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Abstract—We present a novel method for learning overcom-
plete dictionaries that are optimized for stereo image repre-
sentation. Our learning algorithm optimizes the construction of
dictionaries for both efficient image approximation and epipolar
matching between pairs of images. The multi-view geometry con-
straint is included in the probabilistic modeling that permits to
maximize the likelihood that natural stereo images are efficiently
represented with the selected dictionaries. Experimentalresults of
dictionary learning for stereo omnidirectional images show that
the multi-view constraints significantly influence the construction
of the dictionary, which leads to atoms with high anisotropic
characteristics.

I. I NTRODUCTION

Multiple images of a scene taken from different viewpoints
contain information about both 3D structure and texture of the
scene, giving a richer perception of the environment compared
to a single view. However, dealing with this high dimensional
visual information poses many challenges, such as multi-view
compression and geometry estimation. The most important
requirement in these challenges is to have an appropriate multi-
view image model. The multi-view image model based on
sparse image approximations with overcomplete dictionaries
of geometrical atoms has shown good performance in dis-
tributed multi-view coding [1]. In this model, each image is
approximated by a linear combination of meaningful features
that represent the visual information of the scene. Atoms in
different views are related with local geometric transforms
that satisfy the multi-view geometry constraints. However, the
choice of the dictionary in [1] is empirical and not optimized
for multi-view imaging. Certainly, by adapting the dictionary
to the case of multi-view imaging, we can expect to achieve
better performance in various applications.

This paper targets the problem of learning a dictionary
adapted to the multi-view image representation model. Maxi-
mum likelihood (ML) dictionary learning for natural monoc-
ular images has been introduced by Olshausen and Field in
1997 [2]. However, there has been little work targeting the
problem of learning stereo overcomplete dictionaries. Hoyer
and Hyvärinen have applied independent component analysis
(ICA) to learn the orthogonal basis of stereo images [3]. Their
algorithm resulted in Gabor-like basis functions tuned to dif-
ferent disparities. Okajima has proposed a learning approach
that maximizes the mutual information between the stereo
image model and the disparity [4]. They have obtained results
similar to Hoyer and Hyvärinen. The stereo learning methods
in [3] and [4] have been primarily designed for the purpose of

studying the receptive fields of binocular cells in the primary
visual cortex.

We study here the design of stereo dictionaries that have
the optimal properties for both image approximation and
disparity or 3D scene structure estimation. We assume a
sparse stereo image model and we learn overcomplete dic-
tionaries. Motivated by the good performance of the ML
methods for monocular images, we develop a novel ML
method for learning stereo dictionaries optimized for both
image approximation and epipolar matching. We include the
epipolar geometry in the probabilistic modeling and hence
match pairs of atoms within the learning process itself. The
experimental results show that the dictionary atoms learned
by our algorithm present high anisotropy characteristics and
substantially differ from atoms in single view learning. This
illustrates the importance of disparity matching for efficient
stereo representations.

II. STEREO IMAGE MODEL

Developing the ML dictionary learning method for stereo
images requires a definition of the stereo image model. Since
stereo images capture the same scene from different view-
points, they are correlated by local transforms of image com-
ponents. If we decompose each image into sparse components
that capture the objects in the scene, we can assume that
the most prominent components are present in both images,
possibly under different local transforms [1]. Let us consider
two images: left imageyL and right imageyR, which have
sparse representations in dictionariesΦ and Ψ, respectively.
The images are approximated by sparse decompositions ofm
atoms up to an approximation error (eL, resp.eR), i.e.:

yL = Φa =

m
∑

k=1

alkφlk + eL,

yR = Ψb =
m
∑

k=1

brk
ψrk

+ eR, (1)

where the set of indices{lk} and{rk}, k = 1, ...,m label the
atoms that participate in the sparse decompositions ofyL and
yR, respectively. The atoms are ordered in both expansions,
i.e., pairs of corresponding atoms are indexed with the same
counting parameterk. The vectorsa andb denote the atom
coefficients in the sparse representation of the left and right
image, respectively. We further assume that stereo images



contain similar atoms that are locally transformed:

yR =
m
∑

k=1

brk
ψrk

+ eR =
m
∑

k=1

brk
Flkrk

(φlk ) + eR, (2)

whereFlkrk
(·) denotes the transform of an atomφlk in yL

to an atomψrk
in yR, and it differs for eachk = 1, ...,m.

This model assumes that both stereo images arem-sparse,
i.e., composed ofm atoms. The motivation behind this is that
left and right images typically contain image projections of the
same 3D scene features, thus the number of sparse components
will be approximately the same.

Due to the change of viewpoint on the 3D scene, various
types of transforms are introduced in the image projective
space. Most of these transforms can be represented by the
2-D translation, rotation and anisotropic scaling of the image
features. Such transforms are efficiently represented witha
parametric dictionary whose construction is built on these
transforms. Given a generating functiong defined in the
Hilbert space, the parametric dictionaryD = {gγ}γ∈Γ is
constructed by changing the atom indexγ ∈ Γ that defines
rotation, translation and scaling parameters applied to the
generating functiong. This is equivalent to applying a unitary
operatorU(γ) to the generating functiong, i.e.: gγ = U(γ)g.
We define the dictionariesΦ andΨ as structured dictionaries
built on the same generating functiong, but using different
sets of parameters:ΓL for Φ, andΓR for Ψ. To simplify the
notation, we introduce the following equivalencies:φl ≡ g

γ
(L)

l

,

γ
(L)
l ∈ ΓL, andψr ≡ g

γ
(R)
r

, γ(R)
r ∈ ΓR. When the dictionaries

are defined this way, the transform of one atomφl to another
atomψr reduces to a transform of its parameters, i.e.,

Flr(φl) = Flr(gγ
(L)

l

) = U(γ′)g
γ
(L)

l

= g
γ
(R)
r

= ψr. (3)

III. STEREO DICTIONARY LEARNING

We now formulate the probabilistic framework for the
maximum likelihood learning of overcomplete dictionaries
Φ,Ψ that are used to represent stereo imagesyL and yR,
respectively. We want to define the likelihood that stereo
images captured by two cameras with a relative pose(R,T)
are well represented by a set of atom pairs related by geo-
metric transforms, under the sparsity prior. In other words,
we want to simultaneously learn the dictionariesΦ and Ψ

that approximate well the stereo imagesyL and yR, given
the sparse stereo image model in Eq. (2). Moreover, we want
to maximize the probability that the stereo images given by
the model (2) satisfy the epipolar constraint, i.e., that the
epipolar distance between all corresponding points onyL

and yR is equal to zero (D = 0). Maximization of this
probability is crucial for learning dictionaries that haveatoms
with good epipolar matching properties, which is importantin
applications involving scene geometry estimation.

Formally, we want to solve the following optimization
problem:

(Φ,Ψ)∗ = arg max
Φ,Ψ

〈max
a,b

logP (yL, yR, D = 0|Φ,Ψ)〉. (4)

Marginalizing overa andb we have that:

P (yL, yR, D = 0|Φ,Ψ) =

=

∫ ∫

P (yL, yR, D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ)dadb. (5)

We first need to define the joint distribution of coefficientsa

andb, given dictionariesΦ andΨ, denoted asP (a,b|Φ,Ψ).
Let us assume that pixels keep their intensity values under
the local transforms induced by the viewpoint change. This
assumption holds in multi-view images when the scene is as-
sumed to be Lambertian, and when atom transforms correctly
represent the local object transforms. Under this assumption,
for a stereo atom pairφl, ψr, corresponding to the same object
in the scene and linked with a transformFlr , the following
equality holds (see Lemma 1 in [5]):

〈yR, ψr〉 =
1√
Jlr

〈yL, φl〉, (6)

where Jlr is the Jacobian of the transformFlr. Using the
sparse image model and Eq. (6) we obtain the following
probabilities:

P (br|al, φl, ψr) = P (al|br, φl, ψr)

=
1

zb
exp

(

− 1

2σ2
b

(br −
al√
Jlr

)2
)

, (7)

where zb is the normalization factor andσ2
b is the variance

of the zero-mean Gaussian noise that models the difference
betweenbr and al/

√
Jlr. We further assume that pairs of

coefficients(al, br) are independent, which is usually the case
when image decompositions are sparse enough. Then, the
distributionP (a,b|Φ,Ψ) is factorial, i.e.:

P (a,b|Φ,Ψ) =

M
∏

l=1

M
∏

r=1

P (al, br|φl, ψr) =

P (a)P (b)

M
∏

l=1

M
∏

r=1

√

P (br|al, φl, ψr)P (al|br, φl, ψr), (8)

where we assume that priors on coefficients in each image
P (al) andP (br) are independent of the atoms. Although in
reality the distribution of the coefficients would depend onan
arbitrarily chosen dictionary, imposing the independenceof
the coefficients with respect to the dictionary during learning
would actually lead to inferring a dictionary that gives the
same prior distribution of coefficients for all types of images.

For modeling the priors on coefficients, we assume that the
coefficientsal and br are i.i.d. and drawn from a Bernoulli
distribution over the activity of coefficients, where a coefficient
is different from zero with probabilityp and equal to zero with
probability q. Thus, forp ≪ q the Bernoulli distribution can
well model the prior on the sparse coefficientsa andb. If we
takep = 1/(1 + e1/λ), we have:

P (a) =
1

zλ
exp

(

−‖a‖0

λ

)

and P (b) =
1

zλ
exp

(

−‖b‖0

λ

)

,

where ‖ · ‖0 denotes thel0 norm andλ controls the level
of ”sparseness” of coefficients. For sparse vectorsa and b,



the probabilitiesP (a) and P (b) are highly peaked at zero.
Thus, we can approximate the probabilityP (a,b|Φ,Ψ) by
its value at the maximum, since it is a product of a zero-mean
Gaussian distribution and discrete distributions tightlypeaked
at zero [2]. Eq. (5) then becomes:

P (yL, yR, D = 0|Φ,Ψ) ≈ P (yL, yR|a,b,Φ,Ψ) ·
·P (D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ), (9)

where we have used the fact thatD = 0 does not bring more
information toyL, yR than Φ,Ψ. To evaluate our likelihood
function, we next need to find the probability that the epipolar
distanceD is equal to zero given the stereo image model in
Eq. (2), i.e., we need to findP (D = 0|a,b,Φ,Ψ). The prob-
ability of epipolar matching for the stereo image pair can be
modeled by the product of probabilities of epipolar matching
for pairs of atoms that participate in sparse decompositions
of the left and the right image, i.e. whose coefficientsal and
br are different from zero. If the epipolar estimation error is
assumed to be Gaussian of zero mean and varianceσ2

D, we
can model the probabilityP (D = 0|a,b,Φ,Ψ) as:

P (D = 0|a,b,Φ,Ψ) =

1

zD
exp

(

− 1

2σ2
D

M
∑

l=1

M
∑

r=1

I(al)I(br)DE(φl, ψr)

)

. (10)

whereI denotes the indicator function,zD is the normalization
factor andDE(φl, ψr) is the epipolar distance between stereo
atoms. This distance can be easily evaluated by summing
over the epipolar distances between points paired by the local
transform between the corresponding atoms.

At this point, we have defined all components of the
objective maximum likelihood function in Eq. (9), except
P (yL, yR|a,b,Φ,Ψ). This probability can be modeled by a
Gaussian white noise of varianceσ2

I :

P (yL, yR|a,b,Φ,Ψ) = P (eL + eR)

=
1

zI
exp

(

− 1

2σ2
I

(‖yL − Φa‖2
2 + ‖yR − Ψb‖2

2)

)

, (11)

where we have used the fact that the sum of two zero-
mean Gaussian random variables is also a zero-mean Gaussian
random variable, andzI is the normalization factor. We can
now rewrite the ML learning problem in Eq. (4) as the
following energy minimization problem:

(Φ,Ψ)∗ = argmin
Φ,Ψ

〈min
a,b

E(a,b,Φ,Ψ)〉, (12)

whereE denotes the energy function given as:

E(a,b,Φ,Ψ) =
1

2σ2
I

(‖yL − Φa‖2
2 + ‖yR − Ψb‖2

2) +

+
1

2σ2
D

M
∑

l=1

M
∑

r=1

I(al)I(br)DE(φl, ψr)

+
1

2σ2
b

M
∑

l=1

M
∑

r=1

(br −
al√
Jlr

)2 +
1

2λ
(‖a‖0 + ‖b‖0). (13)

The energy function thus consists of four summation terms:
1) the approximation error term; 2) the epipolar constraint
term; 3) the coefficient similarity term; and 4) the sparsity
term. Unfortunately, the obtained energy function is not con-
vex. We use the Expectation-Maximization (EM) algorithm to
find a local minimum. EM alternates between two steps:

• E step, that minimizes the energy over the coefficientsa

andb, while keeping the dictionaries fixed. Coefficients
are found using a modified version of the Matching
Pursuit (MP) algorithm. It selects the atoms that give the
minimal value of the energy function, and then removes
the contribution of those atoms from the stereo images.
Thus, it selectsm atoms for each of the stereo images.

• M step, that minimizes the energy over the dictionaries
Φ andΨ, while keeping the coefficients fixed. This can
be performed using the conjugate gradient method.

In the first iteration, the dictionaries are initialized randomly.
The following iterations take the values for the coefficients
and the dictionaries from the previous iteration. The E step
and M steps are iteratively repeated until the convergence is
achieved. The learning should be performed from a large set
of data, i.e., from different multi-view image pairs.

IV. EXPERIMENTAL RESULTS

In practical applications, the benefits of the stereo image
model in Eq. (2) depend on the discretization of the dictionary
parameters: translations, rotations and scaling. Among those,
the scaling parameters are the most important since they
directly define the shape of atoms. As translations and orien-
tations are highly dependent on the position of the sensors,we
choose here to focus on learning only the scaling parameters
of the atoms. A parametric dictionary is then constructed by
applying to the generating function the learned scales and a
discretized set of translations and orientations.

The stereo image model given in Eq. (2) does not put
any assumption on the type of cameras used for stereo
image acquisition. As omnidirectional cameras are suitable
for capturing 3D scenes, we perform the learning for stereo
omnidirectional images mapped to spherical images. For
representing spherical images, we use the formulation of a
dictionary on the 2-D unit sphere [1]. The generating function
is a Gaussian in one direction and its second derivative in
the orthogonal direction. We have tested the proposed stereo
dictionary learning algorithm on our ”Mede” database, which
consists of 54 multi-view omnidirectional images of an indoor
environment. Two views from the database are shown in Fig. 1.
From three different scenes, we have formed 216 pairs of
images with different translationT between cameras, while
the rotationR is identity. The database is constructed from
a variety of images such that the learned dictionaries can be
used afterwards on images outside the training set.

We learn here five pairs of scaling parameters. The initial
values of scalesα(L), β(L), α(R) and β(R) for the learning
algorithm have been chosen randomly, and they are given in
the first two columns in Table I. The atoms of the initial
scales are shown in the first row in Fig. 2. The whole



(a) (b)

Fig. 1. Two views from the ”Mede” database.

dictionary is built from these atoms by shifting them at all
pixel locations and rotating in four orientations. To see the
influence of the part of the objective function that relies on
the multi-view constraint, we have introduced a factorρ that
multiplies the second and the third term in the energy function.
When ρ = 0 the learning takes into account only the image
approximation term, while increasingρ puts more importance
on the multi-view correlation terms. From Fig. 2 we can see
that for ρ = 0, the learned atoms are more elongated along
the Gaussian direction, while narrower on the direction of
the second derivative of the Gaussian. These results are in
consistency with the previous work on dictionary learning
for image representation [2]. However, when we increaseρ
we obtain different results for atoms scales (see Table I).
The atoms become more elongated along the direction of
the Gaussian second derivative and narrower in the direction
of the Gaussian. In addition, forρ > 0 the learned scales
generally tend to give smaller atoms than forρ = 0. These
two effects of including multi-view geometry in the dictionary
learning process are due to the local nature of the epipolar
constraint. Namely, the depth of the scene changes rapidly
around object boundaries leading to different disparity and
epipolar matching in these areas. Since the object boundaries
are represented by 2D discontinuities on the image of a 3D
scene, the epipolar geometry is satisfied along the discontinuity
and in a limited area. This makes the learned atoms become
anisotropic and small and different from the learned atoms
in the single-view case. Therefore, the geometric constraints
need to be introduced in the probabilistic model for stereo
dictionary learning. Finally, we observe that the dictionaries
for both images are very similar since the learning strategyis
completely symmetric.

V. CONCLUSION

This paper proposes a novel method for learning the
overcomplete dictionaries that have optimal performance in
representing stereo images. The stereo image model based on
sparse approximations over parametric dictionaries has served
as basis for developing a maximum likelihood (ML) method
for stereo dictionary learning. The experimental results have
shown that that the obtained atoms significantly differ from
atoms typically obtained by learning from single-view images.
Therefore, one has to consider the geometric constraints in
designing efficient representation strategies for stereo images.

TABLE I
INITIAL AND LEARNED SCALE PARAMETERS FOR THE LEFT AND THE

RIGHT IMAGE, FOR DIFFERENT VALUES OF THE PARAMETERρ.

Initial dictionary Learned dictionary
ρ = 0 ρ = 1 ρ = 3

α(L) β(L) α(L) β(L) α(L) β(L) α(L) β(L)

13.15 5.98 8.61 6.34 10.82 8.68 6.86 10.17
14.06 7.78 22.19 7.30 16.92 13.72 14.84 9.95
6.27 10.47 3.40 3.56 3.81 5.05 2.82 10.26
14.13 14.58 25.88 22.95 26.00 19.73 25.19 18.21
11.32 14.65 14.52 14.78 5.57 11.25 12.73 15.63

α(R) β(R) α(R) β(R) α(R) β(R) α(R) β(R)

6.58 6.42 2.94 2.69 3.58 4.73 2.72 9.36
14.71 9.22 12.18 5.04 11.72 8.43 14.79 9.66
14.57 14.16 25.93 20.30 25.57 18.94 24.75 17.86
9.85 12.92 6.60 6.80 5.70 10.56 6.72 10.13
13.00 14.59 15.87 16.05 15.08 14.52 13.08 14.97

Initial scales inΦ Initial scales inΨ

Learned scales inΦ, ρ = 0 Learned scales inΨ, ρ = 0

Learned scales inΦ, ρ = 1 Learned scales inΨ, ρ = 1

Learned scales inΦ, ρ = 3 Learned scales inΨ, ρ = 3

Fig. 2. Subset of atoms in the initial and learned dictionaries for the left and
right images. All atoms are on the North pole.
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