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Abstract

Gossip-based information dissemination protocols are
considered easy to deploy, scalable and resilient to network
dynamics. They are also considered highly flexible, namely
tunable at will to increase their robustness and adapt to
churn. So far however, they have mainly been evaluated
through simulation, very often assuming ideal settings.

Instead, in this paper, we report on an extensive study of
gossip protocols, deployed on a 230 Planetlab node testbed,
in the context of a challenging video streaming applica-
tion in environments with constrained bandwidths. More
precisely, we assess the impact of varying the well known
knobs of gossip, fanout and refresh rate, in various upload-
bandwidth distributions and churn. Our results show that in
such challenging contexts, the performance of gossip proto-
cols may be hampered by high fanout values. We also show
that the more proactive a gossip protocol, the better it copes
with churn. For instance, when 20% of the nodes simultane-
ously crash, 70% of the remaining nodes do not suffer any
loss in stream quality, while the others only experience a
performance decrease for an average of 5 seconds around
the churn event.

1. Introduction

Gossip-based protocols [1, 3, 4, 9] are well known for
their robustness and ability to cope with network dynamics.
A lot of efforts have thus been devoted to their theoretical
analysis and evaluation [6, 11]. It was for instance shown
that the number of communication partners (called fanout)
in a system of size n, should be greater than a threshold
value ln(n) for the gossip dissemination to reach all nodes
with high probability [7].

Gossip protocols have also been shown to be effective
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for challenging applications like live streaming [2]. Yet,
most of the work evaluating gossip has considered ideal set-
tings; e.g., unconstrained bandwidth, no (or uniform) mes-
sage loss, global knowledge about the state of all nodes.
Evaluations conducted through simulation [2,4,10] also as-
sume that key parameters of gossip, such as fanout and gos-
sip rate, can be arbitrarily tuned to improve robustness and
to adequately adapt to network dynamics. Moreover, excep-
tions of gossip experiments in real settings assume infinite
bandwidth [9], or consider applications with low bandwidth
needs, such as membership maintenance [5].

In the presence of heterogeneous bandwidth and greedy
applications, we have no evidence that gossip will fulfill its
promises. The impact of the key parameters of gossip proto-
cols in such contexts remains unexplored. For instance, the
impact of varying the fanout, an obvious knob to tune the
robustness of a gossip protocol, has never been determined.

The rate at which the gossip partners are changed re-
flects the proactiveness of a gossip protocol. The impact
of varying this rate has never been studied either. At one
extreme, one might consider a gossip protocol where nodes
change their neighbors at every communication step (this
is the scheme typically considered in theoretical studies).
At the other extreme, nodes would never change their com-
munication partners unless they notice malfunctions; this
is typically the approach underlying mesh-based systems
where the unstructured overlay used to create random or
deterministic dissemination trees, once constructed, is kept
as is until the mesh connectivity is reduced (e.g., a node
has less than a given number of neighbors), or a node feels
it is incorrectly fed [8]. A wide range of schemes can be
considered between these two extremes.

In this paper, we report on extensive experimentation
on gossip protocols in a realistic environment and in the
context of greedy applications with respect to bandwidth,
namely video streaming applications. We evaluate the im-
pact of the key parameters of gossip protocols with various
churn scenarios and bandwidth capabilities. Finally, we do
not consider any repair mechanism or underlying overlay



structure, thus preserving the inherent simplicity of gossip.
In short, our results show that gossip can be very effec-

tive in greedy and capability-constrained applications, but
only within a small window of parameter ranges. First, the
resulting stream quality is very sensitive to the fanout value.
The power of gossip is unleashed when the fanout is slightly
larger than ln(n) but degrades drastically with higher fanout
values as a result of higher contention. For example, with
a bandwidth cap of 700 kbps for a stream rate of 600 kbps,
gossip reaches its optimal performance with a fanout of 7
(230 nodes). Second, gossip is most effective when the set
of communication partners is continuously changing, par-
ticularly in the presence of churn. When 20% of the nodes
simultaneously crash, 70% of the remaining nodes do not
suffer any loss in quality, while the remaining ones only ex-
perience a performance decrease for an average of 5 around
the churn event. These numbers drop to 30% when commu-
nication partners are refreshed only every 2 gossip rounds.

Finally, our results show that allowing nodes to change
their incoming communication partners explicitly by means
of periodic requests to be fed by a new set of nodes does not
provide any improvement over standard gossip techniques.
This further confirms the strength of gossip protocols in
their simplest form.

2. Gossip-based content dissemination

Consider a set of n nodes, and an event e to be dis-
seminated in the system: e typically consists in a payload
and an id. Gossip-based content dissemination protocols
generally follow a three-phase push-request-push pattern as
depicted in Algorithm 1. The protocol follows an infect-
and-die model [7]. Each node periodically contacts a fixed
number, f (fanout), of nodes chosen according to the se-
lectNodes function and proposes them a set of event ids (of
the events it has received) with a [PROPOSE] message (line
5 for the broadcaster and 6 for other nodes). Upon re-
ceipt of a [PROPOSE], nodes pull the content needed with a
[REQUEST] message to the proposing peer. The peer being
pulled then sends back the actual content (the event) in a
[SERVE] message that contains the requested events. Such
a protocol leverages the reliability of gossip to disseminate
the event ids while avoiding redundancy in content dissem-
ination, which would increase the consumed bandwidth.

3. Tailoring gossip-based dissemination

While the protocol is simple, its parameters may be
tuned to improve efficiency, reliability, or resilience to
churn. We explore the parameter space as follows.

Fanout. The fanout is defined as the number of communi-
cation partners each node contacts in each gossip operation.

Algorithm 1 Standard gossip protocol
Initialization:

1: f := ln(n) + c
2: eventsToPropose := eventsDelivered := requestedEvents := ∅
3: start(GossipTimer(gossipPeriod))

Phase 1 – Push event ids
procedure publish(e) is

4: deliverEvent(e)
5: gossip({e.id})

upon (GossipTimer mod gossipPeriod) = 0 do
6: gossip(eventsToPropose)
7: eventsToPropose := ∅ {Infect and die}

Phase 2 – Request events
upon receive [PROPOSE, eventsProposed] do

8: wantedEvents := ∅
9: for all e.id ∈ eventsProposed do

10: if (e.id /∈ requestedEvents) then
11: wantedEvents := wantedEvents ∪ e.id
12: requestedEvents := requestedEvents ∪ wantedEvents
13: reply [REQUEST, wantedEvents]
14: if (e requested less than K times) then
15: start(RetTimer(retPeriod, eventsProposed))

Phase 3 – Push payload
upon receive [REQUEST, wantedEvents] do
16: askedEvents := ∅
17: for all e.id ∈ wantedEvents do
18: askedEvents := askedEvents ∪ getEvent(e.id)
19: reply [SERVE, askedEvents]

upon receive [SERVE, events] do
20: for all e ∈ events do
21: if (e /∈ eventsDelivered) then
22: eventsToPropose := eventsToPropose ∪ e.id
23: deliverEvent(e)
24: cancel(RetTimer(retPeriod, events))

Retransmission
upon (RetTimer(retPeriod, eventsProposed) mod retPeriod) = 0 do
25: receive [PROPOSE, eventsProposed]

Miscellaneous
function selectNodes(f ) returns set of nodes is
26: return f uniformly random chosen nodes in the set of all nodes

function getEvent(event id) returns event is
27: return the event corresponding to the id

procedure deliverEvent(e) is
28: deliveredEvents := deliveredEvents ∪ e
29: deliver(e)

procedure gossip(event ids) is
30: communicationPartners := selectNodes(f )
31: for all p ∈ communicationPartners do
32: send(p) [PROPOSE, event ids]

It has been theoretically shown that a fanout greater than
ln(n) in an infect-and-die model [7] ensures a highly reli-
able dissemination. Theory also assumes that increasing the
fanout results in an even more robust (as the probability to
receive an event id increases) and faster dissemination (as
the degree of the resulting dissemination tree increases). In
practice, however, too high a fanout can negatively impact
performance as heavily requested nodes may exceed their
capabilities in bandwidth constrained environments.

Proactiveness. We define proactiveness as the rate at
which a node modifies its set of communication partners.
We explore two ways of modifying this set.

First, the node may locally refresh its set of communi-
cation partners and change the output of selectNodes every



X calls. In short, when X = 1 the gossip partners of the
node change at every call to selectNodes (i.e., every gossip
period), whereas X = ∞ means that the communication
partners of a node never change.

Second, every Y gossip periods, the node may contact f
random partners asking to be inserted in their views. When
Y = 1, a node A sends a feed-me message to f random
partners every gossip period asking them to feed it. Each
of the random f partners replaces a random node from its
current set of f partners with A.

4. Evaluation

We evaluate the impact of the fanout and proactiveness
of a gossip protocol by deploying a streaming application
based on Algorithm 1 over a set of 230 PlanetLab nodes.
Our implementation is based on UDP and incorporates re-
transmission to recover lost stream packets (lines 14, 15, 25
in Algorithm 1).

Bandwidth constraints. PlanetLab nodes benefit from
high bandwidth capabilities and therefore are not represen-
tative of peers with limited capabilities. We thus artificially
constrain the upload bandwidths of nodes with three differ-
ent caps: 700 kbps, 1000 kbps and 2000 kbps. To limit mes-
sage loss resulting from bandwidth bursts, our bandwidth
limiter also implements a bandwidth throttling mechanism.

Streaming Configuration. A source node generates a
stream of 600 kbps and proposes it to 7 nodes in all ex-
periments. To provide further tolerance to message loss
(combined with retransmission), the source groups packets
in windows of 110 packets, including 9 FEC coded packets.
The gossip period is set to 200 ms.

Evaluation metrics. We assess the performance of the
streaming protocol along two metrics: (i) the stream lag, de-
fined as the difference between the time at which the stream
is published by the source and the time at which it is actu-
ally delivered to the player on the nodes; and (ii) the stream
quality, which represents the percentage of the stream that is
viewable. A window is jittered if it does not contain enough
packets (i.e., strictly less than 101) to fully reconstruct the
window. A stream with a maximum of 1% jitter means that
at least 99% of all the windows are complete.1

Stream lag and quality are correlated notions: the longer
the acceptable lag, the better the quality. We consider
stream qualities corresponding to several lag values as well

1An incomplete window does not mean that the window is unusable.
Using systematic coding, a node receiving 100 out of the 101 original
packets, experiences a 99% delivery in that window.

as to an infinite lag, which represents the performance ob-
tainable by a user that downloads the stream for playing at
a later stage, e.g., offline viewing. Each experiment was run
multiple times. We plotted the most representative one.

4.1. Impact of varying the fanout

We start our analysis by measuring how varying the
fanout impacts each of the two metrics, with a proactiveness
degree of 1 (X = 1). Results are depicted in Figures 1–
3. Figure 1 shows the percentage of nodes that can view
the stream with less than 1% jitter for various stream lags
in a setting where all nodes have their upload capabilities
capped at 700 kbps.
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Figure 1: Percentage of nodes viewing the stream with less
than 1% of jitter (upload capped at 700 kbps).

Optimal fanout range. The plot clearly highlights an op-
timal range of fanout values (from 7 to 15 in Figure 1) that
gives the best performance independently of the lag value
considered. Lower fanout values are insufficient to achieve
effective dissemination, while larger values generate higher
network traffic and congestion, thus decreasing the obtain-
able stream quality.

The plot also shows that while the lines corresponding to
finite lag values have a bell shape without any flat region,
the one corresponding to offline viewing does not drop dra-
matically until a fanout value of 40. The bandwidth throt-
tling mechanism is in fact able to recover from the conges-
tion generated by large fanout values once the source has
stopped generating new packets. For fanouts above 40, on
the other hand, such recovery does not occur.

Critical lag value. A different view on the same set of
data is provided by Figure 2. For each value t, the plot
shows the percentage of nodes that can view at least 99% of



the stream with a lag shorter than t. A fanout in the opti-
mal range (e.g., 7) causes almost all nodes to receive a high
quality stream after a critical lag value (t = 5 s for a fanout
of 7). Moderately larger fanout values cause this critical
value to increase (t = 22 s for a fanout of 20), while for
fanouts above 35, no critical value is present. Rather con-
gestion causes significant performance degradation. With a
fanout of 40, only 20% of the nodes can view the stream
with a lag shorter than 60 s, and a lag of 90 s is necessary to
reach 75% of the nodes.
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Figure 2: Cumulative distribution of stream lag with various
fanouts (upload capped at 700 kbps).

Behavior with less tight distributions. The presence of
an optimal fanout value is clearly a result of operation un-
der limited bandwidth. Figure 3 complements the picture by
showing how fanout affects performance under less critical
conditions: 1000 kbps and 2000 kbps of capped bandwidth.
As available bandwidth increases, the range of good fanout
values clearly becomes larger and larger and tends to move
to the right. With an available bandwidth of 1000 kbps,
which is more than 1.67 times the stream rate, it is still pos-
sible to identify a clear region outside of which performance
degrades significantly. With 2000 kbps of available band-
width, both the 10 s-lag and the offline performance figures
appear to remain high even with very large fanout values.
This behavior may be better understood by examining how
bandwidth is actually used by the PlanetLab nodes involved
in the dissemination.

Bandwidth usage with different fanouts values. Fig-
ure 4 shows the distribution of bandwidth utilization over
all the nodes involved in the experiments sorted from the
one contributing the most to the one contributing the least.
The plot immediately highlights an interesting property:
even though all the considered scenarios have a homoge-
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Figure 3: Percentage of nodes viewing the stream with
less than 1% of jitter with upload caps of 1000 kbps and
2000 kbps, and different fanout values.

neous bandwidth cap, the distribution of utilized bandwidth
is highly heterogeneous. This behavior is a direct result of
the three-phase protocol employed for disseminating large
content.
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Figure 4: Distribution of bandwidth usage among nodes
with different fanout values and upload caps.

According to Algorithm 1, all nodes contribute to the
gossip dissemination by sending their proposal messages to
the same number of nodes. However, the contribution of a
node in terms of serve messages depends on the probabil-
ity that its proposal messages are accepted by other nodes.
In general, nodes with low-latency and reliable connections
(i.e., good nodes) have higher probabilities to see their pro-
posals accepted. This is confirmed by Figure 4. The plot
also shows that the heterogeneity in bandwidth utilization
increases with the amount of available bandwidth. For ex-
ample the lines for the 700 kbps bandwidth cap show an



almost homogeneous distribution apart from a small set of
bad nodes. This is because the higher latencies exhibited
by good nodes when their bandwidth utilization is close
to the limit causes other nodes to work more, thus equal-
izing bandwidth consumption. On the other hand, if we
observe the lines corresponding to a fanout of 50 in the
1000 kbps and 2000 kbps scenarios and to a fanout of 100
in the 2000 kbps scenario, we see that good nodes have
enough spare capacity to operate without saturating their
bandwidths. As a result, the contribution of nodes remains
highly heterogeneous.

4.2. Proactiveness

Next, we present our analysis of gossip proactiveness by
showing how refreshing the set of communication partners
affects application performance. Figure 5 presents the re-
sults obtained by varying the view refresh rate, X , in a sce-
nario with a 700 kbps bandwidth cap. The plot shows three
lines corresponding to stream lags of 10 s and 20 s as well as
to offline viewing. In all cases, results confirm that the best
performance is obtained by varying the set of gossip part-
ners at every communication round. If on the other hand,
the set of communication partners remains constant for long
periods of time, a small set of nodes end up having the re-
sponsibility of feeding large numbers of nodes for as long as
they keep being selected early in the dissemination process.
This means that their upload rates remain constantly higher
than their allowed bandwidth limits, ultimately resulting in
high levels of congestion, huge latencies, and message loss.
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Figure 5: Percentage of nodes viewing the stream with at
most 1% jitter as a function of the refresh rate X .

In accordance with these observations, Figure 5 shows
that the slope at which the curves decrease with X is most
negative for a lag of 10s. This is because longer values of
lag allow the bandwidth throttling mechanism more time

to recover from the bursts generated by a constant set of
communication partners. Nonetheless, a completely static
dissemination mesh invariably yields bad performance even
for offline viewing as the load becomes then concentrated
on a very small set of nodes for the entire experiment.

Requesting nodes to update their views. A second way
to modify the proactive behavior of the considered stream-
ing protocol is for nodes to periodically request a new set
of nodes to feed them, i.e., every Y dissemination rounds.
In Figure 6 we show the results obtained with different val-
ues of Y . Results show that this technique remains inferior
to the simpler approach of choosing a view refresh rate of
X = 1, as discussed above. The additional messages used
by this approach may in fact be lost or delayed while the
node is congested, resulting in a larger Y than planned.
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Figure 6: Percentage of nodes viewing the stream with at
most 1% jitter as a function of the request rate Y .

4.3. Performance in the presence of churn

Finally, we evaluate the impact of proactiveness in the
presence of churn with Y =∞. Results are depicted in Fig-
ures 7 and 8. The experiments consist in randomly picking a
percentage of nodes and make them fail simultaneously. We
compare the baseline results (e.g., when no nodes fail) with
those with increasing percentages, from 10% to 80%, of
failing nodes. Figure 7 shows the percentage of remaining
nodes experiencing less than 1% jitter after the catastrophic
failure, for values of X of 1, 2, 20 and∞.

Figure 7 clearly shows that a completely dynamic mesh
offers the best performance in terms of ability to withstand
churn. With 35% churn, a proactiveness of X = 1 is able to
deliver an unaffected stream to 60% of the remaining nodes,
while the percentage drops to 32% for X = 2 and a stream
lag of 20 seconds. The results obtained with large values of
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Figure 7: Percentage of surviving nodes experiencing less
than 1% jitter for different values of X .

X and in particular when X = ∞ show very high degrees
of variability from experiment to experiment. The resulting
static or semi-static random graph may become completely
unable to disseminate the stream if failing nodes are close
to the source or it may appear extremely resilient to churn
if failing nodes are located at the edge of the network. On
average, performance is therefore in favor of a completely
dynamic graph (X = 1).

It should be noted that Figure 7 only shows how many
nodes manage to remain completely unaware of the churn
event. To characterize the extent of the performance de-
crease experienced by all surviving nodes, Figure 8 shows
the average percentage of decoded windows over the total
number of windows streamed by the source. With X = 1,
the protocol is almost unaffected by churn, and nodes cor-
rectly receive over 90% of the windows for all churn per-
centages lower than 80%. In addition, almost all the miss-
ing windows turn out to be concentrated in a time frame of
5 s to 10 s around the churn event when 20% and 80% of
nodes fail (not shown in the plot).

5. Concluding remarks

The evaluations of gossip protocols for dissemination
usually back up the associated theoretical claims: gossip
can be tuned to achieve reliable dissemination in the pres-
ence of churn. In this paper, we challenged these results, ob-
tained mostly through simulations in close-to-ideal settings,
and evaluated a gossip-based live streaming application in a
real deployment over 230 PlanetLab nodes.

Our results show that message loss and limited band-
width significantly restrict the range of parameter values
in which gossip can successfully operate. First, the fanout
cannot be increased arbitrarily to improve reliability and
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Figure 8: Average percentage of complete windows for sur-
viving nodes.

latency, but must remain small enough to prevent band-
width saturation. Second, the set of communication part-
ners should be changed frequently, at every communication
round, in order to minimize congestion and provide an ef-
fective response to churn.
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[2] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and
A. Twigg. Epidemic Live Streaming: Optimal Performance
Trade-Offs. In SIGMETRICS, 2008.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic Algorithms for Replicated Database Maintenance. In
PODC, 1987.

[4] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkata-
subramanian, and S. Mehrotra. CREW: A Gossip-based
Flash-Dissemination System. In ICDCS, 2006.

[5] N. Drost, E. Ogston, R. van Nieuwpoort, and H. Bal. ARRG:
Real-World Gossiping. In HPDC, 2007.

[6] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking.
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