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Abstract—We present a novel method for learning overcom- studying the receptive fields of binocular cells in the priyna
plete dictionaries that are optimized for stereo image repe- visual cortex.

sentation. Our learning algorithm optimizes the constructon of We study here the design of stereo dictionaries that have
dictionaries for both efficient image approximation and eppolar

matching between pairs of images. The multi-view geometryan- (h€ Optimal properties for both image approximation and
straint is included in the probabilistic modeling that permits to ~ disparity or 3D scene structure estimation. We assume a
maximize the likelihood that natural stereo images are effiently sparse stereo image model and we learn overcomplete dic-
represented with the selected dictionaries. Experimentaksults of  tionaries. Motivated by the good performance of the ML
dictionary learning for stereo omnidirectional images sha that  oih04s for monocular images, we develop a novel ML
the multi-view constraints significantly influence the conruction . . . .
of the dictionary, which leads to atoms with high anisotrope Method for learning stereo dictionaries optimized for both
characteristics. image approximation and epipolar matching. We include the
epipolar geometry in the probabilistic modeling and hence
match pairs of atoms within the learning process itself. The
Multiple images of a scene taken from different viewpointexperimental results show that the dictionary atoms lahrne
contain information about both 3D structure and texturehef t by our algorithm present high anisotropy characteristits a
scene, giving a richer perception of the environment coeparsubstantially differ from atoms in single view learning.i¥h
to a single view. However, dealing with this high dimensiondllustrates the importance of disparity matching for eéfiui
visual information poses many challenges, such as mudtitvi stereo representations.
compression and geometry estimation. The most important
requirement in these challenges is to have an appropridte mu [I. STEREO IMAGE MODEL
view im model. The multi-view im model n . . .
N age ode ne n ult e age mode pa;ed 0 Developing the ML dictionary learning method for stereo
sparse image approximations with overcomplete dicti@sari. X L ; .
. . _images requires a definition of the stereo image model. Since
of geometrical atoms has shown good performance in dis- . . .
Stereo images capture the same scene from different view-

tributed multi-view coding [1]. In this model, each image iS .
) : o : gomts, they are correlated by local transforms of image-com
approximated by a linear combination of meaningful feagur

: ) . ponents. If we decompose each image into sparse components
that represent the visual information of the scene. Atoms j . .
. . . ; that capture the objects in the scene, we can assume that
different views are related with local geometric transfer . . X
. o : he most prominent components are present in both images,
that satisfy the multi-view geometry constraints. Howetee . ) .
i - . : - . possibly under different local transforms [1]. Let us calesi
choice of the dictionary in [1] is empirical and not optimize

o . i : o two images: left image/;, and right imageyr, which have
for multi-view imaging. Certainly, by adapting the dictéany arse representations in dictionariesand ¥, respectively.

to the case of multi-view imaging, we can expect to <';1chie\zslg:ﬁ\3I . . .
e images are approximated by sparse decompositions of

better performance in various applications. atoms up to an approximation efrar resp.ez), i.e..
This paper targets the problem of learning a dictionary P PP L P-Cr), 1.€.-

I. INTRODUCTION

adapted to the multi-view image representation model. Maxi m

mum likelihood (ML) dictionary learning for natural monoc- y = Pa= Z ai, ¢, +eL,

ular images has been introduced by Olshausen and Field in k=1

1997 [2]. However, there has been little work targeting the B o

problem of learning stereo overcomplete dictionaries. e¢foy yr = ¥b= ; britry + en, @

and Hyvarinen have applied independent component asalysi
(ICA) to learn the orthogonal basis of stereo images [3].iThevhere the set of indicefl,} and{ry}, k =1, ..., m label the
algorithm resulted in Gabor-like basis functions tuned ife d atoms that participate in the sparse decompositiong,cind
ferent disparities. Okajima has proposed a learning ajgproaz, respectively. The atoms are ordered in both expansions,
that maximizes the mutual information between the stergée., pairs of corresponding atoms are indexed with the same
image model and the disparity [4]. They have obtained resuttounting parametek. The vectorsa andb denote the atom
similar to Hoyer and Hyvarinen. The stereo learning meshodoefficients in the sparse representation of the left ankit rig

in [3] and [4] have been primarily designed for the purpose @hage, respectively. We further assume that stereo images



contain similar atoms that are locally transformed: Marginalizing overa andb we have that:
P(yL,yR,D = 0|¢7 ‘I’) =

YR =D bntbn +er =Y bnFin(é) +er, (2)
k=1 k=1 =//P(yL,yR,D:O|a,b,<I>,\II)P(a,b|<I>,\II)dadb.(5)

where £, (") qenotes the.tra_nsform of an atogy, in yr We first need to define the joint distribution of coefficieats

o an atomyy, in yr, and it differs for eact = 1,....m. anqp, given dictionariesp and ¥, denoted as’(a, b|®, ¥).

This model assumes that both stereo imagesrafsparse, | ot s assume that pixels keep their intensity values under

i.e., composed ofn atoms. The motivation behind this is thate ocal transforms induced by the viewpoint change. This
left and rightimages typically contain image projectioh$® 555 mption holds in multi-view images when the scene is as-

same 3D scene features, thus the number of sparse Compongii$ed to be Lambertian, and when atom transforms correctly
will be approximately the same. _ represent the local object transforms. Under this assompti
Due to the change of viewpoint on the 3D scene, varioys; 5 stereo atom paif;, ., corresponding to the same object

types of transforms are introduced in the image projectiyg ihe scene and linked with a transforA,, the following
space. Most of these transforms can be represented by é%ality holds (see Lemma 1 in [5]):

2-D translation, rotation and anisotropic scaling of thagdga

features. Such transforms are efficiently represented with (yr, ) = L@L,@% (6)
parametric dictionary whose construction is built on these Jir

transforms. Given a generating function defined in the where J;,. is the Jacobian of the transforth,.. Using the
Hilbert space, the parametric dictionay = {g,},er is sparse image model and Eq. (6) we obtain the following
constructed by changing the atom indexe I' that defines probabilities:

rotation, translation and scaling parameters applied ® th

generating functioy. This is equivalent to applying a unitary Pbrlar, ¢ vbr) = Plailbr, éu,¢r)

operatorU () to the generating functiop, i.e.: g, = U(v)g. _ 1 exp (L(bT _ 4w )2), @)

We define the dictionarie® and ¥ as structured dictionaries “b 207 Vi

built on the same generating functign but using different \here 2, is the normalization factor and? is the variance
sets of parameters’;, for @, andI'p for ¥. To simplify the of the zero-mean Gaussian noise that models the difference
notation, we introduce the following equivalencies= g ).  betweenb, and a;/+/J;,. We further assume that pairs of

%(L) €Tz, andy, = g, v € I'r. When the dictionaries coefficients(a;, b,) are independent, which is usually the case

are defined this way, the transform of one atopto another When image decompositions are sparse enough. Then, the

atom), reduces to a transform of its parameters, i.e., distribution P(a, b|®, ¥) is factorial, i.e.:
M M
— — / — —
Fi () = Flr(g%@)) =U(y )gvl(L) =g, = Pr. 3) P(a,b|®, ¥) = H H Plar, by|dr, vy) =
[1l. STEREO DICTIONARY LEARNING MM t=tr=t
We now formulate the probabilistic framework for the P(a)P(b)HH\/P(br|al;¢l;¢r)P(al|br;¢l;¢r>; (8)
maximum likelihood learning of overcomplete dictionaries 1=1r=1

®, ¥ that are used to represent stereo imaggesand yr, where we assume that priors on coefficients in each image
respectively. We want to define the likelihood that sterep(q,) and P(b,) are independent of the atoms. Although in
images captured by two cameras with a relative pd@eT) reality the distribution of the coefficients would dependam
are well represented by a set of atom pairs related by gegbitrarily chosen dictionary, imposing the independente
metric transforms, under the sparsity prior. In other wordge coefficients with respect to the dictionary during Iéagn
we want to simultaneously learn the dictionarsand ¥  \ouyld actually lead to inferring a dictionary that gives the
that approximate well the stereo imaggs and yr, given same prior distribution of coefficients for all types of inesg
the sparse stereo image model in Eqg. (2). Moreover, we wanior modeling the priors on coefficients, we assume that the
to maximize the probability that the stereo images given Refficientsa; and b, are i.i.d. and drawn from a Bernoulli
the model (2) satisfy the epipolar constraint, i.e., tha thjistribution over the activity of coefficients, where a daaént
epipolar distance between all corresponding pointsy@n s different from zero with probability and equal to zero with
and yr is equal to zero p = 0). Maximization of this probability g. Thus, forp < ¢ the Bernoulli distribution can
probability is crucial for learning dictionaries that haat®ms \yell model the prior on the sparse coefficieatandb. If we
with good epipolar matching properties, which is important takep = 1/(1 + ¢'/*), we have:
applications involving scene geometry estimation.

Formally, we want to solve the following optimizationp(a) = iexp (_M) and P(b) = iexp (_M)
problem: B2 A 2 A
where || - ||o denotes the, norm and\ controls the level

(®, %) =arg %1%(<§1X log P(yr,yn, D = 0[®, ¥)). (4) ot »sparseness” of coefficients. For sparse vectorand b,



the probabilitiesP(a) and P(b) are highly peaked at zero. The energy function thus consists of four summation terms:
Thus, we can approximate the probabiliB(a,b|®, ¥) by 1) the approximation error term; 2) the epipolar constraint
its value at the maximum, since it is a product of a zero-megarm; 3) the coefficient similarity term; and 4) the sparsity
Gaussian distribution and discrete distributions tigiphaked term. Unfortunately, the obtained energy function is nat-co
at zero [2]. Eq. (5) then becomes: vex. We use the Expectation-Maximization (EM) algorithm to
find a local minimum. EM alternates between two steps:
P(yr,yr, D =0|2,¥) ~ P(yL,yrla,b, &, ) « E step, that minimizes the energy over the coefficieats
P(D =0l|a,b,®, ¥)P(a,b|®,¥), C)] andb, while keeping the dictionaries fixed. Coefficients
are found using a modified version of the Matching
Pursuit (MP) algorithm. It selects the atoms that give the
minimal value of the energy function, and then removes
the contribution of those atoms from the stereo images.
Thus, it selectsn atoms for each of the stereo images.
M step, that minimizes the energy over the dictionaries

where we have used the fact that= 0 does not bring more
information toyr,yr than ®, ¥. To evaluate our likelihood
function, we next need to find the probability that the epépol
distanceD is equal to zero given the stereo image model in
Eq. (2), i.e., we need to fin®(D = 0|a, b, &, ¥). The prob-
ability of epipolar matching for the stereo image pair can be * . ; - : .
modeled by the product of probabilities of epipolar matghin ® and ¥, while keeping the coefficients fixed. This can

) - . " be performed using the conjugate gradient method.
for pairs of atoms that participate in sparse decomposition he first i i he dicti ) initial |
of the left and the right image, i.e. whose coefficientsand In the first iteration, the dictionaries are initialized damly.

b, are different from zero. If the epipolar estimation error i;he foIIovx{lng |ter-at|ons take the vglues_ for .the coefficient
assumed to be Gaussian of zero mean and variaBcewe and the dictionaries from the previous iteration. The E step

can model the probability’(D = 0fa, b, ®, ¥) as: and M steps are iteratively repeated until the convergesice i
T ' achieved. The learning should be performed from a large set
P(D =0|a,b,® ¥) = of data, i.e., from different multi-view image pairs.
1 1 LY IV. EXPERIMENTAL RESULTS
—exp | ——= T(a;)Z(b,.)D nYr) |- (10 . - ; i
ZD p( 20%, ;; (@)Zbr)Ds (o1, )> (10) In practical applications, the benefits of the stereo image

h he indi ; ) i< th lizat model in Eq. (2) depend on the discretization of the dictigna
whereZ denotes the indicator functionp is the normalization parameters: translations, rotations and scaling. Amoogeth

factor andD (¢, ) is the epipolar distance between stereg o scajing parameters are the most important since they

atoms. Th'$ d|stance can be easily e_valuate_d by Summ't!’i‘igectly define the shape of atoms. As translations and orien
over the epipolar distances betwee_n points paired by the 10¢,4iqns are highly dependent on the position of the sensa@s,
transform between the corresponding atoms. choose here to focus on learning only the scaling parameters
At this point, we have defined all components of thg¢ the atoms. A parametric dictionary is then constructed by
objective maximum likelihood function in Eq. (9), excephpnying to the generating function the learned scales and a
P(yr,yr|a b, ®, ¥). This probability can be modeled by agiscretized set of translations and orientations.
Gaussian white noise of varianeg: The stereo image model given in Eq. (2) does not put
Plyr,yrla,b,®,®) = P(e, +er) any assumpti_o_n on the ty_pg of_ cameras used for stereo
1 1 , , image acqwsmon. As omnidirectional cameras are suatabl
= exp <T‘2(|yL —®al; + |yr — \Ilb||2)>,(11) for capturing 3D scenes, we perform the Igarnlqg for stereo
I omnidirectional images mapped to spherical images. For
where we have used the fact that the sum of two zeregpresenting spherical images, we use the formulation of a
mean Gaussian random variables is also a zero-mean Gausgigiionary on the 2-D unit sphere [1]. The generating funti
random variable, and; is the normalization factor. We canisS a Gaussian in one direction and its second derivative in
now rewrite the ML learning problem in Eq. (4) as théhe orthogonal direction. We have tested the proposedostere

following energy minimization problem: dictionary learning algorithm on our "Mede” database, whic
consists of 54 multi-view omnidirectional images of an indo

(@, ¥)" = argmin(min E(a, b, @, ¥)), (12)  environment. Two views from the database are shown in Fig. 1.

’ " From three different scenes, we have formed 216 pairs of
where £ denotes the energy function given as: images with different translatio™ between cameras, while

1 ) 5 the rotationR is identity. The database is constructed from
E(a,b,®, W) = o ([ly — ®allz + lyr — ¥bll2) +  a variety of images such that the learned dictionaries can be
MM ! used afterwards on images outside the training set.
1 We learn here five pairs of scaling parameters. The initial
5.9 7z z b’l“ D ) ¥r ) .

+2U% ;; ()26 Dx (61, 9-) values of scales'’), 3(1) o) and 57 for the learning

| MM ) algorithm have been chosen randomly, and they are given in
a; 1 i initi
+FZZ®T _ )2+ ﬁ(”a||0+ Ibllo). (13) the first two columns in Table |. The atoms of the initial
b =1 r=1

Vdir scales are shown in the first row in Fig. 2. The whole




TABLE |
INITIAL AND LEARNED SCALE PARAMETERS FOR THE LEFT AND THE
RIGHT IMAGE, FOR DIFFERENT VALUES OF THE PARAMETER.

Initial dictionary Learned dictionary

p=0 | p=1 | p=3
[a@ ] 8@ T @O T T T T T a0 ]
13.15] 5.98 861 | 6.34 | 1082 8.68 | 6.86 | 10.17
14.06 7.78 2219 | 7.30 | 16.92 | 13.72| 1484 | 9.95

(b) 6.27 | 10.47 | 3.40 | 356 | 3.81 | 5.05 | 2.82 | 10.26
1413 | 1458 | 25.88 | 22.95| 26.00 | 19.73 | 25.19 | 18.21
F|g 1. Two views from the "Mede” database. 11.32 14.65 14.52 14.78 557 11.25 12.73 15.63

(@@ | 5 [ o [ 50 [ o® [ 5 [ o [ 50 |

6.58 6.42 294 | 269 | 358 | 473 | 272 | 9.36

- , : e 471 922 | 1218 | 5.04 | 11.72 | 843 | 1479 9.66
dictionary is built from these atoms by shifting them at allG7=—=+— 51 >c 932030 2557 1594 2275 1786

pixel locations and rotating in four orientations. To see thr—g85 [ 12.92 | 6.60 | 6.80 | 5.70 | 1056 | 6.72 | 10.13

influence of the part of the objective function that relies o 13.00 | 1459 | 15.87 | 16.05 | 15.08 | 14.52 | 13.08 | 14.97

the multi-view constraint, we have introduced a factathat

multiplies the second and the third term in the energy famcti Initial scales in® Initial scales in¥

When p = 0 the learning takes into account only the imag

approximation term, while increasingputs more importance m“ m‘.

on the multi-view correlation terms. From Fig. 2 we can se

that for p = 0, the learned atoms are more elongated alona  Learned scales i, p =0 Learned scales i, p =0

the Gaussian direction, while narrower on the direction ¢

the second derivative of the Gaussian. These results are m.‘ ”“.

consistency with the previous work on dictionary learnin_

for image representation [2]. However, when we increase Learned scales i, p =1  Leamed scales iW, p = 1

we obtain different results for atoms scales (see Table “m ”m

The atoms become more elongated along the direction

the Gaussian second derivative and narrower in the directi.

of the Gaussian. In addition, fgg > 0 the learned scales Leamed scales i, p =3 Leamed scales i¥, p =3

generally tend to give smaller atoms than o= 0. These m.‘ m‘.

two effects of including multi-view geometry in the dictiary

learning process are due to the local nature of the epipoic

constraint. Namely, the depth of the scene changes rapidly

around object boundaries leading to different disparityl arfig. 2. Subset of atoms in the initial and learned dicticemifor the left and
. . . . . right images. All atoms are on the North pole.

epipolar matching in these areas. Since the object boweslari

are represented by 2D discontinuities on the image of a 3D
scene, the epipolar geometry is satisfied along the disudityi VI. ACKNOWLEDGMENTS
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