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Abstract: Fluorophores that are fixed during image acquisition pro-
duce a diffraction pattern that is characteristic of the orientation of the
fluorophore’s underlying dipole. Fluorescence localization microscopy
techniques such as PALM and STORM achieve super-resolution by ap-
plying Gaussian-based fitting algorithms to in-focus images of individual
fluorophores; when applied to fixed dipoles, this can lead to a bias in the
range of 5-20 nm. We introduce a method for the joint estimation of position
and orientation of dipoles, based on the representation of a physically real-
istic image formation model as a 3-D steerable filter. Our approach relies on
a single, defocused acquisition. We establish theoretical, localization-based
resolution limits on estimation accuracy using Cramér-Rao bounds, and
experimentally show that estimation accuracies of at least 5 nm for position
and of at least 2 degrees for orientation can be achieved. Patterns generated
by applying the image formation model to estimated position/orientation
pairs closely match experimental observations.
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1. Introduction

Fluorescence localization microscopy (FLM) has emerged as a powerful family of techniques
for optically imaging biological samples at molecular resolutions, down to the nanometer
scale [1]. This is achieved by employing specific fluorescent labels that can be activated [2],
switched on [3], or that intrinsically blink [4], which make it possible to image sparse sub-
sets of the fluorophores contained within the specimen in sequence. Fluorophores appear as
spatially isolated spots in the resulting image frames; their center can then be computationally
localized with an accuracy that far surpasses the resolution limit formulated by Abbe. A super-
resolved image of the specimen is generated by imaging a large number of such fluorophore
subsets, localizing every molecule within each frame, and combining the resulting positions to
render a composite image at a finer scale. The resolution achieved by these techniques is thus
directly dependent upon the achievable localization accuracy. This accuracy in turn depends on
the number of photons collected [5] and on the image formation model used in the localization
algorithm.
The primary implementations of FLM proposed to date include photoactivated localization

microscopy (PALM) [6], fluorescence photoactivation localization microscopy (FPALM) [7],
and stochastic optical reconstruction microscopy (STORM) [8]. Developed contemporane-
ously, these methods demonstrated resolutions at the 10 nm scale experimentally. Due to the
long acquisition times required for the collection of a sufficient amount of frames, these meth-
ods were initially designed to image 2-D sections of thin, fixed specimens. For such samples, it
is generally assumed that the image of a single molecule corresponds to the in-focus section of
the system’s 3-D point spread function (PSF), which can be approximated by a 2-D Gaussian
function. Under the latter assumption, it has been shown that Gaussian-based fitting algorithms
do not result in a significant loss in localization accuracy [9].
Prior to the introduction and practical feasibility (due to a lack of suitable fluorophores) of

FLM, localization-based approaches were generally limited to single molecule tracking appli-
cations, with inherent isolation of individual fluorophores. In a study of the progression of the
molecular motor Myosin V on actin fibers, Yildiz et al. achieved a Gaussian localization-based
resolution of 1.5 nm, and accordingly named their technique fluorescence imaging with one-
nanometer accuracy (FIONA) [10]. In the framework of single particle tracking, theoretical
limits on the achievable localization accuracy have been formulated for lateral (i.e. x-y) local-
ization [11] and axial localization [12]; these limits translate into a measure of resolution when
extended to incorporate multiple sources.
In all of the previously cited methods, it is assumed that individual fluorophores act as

isotropically emitting point sources (which also implies that their image corresponds to a sec-
tion of the system’s PSF). Whereas this is valid for molecules that freely rotate during image
acquisition, it does not hold when imaging fixed fluorophores. Their corresponding diffrac-
tion patterns differ significantly from the PSF, and are highly specific of the orientation of the
fluorophore’s underlying electromagnetic dipole [13, 14].

1.1. Localization of fluorescent dipoles

Dipole diffraction patterns are generally not radially symmetric, and as a consequence, their
point of maximum intensity in the image plane is shifted with respect to the position of the
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fluorophore. Applying Gaussian-based localization to such patterns can lead to a bias in the
range of 5-20 nm, even for dipoles that are imaged in focus [15]. This is especially significant
in the context of FLM, where resolutions of the same order are striven for. Due to the complexity
of the dipole patterns, avoiding this bias requires localization methods based on a more accurate
image formation model than a simple Gaussian.
Moreover, localization based on a physically realistic model makes it possible to estimate the

dipole’s orientation in addition to its position. So far, this has been exploited in an extension
of the FIONA technique named dipole orientation and position imaging (DOPI) [16]. In the
study of Myosin V, the estimation of the fluorescent labels’ orientation made it possible to
characterize its progression on actin much more precisely than with FIONA. A shortcoming of
the current implementation of DOPI is its reliance on two separate procedures for orientation
and position estimation.
The current state of the art in dipole orientation and position estimation is based on matched

filtering of defocused images. Using an advanced image formation model for dipoles [17], Patra
et al. proposed to estimate the orientation based on a finite number of precomputed templates
corresponding to rotated versions of a dipole diffraction pattern for a given amount of defocus
[18]. The accuracy of this approach is inherently limited by the angular sampling stemming
from the finite number of templates, which is usually restricted due to computational cost. As
a further consequence, the matched filtering approach limits position estimates to pixel-level
accuracy. In DOPI, super-resolved position information is recovered by taking two images of
every fluorophore: a defocused image for orientation estimation, and an in-focus image for
position estimation, which uses the Gaussian-based localization method proposed in FIONA.
Other methods for estimating the orientation of fluorescent dipoles have been proposed in the

literature. Often relying on specific instrumentation, most of these methods are incompatible
with a joint position and orientation approach over a reasonably large field of view. Notable
techniques are based on direct imaging of the emission pattern in the back focal plane of the
objective lens (see, e.g., [19–21]), and on annular illumination [22].

1.2. New approach based on 3-D steerable filters

In this work, we introduce an efficient method for the joint estimation of position and orienta-
tion for fluorescent dipoles from a single (defocused) image. We show that image formation for
dipoles can be expressed as a linear combination of six templates weighted by trigonometric
functions of the dipole angles. As a consequence, the estimation problem can be formulated as
the optimization of a 3-D steerable filter [23]. The resulting algorithm serves both as an ini-
tial detection of dipoles with localization accuracy at the pixel level, and as an efficient means
for iteratively updating the orientation estimates when performing the subsequent sub-pixel
localization to achieve super-resolution. We formulate the theoretical limits on estimation ac-
curacy for position and orientation using Cramér-Rao bounds (CRB), and show that our method
reaches these bounds. Notably, these limits make it possible to establish the acquisition settings
(e.g., defocus) that will lead to the highest estimation accuracy. Our experimental results indi-
cate that dipoles can be localized with a position accuracy of at least 5 nm and an orientation
accuracy of at least 2 degrees, at a peak signal-to-noise ratio (PSNR) of approximately 25 dB.

1.3. Organization of the paper

In the next section, we introduce an image formation model for fluorescent dipoles and show
how it decomposes into six non-orthogonal templates. Subsequently, in Section 3, we use this
steerable decomposition to formulate a localization algorithm for the estimation of both the
position and orientation of fluorescent dipoles. In Section 4, we establish the theoretical lim-
its on the accuracy of these estimators, using Fisher information. Finally, in Section 5, we
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demonstrate our method on simulated and experimental data. We conclude with a discussion of
potential applications and extensions of the proposed technique.

2. Image formation

A single fluorescent molecule can be characterized as a harmonically oscillating dipole with
moment p = (sin θp cosφp, sin θp sinφp, cos θp) and position xp = (xp, yp, zp), where the
angles θp and φp are the zenith (i.e., between the dipole and the optical axis) and azimuth angle
of the dipole, respectively. In our notation, the subscript p indicates a dipole parameter. The
intensity radiated by such a dipole is modeled by propagating the emitted electric field through
the optical system. We begin by expressing the amplitude of the electric field in object space as

Es = 〈p, es
p〉es

p + 〈p, es〉es, (1)

where the vectors es
p and es are the p- and s-polarized components of Es in the sample layer

[24], as illustrated in Fig. 1 (the superscript s on the ep vector denotes the sample medium; es

remains constant throughout the system). A constant factor representing the magnitude (see,
e.g., [24,25]) has been neglected in this expression and will be reintroduced later. We assume a
standard model for the object space, consisting of a sample layer (refractive index ns), a glass
layer (corresponding to the coverslip, index ng), and an immersion layer (index ni) [26]. After
propagating through these layers and the objective, the field is given by

Ea = 〈p, es
p〉t(1)p t(2)p ea

p + 〈p, es〉t(1)s t(2)s es, (2)

where t(l)p and t(l)s are the Fresnel transmission coefficients for p-polarized and s-polarized light
from layer l to layer l + 1, i.e.,

t(l)p =
2nl cos θl

nl+1 cos θl + nl cos θl+1

t(l)s =
2nl cos θl

nl cos θl + nl+1 cos θl+1
,

(3)

where (n1, n2, n3) = (ns, ng, ni) for the configuration considered here. Note that Eq. (2)
can easily be generalized to an arbitrary number of strata. The unit vectors of the relevant
polarization directions, expressed in spherical coordinates, are

es
p = (cos θs cosφ, cos θs sinφ,− sin θs)

= (
1
ns

√
n2

s − n2
i sin2 θ cosφ,

1
ns

√
n2

s − n2
i sin2 θ sinφ,−ni

ns
sin θ)

ea
p = (cosφ, sinφ, 0)

es = (− sinφ, cosφ, 0),

(4)

where θs is the zenith angle between the wavevector k and the optical axis in the sample layer,
θ is the corresponding angle in the immersion layer, and φ is the azimuth angle (see Fig. 1).
The wavevector is thus parameterized as

k = −kni(cosφ sin θ, sinφ sin θ, cos θ), (5)

where k = 2π
λ is the wavenumber. The field in the detector plane, expressed in object space

coordinates, is given by the Richards-Wolf integral [27, 28]:

E =
−iA0

λ

∫ 2π

0

∫ α

0
Eaei〈k,x〉eikΛ(θ;τ )

√
cos θ sin θ dθ dφ

=
−iA0

λ

∫ 2π

0

∫ α

0
Eaeikrni sin θ cos(φ−φd)e−ikniz cos θeikΛ(θ;τ )

√
cos θ sin θ dθ dφ,

(6)
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Fig. 1. Electric field propagation in a microscope. The illustrated path is in direction of the
azimuth angle φ.

where A0 is the scalar amplitude of the field, λ its wavelength, and α is the maximal angular
aperture of the objective (i.e., α = sin−1 (NA/ni)). The phase component Λ(θ; τ ) describes
the system’s aberrations. Its argument

τ = (ni, n
∗
i , ng, n

∗
g, ns, t

∗
i , tg, t

∗
g) (7)

is a vector containing the optical parameters of the setup; the subscripts on the refractive in-
dices n and thicknesses t indicate the respective layer for each parameter (see Fig. 1), and
an asterisk signals a design value (i.e., ni is the refractive index of the immersion medium
under experimental conditions, and n∗

i its corresponding design value). The field E is a
function of the point of observation x = (−r cosφd,−r sinφd, z) on the detector, where
r =

√
(x − xp)2 + (y − yp)2 and φd = tan−1

(
(y − yp)/(x − xp)

)
; z denotes defocus. All

units are expressed in object space coordinates, which allows us to place the origin of the coor-
dinate system at the interface between the sample layer and the coverslip in order to facilitate
the expression of the phase term Λ(θ; τ ).
We describe the system’s aberrations based on the optical path difference (OPD) between

actual (experimental) imaging conditions and the corresponding design values of the system,
as proposed in [26]. Aberrations are assumed to arise exclusively as the result of a mismatch
between the refractive indices and/or the thicknesses of the different layers in the sample setup.
State-of-the-art vectorial PSF calculations all incorporate this phase term (see, e.g., [29, 30]),
and although the formalism employed differs from [26], these approaches lead to the same
result for the phase and are considered equivalent [31, 32]. We thus replace the aberration term
Λ(θ; τ ) with the OPD Λ(θ, z; zp, τ ), defined as

Λ(θ, z; zp, τ ) =
(

zp − z + ni

(
− zp

ns
− tg

ng
+

t∗g
n∗

g

+
t∗i
n∗

i

))
ni cos θ

+ zp

√
n2

s − n2
i sin2 θ + tg

√
n2

g − n2
i sin2 θ

− t∗g

√
n2

g∗ − n2
i sin2 θ − t∗i

√
n2

i∗ − n2
i sin2 θ.

(8)

Note that Λ(θ, z; 0, τ ) is the phase term corresponding to the standard defocus model [33].
By substituting Eq. (2) into Eq. (6) and simplifying the result, we can rewrite the vector E as

E = −i

[
I0 + I2 cos(2φd) I2 sin(2φd) −2iI1 cos(φd)

I2 sin(2φd) I0 − I2 cos(2φd) −2iI1 sin(φd)

]
p, (9)
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where
I0(x;xp, τ ) =

∫ α

0
B0(θ)

(
t(1)s t(2)s + t(1)p t(2)p

1
ns

√
n2

s − n2
i sin2 θ

)
dθ

I1(x;xp, τ ) =
∫ α

0
B1(θ)t(1)p t(2)p

ni

ns
sin θ dθ

I2(x;xp, τ ) =
∫ α

0
B2(θ)

(
t(1)s t(2)s − t(1)p t(2)p

1
ns

√
n2

s − n2
i sin2 θ

)
dθ

(10)

with
Bm(θ) =

√
cos θ sin θJm(krni sin θ)eikΛ(θ,z;zp,τ ). (11)

It should be noted that these integrals are standard for vectorial PSF calculations (for equivalent
expressions see, e.g. [30,32]). The amplitude factor A0 was dropped from this formulation and
will again be reintroduced later. Due to an already involved notation, we choose to omit the
argument (x;xp, τ ) from functions such as |I0|2 from this point on.
The orientation-dependent intensity in the detector plane is accordingly given by

hθp,φp(x;xp, τ ) = |E|2

= sin2 θp

(
|I0|2 + |I2|2 + 2 cos(2φp − 2φd)Re{I∗0 I2}

)

− 2 sin(2θp) cos(φp − φd)Im{I∗1 (I0 + I2)} + 4|I1|2 cos2 θp

= pTMp.

(12)

An asterisk denotes complex conjugation, and vT stands for the Hermitian transpose of the
vector v; Re{v} and Im{v} represent the real and imaginary components of v, respectively.
The symmetric matrixM = (mij)1!i,j!3 is specified by

m11 = |I0|2 + |I2|2 + 2Re{I∗0 I2} cos 2φd

m12 = 2Re{I∗0 I2} sin 2φd

m13 = −2 cosφdIm{I∗1 (I0 + I2)}
m22 = |I0|2 + |I2|2 − 2Re{I∗0 I2} cos 2φd

m23 = −2 sinφdIm{I∗1 (I0 + I2)}
m33 = 4|I1|2.

(13)

The quadratic form in Eq. (12) is of particular interest, since it decouples the dipole orientation
from the calculation of the field propagation. The dipole diffraction pattern can thus be mod-
eled as the linear combination of six non-orthogonal templates, which forms the basis of the
steerable filter-based algorithm presented in this work.
The result of Eq. (12) is consistent with the other vectorial PSF models cited earlier [28–32]:

for a fluorophore that is freely rotating during exposure, the resulting intensity is obtained by
integrating the above result over all possible orientations, i.e.,

h(x;xp, τ ) =
∫ 2π

0

∫ π

0
hθp,φp(x;xp, τ ) sin θp dθp dφp

=
8π
3

(
|I0|2 + 2|I1|2 + |I2|2

)
.

(14)

An illustration of the different diffraction patterns observed for different orientation and defocus
values is provided in Fig. 11 in the appendix.
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2.1. Noise model

In single molecule fluorescence microscopy, shot noise is the dominant source of noise. Further
potential sources include a background term due to autofluorescence, as well as residual signals
from other fluorophores in the sample. Read-out noise in the detector may also contribute to
observations. Whereas the former sources obey Poisson statistics, read-out noise is Gaussian
distributed, which presumes an additive noise model. However, given that the Poisson distribu-
tion rapidly converges towards a Gaussian with equal mean and variance when the variance is
large enough (this is usually considered the case when σ2 > 10), we propose a general noise
model consisting of a shifted Poisson formulation that incorporates a term accounting for the
read-out noise factor and the background. Consequently, we formulate the expected photon
count q̄(x;xp, τ ) corresponding to a point x on the detector (in object-space coordinates) as

q̄(x;xp, τ ) = c ·
(
Ahθp,φp(x;xp, τ ) + b

)
, (15)

where A is the amplitude, c is a conversion factor, and b is the sum of the background flu-
orescence signal and the variance σ2

r (in intensity) of the read-out noise. The probability of
detecting q photons at x is then given by

Pq(x;xp,τ )(q) =
e−q̄(x;xp,τ )q̄(x;xp, τ )q

q!
. (16)

2.2. Pixelation

The pixelation of the detector has a non-negligible effect on the measured intensity distribution
corresponding to a dipole, and must therefore be taken into account in the implementation of
the model. Hereinafter, we assume that whenever a point of observation x represents a pixel on
the CCD, functions of x incorporate integration over the pixel’s area (pixels are assumed to be
contiguous and non-overlapping).

3. Dipole localization using steerable filters

A standard solution to estimating the position and orientation of arbitrarily rotated image fea-
tures consists in correlating the input data with a set of filters corresponding to rotated versions
of the feature template. This is the approach currently used in joint dipole orientation and posi-
tion estimation methods [16, 18]. Mathematically, it is formulated as

(
θ∗p(x),φ∗

p(x)
)

= arg max
(θp,φp)

f(x) ∗ gθp,φp(x), (17)

where θ∗p(x) and φ∗
p(x) are the optimal orientations in every point x, f(x) is the measured

data, ∗ is the convolution operator, and gθp,φp(x) = hθp,φp

(
x; (0, 0, zp), τ

)
is a feature tem-

plate corresponding to the dipole diffraction pattern for the orientation (θp,φp). The accuracy
on θ∗p(x) and φ∗

p(x) depends on the sampling of θp and φp chosen for the optimization—for
accuracies of a few degrees, this requires convolution with hundreds of templates, rendering
the process very costly.
For specific feature template functions, rotation of the templates can be decoupled from the

convolution by decomposing the template into a small number of basis templates that are inter-
polated by functions of the orientation. These functions, called steerable filters, were introduced
by Freeman and Adelson [23]. The best known class of steerable filters are Gaussian deriva-
tives, due to their applicability to edge and ridge detection in image processing [34].
The quadratic form of Eq. (12) shows that the 3-D rotation of a dipole can be decoupled from

filtering; i.e., that the orientation and position estimation can be expressed through a 3-D steer-
able filter. Specifically, the dipole diffraction pattern is decomposed into six non-orthogonal
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Fig. 2. High-resolution versions of the templates involved in the steerable decomposition
of a dipole diffraction pattern. The example corresponds to a Cy5 dipole (λ = 660 nm) at
an air/glass interface, imaged with a 100×, 1.45 NA oil immersion objective at 500 nm
defocus. The template labels match the definitions given in Eq. (13).

Fig. 3. Filterbank implementation of the steerable dipole filters.

templates, as illustrated in Fig. 2. Orientation estimation then amounts to filtering measured
dipole patterns with these templates, followed by optimizing the trigonometric weighting func-
tions that interpolate the dipole model. This process is illustrated in the filterbank representation
of Fig. 3.
For each spatial location x, the dipole model is fitted to the data by minimizing the least-

squares criterion

JLS(x; θp,φp) =
∫

Ω

(
Ahθp,φp(v;xp, τ ) − f(x − v)

)2 dv

=
∥∥Ahθp,φp(x;xp, τ )

∥∥2 +
∫

Ω
f(x − v)2 dv

− 2Ahθp,φp(x;xp, τ ) ∗ f(x),

(18)

where f(x) is the observed signal from which the average background value has been sub-
tracted, and where Ω ⊂ R2 is the support of hθp,φp . The correlation term is steerable and can
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be expressed as (
hθp,φp ∗ f

)
(x) =

∑

ij

aij(θp,φp)
(
mij ∗ f

)
(x)

= pTMfp,

(19)

where aij(θp,φp) are the weighting functions given in Fig. 3, and where [Mf ]ij = mij ∗ f .
Concretely, this means that we can compute Eq. (19) for each location x very efficiently by
first convolving the image f with the six templates mij—which yields Mf—followed by ap-
plying the trigonometric weights aij(θp,φp), which amounts to computing the quadratic form
pTMfp. Due to the symmetry ofM, only six basis templates are involved in the process.
In order to simplify the expression for the optimization of Eq. (18), we rewrite the model

energy term, which is independent of φp, as
∥∥Ahθp,φp(x;xp, τ )

∥∥2 = A2uT
θp

Euθp , (20)

where uθp = (sin2 θp, sin 2θp, cos2 θp)T, and where E is defined as

E =




〈m2

11〉 〈m11m13〉 〈m11m33〉
〈m11m13〉 〈m2

13〉 〈m13m33〉
〈m11m33〉 〈m13m33〉 〈m2

33〉



 . (21)

The notation 〈mij〉 stands for integration over the support Ω of mij(x). We can then rewrite
the cost criterion as

J(x; θp,φp) = A2uT
θp

Euθp
− 2ApTMfp. (22)

The data term
∫
Ω f(x−v)2 dv in Eq. (18) has no effect on the optimization and was eliminated

from the criterion.

3.1. Orientation estimation

The criterion in Eq. (22) cannot be solved in closed form for θp, φp, and A. However, for a
given set of templates corresponding to a position estimate, an iterative algorithm is obtained
by setting the partial derivatives

∂

∂θp
J(x; θp,φp) = 2A

(
AuT

θp
E

∂

∂θp
uθp

− 2pTMf
∂

∂θp
p
)

∂

∂φp
J(x; θp,φp) = −4ApTMf

∂

∂φp
p

(23)

to zero, and alternately solving for θp and φp; we found this to be more efficient than a stan-
dard gradient-descent based approach. The quartic equations whose solution yields the optimal
values for both angles are given in the appendix. The notation ∂

∂tv stands for the component-
wise derivative of the vector v with respect to t. Between these iterations, the amplitude is
updated using the least-squares estimator

Â =
pTMfp
uT

θp
Euθp

. (24)

For fixed values of xp and z, the angles can be estimated to sufficient accuracy in a small
number of iterations (usually less than five).
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Fig. 4. Schematic outline of the proposed detection algorithm. The steerable filter-based
component yields results that are accurate at the pixel level (∗finer scale results can be
obtained by applying shifted versions of the feature templates). Every update of the position
estimates generates a new set of appropriately shifted templates, from which the orientation
is estimated at little cost by making use of the steerable decomposition.

3.2. Sub-pixel position estimation

Discretization of Eq. (22) yields a filter-based algorithm that returns position estimates with
pixel-level accuracy. In order to recover super-resolved position estimates, an iterative fitting
algorithm analogous to the Gaussian-based fitting algorithms employed by FLM can be applied
to the dipole model in Eq. (12). In this work, this was achieved with the Levenberg-Marquardt
algorithm. An alternative would be to use a maximum-likelihood-based cost criterion, which is
optimal with respect to the Poisson-based noise model [12]. However, the localization accuracy
achieved using the proposed least-squares criterion is near-optimal in the sense that it reaches
the theoretical limits (see Section 4).

3.3. Joint estimation algorithm

In addition to the lateral position (xp, yp), amplitude A, and orientation (θp,φp) of dipoles,
which can be estimated using the proposed steerable filter in the minimization of Eq. (22), the
axial position zp of the dipole and the position of the focus z are further degrees of freedom in
the model. Estimation of these two parameters can be challenging due to their mutual influence
in the phase term of Eq. (8); possible solutions for resolving this ambiguity were discussed
in [12], in the framework of 3-D localization of isotropic point sources.
However, for the distances zp from the coverslip that are observable under TIRF (total in-

ternal reflection fluorescence) excitation, which is currently the method of choice for FLM due
to its thin depth excitation (around 100 nm), the axial shift variance in the PSF is essentially
negligible. This means that a dipole with axial position zp that is observed at the focal distance
z is virtually undistinguishable from an identical dipole at the origin that is observed at z − zp.
Consequently, we set zp = 0 for our experiments.
For a given value of defocus z, the minimization of Eq. (22) is achieved in two steps. The

input image is first filtered with the six templates corresponding to z, which yields orientation
and position estimates that are accurate at the pixel level. This is followed by an iterative opti-
mization that refines the position estimates to sub-pixel accuracy. At each iteration, a new set
of templates corresponding to the sub-pixel position estimates is evaluated; the corresponding
orientation is computed with the method described in Section 3.1. If required, the estimation
of z can be included between steps of this iterative procedure, both at the pixel level and the
super-resolution level. A simplified flowchart representation of the algorithm is given in Fig. 4.

4. Dipole localization accuracy

Resolution in FLM is defined as a function of localization accuracy. Theoretical limits on lo-
calization accuracy can be established based on the Cramér-Rao bounds for the parameters of
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interest (see [11,35] for an analysis of lateral localization accuracy, and [12] for axial localiza-
tion accuracy). The CRB yields a lower bound on the variance of an estimator, provided that
the latter is unbiased. For multi-parameter estimation, this bound is obtained by computing the
inverse of the Fisher information matrix [36]. For our image formation model, this matrix is
defined through

Fij =
∫

Ω

1
q̄

∂q̄

∂ϑi

∂q̄

∂ϑj
dx (25)

where the parameters to be estimated are ϑ = (xp, yp, θp,φp, z, A). In the matrix F, the cross-
terms between φp and the other parameters are zero, which slightly simplifies the inversion.
The CRBs for ϑ = (xp, yp, θp, z, A) are thus given by

Var(ϑ̂i) ≥ [F−1]ii, (26)

and the bound for φp by

Var(φ̂p) ≥ 1
/ ∫

Ω

1
q̄

(
∂q̄

∂φp

)2

dx. (27)

The partial derivatives of Eq. (12) relevant to the computation of the CRBs are given in the
appendix.
An example of the CRBs for all parameters is shown in Fig. 5, as a function of z and θp. As

the different plots illustrate, the bounds are relatively flat for a large range of values. In-focus
imaging leads to lower accuracy for orientation and defocus estimation. Off-focus imaging, on
the other hand, preserves excellent localization accuracy in the plane, while leading to higher
accuracies for orientation and defocus estimation. Note that these observations hold true for the
general case; changing the system and acquisition parameters essentially amounts to a scaling
of the bounds.

4.1. Performance of the algorithm

The localization accuracy of the proposed algorithm was evaluated by performing the fit on
simulated acquisitions generated using the image formation model in Eq. (15). In Fig. 6, we
show standard deviations of the estimation results for each parameter compared to the associ-
ated CRB. The standard deviations consistently match the value of the CRB, which indicates
that the performance of the algorithm is near-optimal. A fully optimal solution for the proposed
Poisson-based noise model would consist in a maximum-likelihood formulation. However, this
would lead to a computationally less efficient solution compared to the filter-based approach
obtained through the proposed least-squares formulation.

5. Results

5.1. Experimental setup

To demonstrate the performance of our algorithm experimentally, we imaged single Cy5 dipoles
at an air/glass interface. Samples were prepared by drying a solution of Cy5 molecules bound to
single-stranded DNA (ssDNA) fragments onto a coverslip (isolated Cy5 binds to the glass sur-
face at a specific orientation, leading to limited diversity in the observed diffraction patterns).
These were then imaged using TIRF excitation at a wavelength of λ = 635 nm. Imaging was
performed on the microscope setup described in [37] (α Plan-Fluar 100× 1.45 NA objective
with ImmersolTM 518F (Carl Zeiss Jena, Jena, Germany)), where we added a highly sensitive
CCD camera (LucaEM S 658M (Andor, Belfast, Northern Ireland), 10×10 µm2 pixels) in the
image plane. Images were acquired with an EM gain setting of 100 (the shot noise variance
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Fig. 5. Cramér-Rao bounds for (a) xp and yp, (b) z, (c) θp, (d) φp, and (e) A. The two
surfaces in (a) are the maximum and minimum values of the bound for xp, and vice-versa
for yp; the localization accuracy for these parameters varies as a function of φp. System
parameters: ni = 1.515, ns = 1.00, λ = 565 nm. Average PSNR = 35 dB, background
intensity level 20%.
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Fig. 6. Performance of the 3-D steerable filter-based estimation of (a) xp and yp, (b) z, (c)
θp and φp, and (d) A. The solid lines show the CRB for each parameter, and the markers
correspond to the standard deviation of the estimation over 250 realizations of noise for
each point. Parameters: NA = 1.45, ni = 1.515, ns = 1.00, z = 400 nm, average PSNR =
34 dB, background intensity level 10%.

distortion resulting from the electron multiplying process [38] can be compensated in the back-
ground term of Eq. (15) in order to conserve the Poisson statistics). Despite weak photostability
in air, individual molecules could be imaged for several tens of seconds before bleaching.

5.2. Evaluation

For an experimental assessment of the accuracy of our algorithm, we applied the estimation to
image sequences of individual molecules taken under identical acquisition conditions. Standard
deviations on position, orientation, and defocus for such an experiment are given in Table 1;
some frames from the sequence used are shown in Fig. 7. The results are in good agreement
with the values predicted by the CRB. Specifically, it is the relative magnitude between the
different standard deviations that precisely matches the behavior predicted by the CRB (for
comparison, see Fig. 6). Although the average PSNR was relatively high for these acquisitions
(26.43 dB, computed with respect to the average of all acquisitions), they provide an indication
of experimentally achievable accuracy.
In a similar experiment, we compared the estimation accuracy over a series of frames of

the same dipole taken at different levels of defocus. The resulting values, given in Table 2,
indicate that the algorithm and image formation model are consistent and correspond well to
the observed measurements. The frames from this experiment are shown in Fig. 8.
The performance of the steerable filter-based estimation of orientation and position is illus-

trated in Fig. 9 for simulated data and in Fig. 10 for an experimental acquisition. The image
generated using the estimated positions and orientations matches the experimental measure-
ment well, despite some residual aberrations that slightly modify the observed diffraction pat-
terns.

6. Discussion

The method proposed in this paper should be of immediate benefit to optical imaging-based
studies of molecular motors, as demonstrated in the DOPI paper by Toprak et al. [16]. These
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Fig. 7. Frames from the experiment described in Table 1. Scale bar: 1 µm.

Table 1. Mean µ and standard deviation σ for position, orientation, and defocus, measured
over 22 images of a single Cy5 molecule. Three of these frames are shown in Fig. 7, along
with the fitted model.

xp yp θp φp z

µ 1.42 µm 1.37 µm 85.45◦ 298.68◦ 214.53 nm
σ 3.00 nm 6.04 nm 1.05◦ 2.14◦ 10.72 nm


















Fig. 8. Frames from the experiment described in Table 2. Scale bar: 1 µm.

Table 2. Mean µ and standard deviation σ for position and orientation measured over 4
images of two Cy5 molecules. These frames are shown in Fig. 8, along with the fitted
model.

x(1)
p y(1)

p θ(1)
p φ(1)

p

µ 2.99 µm 1.38 µm 86.46◦ 223.77◦
σ 33.16 nm 28.62 nm 1.98◦ 5.30◦

x(2)
p y(2)

p θ(2)
p φ(2)

p

µ 1.40 µm 2.46 µm 67.05◦ 293.26◦
σ 21.48 nm 41.98 nm 4.45◦ 1.61◦

authors showed that the diffraction pattern of dipolar quantum dots [39] attached to myosin V
can be clearly detected and tracked over time. Due to the computational cost of the matched
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Fig. 9. Detection of dipole orientations on simulated data, using the proposed steerable
filters. (a) Dipole patterns at random, pixel-level positions and orientations. (b) High-
resolution image generated using detected positions and orientations. Parameters: NA =
1.45, ni = 1.515, ns = 1.00, z = 400 nm, average PSNR = 25 dB, background intensity
level 20%. Scale bar: 1 µm.

filtering algorithm employed [18], the angular sampling of the templates was limited to 10◦ for
φp and to 15◦ for θp, which also required the selection of dipoles oriented almost orthogonal to
the optical axis for better accuracy (see supporting text of [16]). Due to a relatively small change
in the observed diffraction pattern for values of θp between 0◦ and 45◦, it was assumed that
θp could only be determined with low accuracy using a matched filtering approach [18]. Our
theoretical analysis shows that both angles in the parameterization of the dipole’s orientation
can be recovered with high accuracy.
DOPI requires acquisition of a pair of images: a defocused image for orientation estimation,

and an in-focus image for Gaussian-based localization. As shown by Enderlein et al. [15],
Gaussian-based localization applied to dipole diffraction patterns can introduce a significant
bias in the estimated position, even for molecules that are imaged in focus. Our method removes
these limitations: it performs well over a wide range of dipole orientations (only the estimation
of φp for values of θp that are close to zero remains inherently inaccurate), and is relatively
insensitive to the amount of defocus used, as shown in Fig. 5.
Recent advances in the development of FLM include expansions to 3-D, using either a combi-

nation of cylindrical optics and bivariate Gaussian fitting [40], or an interferometric estimation
of fluorophore positions in direction of the optical axis [41], as well as orientation sensitive
imaging using polarization-based techniques [42]. All of these approaches require some mod-
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Fig. 10. (a) Dipole diffraction patterns for ssDNA-bound Cy5 molecules at an air/glass
interface. (b) Diffraction patterns rendered using the orientations and positions estimated
from (a), using the proposed algorithm and image formation model. Scale bar: 1 µm.

ification of the imaging system; the fitting algorithm described in this paper can be readily
adapted to include 3-D localization, and is compatible with standard TIRF setups.

7. Conclusion

We have introduced an efficient algorithmic framework based on 3-D steerable filters for the
estimation of fluorescent dipole positions and orientations. Image formation for fluorescent
dipoles can be expressed as a function of six templates weighted by functions of the dipole’s
orientation, leading to an effective filter-based estimation at the pixel-level, followed by an
iterative refinement that yields super-resolved estimates. Experimental results on Cy5 dipoles
demonstrate the potential of the proposed approach; estimation accuracies of the order of 5 nm
for position and 2◦ for orientation are reported.
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A. Appendix

A.1. Quartic equations for orientation estimation

The orientation parameters θp and φp are estimated by iteratively solving the two sets of quartic
equations given below. The solution for θp is obtained by solving

tan4 θp

(
f13 cos(φp) + f23 sin(φp) − Ae12

)

+ tan3 θp

(
f33 − (f11 cos(φp)2 + f12 sin(2φp) + f22 sin(φp)2) + A(e11 − e13 − 2e22)

)

+ 3 tan2 θpA
(
e12 − e23

)

+ tan θp

(
f33 − (f11 cos(φp)2 + f12 sin(2φp) + f22 sin(φp)2) + A(e13 − e33 + 2e22)

)

−
(
f13 cos(φp) + f23 sin(φp) − Ae23

)

= 0
(28)

for tan θp, where [E]ij = eij . Similarly, the solution for φp is obtained by solving

tan4 φp

(
f2
12 sin2 θp − f2

13 cos2 θp

)

+ tan3 φp

(
f13f23 cos2 θp + f12(m11 − f22) sin2 θp

)

+ tan2 φp

(
((f11 − f22)2 − 2f2

12) sin2 θp − (f2
13 + f2

23) cos2 θp

)

+ tanφp

(
f13f23 cos2 θp − f12(f11 − f22) sin2 θp

)

+ f2
12 sin2 θp − f2

23 cos2 θp

= 0

(29)

for tanφp, where [Mf ]ij = fij .

A.2. Derivatives of the dipole model

The partial derivatives required in the evaluation of the Fisher information and in the fitting
algorithm are

∂hθp,φp

∂xp
= sin2 θp

(
2Re

{
I∗0

∂I0

∂xp
+ I∗2

∂I2

∂xp

}
+ 2 cos(2φp − 2φd)Re

{
I∗0

∂I2

∂xp
+ I∗2

∂I0

∂xp

})

− 2 sin(2θp) cos(φp − φd)Im
{

I∗1 (
∂I0

∂xp
+

∂I2

∂xp
) − ∂I1

∂xp
(I∗0 + I∗2 )

}

+ 8 cos2 θpRe
{

I∗1
∂I1

∂xp

}

∂hθp,φp

∂θp
= sin 2θp

(
|I0|2 + |I2|2 + 2 cos(2φp − 2φd)Re{I∗0 I2}− 4|I1|2

)

− 4 cos(2θp) cos(φp − φd)Im{I∗1 (I0 + I2)}
∂hθp,φp

∂φp
= −4 sin2 θp sin(2φp − 2φd)Re{I∗0 I2}

+ 2 sin(2θp) sin(φp − φd)Im{I∗1 (I0 + I2)}.
(30)
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Fig. 11. Intensity distribution generated by a Cy3 dipole (λ = 565 nm) at an air/glass inter-
face for different values of θp and z, imaged with a 100×, 1.45 NA objective. The azimuth
angle is fixed at φp = 0. The intensities are normalized across every focus value z. Every
row, as well as planar rotations of each pattern, can be generated using six unique templates.
Scale bar: 500 nm.
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