for integrated production of the elements,
which are all different in size and shape.

Figure 19 shows a sequence of the machining
process. The production of each multi part plate has
been split into three work steps:

¢ Piercing of the fixation holes. Each part is
screwed on the machining table.

¢ Engraving of the addresses of each element.

e Contour cut: machining of the actual
element.

Figure 19. Integrated manufacturing of the constructional
elements

The assembled manufactured elements give an
accurate rendering of the surface designed on the
computer screen. This shows that practical
realization of iteratively constructed surfaces
becomes possible.
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Figure 20. Assembling of the partial prototype

After the realization of an early partial prototype
(cf. figure 20), we went on testing the method on a
more complex structure which was composed out of
256 constructional elements. The shell structure
shown in figure 21 presents a small vault spanning
over four and a half meters; its plates are |10mm
thick spruce plywood. Although the realized objects
remain till today relatively small-sized, they
allowed us to verify the validity of the proposed
design method, since the employed manufacturing
techniques are also applicable for real scale
constructional elements.

Figure 21, Second prototvpe

5. DISCUSSION ANDOUTLOOK

The presented applications show that the design and
construction of free-form surfaces using our method
requires a relatively small planning effort. Thus,
several problems showed wup during the
manufacturing process because of the extremely
low tolerances permitted by the perfectly fitting
pieces. Big scale free-form buildings will probably
loosen these tolerances, but the logistics and the
montage will probably get more complicated. The
efficiency of the method presented is only proved
insofar as the processing of the data, from design to
production, last only a few moments.

Further, the possibility of the design method, that
allows the generation of rough and smooth objects,
could be employed for the design of bearning plate
structures, using the rigidity of the fold to improve
the structural strength of the free-form surfaces.

Figure 22 illustrates a preliminary investigation on

the bearing potential of such folded structures. On
its left side, a smooth symmetrical plate structure is
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shown. On its right side the same model with added
folds. In order to get a rough idea of the global
structural behavior we imagined a plate structure
spanning over twelve meters, built of 20mm
plywood panels (spruce). First, we designed a
smooth domelike shell structure. Hereon, we
applied asymmetrical load of F, = 1500N/m’, which
is a typical design value for snow load in central
Switzerland. The maximum deflection occurred
along the z-axis, which was about at 266mm. After
adding folds, the FEM-analysis showed a maximum
deflection value of 15mm.

S da
i

Figure 22. Comparison of the a smooth and rough IFS-
swrface under asvmmetrical load

Note: This analysis was assuming hinge joints
between the individual constructional elements. In
reality, the joints may present a certain bending
rigidity. Since the constructional elements are fixed
along all four sides (except the border panels) any
possible rotation is greatly limited by the system.
For real scale applications, we think that adequate
detailing is highly important. Further information
about the joints of folded timber plate structures can
be found in [9] and [10]. Buri et al. [9] used 2mm
folded steel plates for joining massif block timber
panels of 40mm. Haasis et al. studied in [10] the
bending rigidity of screwed connections.

The above mentioned thoughts about detailing and
structural properties of the presented work are
possible subjects for future investigations.

In the future, we will continue the development of
bigger and more complex objects. The potential of
the new design method for free-form surfaces is far
from being exhausted. We hope to meet further
occasions to test our method on applications such as
suspended ceilings, free-form facades, climbing
walls, halls or shell structures.
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