Ion-selective microelectrode
arrays for cell culture
monitoring

These présentée a la Faculté des Sciences
Institut de Microtechnique
Université de Neuchatel

Pour 'obtention du grade de docteur és sciences

par

Silvia Generelli

Accepte sur proposition du jury:
Prof. N. F. de Rooij, directeur de these
Prof. M. Koudelka-Hep
Prof. J.-F. Dufour
Prof. O. T. Guenat
Dr. P. D. van der Wal

Soutenue le 7 mars 2008






e (UNN Iy

FACULTE DES SCIENCES
Secrétariat-Décanat de la faculté
B Rue Emile-Argand 11
CP 158
B CH-2009 Neuchatel

IMPRIMATUR POUR LA THESE

lon-selective microelectrode arrays
for cell culture monitoring

Silvia GENERELLI

UNIVERSITE DE NEUCHATEL

FACULTE DES SCIENCES

La Faculté des sciences de 'Université de Neuchétel,
sur le rapport des membres du jury

Mme M. Koudelka-Hep,
MM. N. de Rooij (directeur de thése),
P. van der Wal, O. Guenat (Montréal)
et J.-F. Dufour (Berme)

autorise l'impression de la présente thése,

Neuchétel, le 20 mars 2008
UNIVERSITE DE NEUCHATEL

Ledoyen:  Secréiatiai- gacanaide i facul

Rue d 11 - CP 1
F. Kessler LH-2009 [:Zg%

= Téléphone : +41 32 718 21 00 ® E-mail : secretariat sciences@unine.ch ® www.unine.chisciences






Abstract

Keywords: silicon, micropipettes, ion-selective microelectrodes,
in vitro, KT, Ca?t, cell death, lysis, electroporation.

The design, microfabrication and characterization of a platform com-
prising an array of ion-selective microelectrodes (ISE) aimed at in vitro
cellular physiology and toxicology is described.

This study focusses on K+ and Ca?* monitoring in cell culture environ-
ments. A potential promising application of such a platform is based
on recent findings in molecular biology, revealing connections between
certain diseases, as for example some types of cancer or parkinsonism,
and a malfunction in cellular ion fluxes.

The silicon microfabrication of the platform allowed the realization of
ion-selective microelectrode arrays comprising 16 electrodes with diam-
eters ranging from 1.5 pym to 6 pm, and an interelectrode gap of 150
pm or 300 pm. The pISE, inspired by the classical glass capillary mi-
croelectrodes, are based on a micropipette-like channel which, in two
of the three realized geometries, protrude for 5 pm from the surface
and are located in a 350 pum deep cavity. In the third geometry, the
micropipettes are non-protruding, completely embedded in the silicon
substrate. This planar platform allowed the implementation of an ar-
ray of KT-selective electrodes combined with planar platinum electrodes.
The metallic electrodes placed near the ion-selective electrodes are de-
signed for the application of electrical pulses for localised electroporation
of cells. Preliminary tests showed the feasibility of localised electropo-



ration, and demonstrated that the application of several electroporation
pulses does not affect the functionality of KT-selective microelectrodes,
however further investigation is necessary to optimize the electropora-
tion protocol.

The characterization of the electrodes in physiological concentration
ranges was performed using electrodes of 1.5 pym diameter in contact
with simple buffer calibration solutions. The observed detection lim-
its, 107° M for the K*-selective electrodes and 102 M for the Ca2*-
selective electrodes, demonstrated that the uISE are adapted for the use
in cell culture concentration ranges. The functional lifetime of the sen-
sors, when conditioned in 102 M KCI, or 10~* M CaCl, respectively,
varied from 30 to 45 days for K¥-selective electrodes, but is limited to
1 to 3 days for Ca?T-selective electrodes. This difference in the func-
tional lifetimes of K*- and Ca2T-selective electrodes is due to the use
of calcium-selective sensors in their non-equilibrium state. After several
days of use the calcium detection limit rises to the micromolar range,
which is adapted for extracellular calcium concentrations, but not for
intracellular monitoring. In this case, the lifetime of the sensors is com-
parable to those of KT-selective microelectrodes.

Tests performed in presence of culture medium showed a drastic diminu-
tion of the electrodes lifetime down to several days. On the other hand,
a short-time contact of the sensors with the cells or cellular debris does
not affect their functional characteristics. A short-time in vitro test was
thus used to verify the possibility of identification of cell necrosis. Cell
death, induced by a hypoosmotic shock, was successfully followed in real
time by monitoring the intracellular potassium release in the culture
medium. The pISE also allowed to quantify the necrotic cells, opening
interesting possibilities in toxicological screening.

Further development of this technique might lead to monitoring of early
stage apoptosis. The observation of apoptosis before the process becom-
ing irreversible, causing the death of the cell, could bring new information
on the physiology of the cell cultures.
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Chapter 1

Introduction

The development of new drugs is an extremely costly process which, for
this reason, is mainly dominated by a few big pharmaceuticals compa-
nies. However, in the past decade, the situation of the pharmaceutical
industry has changed: the predominance of big pharmaceutical compa-
nies is lowering, particularly because of the end of the long-term exclusiv-
ity patents on the so-called ”blockbuster drugs”, generating more than
1 billion dollars revenues per year. These drugs are the largest source of
benefit for the pharmaceutical industry, and the end of the protection by
patents leads to a loss of large and lucrative market segments. To find
new potential blockbuster drugs, the research and development invest-
ment of the pharmaceutical industry has constantly increased over the
last decade. In spite of these efforts, the success rate in identifying new
therapeutic compounds remains rather low [I]. One of the main causes
of this slowing down in drug development process has been identified to
be a non effective testing phase of new potential therapeutics. This is
especially the case of the efficacy and toxicity testing which is still largely
performed in parallel by in vivo studies. This process is costly and time
expensive. The efficacy and toxicity evaluations are usually performed
during two distinct phases: drug discovery and preclinical drug devel-
opment. Figure [I.]] illustrates a typical testing sequence followed in
pharmaceutical industry. This division of the efficacy and toxicity eva-
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Figure 1.1: A prototypical pharmaceutical testing funnel. In the U. S.
over 10’000 potential therapeutic compounds, only one is expected to
be approved as a drug by the Food and Drug Administration. Figure
adapted from [I] and [2].

luations result in a large number of compounds entering the preclinical
study to fail due to their toxicity [2].

To render this process more cost- and time-effective requires a parallel
evaluation of efficacy and toxicity in a high throughput in vitro toxico-
logy assay format. Such assays allowing the physical/chemical efficacy,
metabolic stability and toxicity to be assessed would greatly facilitate
and accelerate the identification of the best candidates within the most
promising chemical classes.
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It can be noted that the need for new high throughput instruments for
efficacy /toxicology tests is not limited to the pharmaceutical industry.
The European Community has recently introduced a new set of regula-
tions on chemical safety. The new REACH regulation, entered into force
in June 2007, requires manufacturers and importers to provide informa-
tion on the safe handling of their chemical substances [3]. The former
global standard, the ” Toxic Substances Control Act”, edited by the U. S.
in 1976, required testing on human and environmental toxicity only for
chemicals introduced on the U. S. market after 1979. This corresponded
to 30’000 compounds on the U. S. market for which only minimal tox-
icological characterization has been performed [4]. With the REACH
regulation the number of compounds to be tested has greatly increased.

Toxicity tests are, to date, largely based upon well established markers
or pathologies, however often with limited understanding of mechanisms
involved [2]. Moreover, only 70% of the in wvivo toxicology results in
preclinical toxicological species had true positive rate for predicting hu-
man toxicity [2]. This highlights a second, and more fundamental pro-
blem: the lack of knowledge on the relation between disease and cellular
mechanisms. Very little is known about intra- and intercellular mecha-
nisms, continuously new roles and pathways for compounds known since
decades are discovered. A striking example is that of Na,K-ATPase en-
zyme, a Nat-K* transmembrane pump, discovered in 1957 by the Nobel
prize winner Jens Christian Skou [5]. It is only very recently that new
roles of this pump in the modulation of growth, apoptosis, cell adhesion
and motility have been demonstrated [6]. A 2006 report of the United
States Government Accountability Office on the trends in pharmaceuti-
cal industry research and development stating that the ”lack of scientific
understanding in treating diseases contributes to increased failure rates
and increased research and development expenditures” [I], indicates very
clearly this problem.

The development of toxicological platforms that would provide, next to
the toxicity tests, also information on the cellular mechanisms involved
are thus of great importance for an efficient high throughput screening of
multiple potential drugs candidates, for enhancing the understanding of
the mechanisms of diseases and consequently for improving their treat-
ment.
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1.1 K" and Ca’' sensing in biology

K* and Ca2* are ionic species having a particularly important biological
role, and thus have been chosen as target analytes.

Potassium

Potassium is a key ion involved in cell proliferation and progression
through the cell cycle. The interest of potassium monitoring is mainly
related to the role of potassium channels and pumps in cellular signalling
processes [7]. Recent studies have highlighted relationships between ion
channels and cancer [§]. Examples are breast cancer cells, presenting
deregulated potassium fluxes. The study of ion fluxes can be a valuable
method to find new targets for regulation or inhibition of ion channels
for cancer cure [§].

Direct continuous visualization of KT fluxes is performed by the use
of radioactive tracers as “>K, 6Rb [9, [10, [TT]. K*-selective electrodes,
were extensively used in physiological studies during the years 1970s and
1980s. Then, the patch clamp technique and other methods for the study
of ion channels and pumps were preferred and found a wide application
in the field. Glass capillary ion-selective microelectrodes are still used
in physiological research, but in a less widespread way (some examples
of recent publications: [12] [13] [14]). Spectroscopic techniques, as flame
photometry, absorption spectroscopy or fluorescence spectroscopy by a
fluorescent K+ indicator are mainly used for dosage of potassium, for
example in cell supernatant and in cell lysate, and are not used for con-
tinuous monitoring [15] [16].

Potassium fluxes are mainly observed indirectly, by following the dyna-
mics of Kt channels and pumps, targeted with fluorescent tags [17], or
by patch clamp techniques. Patch clamp allows the recording of electri-
cal current carried by the totality of the ion channels present in the cell
membrane. Activation (or inhibition) of a specific ion channel or pump
allows the identification of the electrical current generated by the flux
of a specific ionic species. The use of artificial lipid bilayers or vesicles
loaded with a specific ion channel allows the ion channel dynamics to
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be studied down to the single channel. To discriminate potassium fluxes
from other ions fluxes, glass capillary ion-selective electrodes have been
used in parallel with patch clamp [14].

Calcium

Calcium is a messenger regulating many diverse cellular processes, as
fertilization, secretion, contraction, proliferation, neural signalling and
learning. Cellular calcium signalling has been extensively described
[18,19,[20,21]. Even if characteristics of this signalling have already been
determined, such as for example the intracellular concentration ranges,
from 10 nM to 1 M, the duration, amplitude, spatio-temporal aspects
[18, 22| 23], the exact mechanism of Ca?T role in cellular communica-
tion is still to be discovered. Some of the very recent reviews on calcium
signalling report research on seizure-induced neuronal epilepsy [24], im-
mune system diseases [25], asthma [26], early embryonic development
[27], cardiac arrhythmias [28], cancer [29], demonstrating the universal-
ity of calcium signalling, and its importance in disease mechanisms. This
makes Ca?* ion a target of choice of intercellular communication studies.

The use of the radioactive tracer 4°Ca?* for the direct monitoring of
calcium fluxes has been reported, but this method is not widely applied
[30]. Glass capillary ion-selective microelectrodes have been in the past
a valuable tool to measure intracellular calcium activities [23], but the
advent of fluorescence has lead to the partial abandon of alternative
techniques for calcium monitoring in cell cultures.

Direct calcium visualization is possible by fluorescent markers extremely
sensitive in the intracellular concentration range, as for example fura-2
[31]. Indirect fluorescence techniques to visualize calcium use fluorescent
calcium-sensitive proteins, as aequorin or compounds based on the green
fluorescent protein [31I]. Quantum dot bioconjugates are promising com-
pounds for application in fluorescence spectroscopy [32]. Quantum dots
used in fluorescence imaging are metallic nanoparticles with emission
spectra related to their size. In principle, they could be associated with
any biological marker, and thus have a wide spectrum of potential ap-
plications.
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Relations between signalling pathways and calcium have also been fol-
lowed by patch clamp techniques [30].

1.2 Requirements for an ion-sensing plat-
form for cell culture monitoring

1.2.1 Detection limit and selectivity: the cellular
concentration ranges

Cellular electrolytes concentration and activity ranges in cellular envi-
ronment are reported in table

Free calcium intra- and extracellular activities are very different: in the
millimolar range in extracellular space, and in the sub-micromolar range
in the cytosol. Ton-selective electrode are thus particularly adapted to the
monitoring of calcium activities, due to the large activity range covered,
going from 107 M to 10~' M Ca?*. The needed dynamic range for
the potassium ion is less demanding, and is comprised between 10~ M
and 1071 M.

Table 1.1: Intra- and extracellular concentration and activity ranges [23].

Ton Concentration [M] Activity [M]
FExtracellular

Nat 0.135 - 0.150 0.102 - 0.112
K+ 3.5:1073 - 5.1073 2.6-1073 - 3.7-10~3
Mg2+ 4.5.10~4 - 81074 1.6-107% - 2.8.10~4
Ca2t 1-10—2 - 1.2.1073 3.4-10~% - 4.1-10~*
Ht 4.3.10% - 5.6-10~8  3.34.107% - 4.35-10~8
Intracellular

Nat 5.1073 - 18.1073 3.81073 - 14.103
Kt 81072 -16-102 61-10~3 - 116.10—3
Mg2+ 11073 - 5.1073 4-10~*-1.8.1073
Ca2t 5.1078 - 2.5.10~6 1.7-10~8 - 8.7.10~7
Ht 6-10-8 - 8.10—8 47108 - 6.2.10~8

The activities are calculated from the corresponding concentrations, with ionic
strength of I=0.149 M for extracellular medium and 1=0.139 M for intracellular

medium (see section |3.2.3)).
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1.2.2 Response time

Calcium oscillations in non-excitable cells have been observed for the
first time in 1986, when injecting aequorin, a fluorescent protein binding
to Ca?*, in liver cells [33]. The calcium signalling can transmit different
information, the modulation of the information is obtained by frequency
and amplitude modulation [2I]. Calcium signalling can take the form
of waves that propagate through the cell, and even through a whole
tissue. The two major kinds of intracellular calcium oscillations, baseline
transients and sinusoidal oscillations [22] [34], have a decay time in the
order of minutes. So, to follow these signals, the sensors should have a
response time in the order of seconds to dozens of seconds.

Targeted potassium concentration changes are related to cell death. In
this case, the timescale is not so stringent, and can be in the order of
dozens of seconds to minutes.

1.2.3 Lifetime

Physiological assays would require a lifetime of the platform going from
several hours to a few days, depending on the system studied. As the
cell culture grows continuously, the timescale of the test is limited by
the duration of the cell cycle. Toxicological studies are performed on a
relatively short timescale, of several minutes to hours.

1.2.4 Multi-point measurements

Metallic electrode arrays are widely used tools in electrophysiology for
the recording of electrical signals (action potentials) in electrogenic cells,
as for example neurones. Action potentials (see for example [35]), are
caused by an exchange of ions across the cell membrane. Using ion-selective
electrodes instead of metallic electrodes, would allow discriminating for
the contribution of a single ion to the overall signal. Moreover, ionic
fluxes in non electrogenic cells can be followed.

An array configuration of the ion-selective electrodes would allow the
recording of the ionic activities at different points of the cellular culture,
to obtain a mapping of the cellular comportment over a culture network.
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1.2.5 Cellular measurements
Cells on chip

The presence of biological material can lead to biofouling of the sensor
surface. This is a well known issue in cell-based assays. Long term con-
tact of biological material with the sensors should be, if possible, avoided.
Short term direct on-chip culture (6-7 hours) can be considered, but in
this case, the possibility of reutilization of the platform for other assays is
very limited, or even impossible. If cell cultures are directly performed
on-chip, the platform should also allow sterilization and the accurate
control of a number of parameters such as temperature, oxygen and car-
bon dioxyde concentrations, the composition of the culture medium.
Another option for measurements on a whole cell culture is to perform
the cultures on a substrate that will be placed in contact with the sensor
platform only during the time of the assay. The culture medium would
be in this case replaced by a simple electrolyte solution, minimizing the
biofouling problem. If accurate cell positioning is needed, the cells can
be patterned by dielectrophoretic forces, using metallic microelectrodes
[36], or also be trapped by a pressure difference in an array of microholes
[37], patterned to match the ion sensor array design. This approach is
used for example in multiple patch clamp assays, and allows parallel
measurements on a population of single cells. The multiple recording
sites will minimize the dispersion of results due to cell biological vari-
ability [38].

After the cell assay, elimination of the cellular debris and preparation
of the platform for new measurements should be readily done, without
affecting the sensors functionality.

Extra- and intracellular ion sensing

Cellular measurements are performed in complex cell culture media, con-
taining many potentially interfering and fouling compounds. The con-
tact of the sensors with the cell culture medium and/or with the cells
can lead to a degradation of the signal and a shortening of the sensor
lifetime.

As 7true” intracellular on-chip measurements are not straightforward to
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obtain, the analysis of cell lysate is widely used nowadays in lab-on-chip
platforms [39]. Cells lysis can be performed by two methods: chemically,
by addition of detergent like Triton X100 or SDS, or mechanically, by
rupture of the membrane by shear stress, hypoosmotic shock, electrical
lysis. Irreversible electroporation induces cell membrane rupture and
the leakage of intracellular components without the addition of chem-
icals, and is consequently of particular interest. The lysis of the cells
liberates the intracellular content in the surrounding medium, allowing
measurements of the intracellular components.

1.3 Objectives and outline of the present
thesis

In the present work, the development of a microfabricated ion-sensing
platform aimed at in wvitro studies, for both physiological investigation
and toxicology is presented. To this aim, the glass capillary ion-selective
microelectrodes technology, successfully used in the past decades for cell
physiology investigation [23], has been adapted for the realization of a
silicon-based platform. Ion-selective electrodes technology has been cho-
sen because of its unique characteristic enabling a direct measurement
of ionic activities, which is a physiological parameter of primary impor-
tance. The possibility to perform ionic measurements directly, locally,
and without the need of markers is thus of particular interest.

To allow physiological investigation on a cell culture network, a local
multi-point measurement system on the cell scale is necessary. Thus an
array of micron-size silicon-based micropipette electrodes has been real-
ized. Its fabrication is presented in detail in chapter 2l Characterization
of KT- and Ca’T-selective microelectrode arrays in physiological con-
centration ranges, as well as several considerations on the array use in
cell media are presented in chapter [3] The applicability of the platform
for in wvitro investigations, and in particular the possibility to adapt the
platform for toxicology studies is presented in chapter[d For this, we fo-
cussed on the relationship between KT cell efflux and apoptosis/necrosis
[0] to identify and quantify necrotic cells. In chapter [5| the possibility
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of accessing the interior of the cells, by an electroporation system or by
perforated patch clamp are discussed, and some preliminary tests going
in this direction are presented.

As the subjects treated in this thesis are very different, more specific
introductions on each topic are provided in the corresponding chapters.
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Chapter 2

Microfabrication of the
ion-selective array

2.1 Introduction

The technological platform has been inspired by the glass micropipette-
based ion-selective microelectrodes used in cell physiology investigations
during the late 1970s and 1980s [I]. An array of completely indepen-
dent microchannels has been realized. These are formed by micrometer
size channels etched through a silicon substrate (the ”micropipettes”)
each one connected to a microchannel etched in a Pyrex substrate. The
silicon and Pyrex sub-units are assembled by anodic bonding and the
microchannels subsequently filled with the ion-selective (IS) membrane
by capillarity. The internal metallic electrode is patterned on the silicon
sub-unit and is in direct contact with the IS-membrane. A schematic
cross-section of the platform is shown in figure [2.1

Three different platform designs have been realized. The first two, called
IKP and MGH, comprise an array of 30 um to 50 pm long, 1.5 pum to
5 pm diameter micropipettes, with 5 pm of the micropipette tip protrud-
ing from the platform surface. The electrodes are situated in a 360 pm
deep recess. The only difference between the IKP and MGH designs is
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Figure 2.1: Schematic cross sections of the ion-selective platform.

the geometry of the recess. In the IKP platform, it is a square cavity of
2x2 mm? etched by anisotropic KOH wet etch, in the MGH platform,
the cavity comprises two 1 mm diameter circular reservoirs, connected
by a central channel of 1.2 mm length and 200 um width. The IKP and
MGH designs, as well as the micropipette layout, are illustrated in figure

The IKP platform was originally designed to study ionic signalling in
sections of hepatic tissues. This design was conceived for a study in col-
laboration with the research group of Prof. Jean-Frangois Dufour of the
"Institut fir Klinische Pharmakologie” (IKP), of the University of Bern,
Switzerland. Prof. Dufour’s group research is focussed on the physiology
of liver and liver diseases. One of the main research topics is the study of
inositol 1,4,5-triphosphate receptor function, which is related to calcium
signalling. To better understand the calcium signalling mechanism and
its relations with diseases, a platform for the monitoring of calcium in
hepatic cell cultures and in biliary ducts has been designed. The two
rows comprising 8 electrodes each, in the central part of the array (see
figure having an inter-electrode gap of 150 pum were conceived to
monitor the ionic activity over all the length of a biliary duct. The 8
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Figure 2.2: a. The design of the micropipette array. b. A SEM image
of the array. c. Electrodes layout in the IKP platform. d. Electrodes
layout in the MGH platform. Scale bars in c. and d. are 1 mm.

micropipettes placed at the sides were aimed either at drug delivery or
at monitoring of the extracellular medium.

A second design, comprising two 1 mm diameter reservoirs connected
by a 200 pm wide channel where the micropipettes are situated, was
designed for a project that took place in the group of Prof. Martin
Yarmush in the Massachusetts General Hospital (MGH), at Harvard
Medical School, Boston, USA. The project was aimed at the develop-
ment of a tool to monitor the differentiation of stem cells into hepato-
cytes |2, [3], in view of establishing a solid protocol for the differentiation
of large quantities of cells. Embryonic stem cells, deposited in one of
the reservoirs at the extremities of the microchannel (see figure d),
will grow in the central channel. Growth factors and hormones will be
delivered via the 8 lateral channels. One of the characteristics of the hep-
atocytes is their ability to eliminate excess of ammonia, which is toxic
for the organism, by converting it to urea. A lower ammonia concen-
tration can be thus expected in differentiated cell cultures than in non
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a. b.
Figure 2.3: Schematic cross-section of the platforms. a. IKP/MGH
platforms, comprising an array of 30 pm to 50 u long protruding mi-
cropipettes. b. SQUARE platform, comprising an array of 400 pm
overall length non protruding micropipettes.

differentiated stem cell cultures. NHj being in equilibrium with NHJ,
the detoxification capacity of the cell culture can be followed by moni-
toring the decrease of ammonium ion concentration in the extracellular
space in the vicinity of the cells, using the NHI—selective microelectrode
array situated at the bottom of the microchannel.

The main drawback of the two described platforms is the presence of
the recess that renders further implementation of functionalities on-chip
difficult. For this reason, a third design has been implemented. To
avoid the recess, the micropipettes have been etched through the whole
thickness of the silicon substrate, and are formed by a first section of
50 pm length and 1.5 pm to 5 pm diameter, connected to a second
segment of 350 pum length, and 45 pm diameter, as shown in figure [2.3
This third design, called SQUARE (from the square geometry of the
platform mounted on the printed circuit board, shown in figure ,
comprises then micropipettes of an overall height of 400 pum, without a
protruding tip. With the present design, the flat chip surface obtained
allowed the implementation of a metallic microelectrode array aimed at
local cell electroporation.

Each platform has been employed in a different phase of the project.
The IKP platform was used for the characterization of the electrodes
in standard electrolyte solutions (chapter [3). The MGH platform was
used for electrodes characterization and cellular assays, where an induced
cellular KT efflux was recorded in real time (chapter E[) Due to their



2.2. The silicon sub-unit 19

smaller cavity volume, avoiding the excessive dilution of the ionic signal,
the MGH platforms were more adapted than the IKP chips for this task.
The third SQUARE design has been used to verify the possibility to per-
form local electroporation in the immediate vicinity of the ion-selective
microelectrodes without affecting their functionality (chapter [5)).

The fabrication process is partially based on the technologies presented
in [4, [5]. Part of this chapter, concerning the IKP and MGH platforms,
has been presented in [6]. In the following sections, the micromachining
processes, followed by some highlights on the microfabrication technol-
ogy, is described. The detailed fabrication processes can be found in

appendix

2.2 The silicon sub-unit

2.2.1 The protruding micropipettes: IKP and MGH
platforms

A double side polished, 390 pm thick, (1 0 0) silicon wafer is coated
on the back side with AZ1518 positive photoresist and photostructured
with arrays of 24 circular patterns of 1.5 ym to 5 pm in diameter. The
center-to-center spacing of these micropatterns is 150 pm or 300 pm,
as shown in figure The patterned wafer is then etched by deep
reactive ion etching (DRIE) forming cylindrical cavities with depths be-
tween 30 pum and 50 pm. After DRIE etching, a thermal wet silicon
dioxide layer is grown at 1100°C to reduce the diameter of the cavities
to the desired size. Thicknesses of the dioxide layer have been modu-
lated from 0.2 pm to 3.5 pm, in order to vary the final diameter of the
micropipettes. A layer of 300 nm low stress Si,; N, layer is then deposited
by low pressure chemical vapour deposition (LPCVD) to form the walls
of the micropipettes. Low stress silicon nitride is preferred to standard
LPCVD silicon nitride, since this non-stochiometric film that contains
more silicon is nearly stress free [7], which is an important feature for
the mechanical stability of the micropipettes. The deposition of the low
stress Siz N, is performed in three steps: first, a 15 nm thin stochiometric
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SizNy seed layer is deposited by using a gas ratio of NH3 to dichlorosi-
lane (DCS) of 3:1. Then, the ratio of ammonia to DCS is inversed to 1:5
for the deposition of the low stress silicon nitride layer. Finally, a 20 nm
thin stochiometric SigNy layer is grown, as a protective layer preventing
further oxidation. The deposition temperature is set at 800°C.

Next, the silicon dioxide and nitride layers of the wafer top side are
etched simultaneously by reactive ion etching (RIE) with square (IKP)
or channel (MGH) patterns facing the cavities of the micropipettes (fig-
ure. Subsequently, the silicon is etched until the micropipettes oxide
tips are exposed. These 360 um deep cavities are etched by KOH (40%,
60°C) or by DRIE, respectively (figure[2.4). The oxide part of the tips is
wet etched in buffered HF, while the nitride caps of the tips are removed
by RIE, using a SFg gas mixture. Finally, a 200 nm thin thermal oxide
layer is grown onto the top side silicon surface as an electrical insulation.
The platinum thin film internal electrodes of the ion-selective sensors are
then patterned at the wafer backside by a lift off process.

b.

Figure 2.4: a. Schematic cross-section of the IKP and MGH silicon
sub-units. b. Topside and backside of the silicon sub-unit of the IKP
design. The platforms have an overall dimension of 18x20 mm?. c. SEM
image of the MGH design recess.
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Micropipettes with a diameter down to 250 nm, 120 nm internal diameter
and 15 pm overall length were fabricated using the SiO2-Si, N, two layer
technique [6].

The detailed fabrication processes for the design IKP and MGH can be
found in the appendix, in sections and respectively.

2.2.2 Growth of thermal silicon oxide in deep circu-
lar holes

Oxidation in micrometer size holes leads to a lowering in the oxida-
tion rate in respect to the oxidation rate observed on planar surfaces.
As the diameters of the micropipettes fabricated in this study range
from 1.5 pm to 3.5 pm, this phenomenon must be taken into account.
Figure illustrates the difference in oxidation growth in silicon cavi-
ties of different diameters. Oxidation conditions for the formation of a
SiO4 layer of 1.4 pm thickness on a planar surface have been applied,
and SiO5 grown in Si cavities of different diameters. Subsequently, the
diameter of the resulting SiO5 cylinders and the thickness of the SiOs
walls have been measured and are reported in figure The SiO, walls
thickness reaches about 80% of the nominal thickness for cylinders larger
than 4 pm, whereas it reaches about 30% of the nominal value for cylin-
ders smaller than 2 pum [6]. As a matter of fact, the stress associated
with the non-uniform deformation of the oxide [8, [0, [T0] and the limited
gas diffusion in extremely small apertures are responsible for the slower
oxide growth.

The dependence of the oxidation rate on the crystal orientation of the
silicon surface is another phenomenon that can be observed when diam-
eters are small. The orientation of the vertical surface of a cylindrical
structure on a (1 0 0) silicon wafer varies periodically from (1 0 0) to
(1 1 0) around the periphery. The (1 1 0) surface tends to oxidize faster
than the (1 0 0) surface. Figuredepicts this phenomenon for a 1 ym
internal diameter cavity obtained by growth of 2 um SiOs, resulting in
a square section micropipette.
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Figure 2.5: Oxidation growth in silicon cavities of different diameters,
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Figure 2.6: The dependence of SiO5 growth rate on the silicon crystal
orientation in small circular cavities leads to the formation of square
section cavities.
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2.2.3 Low stress silicon nitride for the micropipettes
wall

Once the oxide layer is grown in the holes, the silicon nitride layer is
subsequently deposited to form the micropipettes walls. LPCVD low
stress silicon nitride was chosen since this non-stochiometric film has a
number of features that are interesting for the micropipette applications.
Besides its almost stress-free feature [7] and Young modulus about half
of that of stochiometric silicon nitride [I1], making it less vulnerable to
stress [12], it can also be deposited uniformly with regards to film thick-
ness, composition and conformal step coverage [13].

Another important aspect, general to all silicon nitride films, is the pos-
sibility of etching them selectively by reactive ion etching techniques.
Unlike wet etching, reactive ion etching is inherently very directional
[14, 15] and thus preserves the sidewalls of the micropipettes. In this
study, we used the Alcatel plasma etching system GIR 263 equipped
with a confined (RGV) and deconfined system (RIE).

For both micropipettes located at the bottom of a 2x2 mm? KOH groove
at a depth of 360 pm (IKP design) and at the bottom of a 200 pum wide,
and 365 pm deep microchannel (MGH design), the diameter sizes were
obtained with a precision of +0.5 ym on wafer level.

Geometry of the protruding micropipettes

The two-layer SiO2-SizN, technique allows the reduction of the mi-
cropipettes diameter, while preserving the micropipette length and cylin-
dricity obtained during the DRIE process. The tapered angle of the
emerging micropipette is only 0.5° over a length of 18 ym for a 4 pm in-
ternal diameter micropipette. It is slightly larger for a 3 m micropipette
[@].

The bottle-like shape visible in figure is obtained by silicon oxide
BHF etching followed by an additional KOH etching. The two cylindri-
cal SiOy and Si;N, layers are clearly visible.
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Figure 2.7: Geometry of the protruding micropipettes.

Mechanical properties of the micropipette array

The mechanical stability of the micropipettes was qualitatively tested
by pressing a 6.3 pum thin Al foil (Alcan Aluminium Valais SA, Sierre,
Switzerland) on a micropipette array. This technique was already used
by Griss et al. [16] to demonstrate the robustness of larger microfab-
ricated microneedles. As an example, an array of 20 pum protruding
and 4 pym diameter micropipettes was used for this test. The Al foil
was pressed with a small rubber probe (10x10 mm?) against the mi-
cropipette array with an estimated force of 2 N. After the mechanical
stability assay, the Al foil and the micropipettes were inspected by scan-
ning electron microscopy. Figure illustrates a micropipette emerging
without any damage from the Al foil. During the operation, a portion
of the latter remained on the top part of the micropipette.

The force applied on one micropipette is in the order of 0.25 mN. For
comparison, this corresponds to more than six times the force required
to puncture skin (theoretical pressure to puncture skin: 3.18 MPa [17]),
approximately 30 times the force needed to puncture a mouse oocyte
[18] and approximatively 2000 times the force needed to puncture a
human NB4 promyelocytic leukaemia cell [I9]. The robustness of the
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Figure 2.8: Micropipettes mechanical robustness assay. A 4 ym internal
diameter micropipette emerging from the Al foil without damage.

micropipettes could be used to perform measurements in the bulk of a
tissue slice, where the tissue should be less damaged than on the sur-
face. For this purpose, platinum has been successfully electrodeposited
into the micropipettes. The resulting microneedles could for example be
employed in neuronal electrophysiology for recording neuronal activity
of a brain slice of cells located at the core of the sample.

2.2.4 The non protruding micropipettes: SQUARE
platform

The planar microelectrode array on the SQUARE platform is based on
the same design used for the realization of the IKP and MGH platforms.
It should be noted that in the present case, what is called the wafer back
side during the fabrication process will become the platform top side.
The detailed fabrication process can be found in the appendix, section
B.3

For these platforms also, the fabrication is performed on a 390 pm thick
double sided (1 0 0) silicon wafer. DRIE openings of 3 pm to 5 pum
diameter and 50 um depth are etched in the wafer back side in an anal-
ogous way to that of the IKP and MGH chips. A wet oxidation is then
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Figure 2.9: a. Schematic cross-section and b. Photograph of the
SQUARE silicon sub-unit.

performed to obtain a silicon dioxide layer at least 1 pm thick. Circular
patterns of 45 pm diameter, having the same layout as the first series
of DRIE cavities are then obtained by photolithography at the wafer
top side using a thick film of AZ4562 positive photoresist. The silicon
dioxide mask is then opened to allow the DRIE etching of the silicon
substrate to a depth of 350 pm. The two DRIE etched cylindrical cav-
ities are now divided only by the silicon dioxide covering the walls of
the small cavities, partially visible in figure [2.11} The silicon dioxide
is completely removed by a vapour HF etch, and a new silicon dioxide
layer of thickness comprised between 200 nm and 3.5 pum is grown by
wet oxidation, to shrink the cavities diameter to the desired value. To
allow the assembling of the silicon sub-unit and the Pyrex sub-unit by
anodic bonding, the silicon dioxide at the top side of the wafer is thinned
by RIE etch to obtain a 200 nm thick layer.

The platinum electrodes at the wafer back side are at this point de-
posited by evaporation and patterned by a lift off process. The design of
this metallic electrode array aimed at electroporation is identical to the
one used for the metallic internal contacts of the ion-selective microelec-
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trodes, illustrated in figure 2.10] First, an adhesion layer of 20 nm tan-
talum is evaporated, followed by a layer of 120 nm of platinum. These
electrodes are passivated by a layer of 300 nm thickness of low stress
SizNy, grown by LPCVD. The passivation layer is opened by RIE over a
circular area of 45 pm diameter concentric to the DRIE cavity, as shown
in figure 2.101d, and over the electrical connections pads. The electrodes
obtained have an area of 1300 um?.

The last step for the completion of the silicon part of the platform is the
patterning of platinum thin film internal electrodes by a lift off process.

)2
LI

20 ym

wD
C 11.3 IMT-SAMLAB

Figure 2.10: a. Schematic representation of the Pt electrodes layout. b.
SEM photograph of the center of the array. ¢. SEM photograph of a
pISE Pt internal electrode. The hole present at the center of the struc-
ture corresponds to the basis of the micropipette. d. SEM photograph
of a Pt electroporation electrode on the surface of a SQUARE platform,
based on the same design as the pISE Pt internal electrodes.
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The 400 pym long micropipettes

After the two DRIE etch steps, a residual silicon dioxide wall separates
the two etched holes. To open the channel, this wall, grown at the same
time as the mask for the deep 350 um DRIE etch, has to be removed.
The dry etching by RIE at the bottom of the 45 pm diameter, 350 pm
deep holes has been shown to be ineffective. To completely remove silicon
dioxide in geometries where the access is difficult with conventional liquid
processing, vapour HF etching can be very effective. On the other hand,
it is impossible to selectively etch only the residual silicon oxide wall
between the DRIE channels without etching the oxide on the walls of
the smaller cavity. For this reason, the silicon dioxide is completely
removed before a new oxide layer is grown by wet oxidation. Figure [2.11]
shows the cross-section of a SQUARE chip, where the residual SiO, wall
is partially etched.

To protect the silicon during the DRIE etch of the 350 ym deep section
of the micropipettes, a thick silicon oxide mask is necessary. As men-
tioned before, the silicon dioxide rate growth depends on the substrate
geometry, thus the growth rate in the cavities and at the opening of
the cavities, at the wafer surface, is different. Thus, the growing and

Figure 2.11: SEM photograph of a micropipette cross-section on the
SQUARE platform. The residual SiO5 wall between the two cavities is
partially etched. The oxide wall in the small channel is clearly visible.
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subsequent removal of the 3.5 pm thick silicon dioxide in the 3 pm to
5 pm diameter sections of the micropipettes leads to the formation of a
conical micropipette tip instead of maintaining the cylindrical geometry,

as shown on figure 2.14]d.

2.3 The Pyrex sub-unit and chip assembly

The 0.5 mm or 1 mm thick Pyrex substrates were purchased with micro-
machined 1 mm holes placed on a4 mm x 3 mm grid, as shown in figure
The ion-selective microelectrodes are individually addressed by an
array of 50 pm wide microchannels. These channels are wet etched using
20% HF, and an etch mask of 400 nm thick polysilicon mask, deposited
in two steps to prevent pinholes.

To ensure an optimal contact between the pISE Pt thin film internal elec-
trodes and the ion-selective membrane, the Pyrex microchannels have
been designed to follow the geometry of the Pt electrodes, patterned at
the silicon sub-unit backside.

The silicon and the Pyrex chip sub-units are then prepared for assembly
by cleaning the silicon sub-unit with a piranha solution (concentrated
sulfuric acid + hydrogen peroxide) for 10 minutes and the Pyrex sub-unit
with fuming nitric acid for 30 minutes. Immediately after the cleaning,
the sub-units are assembled by anodic bonding, applying a 1200 V po-
tential for 4 minutes (no force applied, T=500°C).
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C.

Figure 2.12: a. The Pyrex microchannels design. The black circles corre-
spond to the 1 mm diameter holes. The microchannels connect the 1 mm
holes to the micropipettes in the silicon sub-unit. b. Photograph of the
Pyrex sub-unit. The sub-unit has an overall dimension of 15x15 mm?.
¢. Close-up photograph on a section of the Pyrex substrate, assembled
with the silicon chip sub-unit. The Pyrex microchannels superpose on

the Pt electrodes.
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Figure 2.13: Photograph of the IKP and SQUARE platforms mounted
on their printed circuit boards.

2.4 Micropipette-based uISE

2.4.1 The Pt internal electrodes

Silver or silver/silver chloride are materials usually employed for inter-
nal metallic electrodes. However, silver is not adapted to the use on
substrates undergoing anodic bonding, because of the electromigration
phenomenon, which destroys the silver patterns and prevents the bond-
ing. Preliminary tests performed in coated wire configuration using glass
micropipette electrodes have shown no significant difference in signal sta-
bility when platinum, silver or silver/silver chloride were used, so plat-
inum has been chosen as the metal for the internal electrodes.

2.4.2 Micropipette geometry applied to the ion-se-
lective electrodes

The use of a micropipette geometry, comprising a capillary filled with an
ion-selective membrane presents several advantages over the simpler pla-
nar electrode design. One of the main causes of the short lifetime of the
microfabricated planar ISE is the loss of adhesion of the IS-membrane,
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with the subsequent loss of functionality of the sensors. The anchoring
of the ion-selective membrane in the microcapillary prevents the detach-
ment of the membrane and offers a mechanical stability to the electrodes.
Analogous designs were for example proposed by Uhlig et al. [20], or
more recently by Sundfors et al. [2I]. They proposed a microfabricated
platform comprising a large reservoir, where the ion-selective membrane
was dispensed, or a (non microfabricated) recessed ion-selective micro-
electrode, respectively. The extremely large volume to active area ratio
could also have a positive influence on the lifetime of the sensors. The
microchannel filled with the IS-membrane can function as a reservoir
for the ion-selective membrane components susceptible to leak from the
electrode, thus increasing the sensor lifetime.

2.4.3 Microelectrodes filling with the ion-selective
cocktail

To render the microchannel walls hydrophobic, and thus allow the capil-
lary filling of the sensors with the organic ion-selective cocktail, a treat-
ment of the chip surface by silanization is necessary. This step is per-
formed before mounting the chips on the printed circuit board. After
at least 30 min of dehydration in an oven at 150°C, the silanizing agent
N N-dimethyltrimethylsilylamine (Fluka) is added and another 30 min
at 150°C are allowed for the vapour phase reaction.

It has been observed that the surface-treated chips can be stored for
years in a dry environment without losing their surface hydrophobicity.
If the chips are not stored in a dry environment, it is recommended to
dehydrate them under vacuum or in an oven, at 120°C, for 30 min before
the filling with the IS-membrane cocktail. Both the protruding and non
protruding micropipettes are sufficiently small to avoid the membrane
cocktail overflow. Images of microelectrodes filled with IS-membrane are
presented in figure
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———— sm wo ————— 5um
4 1.0 Torr Empty Micr 11.4 1.0 Torr Filled Micropipette

Figure 2.14: Environmental SEM photographs of protruding pipettes.
a. A b pum diameter empty micropipette. b. The same type of mi-
cropipette as in a., now filled with a 5 wt% PVC containing ion-selective
membrane. c¢. A micropipette filled with a 14 wt% PVC containing ion-
selective membrane. d. SEM photograph of an empty 5 um diameter
planar electrode. e. Interferometry image of an electrode of the same
type shown in d., now filled with a liquid (0 wt% PVC)ion-selective
membrane.
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2.5 Summary

The IKP and MGH platforms comprise 5 um protruding micropipettes,
of 30 pm to 50 um overall length and 1.5 p to 6 um diameter, situated
in a 360 um deep recess. The SQUARE platform comprises non pro-
truding micropipettes, of 400 pym overall length and 1.5 p to 5 pm tip
diameter. This platform presents a combined pISE-Pt electrode array.
The arrays comprise 24 micropipettes, with an inter-electrode gap of
150 pm or 300 pm. The micropipettes are individually addressed by an
array of Pyrex microchannels and a Pt thin film electrode array. The
micropipettes have been successfully filled with KT- and Ca?*-selective
membranes. Figure|2.15{summarizes the main characteristics of the three
realized designs.
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IKP MGH SQUARE

Characterization In vitro assays Chip surface
of uISE microstructuring

a. Schematic
cross-section

b. SEM image of the
micropipettes tip

c. Differences in

design

d. Chip backside

Figure 2.15: Summary of the three platform designs. Scale bars in b.
are 20 pm, in c. are 500 ym, and in d. are 5 mm.
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Chapter 3

Ion-selective
microelectrodes

3.1 Introduction

3.1.1 Glass capillary ion-selective microelectrodes

Ton-selective electrodes are unique devices, allowing the direct measure-
ment of free ionic activities, not possible with other techniques [I], they
do not need the addition of chemicals in the sample solution, it is thus
expected that their use will interfere in a minimal extent with the phys-
iology of the cell. Microelectrodes offer the possibility of a very local
measurement, that has permitted in the past to perform measurements
in cell organelles [11 2], with a relatively simple apparatus.

From the mid 1970s to the mid 1980s, the research on glass capillary ion-
selective microelectrodes was at its highest point. Hundreds of studies
were reported for both in vitro and in vivo recording of cellular HT, Na™,
K*, Ca?t, Mg?T [1]. These studies were performed using capillary glass
microelectrodes similar to the one illustrated in figure In the case
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Figure 3.1: Photograph of a glass capillary uISE.

of intracellular measurements, the cells were punctured manually (figure
a—c). The present technique is still used in physiological research, but
in a less widespread way.

To follow intracellular ion concentrations, the changes in cell membrane
potential should be followed in parallel [3| 4]. Monitoring of the mem-
brane potential in a large cell is performed by insertion of a second ref-
erence electrode (RE) in the cell (figure [3.2la) and its signal is recorded
in respect to an external RE. For small cells, where impalement of two
electrodes is not possible, ”double barreled” electrodes have been imple-
mented. They comprise an ISE and a RE on the same electrode body,
as shown in figure 3.2lb. If it can be assumed that in a cell culture,
all the cells have the same membrane potential, two different cells can
be impaled, one with the ISE, and the other with the RE [3], as shown
in figure [3.2}c. The difference in ISE and RE signals is used to verify
the quality of the sealing of the cell membrane around the uISE tip, to
insure that the ISE signal corresponds to a real intracellular change and
is not generated by cell leakage [5].

Double-barreled glass capillary microelectrodes have also been used to
perform intracellular measurement of H* using a technique combining
patch clamp and potentiometry. The microelectrodes accessed to the
intracellular space not by mechanical impalement, but by sealing of the
electrode tip to the cell membrane, and subsequent cell membrane rup-
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ture, as in patch clamp [6] (figure [3.2]d). Self-referencing glass capillary
pISE are vibrating electrodes (figure e). The difference in signal
between the extreme positions of the electrode gives a measurement of
the ion concentration (knowing the concentration of the analyte ion in
the background solution) or the ion flux [7]. Vibrating glass capillary
ion-selective electrodes have been used in parallel with patch clamp to
monitor ionic fluxes through ion channels [§].

RE ISE RE
C.

RE
ISE
e.

ISE RE ISE

a. b.
ISE

d.

Figure 3.2: Different configurations for the use of glass capillary pISE
in cell cultures. a. ISE and RE impale the same cell. b. Double bar-
reled microelectrode combining ISE and RE. c. ISE and RE impale two
different cells presenting the same transmembrane potential. d. Double
barreled glass capillary microelectrode used in patch clamp configura-
tion. e. Vibrating, self-referencing ISE.
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3.1.2 Microfabricated ion-selective microelectrodes

The major biological application of the ISE in present days is clinical
analysis. Several microfabricated potentiometric ion-selective platforms
for the measurements in biological fluids have been micromachined in
silicon [9] 10} 111 (12} (T3] [14] and glass or glass/PDMS [15] 16]. Although
screen-printing is used for the fabrication of biochemical sensors since
the 1980s, namely for disposable glucose sensors, its use for fabrica-
tion of ISE is not widespread. Screen-printed electrodes micromachined
on plastic substrates are promising devices for single-use measurements
[1°7, 18, [19], but before ISE can be microfabricated on a large scale using
planar thin or thick film technology, a solid microfabrication technology
should be established. This microfabrication technology should avoid
the main causes of failure of these sensors, namely the loss of adhesion
between the different solid layers and the lack of a stable response, due
to an unadapted internal electrolyte. More information on the subject
can be found in section

Extremely few papers report the use of microfabricated ion-selective elec-
trodes for in vivo or in vitro monitoring. Cosofret et al. [20] reported
in 1995 the microfabrication of a polyimide-based HT- and KT -selective
electrode array for in vivo monitoring of ionic variations in muscle tis-
sues during ischemia. The replacement of the polyimide with a sub-
strate rigid at room temperature but soft after implantation, permitted
the minimization of tissue damage [2I]. This second array, comprising
9 electrodes of a diameter of several hundreds of microns, for measure-
ments of HY, KT, Nat and Ca?*t, has been successfully tested in vivo
[21].

A second microelectrode array, aimed at extracellular monitoring of
Ca?T, has been recently reported [22]. This silicon-based platform com-
prises an array of 16 square cavities of 150 um side length, filled with
IS-membrane. The IS-membrane in each cavity is contacted by the mean
of 4 Ag/AgCl internal electrodes. The platform has been used for the
monitoring of extracellular calcium fluctuations of fern spores in micro-
gravity.
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3.2 Principles of ion-selective electrodes

3.2.1 Ion-selective membrane components

Liquid polymeric IS-membranes based on neutral carriers are lipophilic
organic solutions into which, ideally, only the primary ion can be ex-
tracted. The components of such a membrane are the following;:

Plasticizer or membrane solvent. It is the solvent for the membrane
components. It is a lipophilic liquid with low vapour pressure. The
selectivity of the IS-membrane can be influenced by the polarity
of the plasticizer: more polar solvent will increase the selectivity
of divalent over monovalent ions [I]. The most commonly used
plasticizers are bis(2-ethylhexyl)sebacate (DOS, dielectric constant
4) and 2-nitrophenyl octyl ether (o-NPOE, dielectric constant 24).

Ionophore or ion carrier. The term ionophore (”which carries ions”)
indicates a compound that facilitates the transmission of an ion
across a lipid barrier by combining with the ion or by increasing
the permeability of the barrier to it. In ion-selective electrodes, the
properties of an ionophore to form a hydrophobic complex with a
specific ion are exploited to allow the solubilization of the ion in the
ion-selective membrane phase. In the ideal case, it forms a strong
but reversible complex exclusively with the primary ion. Typical
concentrations of ionophore in the membrane are 10~2 mol kg~!
to 10~! mol kg, but can go down to about 10~ mol kg=! [1].

Lipophilic ion exchangers or ionic sites. To achieve an ideal respon-
se, the permselectivity of the IS-membrane should be ensured. This
phenomenon, also called Donnan exclusion, means that no signifi-
cant amount of ions of opposite charge to the primary ion may enter
the membrane [23]. In neutral carrier-based membranes, permse-
lectivity is given by counterions confined to the membrane phase.
Early liquid membrane ISE were realized without the addition of
lipophilic ionic sites [24], but a response improvement was observed
when these components were present. Usually a tetraphenylborate
salt is added to cation-selective electrodes, a tetraalkylammonium
salt to anion-selective electrodes [23].
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An excess of ionic sites with respect to the complexing capacity of
the ionophore should be avoided [25]. As the lipophilic ionic sites
have also ion-exchanger properties (see for example [26] 27]), an
excess of ionic sites will enter in competition with the ionophore
and extract cations into the membrane phase. As the selectivities
of the lipophilic sites are different (and obviously less favourable)
than those of the ionophore, the selectivity will in this case be dic-
tated by the ion exchanger properties.

The addition of the ionic sites is also profitable to decrease the
electric resistance of the membrane.

Matrix. Provides mechanical stability to the membrane. In small mi-

croelectrodes, surface tension phenomena avoid the organic IS-membrane
overflowing from the electrode tip, so the addition of a polymeric
matrix could be avoided. Even though the term liquid membrane
is often encountered in the literature to indicate the whole family
of IS-membranes, in the present work, this term will indicate the
membranes that do not comprise a polymeric matrix.
The most commonly used matrix is PVC. Other polymers have
been explored, such as polyurethanes and silicone rubber, used in
biomedical devices because of their enhanced biocompatibility [28]
29, 30, [31]. Because they do not need the addition of a plasticizer,
and thus present a diffusion coefficient of several orders of magni-
tude lower than classical PVC-based ISE, self-plasticizing mem-
branes based on polyacrylates [32], ethylene-vinyl-acetates [33],
acrylonitrile [34], isodecylacrylate [34], polysiloxanes [35] have re-
cently attracted the interest of researchers, and might be useful
for future use in miniaturized ISE [30] and for minimization of
ion fluxes through the membrane [37] (see section for further
information). Porous materials, like porous glassy carbon [38] or
porous silicon [39] have been used recently as solid supports for
IS-membranes. The polymer matrix being one of the main com-
ponents of the IS-membrane, it has an influence on the membrane
polarity.

Additives. Other membrane components that can be used to improve
the electrode performance are mixtures of lipophilic cations and
anions [40], which lower the membrane electrical resistance and
rises the upper detection limit by reducing the anionic interfer-



3.2. Principles of ion-selective electrodes 45

ence. An example of a widely used lipophilic salt of this type is
ETH 500, tetradodecylammonium tetrakis(4-chlorophenyl)borate.
Lipophilic inert nanoparticles have also been added to lower the
ionic fluxes into the membrane phase [41].

3.2.2 Potentiometric response mechanism

In figure a schematic view of an electrochemical cell, comprising a
reference electrode and an ion-selective electrode is presented.

Reference lon-selective
electrode (RE) electrode (ISE)

&

Internal

Internal

reference reference
Ag/AgCl Ag/AgCl
Internal
reference Internal

electrolyte filling

solution

lon-selective
membrane

Salt bridge

Figure 3.3: Schematic view of a generic ion-selective potentiometric cell.

The cell can also be presented as follows:

Ag | AgCl | KCI | salt bridge | sample | IS-membrane | internal solution | AgCl | Ag
—_—
Ey Es E3 E; En E4 Es

The potential response of the electrochemical cell is the sum of all inter-
facial local potentials:

E=(E1+E;+E3s+E,+E5;)+E;+Ey (3.1)
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For a given temperature, F; — E5 are constant, moreover, the electrolyte
combinations are usually chosen to have the liquid junction potential
E,] ~ 0.

The membrane potential E); can be subdivided in two parts, the first
comprises the interfacial potential at the sample (Eps sample) and internal
electrolyte (Eas int1 sol) boundaries, and the second is a membrane-internal
contribution (Ep), called diffusion potential:

EM = EM,sample + EM,intl sol ED (32)

If we assume that a zero current steady state is maintained, Fp will be
zero [42]. The membrane potential Ey; for an ideally selective mem-
brane will thus depend only on the activities of the primary ion I in the
contacting solution at either side of the membrane.

sample
RT | ay

EM = ZIF n ai]ntl sol

(3.3)

where z; is the charge of the ion I, R the gas constant, T the temperature,
in kelvin, F the Faraday constant and a™'® and @i 5! the activity of
the ion I in the sample and internal solution, respectively. This equation
is called the Nernst equation. As the internal solution composition is

kept constant, the following theoretical response is expected:

RT sample S sample
E:E?—&—ZI—Flnal P :E?+ZIOQGI P (3.4)
For T = 25°C, S = 59.16 mV.

According to this equation, for a constant temperature, 1 mV is equiv-
sample

alent to z7-4% change in a;
3.2.3 Activity calculations

For well defined, simple electrolyte solutions, the ion activities can be
calculated from the ion concentrations by the Debye-Hiickel method,
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corrected for the high concentrations [43] [44]. This correction makes the
model applicable to ionic strength up to ca. 1 M (see eq. ) Param-
eters for more complex ionic species, as for example proteins, have not
been specified. The ionic activities ax are related to the ionic concen-
trations cx by the mean of the activity coefficients yx:

ax = Yx cx (35)

The mean activity coefficient can be calculated by the Debye-Hiickel
theory:

_A|Z*Z+‘\/j+c/

1+ BVI ! (36)

logv+ =

Where:
A: is a temperature-dependent coefficient.
At 25°C, in water, A = 0.5108 M~1/2
Z4+,2Z_ @ are cation, anion charge numbers
B’, C’: are specific coefficients for different electrolytes [45]. In table
several values of interest for the present work are summarized.

Table 3.1: Modified Debye-Hiickel parameters for some selected salts in

aqueous solutions, at 25°C [45].
Electrolyte B’ [M~1/2] ' [M~1]

NaCl 1.4225 0.02626
KCl 1.2796 0.00393
MgCla 1.7309 0.05195

CaCla 1.5800 0.04570



48 3. Ion-selective microelectrodes

The ionic strength is defined as:

1
I= 5;0;(2%( (3.7)

From the mean activity coefficients, the activity coefficients for the cation
or anion can be calculated:

y4

log = =+l (3.5)
zZ_

logy- = | - :ZOQ'H[ (3.9)

3.2.4 Detection limits and sensitivity

At high and low ionic activities, the ISE response does not follow the
ideal Nernstian behaviour. Usually, the response is of the type presented
in figure The lower detection limit recommended by IUPAC is the
activity of the primary ion I corresponding to the point of intersection
of the two linear extrapolations of the response curve. For the upper de-
tection limit, the point of intersection of the linear range of the response
with the limiting high activity response may be taken [46]. The upper
detection limit is caused by the coextraction of counterions, also called
Donnan exclusion failure, which causes a loss of membrane permselec-
tivity. Addition of ionic sites in the IS-membrane insures the membrane
permselectivity, and thus raises the upper detection limit. The lower de-
tection limit can have two main causes. The first can be the interference
of competing species: the electrode does not respond to the low activity
of the primary ion I, but it records the activity of an interfering species
J. The response in the low primary ion activity region can also be limited
by the leaching of primary ions from the IS-membrane into the sample,
which rises the local interfacial ionic concentration to higher levels than
the true sample activity [47].
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E [V]

Lower Upper
detection limit log ai [-] detection limit

Figure 3.4: Determination of the upper and lower detection limits.

In the presence of an ionic flux across the IS-membrane causing an up-
take of primary ion from the sample solution, the interfacial sample
ionic activity is lowered compared to the sample bulk ionic activity and
a super-Nernstian response similar to the one presented on figure 3.5
is observed [48]. In this case, the Nernstian response is observed only
for higher concentrations, and intersection of the linear extrapolation
of the Nernstian section of the calibration curve with the lowest mea-
sured value of F will give a detection limit lower than the true detection
limit. The lower detection limit is in this case defined in an analogous
way as the IUPAC definition, but extrapolating the linear range of the
super-Nernstan response, as illustrated in figure [3.5

The sensitivity of the ISE is defined as the slope of the linear part of
the calibration plot E versus log ay, and is 2.303 271; for ideal Nernstian
electrodes.
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Nernstian
response

E [V]

super-Nernstian
response

Lower Lower
detection limit  detection limit log ai [-]
IUPAC definition

Figure 3.5: Lower detection limit in presence of a primary ion uptake
from the sample.

3.2.5 Selectivity

The selectivity of a sensor is its preference to detect a specific ion I
relative to an interfering ion (or other species) J. The potentiometric
response of an ISE in presence of an interfering species J has been de-
scribed in a semi-empirical form by Nikolskii and Eisenman [42] [46]:

}%jﬂ sarn e () z z
E=E+ e T KPS (3.10)
J£I

This equation is valid only for ions of the same charge number. For other
combination of ions, more general equations have been derived [49]. The
factor Kﬁ% called the potentiometric selectivity coefficient, allows the
quantification of the ISE selectivity. If the Nikolskii-Eisenman equation
is applicable (] z; |=| z; |, Nernstian responses for both I and J), the
selectivity coefficient, measured with the fixed interference method is
[50, B1]:

ay,DL
Z]/ZJ
ay

K = (3.11)
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where ay pr, is the activity of primary ion I at the detection limit.

Knowing the medium where the measurements will be performed, the
minimal selectivity requirements can be calculated with the following
equation, giving the highest tolerable value of the selectivity coefficient

-

pot _ Q1min  DPIJ
Iimaz = " z;/z; ’ ﬁ (312)
aJ,maw

where a7 min and ajmqq are the lowest expected activity of the primary
ion and highest expected activity of the interfering ion, respectively, and
prg is the highest tolerable error in the measured activity of the primary
ion, in percent.

If the Nikolskii-Eisenman equation is not applicable, the selectivity co-
efficients calculated with equations [3.11] and [3.12] cannot be considered
as physical constants [51 52]. In this case as indication of the sensors
selectivities, the detection limit, completed with the composition of the
sample solution should be preferred.

3.2.6 Response time

The response time is defined by ITUPAC as the time needed after a change
in concentration of the primary ion for the slope AE/At of the response
curve to reach a limiting value. This definition is advantageous over the
definitions tgs (time to reach the 95% of the activity change correspond-
ing span) and t* (time to reach E to 1 mV from the steady state value)
because the equilibrium value does not need to be known. The limiting
value of AE/At is chosen on the basis of the experimental conditions
and the accuracy needed [46].

3.2.7 Ion fluxes through the ion-selective membrane

Potentiometric electrodes are well-known instruments, currently used
in clinical laboratories for automated screening of physiological sam-
ples. After the great advances in this field that took place in the 1970s,
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the interest for ion-selective electrodes for in wvitro and in vivo appli-
cations faded because of their non competitive detection limits, around
105 M, versus the new fluorescence techniques. Lower detection limits,
in the nanomolar range, could be obtained when the sample solution was
buffered for primary ions [53], but no further investigation on the mech-
anisms leading to such a low detection limit was performed [54]. During
the 1990s, further research started with the observation of not well un-
derstood phenomena appearing with the use of a new heparin-selective
electrode [55]. This has lead to an important improvement of the un-
derstanding of ionic diffusion processes in the IS-membrane. From these
studies, it was demonstrated that the detection limit on the micromolar
level presented by ISE was not an intrinsic property of the IS-membrane,
but was either due to leaching of primary ions from the IS-membrane
into the sample, thus rising the measured concentration at the IS-mem-
brane/sample interface above the sample bulk concentration [56] or to
the coextraction of primary and interfering ions from the inner solution
at the inner side of the IS-membrane [57].

The choice of an appropriate inner solution allows the control of the ionic
fluxes into the IS-membrane phase, resulting in an improvement of the
detection limit [56l 58]. In the ideal case, to avoid any transmembrane
ion flux, the inner solution should have the same composition than the
sample solution. A too high primary ion concentration in the inner ref-
erence solution can lead to poor detection limits, and a too low value
will induce an uptake of ions from the sample solution and a lower than
expected ISE response (”super-Nernstian step”) [59], as presented in fi-
gure [3.5]

A number of theoretical studies on the transmembrane ionic fluxes have
been performed, [48],[59] 60, 611 62} [63], [64] leading to the calculation and
measurement of the correct thermodynamic ISE characteristics, in par-
ticular potentiometric selectivities [47, 50l 54 [65] [66]. This will permit
a more rational design of future ISE [37, [67] as well as the possibility
to perform preliminary virtual experiments [68]. These new approaches
to potentiometry lead to the development of a number of strategies of
transmembrane ion fluxes control to measure free and total (multiple)
ion concentrations [69}, [70} [71], realize sensors particularly sensitive in a
critical concentration range [72], prevent or enhance these ionic fluxes
[73,[74] [75], calibrate the ISE from the IS-membrane inner side (backside
calibration) [76].
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3.2.8 Alternatives to a liquid internal solution for
pISE

Electrodes where the IS-membrane is in direct contact with the metal,
without an internal electrolyte solution or a redox layer between the
metallic internal electrode and the IS-membrane are known to suffer from
drift, and thus need frequent recalibration. Instabilities are related to the
absence of an electrochemically well defined interface, having a common
charge carrier between the IS-membrane (ion-conducting phase) and the
metallic internal electrode (electron-conducting phase). These so-called
blocked interfaces have initially been described as functioning on capaci-
tive coupling between the IS-membrane surface and the metallic surface
[77], and thus suffering from intrinsic instabilities. More recently, the po-
tential instabilities have been associated to the formation of a thin water
layer at the metal/IS-membrane interface, sensitive to sample changes in
oxygenation [I3] or ionic concentration changes [78]. Covalent bonding
of the polymeric matrix to the metallic substrate [79] [80] may avoid the
formation of this water layer and thus improve the ISE stability. The
slow diffusion rate in non plasticized polymeric matrices [32] may also
be beneficial to the signal drift, by minimizing the composition changes
of the water layer.

As miniaturization renders difficult the use of a liquid internal elec-
trolyte, the recent research in the pISE field is focussed on strategies
to overcome the problem of the lack of stability of the blocked interfaces
by the use of an internal solid electrolyte layer. The internal liquid solu-
tion has been replaced by a hydrogel [13], different types of conducting
polymers [81],[82], self-assembled monolayers [78],[83] [84], which provide a
ion-to-electron transducer layer placed between the IS-membrane and the
metallic contact, giving rise to a class of electrodes called all-solid-state
ion sensors. The self-assembled monolayers have been reported not only
to stabilize the potentiometric response by the adjunction of a defined
redox couple, but also to inhibit the formation of the water layer at
the metal electrode surface [78]. The addition of a redox couple into
the IS-membrane has also been reported [81] [85]. Recently, silver and
vanadium-based glasses, presenting both electronic and ionic conductiv-
ities have been proposed [86]. These latter materials are inspired by the
widely used metal salts based internal contacts, e.g. Ag/AgCl [87].
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3.3 Characterization of the ion-selective elec-
trode array

3.3.1 Materials and methods
Chemicals

The ionophores valinomycin, N-N-N’-N’-tetracyclohexyl-3-oxapentane-
diamide (ETH 129), the ionic additives potassium tetrakis(4-chlorophe-
nyl)borate (KTCIPB), potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]-
borate (KTFPB), the membrane matrix high molecular weight poly (vinyl
chloride) (PVC), the plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-
nitrophenyl octyl ether (o-NPOE), 2,3-dimethyl nitrobenzene (DMNB),
the lipophilic salt tetradodecylammonium tetrakis(4-chlorophenyl)borate
(ETH 500) and the membrane solvent cyclohexanone were of Selec-
tophore quality from Fluka, whereas all the metal chloride salts except
MgCls were of Suprapur quality from Merck. MgCl, was from Fractopur
quality, from Merck. The pH and calcium buffers N-(2-hydroxyethyl)pi-
perazine-N’-(2-ethanesulfonic acid) (HEPES), BioChemika Ultra quality,
and ethylene glycol 0-0’-bis(2-aminoethyl)-N,N,N’-N’-tetraacetic acid
(EGTA), BioUltra, for molecular biology were also from Fluka. The
silanizing agent N,N-dimethyltrimethylsilylamine (purum) was also pur-
chased from Fluka. Aqueous solutions were prepared with cleanroom
grade deionized water (>20 M) cm specific resistance). Dulbeccos mod-
ified Eagle medium (DMEM), foetal bovine serum (FBS), and penicillin-
streptomycin (PS) were purchased from Invitrogen Corp.

Microfabricated platforms

The results presented in the following paragraphs have been obtained us-
ing chips comprising an array of 1.5 pm diameter, 50 pm long pISE. IKP
design chips were used for all the experiments except the experiments in
KCl1 + 150 mM Na(Cl solutions, where MGH chips have been employed.
IKP and MGH design chips have an identical electrode design. Function-
ality of SQUARE design chips was tested with the potassium-selective
membrane KT-B (see table , and presented characteristics similar
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to the IKP and MGH chips in terms of selectivity, sensitivity, drift and
lifetime.

Experimental setup

Up to 16 microelectrodes were tested simultaneously using a 16-channel
homemade system realized by O. T. Guenat and G. Boulard. A 16-
channel high-impedance input (104 Q) amplifier, was constructed using
the INA116 ultra low imput bias current amplifiers, and connected to
a PC and a data acquisition card (DAQCard 6024E, National Instru-
ments) in combination with a Labview 7.0 software. A low-pass filter
stage with a cut-off frequency of 10 Hz was integrated in the amplifier.
An estimation of the resistance, based on conductivity values of similar
IS-membranes reported in literature [I], gave, for a 1.5 pm diameter,
50 pum long cylindrical pISE, a value around 5-10'2 €2, indicating that
the microelectrodes can be used with our amplifying system [I]. The
response time of the overall electronics has been measured to be 2.5 s.
As the pISE setup has an overall response time in the tenths of seconds
(section , the long response time of the electronics will not limit
the potentiometric response.

The pISE technology is very sensitive to changes in the conformation of
the measuring system. For this reason, it is important to fix the places
of the electrodes, ISE and RE, and to protect the system from exter-
nal electrical perturbations and light interferences by a Faraday cage
[88, [89]. The system should be accessible without the opening of the
Faraday cage, and thus, a microfluidic chamber in PMMA has been re-
alized, which permits to pump the sample solutions from the exterior.
The chips were placed in the PMMA flow-through cell integrating a mini
reference electrode (DRIREF-2, World Precision Instruments, Inc.), lo-
cated downstream (ﬁgure. The volume of the measurement chamber
was 15 ul. A correct shielding of the measuring chamber is of capital
importance to avoid parasitic signals and current loops. The cables con-
necting the chip to the 16-channel acquisition card are also individually
shielded. The correct grounding of the system is also important to avoid
signal instabilities and earth loops [90]. Figure gives a scheme of the
earthing of the electronic setup.
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Figure 3.6: a. Photograph of the PMMA flow-through cell. b. Schematic
cross-section of the flow-through cell.
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Figure 3.7: Simplified scheme of the used setup earthing. For clarity,
only one uISE channel is shown.

Potassium calibration solutions

To eliminate all traces of residual metallic ions, the laboratory glassware
was cleaned for one night with a solution of 0.01 M nitric acid.

The potassium concentration range tested was from 10~7 M to 2-10~! M.
Interferences in both intracellular and extracellular ionic ranges have
been tested. Intracellular interfering ion concentrations in calibration
solutions were 15 mM for Nat and 5 mM for Mg?t, obtained with the
corresponding chloride salts. As the pH buffer HEPES is currently used
for cellular assays, 5 mM HEPES buffer were added to fix the pH to 7.4.
Further tests were performed with KCl solutions comprising a constant
background of 150 mM NaCl, corresponding to extracellular activities
of this ion. Magnesium ion concentrations are in the millimolar range in
both extracellular and intracellular space. The corresponding activities
are calculated using the modified Debye-Hiickel model (section .
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Calcium calibration solutions

To eliminate all traces of residual metallic ions, the laboratory glassware
was cleaned for one night with a solution of 0.01 M nitric acid.

The calibration solutions have been prepared for the testing of the ISE
in intracellular space, where the lowest calcium activities are around
51078 M. The concentrations of the main interfering ions have been
chosen to fit the typical intracellular values, namely 150 mM for KT,
15 mM for Nat and 5 mM for Mg?t, whereas the concentrations of cal-
cium vary from 10719 to 10~* M. During all experiments, chloride salts
were used. To realize very low free activity calcium solutions, two differ-
ent approaches are possible: fix the pH and change the calcium buffer
or keep the same calcium buffer, and adapt the pH to shift its effective
buffering range. As the use of commercial calcium calibration solutions
(CALBUF-1, World Precision Instruments, Inc.) based on different cal-
cium buffers was problematic, the second alternative has been chosen:
EGTA buffer was chosen, and the pH varied between 7.4 and 9. To
avoid variations in the calibration solutions composition, all the calcium
calibration solutions are based on 5 mM EGTA and 5 mM HEPES, even
if, for low free calcium concentrations, the pH was out of the buffering
range of HEPES and Ca?* buffering is not necessary at high calcium
concentrations. To solubilize the EGTA, 50 mM KOH has been added,
giving a background of 50 mM K™ in all solutions. The pH was subse-
quently adjusted with HCI.

The calculations of the contribution of HEPES and EGTA to the ionic
strength of the calibration solutions, as well as the total concentrations
of Ca?t and Mg?" to be added to the solutions have been performed
using the MaxChelator software, written by Chris Patton [91] [02]. This
software is available at www.stanford.edu/~cpatton/maxc.html.

All the calculations have been performed for a temperature of 25°C.
With this software, the free and total ionic concentrations are calculated,
to obtain activity values, the modified Debye-Hiickel model, presented in
the section [3:2.3] was applied. Tables of the buffer solutions compositions
are reported in appendix [C]
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Calibration procedure

The sensors have been designed for use in cellular media, where the
ionic concentrations are within a restricted concentration range. The
most appropriate calibration method in this case is the fixed interfer-
ence method, where the calibration solutions present different primary
ion concentrations and a fixed interfering ion background.

Calibration curves were obtained by measurements in standard solu-
tions with incremented concentrations and plotting the measured E ver-
sus loga;. The slope and detection limit of the potassium calibration
curves were calculated in the linear concentration range between 105 M
and 10~! M. The slopes and detection limits of the calcium calibration
curves have been obtained from the (generally super-Nernstian) linear
range comprised between 1072 M and 10~° M.

Calibration curves were recorded under stop-flow conditions. The com-
plex geometrical shape of the fluidic network could strongly affect the
response. In order to ensure the reproducibility of the conditions, the
experimental procedure was strictly followed:

The flow rate used was 31 pl s~!. First, the system was rinsed for 3 min
with deionized water in order to clean the device of any residual ionic
species. Then the lowest concentration sample solution was pumped
in the flow-through cell for 1.5 min. As the electrodes are conditioned
in a solution of primary ion of higher concentration than that of the
first calibration solution, a resting time of 30 to 60 min was allowed
to stabilize the electrodes response before the calibration. After stabi-
lization, the following calibration sequence was repeated for increasing
primary ion concentrations: pump 0.93 ml of calibration solution (flow
rate 31 pl s71), rest period 2.5 min. The potential data values were
recorded and averaged over the last 10 s of the rest period.

All measurements were carried out at room temperature at 25+2°C.
This temperature variation theoretically affects the slope sensitivity by
1.4%.
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3.3.2 Ion-selective membranes composition

Four membrane compositions, two for potassium-selective electrodes and
two for calcium-selective electrodes, were used. Their compositions are
given in table The membranes K*-A and Ca?*-A are liquid mem-
branes, not containing any PVC. Membranes K*-B and Ca?*-B contain
5 wt% and 14 wt% PVC respectively. To allow the filling of the mi-
croelectrodes, the components of the PVC containing membranes were
solubilized in a solvent. Because of its lower evaporation rate, cyclo-
hexanone was preferred to tetrahydrofuran, which is generally used as a
membrane solvent. The ion-selective cocktail will thus remain liquid for
a longer time, allowing an easier manipulation of the membrane cocktail
and a more reproducible microchannels filling.

The classically used IS-membranes employed in glass capillary micro-
electrodes are liquid membranes, i.e. without a polymeric matrix, like
membranes KT-A and Ca?t-A. Because of the surface tension effects,
the liquid IS-membrane in the microelectrode tips will not overflow, ren-
dering the addition of PVC not necessary. However, the addition of
PVC can be beneficial because of the subsequent lowering of the diffu-
sion coefficient in the membrane phase. The concentration of PVC has
been limited to between 5 wt% and 14 wt% to minimize the risks of
an excessive membrane shrinkage upon cyclohexanone evaporation, the

Table 3.2: Ion-selective membranes compositions.

IS-membrane Kt-A K*-B * Ca’t-A  Ca2t-B **
Ionophore valinomycin  valinomycin ETH 129 ETH 129
wt% 5 5 0.5 0.46
conc. [mmol kg™1] 45.0 45.0 10.9 10.0
Tonic sites KTCIPB KTFPB KTCIPB KTCIPB
wt% 2 1 0.1 0.09
conc. [mmol kg~!] 40.5 11.1 2.0 1.8
Plasticizer DMNB DOS o-NPOE o-NPOE
wt% 93 89 99.4 85.45
Polymeric matrix - PVC - PVC
wt% - 5 - 14
fon exchanger 6] ratio 0.9 0.25 0.19 0.18

Ionophore
*: 100 mg of IS-membrane solubilized in 210 ul cyclohexanone.

**: 100 mg of IS-membrane solubilized in 105 ul cyclohexanone.
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fraction of solvent needed to keep the IS-cocktail liquid becoming very
high as the PVC fraction rises. The components (totalling 100 mg) of
the PVC containing membranes were dissolved in cyclohexanone, 210 pl
for membrane K*-B [93], and in 105 ul for membrane Ca?*-B.

The applicability of the ion-selective liquid membrane principle to the
micromachined platform was verified by using the K*-A membrane, a
variant of a valinomycin-based membrane cocktail based on a PVC-free
liquid ion-selective membrane employed in microelectrodes [94] [05].
Potassium-sensitive microelectrodes based on valinomycin are known to
be very selective. Valinomycin is a cyclic, naturally occurring antibiotic
produced by several Streptomyces bacterial strains, and, because of the
hydrophobic surface of the valinomycin-K* complex, it allows the trans-
port of potassium across the cellular membrane. Its well-known high
selectivity of potassium over sodium has lead to its choice as ionophore
in KT-selective electrode membranes [24].

The absence of polymeric matrix avoids eventual drawbacks upon the
shrinkage of the ion-selective cocktails occurring when cycloxexanone
evaporates. The advantage of the plasticizer DMNB is its low impedance.
This cocktail permitted to verify the functionality of the silicon-based
micropipette electrodes. For the tests in presence of cells, presented in
chapter [, another IS-membrane has been employed. The composition
chosen for the membrane comprises in this case the more apolar plas-
ticizer DOS, and 5 wt% PVC as membrane matrix (membrane K+-B,
table . Having a dielectric constant of 4 vs around 24 for nitroaro-
matic compounds [I], DOS is more adapted than DMNB to optimize the
ISE selectivity for monovalent ions over divalent ions [I} 42].

An excessively high ion exchanger to ionophore molar ratio will lead to
a loss of selectivity of the IS-membrane. If an excess of lipophilic anionic
sites is present, the amount of cations extracted in the IS-membrane
phase will cause the total complexation of the ionophore, and the re-
maining uncomplexed cations will form ionic pairs with the anionic sites
in excess. The selectivity of the ionophore will thus be lost and the ob-
served sensor characteristics will depend on the lipophilic anions selec-
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tivity. As the ion exchanger to ionophore ratio of 0.9 used in membrane
KT-A is quite high, subsequently it has been decreased to 0.25 in the
membrane K*-B.

The best calcium ionophores known so far are complexes synthesized at
the ETH Zurich in the late 1970s [96, [97]. We chose one of them, the
ETH 129, a bidentate ligand which has a calcium coordination number
in PVC/o-NPOE membranes reported to be between 2 and 3 [53], O8],
as ionophore for the present uISE.The detection limit of an ISE depends
on the equilibrium between the ionic species at the sample/IS-membrane
interface. The presence of primary ions in the IS-membrane phase is due
essentially to the presence of the ionophore. A lowering of the ionophore
concentration in the IS-membrane phase will influence the concentration
of primary ion in the IS-membrane. A shift of the interfacial equilibrium
of primary ions to the lower concentrations is then observed, with a sub-
sequent improvement of the detection limit.

For this reason, three concentrations of ETH 129 have been tested,
5 wt%, 0.5 wt% and 0.05 wt%. Electrodes prepared with the lowest
concentration were not responsive. Electrodes having a concentration of
0.5 wt% ionophore, as expected, revealed to present a lower detection
limit than the highest concentration.

For calcium sensing the membrane composition is of much higher impor-
tance than for potassium, where a non-optimized membrane composition
already gives excellent results in physiological concentration ranges. For
this reason, a particular effort has been made to optimize the calcium
membrane composition. The plasticizer of choice has a high dielectric
constant, which enhances the selectivity of multivalent ions over mono-
valent [42]. For this reason o-NPOE, which has a dielectric constant
of about 21 and is less volatile than DMNB, is usually chosen for the
use in Ca?T-selective sensors [53} [71, [99]. It must however be kept in
mind that the dielectric constant of an IS-membrane depends on all the
components of the membrane, and not only on the plasticizer.

Membrane resistivity did not seem to be an issue, so further addi-
tion of highly lipophilic salts, as for example tetradodecylammonium
tetrakis(4-chlorophenyl)borate (ETH 500), was not necessary. This kind
of salt affects the ionic activities in the membrane phase. The effects of



3.3. Characterization of the ion-selective electrode array 63

the activities changes are especially noticeable in nonpolar membranes
[40, [100], with an improvement of the selectivity of divalent over monova-
lent ions, but have a limited influence in high dielectric constant mem-
branes, as it is the case when using o-NPOE as the plasticizer [40].
Experiments did not reveal any improvement of the membrane charac-
teristics in ETH 500-containing electrodes.

3.3.3 Calibration curves: detection limit, sensitivity
and selectivity

Kt-selective microelectrode arrays

The preconditioning of the electrodes before use is necessary not only
for the hydration of the membrane, but also to approach a stationary
state in the IS-membrane phase, and thus reach a stable E. For the
ion-selective membranes based on neutral carriers, a stationary state is
possible only if primary ions are present in the bulk of the membrane.
In the present valinomycin-based IS-membranes formulations, potassium
is already present in the membrane as the counter-ion of the lipophilic
anionic sites necessary to insure the membrane permselectivity, in the
salts KTCIPB and KTFPB. The electrodes will be functional as soon
as the membrane is hydrated, and thus the preconditioning does not
need to be very long: good responses were observed after one hour pre-
conditioning. The preconditioning time has however been kept longer,
normally 24 hours, to allow the membrane internal ionic concentrations
to stabilize.

The selectivity tests of membrane K*-A have been performed with cali-
bration solutions presenting typical intracellular levels of interfering ions,
namely 15 mM Na*t, 5 mM Mg?*. As often HEPES is present to buffer
the solutions used in cellular tests, 5 mM of HEPES was added to our
solutions, to fix the pH to 7.4. In the three cases the detection limit was
pK 5.2, as reported in figure 3.8 a and table 3.3

Sodium ions are the main interfering ionic species when working with
valinomycin, and are 10 times more concentrated in the extracellular
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Table 3.3: Detection limit and sensitivity of potassium-selective micro-
electrodes after 1 day preconditioning in KC1 1 mM.

IS-membrane n  Detection limit Sensitivity
log a+ pr [ [mV dec™1]
KT-A - ¥ 12 -5.24 £+ 0.08 60.3 + 0.8

Nat 15 mM * 11 -5.18 & 0.03 59.2 £ 0.9

Mg?t 5 mM * 14 -5.24 £ 0.01 58.8 4+ 0.1

K*t-B Nat 150 mM 13 -5.83 & 0.07 54.5 + 0.5
*: in HEPES 5 mM background

Table 3.4: Highest tolerable and observed selectivity coefficients of
potassium-selective microelectrodes after 1 day preconditioning in KCl
1 mM.

IS-membrane J n log Ki’(o‘t] log KZI’(O; maz 108 K%oj maz
-] intracell. [-] extracell. [-]
KT-A Nat 15 mM * 14 -3.12 £ 0.02 -1.36 -3.63
Mg2t 5 mM * 14 -3.96 & 0.01 -1.84 -2.81
K*-B Nat 150 mM 13 -5.00 & 0.07 -1.36 -3.63

*: in HEPES 5 mM background
pr7=1%, ai,min and a; masz from table

space than in the cytosol. Microelectrodes filled with membrane K™-B
have been characterized in ionic background of 150 mM Na™, corre-
sponding to the more critical ion interference encountered in cell culture
media. These latter conditions were also employed to perform the cel-
lular assays presented in chapter [d In this case, the detection limit is
pK 5.8 and the response is slightly sub-Nernstian. The characteristics
of the potassium-selective microelectrodes are summarized in table
and figure

Assuming that the K'-selective electrodes present also a Nernstian re-
sponse towards mterfermg ions, the select1v1ty coefficients K%7 °" can be
calculated (section . The K’I’ 7 values, in combination w1th the
Kb required to perform measurements in cellular concentration ranges
are reported in table As zg+ #zprq2+, the value of K’;(OfMg calcu-
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Figure 3.8: Potassium calibration curves. The 1.5 pm diameter micro-
electrodes were preconditioned during one night in a 1 mM KCI solution.
a. Membrane KT-A. The potassium activity is measured in presence of
intracellular levels of the main interfering ions, with a constant back-
ground of 5 mM of HEPES. b. Membrane K*-B, tested in presence of
extracellular concentrations of Na™. The curves are offset for the sake
of clarity. The electrode characteristics are summarized in table
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lated with the equation for Mg?* interference does not correspond
to a correct theoretical constant, but it depends strongly on the exper-
imental conditions. The values in table give only an indication on
the selectivity towards magnesium, and should be used with caution for
comparison with other K*-selective electrodes.

The interference of pH on KT -selective electrodes is indicated to become
significant only for extremely acidic conditions, near pH 2 for a concen-
tration of potassium of 1 uM. As this value is around the detection limit
of the sensors (see for example [24], one of the first valinomycin-based
electrodes), the pH interference has not been tested.

Ca?*-selective microelectrode arrays

As it has been discussed in the previous section and in the section [3:2.4]
the response of a sensor is strongly dependent on the ionic fluxes in the
membrane bulk. In the calcium-selective membranes there is no cal-
cium ion present directly after the preparation, contrary to the case of
potassium ISE. The preconditioning in calcium solutions will cause an
exchange of ions between the IS-membrane phase and the precondition-
ing solution. The cations present in the membrane, counterions of the
lipophilic anionic sites are here K* coming from the salt KTCIPB. Dur-
ing the preconditioning, K* will be exchanged for the preferred Ca?*
ions.

The presence of the Ca?t flux going to the inward of the membrane is the
phenomenon that allows these sensors to reach a detection limit in the
nanomolar range. Usual electrodes comprising an inner filling solution
can have a chelating agent for the primary ion [72] or an ion-exchange
resin [58] in the inner filling solution. This will cause a continuous in-
take of primary ions from the sample solution, keeping the primary ion
concentration at the sample/IS-membrane interface low and thus the
detection limit in a low range. In all-solid-state electrodes, due to the
difficulty to maintain a low and constant primary ion activity in the in-
ner electrolyte, a super Nernstian behaviour stable over time is difficult
to obtain.

We exploited the lack of primary ions in the freshly prepared Ca®*-selective
membrane, and the subsequent calcium flux taking place when binding
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Figure 3.9: Calcium calibration curves for 1.5 ym diameter microelec-
trodes, membrane Ca?t-A, conditioned in a 10~* M CaCly solution.
The important super-Nernstian step observed in the first days lowers
with time until a Nernstian response is reached. The measurements are
performed in fresh unbuffered CaCl, solutions. The curves are offset for
the sake of clarity.

sites for calcium in the membrane phase are not completely occupied, to
induce a similar behaviour. This calcium influx permits to achieve an
extremely low detection limit, however only for a limited time. The ge-
ometry of the electrode itself, comprising a large [S-membrane reservoir,
makes the saturation of the entire IS-membrane with primary ions very
slow compared to the usual times observed with thinner IS-membranes,
thus permitting the exploitation of the electrodes in the non-stationary
state. After a few days (typically 10 days for Ca?*-A based pISE, 3 days
for Ca?*-B based uISE, when preconditioned in 10=* M Ca?*), the de-
tection limit rises to the values encountered for electrodes having a high
primary ion concentration internal solution, as shown in figure [3.9] The
conditioning of these "old” calcium-selective electrodes in a solution of
low primary ion and high interfering ion concentrations (in our case
10~7 M CaCl, + 150 mM KCl) allowed to restore a super-Nernstian re-
sponse. Optimization of this process has however not been performed.



68 3. Ion-selective microelectrodes

Table 3.5: Detection limit and sensitivity of calcium-selective micro-
electrodes after 3 days (Ca?T-A) or 1 day (Ca®*-B) preconditioning in

CaCly 1074 M.

IS-membrane J n  Detection limit Sensitivity
log ap+ pr -] [mV dec™1]

Ca?T-A KT 150 mM 12 -8.00 &+ 0.04 59 £ 2

Nat 15 mM 12 -8.05 £ 0.02 85 + 2

Mg?t 5 mM 12 -7.83 4+ 0.05 45 + 1

Ca?*-B KT 150 mM 5 -9.2 + 04 35 + 2
Nat 15 mM 13 -9.52 £ 0.05 30.8 £ 0.6
Mg2t 5 mM 15 -9.0 £ 0.1 40.0 £ 0.2

Other possibilities for regenerating the IS-membrane by reversing the
primary ionic flux, for example by conditioning the platform in a solu-
tion of chelating agent [I01] or by applying a current [75], have not been
investigated, but would be an interesting possibility.

Interference of HT has not been tested in the present case, since it has
been reported that the effect of pH in the Ca?* millimolar range is
negligible even at pH 2. The reported selectivities indicate that for a
detection limit of ac,2+=10" M, H* interference takes place when pH
<5 [53]. As both in intracellular and extracellular environments the pH
is around 7, the H interference is negligible.
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Figure 3.10: Calcium calibration curves for 1.5 pm diameter microelec-
trodes. The calcium activity is measured in presence of intracellular
levels of the main interfering ions. a. Membrane Ca?T-A, conditioned
during three days in a 107* M CaCl, solution. b. Membrane Ca?*-B,
conditioned during one day in a 10~* M CaCl, solution. The curves are
offset for the sake of clarity. The electrode characteristics are summa-
rized in table 3.5
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3.3.4 Drift

Coated wire type electrodes are known to suffer from potential instabili-
ties due to the formation of a thin water layer at the metal/IS-membrane
interface, responding to sample changes in oxygenation [13] or ionic con-
centration changes [78]. In our case, the bubbling of nitrogen into the
sample solution in contact with a glass micropipette potassium-selective
microelectrode lead to a measured potential difference of 1.2 mV. For
calcium-selective electrodes, this corresponds to 0.04 units of pCa, which
is an acceptable measurement error.

If the presence of a water layer between the membrane and the internal
metallic electrode is assumed, it has been demonstrated that the pre-
conditioning in a solution of primary ions alone is beneficial to lower the
drift [78]. After preconditioning in a solution of primary ions, the main
ionic species in this inner water layer will be primary ions. As the pres-
ence of primary ions in the IS-membrane phase is more favourable than
the presence of interfering ions, when interfering species will reach the
IS-membrane/inner layer interface, they will rapidly be exchanged with
the primary ions. This induces a rapid drift, but the final equilibrium
is approached much faster than in the case where interfering ions are
present in the inner layer, and should be exchanged with primary ions
to reach an equilibrium [64] [78].

Thus, in the present case, the potassium-selective electrodes were pre-
conditioned in 1072 M KCI solutions, and calcium-selective electrodes
in 10~* M CaCl, solutions.

To overcome the observed instabilities, the sensors were allowed to sta-
bilize for 30 min to 60 min in the concentration range of interest before
starting the measurements [102]. After the stabilization time, drifts for
electrode arrays filled with the different ion-selective cocktails had simi-
lar values, typically 5+3mV h~!. It has been observed that drift in cell
culture media were comparable to those observed in simple electrolyte
solutions.

On the timescale of the calibration of the electrodes, the drift is limited,
and thus does not influence in an important way the characterization



3.3. Characterization of the ion-selective electrode array 71

of the electrodes. The cell assays targeted in this work are also limited
to a few hours, so the drift is not an issue. In contrast, for long-time
monitoring, stabilization procedures should be implemented. In cellular
assays, the signal stabilization is not only dependent from the intrinsic
properties of the electrodes, but is also influenced by the biofouling of
organic material on the electrodes surface.

3.3.5 Response time and hysteresis

The response time is defined here as the time necessary to obtain a slope
of 1.2 mV min~' on dynamic response curves of potassium-selective elec-
trodes, after a step from pK 3 to pK 2, and a variation of 0.6 mV min—!
for calcium selective electrodes, for a step from pCa 6 to pCa 5. As
the response time is partially dependent upon the fluidics, the reported
values correspond to the overall system response time, and not to the
intrinsic sensor response time. The observed response time for both
potassium and calcium-selective electrodes vary between 40 s and 120 s,
depending on the composition of the calibration solution, the response
time being longer in solutions without background electrolyte. The use
of the plasticizer DOS, having a lower polarity than DMNB, decreases
the response time of K*-selective membranes [42]. Theoretical models
[42] also indicate that a lowering of the diffusion coefficients into the
membrane phase, for example by addition of PVC, should ameliorate
the response time, but in the present case, no difference was observed
between liquid or PVC-based membranes. With the sensor aging, the
potentiometric signal becomes more sensitive to streaming potentials
and other parasitic signals, but the response time is unaffected.

Hysteresis is a critical issue in the use of the present platform, especially
for calcium-selective arrays, due to the very broad ion concentration
span tested and the low detection limit required. Potassium-selective
electrode arrays are less affected by hysteresis effects, especially when
the low dielectric constant plasticizer DOS is present. Near zero hystere-
sis was observed for electrodes prepared with membrane K+-B, without
PVC. Figures of a non optimized potassium response versus an opti-
mized response are presented in figure [3.11] The improvement of the
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Figure 3.11: Non optimized versus optimized potassium response curves.
See text for details.

response characteristics of the potassium sensitive platform in respect
to both the response time and the hysteresis has been achieved by opti-
mization of different parameters of the setup, such as: the change of the
ion-selective membrane plasticizer from the polar DMNB to the apolar
DOS, an appropriate design of the microwell aimed at the reduction of
its dead volume, a higher calibration solution flow rate, from 15 pul s—!
to 47 pl s~!. The optimization has allowed to lower the hysteresis ob-



3.3. Characterization of the ion-selective electrode array 73

served between pK 2 and pK 1 from 6 mV (corresponding to 0.1 units
of pK) to less than 1 mV (corresponding to 0.01 units of pK).
Measurement errors due to hysteresis for optimized sensors have been
estimated to 0.01 units of pK, and from 0.01 units of pCa for high con-
centrations of calcium, 0.1 units of pCa for low concentrations.
Hysteresis effects are more enhanced in low conductivity solutions. From
the obtained results it has been observed that, to minimize the hystere-
sis an ionic background of at least 10 mM should be present. To avoid
uncertainties due to the hysteresis effect, the electrodes should be equili-
brated in a solution mimicking the sample immediately before the assay,
and the measurements should be effectuated in a limited concentration
range.

3.3.6 Lifetime

In the present case two different lifetimes will be considered. The storage
lifetime is defined as the time during which the sensors present a sen-
sitivity more than 70% of the Nernstian value. The functional lifetime,
has an additional criterion: the electrodes must present a detection limit
of at least pK 4 and pCa 8, adapted for the use in cellular concentration
ranges.

The storage lifetime of the 1.5 pm-diameter electrode arrays varies from
1 to 2.5 months, when stored in a chloride solution of the primary ion,
ie. 1 mM for KT or 107* M for Ca?*. For potassium-sensitive elec-
trodes, the detection limit generally increases gradually from pK 5 to
pK 4 during the sensor lifetime and the loss of functionality is given by
a loss of sensitivity. The storage lifetime and functional lifetime are in
this case identical. In contrast, while the response of calcium-selective
electrodes also takes 2.5 months to fall under the of 60% of the Nerns-
tian slope, the detection limit rises above the limiting value of pCa 8 in
a short time (see section [3.3.3)), reducing the functional lifetime to 1 day
for membrane Ca?*-A and 3 days for membrane Ca?*-B.

Table 3.6: Storage and functional lifetime of the pISE.
IS-membrane Kt-A K*-B Ca?t-A  Ca?t-B
Storage lifetime [months] 1 1.5 2.5 2
Functional lifetime [days] 30 45 1 3
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3.3.7 Yield, reproducibility, cross-talk

The yield of functional chips is high: 80% of the K*-selective chips
and 70% of the Ca?*t-selective chips are functional. Several of the 30%
Ca?*-selective chips that are considered non functional do not present
a response adequate for intracellular measurements, but present a re-
sponse above pCa 6, adequate for extracellular measurements. As each
chip has its own characteristics, especially Ca?*-selective chips, which
change with time, it is important to calibrate the platform before use,
and follow the response evolution by regular recalibrations.

On a functional chip, the reproducibility of measurements of electrodes
on a same array is excellent, as shown on figure [3.12] Typically, 13 out
of the 16 electrodes on the chip present a similar behaviour in the first
10 days of use (if stored in 1 mM KCIl, 107* M CaCl,, respectively).

E [mV]

loga,.[]

Figure 3.12: Calibration curves of a KT-selective ISE array. Here the
responses of 15 uISE on a same platform are reported, showing an ex-
cellent response homogeneity over the whole array. The curves are offset
for the sake of clarity.
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After this time, the response of several electrodes, typically 5, starts to
deviate, mainly by a loss of sensitivity, and the response homogeneity
over the chip lowers. This development of slightly different responses over
the same chip suggests the absence of cross-talk between the electrodes:
each electrode has its history and evolutes individually.

3.3.8 Experiments in cell culture environment

The simplest method of using the platform is with an on-chip cell culture.
To this aim, the biocompatibility of the platform has been successfully
verified by culturing primary rat cardiomyocytes for 2 days and HepG2
human hepatoma cells for 6 days on arrays of Ca?*-selective electrodes.
Images of viable cultures are presented in figure 3.13

The presence of organic material on the sensor surfaces in implantable
devices, leading to biofouling, is a well-known problem [103] [I04]. From
these observations, it may be expected that the organic material present
in the culture medium (e.g. serum) as well as the contact with the cells

Figure 3.13: a. A 48 hours old culture of primary rat cardiomy-
ocytes directly grown on the surface of the uISE platform. Courtesy
of Prof S. Rohr, University of Bern, Switzerland. b. A 3 days old cul-
ture of HepG2 human hepatoma cell culture on the platform. Courtesy
of Prof. J-F. Dufour, University of Bern, Switzerland. Scale bars are
150 pm.
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will lead to a degradation of the signal. The prolonged contact with or-
ganic material revealed to strongly affect the electrodes. The functional
lifetime of the 1.5 pm diameter KT-A microelectrodes is considerably
shortened down to 6 days when the sensors are kept in a solution of
intracellular concentrations of ions + HEPES, i.e. 150 mM NaCl, 5 mM
KCl, 1.5 mM MgCls, 1.5 mM CaCl 5, 5 mM HEPES, and even shorter
when the sensors are exposed to a culture medium supplemented with
5% foetal bovine serum (FBS). In this latter case, after 3 days the signal
of 13 out of 15 sensors is completely lost, the remaining two presenting
a sensitivity of 50.7 and 30.0 mV dec™!. On the other hand, the 6 pm
diameter K™-B membrane electrodes seem to be less affected by biofoul-
ing in a serum-containing solution. After 1 day in Dulbeccos modified
Eagle medium (DMEM) culture medium + 5% FBS + 1% penicillin-
streptomycin, the sensors present a nearly Nernstian response of 57.0
+ 1.5 mV dec™!, which lowers to 53.7 & 7.0 mV dec™! after a supple-
mentary day in a solution containing 5% serum and remains constant at
54.1 £ 6.5 mV dec™! after an additional day in contact with a solution
containing 10% serum [93]. The observed difference might be simply due
to the difference in ISE diameter, as the larger electrodes seem to be less
affected by biofouling.

3.4 Summary

Potassium and calcium selective pISE based on microfabricated pro-
truding micropipettes of 50 pm height and 1.5 pm diameter have been
characterized. As the platform is aimed at in vitro applications, the char-
acterization has been performed using intracellular ionic concentrations
for Ca?T-selective electrodes and intra- and extracellular concentrations
for KT-selective electrodes.

The best membrane composition tested for potassium sensing was the
following: 5 wt% valinomycin, 1 wt% potassium tetrakis[3,5-bis(tri-
fluoromethyl)phenyl|borate, 89 wt% DOS, 5 wt% PVC; 100 mg mem-
brane components dissolved in 210 ul cyclohexanone. The larger inter-
ference when working in cell cultures with valinomycin-based membranes
is expected to be due to sodium ions. Calibrations of pISE in 150 mM
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NaCl background (extracellular concentration), showed a detection limit
of pK 5.8, demonstrating that the interferences are negligible, and that
the electrodes are adapted for both intra- and extracellular studies. The
interference of Mg?t was also shown to be negligible. The lifetime is
around a month. Typical drift values for both K*- and Ca?*-selective
microelectrodes is around 543 mV h~! after stabilization of the signal
for 30 to 60 min.

The optimized Ca?T-selective cocktail had the following composition:
0.46 wt% ETH 129, 0.09 wt% potassium tetrakis(4-chlorophenyl)borate,
85.45 wt% o-NPOE, 14 wt% PVC; 105 mg membrane components dis-
solved in 100 pl cyclohexanone (membrane Ca?t-B). After 24 hours pre-
conditioning in CaCl, 10=* M, these electrodes present a nearly Nerns-
tian or slightly super-Nernstian response and a detection limit of 107 M
Ca?* in presence of intracellular concentrations of interfering ions. The
presence of 14 wt% PVC permits a slowing of the diffusion of ions
through the IS-membrane, inducing a more stable and nearly Nerns-
tian response and the reaching of an extremely low detection limit. The
extremely low detection limit is due to the utilization of the electrodes
in non-equilibrium conditions, which however limits the lifetime to a
few days of use. The detection limit subsequently rises to 1076 M. For
extracellular measurements, where the calcium concentration is in the
millimolar range, the lifetime is in the order of two months.
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Chapter 4

Cellular potassium efHux
quantification

4.1 Introduction

In this chapter, the feasibility of using K *-selective microelectrode arrays
for monitoring an induced KT efflux in kidney cells is evaluated. The
potassium efflux was induced by a lowering of osmolarity in the medium
where cells were suspended. The hypo-osmotic shock first causes swelling
of the cells and then cell lysis. Thus potassium, which is present at high
levels in intact viable cells, leaks out of dying cells and rises the extra-
cellular potassium concentration.

Cellular death can follow two different pathways: necrosis or apopto-
sis. Necrosis is induced by accidental cell damage, due to an acute toxic
event. It brings a loss of regulation of ion homeostasis, and the subse-
quent cell swelling, followed by the loss of cell membrane integrity and
cell lysis. Apoptosis, also called programmed cell death, is a process oc-
curring under normal physiological conditions, and occurs to eliminate
unnecessary or unwanted cells. Apoptotic cells are active participants of
the death process. Apoptosis is characterized by cell shrinkage, and ends
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with the fragmentation of cells in smaller bodies, the apoptotic bodies,
rapidly eliminated by the organism. In witro, the apoptotic bodies and
the remaining cell fragments swell, and finally lyse [I].

In apoptosis, KT loss occurs in the early stage of the death pathway,
prior to caspase activation, which is considered the point of no return of
apoptosis [2]. In a similar way, cells exposed to a lowering in medium
osmolarity will swell and, in response to the volume change, a K+ ef-
flux will start. This ionic efflux is a protective mechanism of the cell
to balance the osmolarity between intra- and extracellular spaces and
to prevent cell breakdown caused by excessive swelling. However, if the
lowering of osmolarity becomes critical, the cell will lyse, liberating the
totality of the intracellular potassium. Despite the fundamental differ-
ences between necrosis and apoptosis, both hypoosmotic shock-induced
necrosis and apoptosis rely on the similar mechanism of cell volume reg-
ulation inducing a K+ cellular eflux [3].

Because of its simplicity, the hypo-osmotic shock assay, with the subse-
quent intracellular potassium release, was used to test the applicability of
the pISE array to the use with biological samples. The potassium-selective
HISE have been used as a cell death indicators by monitoring in real time
the potassium concentration increase in extracellular environment. As
the osmolarity in the cell culture microwell lowers gradually, the cells
start to release potassium ions. When the osmolarity becomes critically
low, lysis occurs (see also figure .

Microfluidic toxicological assays have gained importance in these last
years. Some examples can be found in very recent publications [4] 5] [6]
7, 8, @]. They mostly rely on the observation of cell lysis, by fluores-
cence. The methodology based on the identification of KT cell efflux can
be considered as complementary to fluorescence. As KT efflux begins
before cellular membrane disruption, the cellular disease is detectable
before the complete cellular lysis.

Potassium ion fluxes in cellular cultures are mainly traced using radioac-
tive tracers, for example *?K, %*Rb [10, 1, [12]. Alternative methods
for the quantification of cellular ion fluxes are fluorescence techniques



4.2. Materials and methods 87

[13, 14] and patch clamp [I4]. Recently, the realization of several micro-
fabricated patch clamp arrays has been reported [15, [16] [17] (the latter
also used as electroporation device [18]), rendering the technique more
interesting for high throughput toxicology aims. Glass capillary ion-
selective microelectrodes have been employed in measurement of potas-
sium efflux during apoptosis (see for example [3] [19] [20]). Some of the
possible improvements of this technique through microfabrication are
multiple parallel recordings, integration of a microfluidic system to eas-
ily switch between different sample solutions and cellular samples and
system automation.

In order to assess the performance of the platform, the release of the in-
tracellular potassium monitored by potassium-selective microelectrodes
was completed by cell lysis observation by fluorescence microscopy.

4.2 Materials and methods

Chemicals

The potassium-selective membrane, whose characterization is presented
in chapter (3] had the following composition: 5 wt% ionophore valino-
mycin, 1 wt% (potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate,
89 wt% plasticizer bis(2-ethylhexyl) sebacate (DOS), 5 wt% membrane
matrix high molecular weight PVC. The membrane components (total-
ing 200 mg) were dissolved in 420 ul cyclohexanone. All the membrane
cocktail components were Selectophore grade, from Fluka. NaCl salt
was of Suprapur quality, Merck. Aqueous solutions were prepared with
biology grade deionized water (>18.3 M cm specific resistance).
Hybridoma serum free medium (Hyridoma-SFM, Formula 03-5106RH)
and geneticin (G418, Cat# 10131-027) were from Gibco, Invitrogen.
Fortified bovine calf serum (Cat# SH3008703) was from HyClone and
HEPES (>98 %) from Fisher BioReagents. D-glucose (>99.5 %, mouse
embryo tested), sodium bicarbonate (>99.5 %, cell culture tested), L-glu-
tamine (>99%, cell culture tested) and Pluronic F68 (cell culture tested)
were all from Sigma.
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Microfabricated platforms

The MGH platforms were used (see chapter [2 for details). The array
comprised 6 pym diameter, 50 um long protruding micropipettes, located
in a 360 pum deep microwell. The ISEs were preconditioned in 1 mM KCl
solution for 1 day before use, and subsequently stored in this same so-
lution in between experiments. The electrodes functionality was tested
by recording a calibration curve in the absence of cells with calibration
solutions going from 10=7 M to 2-10~* M K* in 150 mM NaCl back-
ground (1 point/decade). Calibration curves were recorded under flow
conditions, using a flow rate of 21 ul s~'. Each calibration solution was
pumped for 5 minutes. Data were recorded during the last 10 s be-
fore switching to the next solution. Chips presenting a linear response,
a sensitivity comprised between 50 mV pK~! and 60 mV pK~! and a
detection limit near 107> M K+ in 150 mM NaCl background were con-
sidered to be functional.

Cell culture medium and conditions

Human embryo kidney cells (293-EBNA cells) were kindly provided by
Dr. Yves Durocher from Biotechnology Research Institute (Canada Na-
tional Research Council, Montreal, Canada). Cells were maintained in
hybridoma serum free medium (HSFM) supplemented with 1% fortified
bovine calf serum, 25 mM D-glucose, 30 mM sodium bicarbonate, 6 mM
L-glutamine, 10 mM HEPES, 0.05 mg ml~! geneticin and 0.1% Pluronic
F68. After 3 months of maintenance (30 passages), the cells were dis-
carded and a new aliquot was thawed out of the Master Cell Bank (kept
in liquid nitrogen). Cells were maintained in 75 cm? T-flasks with vented
cap (Corning Life Sciences) at 37°C and 5% COsy atmosphere and were
subcultured every 2 to 3 days. Cells were inoculated at 1.5-10° cells m1~*
to 2-10° cells ml~! in their exponential growth phase, and harvest was
assured at a density inferior to 10% cells ml~!. The cells concentration
was determined by a hemacytometer, and cell viability was determined
by Trypan blue exclusion method.
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Experimental setup

Fluorescence microscopy observations and ISE recordings have been per-
formed in a microfluidic measuring chamber comprising two sub-cham-
bers: a 650 nl cell culture microwell (MGH design chip), etched in silicon
and a PDMS flow-through chamber, having a volume of 30 pul for mi-
croscopy assays and 11 ul for electrochemical tests. The cell suspension
was pipetted into the microwell where cells were confined with the help of
a PET microporous membrane (Becton Dickinson, 1 gum pore size PET
membrane, # 353102). This membrane separates the microwell and the
flow-through chamber and traps the suspended cells in the microwell,
while permitting the ionic diffusion between the two sub-chambers (fig-
ure . At the bottom of the figure is shown the silicon based mi-
crowell with two micropipettes filled with ion-selective membrane. The
upper PDMS flow-through chamber is closed by a PMMA fixture.

The potentiometric measurement and the microscopic observation could
not be performed simultaneously, since the microscope was not equipped
with a Faraday cage (needed for potentiometric measurement) and the
flow-through manifold used for the potentiometric measurement was too
large to fit on the microscope. Notwithstanding the differences between

650 nl cell culture
microwell

LWSE

Porous membrane
11 pl PDMS flow-
through chamber
PMMA fixture

Cell

OO0 BN N

a.

Figure 4.1: a. Schematic cross-section of the potentiometric experimen-
tal set-up. In the microscopy setup, the PMMA fixture is replaced by a
coverglass.
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the potentiometric and fluorescence microscopy setups, there is no sig-
nificant difference in concentration gradients, thus for the same cellular
concentration the lysis kinetics in the two experimental setups is equiv-
alent.

Experimental procedure

Fluorescence microscopy.

The fluorescence images were obtained with a Zeiss Axiolmager D1 up-
right microscope equipped with a 20x long working distance objective,
coupled to a Zeiss AxioCam HRm cooled monochrome digital camera
and the AxioVision v. 4.6 software.

Methods: The cells were harvested during 24 hours post inoculation, at
a density of 5-10° cells ml~! to guarantee a similar physiological state
throughout all experiments. To eliminate the culture medium, the cells
were centrifuged using a Durafuge Precision centrifuge (Thermo Electron
Corporation) at 200 g, 4°C, for 5 min. The cell pellets were resuspended
to a concentration of circa 4 millions ml~! in a solution of 2 uM calcein
AM (live/dead assay) and 150 mM NaCl, and incubated for 15 min at
ambient temperature. The excess calcein AM was eliminated by cen-
trifugation and the cells resuspended in the same volume of a solution
of 4 uM ethidium homodimer-1 and 150 mM NaCl. The cells were then
transferred to the microwell and trapped with the microporous mem-
brane. Cell lysis was induced by adding a drop of water into the PDMS
chamber of 30 ul volume, subsequently covered with a coverglass. Only
calcein AM was useful to follow the cell lysis, ethidium homodimer was
used exclusively to verify the culture viability.

Potentiometric recordings.

Potentiometric measurements were performed with a home made high-
impedance input amplifier, in combination with a data acquisition sys-
tem controlled with the Labview software. The details of the exper-
imental set-up and of the acquisition system are described in section
3.3.1] The whole microfluidic measuring chamber was mounted in a
PMMA flow-through manifold that integrated a mini reference electrode
(DRIREF-2, World Precision Instruments), located downstream (figure
. The flow-through manifold and the amplifier were placed in a Fara-
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day cage in order to avoid external perturbations and light interferences.
Methods: The cells were harvested during 24 hours post inoculation, at
a density of 5-10° cells ml~! to guarantee a similar physiological state
throughout all experiments. Cell concentration was realized by centrifu-
gation at 200 g, 4°C, for 5 min. The cells were rinsed twofold in 1.8 ml of
freshly prepared 150 mM NaCl, followed by centrifugation and elimina-
tion of the supernatant solution. The cells pellet was then resuspended
in 150 mM NaCl, diluted to the desired concentration and transferred
into the cell culture microwell. Before the measurement, to stabilize the
potentiometric response for low concentrations, the chips were condi-
tioned for 1h in 150 mM NaCl + 10~7 M KCI. Reproducibility of the
measuring conditions was achieved by following a strict experimental
procedure. The experiment was divided in four parts (also reported in

table :

1. Rinsing: elimination of the remaining extracellular potassium by
rinsing the flow-through manifold with a 150 mM NaCl solution.
The microwell and flow-through chamber are allowed to equili-
brate, the extracellular components remaining in the microwell dif-
fuse through the porous membrane. Two pumping-rest cycles were
allowed to improve the purge.

2. Lysis assay: injection of deionized water during 1.5 min and ini-
tiation of the cell lysis that was monitored for the subsequent
15 min. The pumping time needed for the solutions to reach the
flow-through chamber being 30 s, the effective water flowing time
in the chamber is 1 min. The potentiometric data used for the
potassium corresponding activity calculations were collected after
4 min and 15 min of osmolarity diminution, during a 10 s interval.

Table 4.1: Hypo-osmotic shock ISE recording, experimental procedure.

Rinsing | Lysis assay | Rinsing | Calibration
Solution NaCl H>O H>O NaCl Standard

150 mM 150 mM solutions
t [min] 3 4 3 2 3|15 15 3 3 10 7x5
Mode D S D S D D S D D S D

S: static mode, no solution is pumped through the system.
D: dynamic mode, pumping rate 21 pul s71.
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3. Rinsing of the flow-through manifold with HoO and 150 mM NaCl,
followed by 10 min resting time to allow the diffusion of the remain-
ing ions/molecules out of the microwell.

4. Calibration of the microelectrodes is performed by continuous in-
jection of standard solutions of increasing concentrations. After
5 min an interval of 10 s is recorded, and the solution is changed
to the next. The slopes of the calibration curves were calculated in
the linear concentration range between 10~* M and 0.2 M KCl.
The activity coefficients were calculated based on the modified
Debye-Hiickel theory (see section .

During the whole of the experiment, the flow rate was either at 21 pl s=!
or zero, as given in table[f.I] All measurements were carried out at room
temperature (224+3°C).

4.3 Results and discussion

The hypoosmotic shock procedure was carried out by first allowing the
cells to equilibrate their osmotic pressure in a 150 mM NaCl medium, and
then rapidly replacing the sodium chloride solution in the flow-through
chamber with deionized water. Sodium chloride diffuses out of the mi-
crowell through the porous membrane, which results in an overpressure
of the cytosol, causing the cells to swell, and finally to lyse.

4.3.1 Fluorescence microscopy

Cellular lysis was observed by fluorescence microscopy by using a live/dead
assay. Calcein AM readily penetrates cells and is cleaved by intracellular
esterases into a fluorescent analogue only in viable cells. The suspended
cells slowly decant at the bottom of the microwell, allowing the obser-
vation of all the trapped cells. The fluorescent observation can thus
be compared to the potentiometric assay. Figure shows fluorescence
images of the cells at three different times: at the beginning of the exper-
iment, after 4 min and after 15 min from the start of osmolarity decrease
in the microwell. The swelling of the cells due to the osmotic pressure



4.3. Results and discussion 93

a.

Figure 4.2: Fluorescence microscopy images of cell lysis in the microwell
at three different times: a. start. b. after 4 min of medium dilution. c.
after 15 min. Scale bars are 100 pm.

difference can clearly be seen along the whole process. As cells burst,
calcein abruptly leaks out and the cell disappears from the fluorescence
image.

The efficiency of cell lysis was quantified by counting the remaining intact
cells in the microwell at different times during the lysis process. The
results presented in figures [f.2la-b and [£.4] demonstrate that the lysis
process starts 5 minutes after the beginning of the NaCl diffusion out of
the microwell, suggesting that the viability of the cells is not immediately
affected by the decrease of medium osmolarity.

4.3.2 Potentiometric recordings

Figure [4.3| shows potentiometric signals recorded during the overall lysis
assay. The different phases of the experimental procedure are indicated.
In the beginning, while sodium chloride is flowing through the manifold,
the potassium concentration is at its lowest level. As soon as deionized
water replaces the background electrolyte in the upper chamber at the
start of the lysis assay, a peak is seen for both assays (with and without
cells). This increase of the potential response of the ISE is systemati-
cally observed when pumping occurs. Then, as the medium osmolarity
decreases, the potassium concentration increases proportionally to the
amount of cells present in the microwell. In parallel, the assay in absence
of cells stayed at a low potassium concentration level during the whole
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Figure 4.3: Potentiometric recordings of the cell lysis assay. The K+ con-
centration increase due to cell lysis is clearly visible on the cell-containing
assay (top curve), while no potential increase is registered in the blank
assay.

period. The electrodes being insensitive to Na™ changes in this concen-
tration range (see section the potential remains stable. After cell
lysis, the potassium concentration decreases to its initial level due to the
rinsing of the manifold with water and 150 mM NaCl. Finally the mi-
croelectrodes are calibrated with 150 mM NaCl background electrolyte
standard solutions. The presence of multiple electrodes in the microwell
allows a statistically more precise concentration measurement. It must
be pointed out that the sensitivity of the microelectrodes remained un-
changed before and after the experiment.

In figure[4:4] the lysis kinetics based on fluorescence observation and po-
tentiometric signal recorded during the lysis assay are compared. While
the potentiometric potassium signal increases very rapidly immediately
after the pumping of water in the flow-though chamber the cell lysis
starts only after several minutes. The plateau visible on the potentio-
metric signal in figure [£.4] between minutes 1 and 2 is an artefact coming
probably from the formation of a junction potential caused by water
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Figure 4.4: Cell lysis quantification based on fluorescence imaging (dot-
ted line) versus potentiometric KT signal (continuous line).

pumping. The important potassium eflux which takes place even in the
absence of cell lysis is induced by a mechanism of cell volume regulation,
known as regulatory volume decrease (RVD) [11l, 2I] used by cells to
prevent lysis in hypotonic media.

The lysis assay was repeated for several cell concentrations. The corre-
sponding potassium activity in the microwell was evaluated by matching
the potential recorded during the lysis assay with the calibration curve.
As expected, a linear relation between the number of cells in the mi-
crowell and the potassium release was found (figure . The potassium
activity was evaluated before the start of cell lysis and after the lysis
of the majority of the cells, where the potassium signal is near its max-
imum. This corresponds to respectively 4 min and 15 min after the
injection of water in the flow-through chamber. The possibility of cell
quantification from the K+ efflux prior to cell lysis suggests the possi-
bility to apply the platform to detect and quantify cellular apoptosis in
its early stage, before the death of the cell.

The linearity of the response indicates that the microelectrodes are not
affected by the presence of cellular debris. After a dozen assays the
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quality of the signal is not degraded, giving evidence of an easy removal
of cellular debris by water rinsing. On the other hand, the calibration
recordings in figure show a detection limit slightly different in pres-
ence or in absence of cells, meaning that the presence of cellular material
biases the detection limit. In the present tests this phenomenon is negli-
gible, but it could be a limiting factor in the case of an apoptosis assay,
where the death of a small fraction of cells could be masked by the
background signal.

Under the present experimental conditions, after 15 minutes the potas-
sium signal is at its maximum, and in the case presented in figure [1.5]
it corresponds to a detection limit of 200 cells. The cellular quantifi-
cation with the data collected before the start of cell lysis, i.e. 4 min
after the start of osmolarity diminution in the microwell, is limited to
1000 cells. The detection limit of the platform is limited by the dilution
of the potassium in the microwell. With a redesign of the microwell
avoiding the dilution of the K*, the efflux of a single cell is expected to
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Figure 4.5: Corresponding measured potassium activity in function of
the cell sample concentration, calculated at 4 min (circles) or 15 min
(squares) after the start of the lysis assay. The line represents the de-
tection limit of the ISE.
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be measurable.

It must be pointed out that the detection limit can vary between two
series of measurements. Differences can come from both the cell culture
and the pISE. We expect a different reaction for every cell type, but
also mutations leading to a change in sensitivity to osmotic shocks on
the same cell culture. Similarly, as every chip present slightly different
characteristics, the detection limit and sensitivity need to be tested prior
to use.

4.4 Summary

Potassium ion is one of the key cellular components. Its fluxes can be
used to study many different cellular processes such as lysis, apoptosis
and necrosis and exploited for example in toxicological screening assays.
The sensitivity of the developed K*-selective microelectrode platform
allows to detect, in the actual non-optimal setup geometry, the lysis of
only 200 cells. With an adequate redesign of the platform providing
an automatic sample loading and especially smaller chamber volume
avoiding the dilution of potassium released by the cells, the detection of
a single cell lysis should be possible. Furthermore, the pre- and post-lysis
calibration curves have shown that the cellular debris did not cause the
fouling of the ion-selective microelectrodes allowing thus the platform to
be used for a number of experiments.
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Chapter 5

A pISE-electroporation
hybrid platform

5.1 Introduction

One of the main interests of microfabrication technologies is the possi-
bility to integrate all necessary functionalities to load, manipulate and
analyze the sample on the same platform [I, 2]. As the study of intra-
cellular components is of particular interest, preliminary tests of cellular
lysis by irreversible electroporation have been performed.

Intracellular measurements using glass capillary uISE are performed by
manually inserting the electrode in the cells. As the present silicon based
platform is not adapted for cell impalement, two other alternatives to
access the intracellular medium have been considered: cell membrane
opening by electroporation induced cell lysis and perforated patch clamp.

Practical difficulties in implementing a patch clamp system in parallel
with the uISE (discussed in more detail in section have lead us to
choose a method for cell membrane rupture based on electrical pulses.
Electroporation is a technique using electrical pulses to destabilize the
cellular membrane. Cell lysis by electroporation can be induced in the
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immediate vicinity of the ionic sensor, thus allowing measurements on
the intracellular material. Electroporation can not only induce the cellu-
lar lysis (irreversible electroporation), but can also open transient pores
in the cell membrane, that will reseal without cell death (reversible elec-
troporation). The reversible electroporation phenomenon is widely used
in cell manipulation, especially in genetic engineering, to introduce cel-
lular impermeant molecules in cells. An interesting application is in vivo
drug delivery in cancerous cells of relatively impermeable drugs or ther-
apeutic genes [3].

The applicability of spatially controlled electroporation in parallel to
potentiometric recordings has been investigated. Local electroporation
is realized by metallic electrodes patterned at the surface of the plat-
form. To this aim, the uISE sensor array has been combined with an
array of thin film Pt microelectrodes surrounding the ion-selective elec-
trodes. The geometry of a combined pISE-Pt electrode is illustrated in
figure for other illustrations on the array geometry, refer to chapter
The presence of a metallic thin film electrode array opens further
possibilites for cellular manipulations and study. Metallic electrode ar-
ray applications found in the literature comprise the attraction of cells
by dielectrophoresis [4], electrophysiological studies, electrical activity
monitoring of a cell culture [5], pseudo-reference electrode, local elec-
troporation of cells for plasmids transfection (genetic engineering) or to
facilitate drug delivery [6].

5.2 Microfabricated devices for electropo-
ration

In a classical electroporation scheme, in order to have a homogeneous
electric field, two parallel planar electrodes are immersed in the cell-con-
taining medium, at a distance going typically from some mm to 1 cm.
A large potential difference is then applied between the electrodes, to
reach an electric field strength in the order of 1 kV em™!. This type of
setup allows a batch of cells to be electroporated. To pass from a batch
process to a continuous process, microfluidic electroporation chambers,
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where the cell suspension is continuously flowing, have been realized and
commercialized [7 [8, @]. Recently, electroporation has found applica-
tions in lab-on-chip devices, to perform in situ cell lysis, followed by
intracellular constituents separation and detection [I0, I1]. Electropo-
ration is well adapted for in situ cell lysis due to its rapidity and the
absence of added chemicals.

Targeting of single cells is possible by using microneedles as the electro-
poration electrodes [12]. The major drawback of this technique is the
need to place the needles in the vicinity of every target cell. On the other
hand, if a microneedle is replaced by a microcapillary as the electropo-
ration electrode [13], local delivery of chemicals in selected target cells
with high spatial resolution is possible. Hybrid systems exist, where mi-
croneedle electrodes are combined with microfabricated platforms com-
prising planar electrodes, where cells are cultured [I4]. An automated
system allowing local electroporation of adherent cells by scanning of the
culture surface with an electroporation microcapillary has been recently
presented [T15].

Microfabricated electroporation platforms allow single or multiple-site
single cell electroporation. As the electroporation site is fixed, the chal-
lenge of these systems is to correctly position the target cell. The first
chip-based single cell electroporation devices were dedicated to cells in
suspension, and were formed by a micro hole in a thin dielectric mem-
brane separating two microfluidic chambers. The pressure difference
between the microfluidic chambers will partially trap the cell in the
micrometer-size hole, as shown in figure [5.1} Electroporation is per-
formed by electrodes placed in the microfluidic chambers [16]. Since
then, all microfabricated single cell electroporation devices are largely
based on this same principle [7]. Two microfluidic chambers are sepa-
rated by a thin dielectric membrane, where a micron-size hole is etched.

Adherent cells were observed to be transfected more efficiently and with
a higher cell viability than suspended cells [17]. To maximize the spatial
resolution and lower the required applied potential, the cell to be elec-
troporated should be as near as possible to the electroporation electrode.
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Figure 5.1: Schematic view of the first type of microfabricated electro-
poration device (adapted from [16]).

When electrodes are submitted to large potential differences, electrolytic
reactions take place at the electrode surface. When the electroporation
electrodes are not in direct contact with the target cells, toxic prod-
ucts due to electrolytic reactions are not a problem [I8]. In contrast,
direct contact of the cell culture with the electroporation electrodes can
cause cell damage. The electrolysis reactions can be partially reversed
by applying bipolar pulses instead of unipolar pulses. The electroly-
sis itself can be reduced by applying short (in the order of us) pulses
and by increasing the resistance of the medium between the electro-
poration electrodes [7]. Despite of this problem, many devices using
cells directly cultured on electroporation electrodes have been reported
[19, 20, 21], 22 23] 24]. Recently, to overcome this problem, a porous
membrane where cells are cultured has been used as a spacer between the
electroporation electrodes and the adherent cells [25] [26]. This approach
is similar to the ”two-chamber” approach described earlier [16] (figure
5.1). The presence of a porous material between the cell culture and
the electroporation electrodes is beneficial in several ways. For example,
pores in a non conducting membrane material will act as constrictions,
inducing a local rise in the electrical field. This phenomenon lowers the
needed voltage and allows the cell patterning and the modulation of the
electric field strength as a function of the pores size [26]. To the best of
our knowledge, no single cell electroporation devices have been reported
using micrometer size patterned electrodes, neither with cells directly
grown on their surface nor using a removable porous membrane insert.
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5.3 Principles of electroporation

Electroporation is a technique using high electric fields to induce a tran-
sient permeability increase of the cell membrane. The steps involved in
reversible electroporation are [27]:

The application of electrical pulses of micro- to millisecond dura-
tion. Rest transmembrane potential Ay is normally between -50 mV
and -100 mV for mammalian cells, the interior of the cell being at
a lower potential. When an external electric field is applied, the
transmembrane potential is altered. If the electrical field is suf-
ficiently strong to rise the Ay to 0.2 V to 1 V, pores will form
[18].

Charging of the cell membrane due to ionic fluxes.
Rearrangement of the molecular structure of the cell membrane.

Formation of pores in the nanoscale range [28], filled by water mole-
cules (hydrophilic pores).

Membrane recovery. After the removing of the electrical field, pores
reseal. This process can take seconds to minutes [29] B0]. After
pore resealing, the membrane structural and physiological prop-
erties recovery takes a much longer time, in the order of hours.
Although pores reseal, cellular alterations can lead to cell death
[29].

To date, theoretical models are restricted to descriptions of planar bi-
layer models and spherical single cells. Experiments have been mainly
performed on planar lipid bilayers, cell suspensions and individual cells
[27]. Very little is known about the response mechanism of a cell cul-
ture, or a whole tissue. For this reason, electroporation remains mostly
an empirical technique, and in vivo applications are limited [27]. Further
information on the theoretical modelling of electroporation can be found
in the following articles [27] (29, [30, [31] [32, [33].
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5.4 Materials and methods

To test the feasibility of on-chip electroporation, first the stability of the
platinum thin film electrodes upon the application of series of electri-
cal pulses has been verified, then electroporation tests with on-chip cell
cultures have been performed. The ion-selective electrodes sensitivity to
electrical shunts, due to the high ion-selective membrane resistivity [34],
is a potential problem. The pISE array might thus be affected by the
strong electrical pulses needed for electroporation, and its functionality
after the application of the electroporation protocol had to be tested.

Chemicals

Potassium hydrogen phosphate of p.a. quality, MgCly of Fractopur
quality and all the other metal chloride salts of Suprapur quality were
from Merck. The ionophores valinomycin, the ionic additive potassium
tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (KTFPB), the membrane
matrix high molecular weight poly(vinyl chloride) (PVC), the plasticiz-
ers bis(2-ethylhexyl) sebacate (DOS) and the membrane solvent cyclo-
hexanone were of Selectophore quality, the pH buffer N-(2-hydroxyethyl)-
piperazine-N’-(2-ethanesulfonic acid) (HEPES), BioUltra, for molecular
biology, fluorescein sodium salt was of standard quality, for fluorescence,
and D(+4)-glucose was of BioChemika Ultra quality, all from Fluka.
Aqueous solutions were prepared with cleanroom grade deionized wa-
ter (>20 MS2 cm specific resistance).

Hanks balanced salt solution (HBSS, without Ca?* and Mg?*) was from
Bioconcept, trypsin and neonatal calf serum were from Boehringer. Col-
lagen type IV, from human placenta was of BioChemika grade, from
Fluka. Pancreatin (4 USP specifications, cell culture tested), medium
M199 with Hanks salts, vitamin B12 (99%, cell culture tested), bromod-
eoxyuridine (>99%, SigmaUltra grade), L-glutamine (>99%, meets USP
testing specifications, cell culture tested) were all from Sigma. Penicillin
and streptomycin were from Seromed Fakola.
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Microfabricated platforms

On-chip electroporation.

A glass-based platform comprising 5500 gm? Pt thin film electrodes was
microfabricated for the electroporation assays. A glass substrate was
chosen for this assay because of its transparency, allowing observations
with an inverted microscope. A photograph of the platform and a
schematic view of eletroporation electrodes are presented in figure
The Pt counter electrode was placed by a PDMS spacer at 100 ym to
the chip surface.

Figure 5.2: a. Photograph of the device used for on-chip electroporation
assay. b. Schematic view of a section of the Pt electrode array. The Pt
electrodes are marked in black. Scale bar is 200 pm.

wISE stability assay.

SQUARE design chips (see chapter [2| and figure , comprising 5 pm
diameter ion-selective microelectrodes were used. The composition of the
ion-selective membrane was the following : 5 wt% valinomycin, 1 wt%
KTFPB, 89 wt% DOS, 5 wt% PVC (membrane K*-B, see section [3.3.2)).
The electrodes were preconditioned during one night in 1 mM KCI prior
to the tests.
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Figure 5.3: SEM photograph of a 3 um diameter ion-selective microelec-
trode surrounded by a 45 pm diameter Pt thin film microelectrode (light
grey area).

Experimental setup and procedure

On-chip electroporation.

The electroporation assay was performed by applying a series of monopha-
sic electroporation pulses of 250 us between the on-chip thin film Pt
electrodes and a Pt counter electrode placed at 100 pm from the chip
surface.

Prior to the cell electroporation assay, the stability of the Pt thin film
electrodes to the electroporation pulses was tested. The quality of the Pt
electrodes was tested prior to and after the application of the pulses by
cyclic voltammetry in a phosphate buffer solution (pH 7) and by optical
inspection. Electric pulse assays were performed in the same phosphate
buffer solution. Series of 5 to 50 pulses with an amplitude between 5 V
and 80 V were applied.

The cell electroporation assay was performed on rat cardiomyocytes cul-
tured on the surface of the chip. Primary cultures of neonatal rat ven-
tricular cardiomyocytes were obtained using established procedures [35].
Hearts from 4 to 6 neonatal rats (Wistar, 1 to 2 days old) were ex-
cised, the ventricles were minced with scissors, and the resulting small
tissue pieces were dissociated in Hanks balanced salt solution (HBSS,
without Ca?* and Mg?*) containing 0.1% trypsin and 60 pug ml~! pan-
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creatin. The dispersed cells were centrifuged and resuspended in medium
M199 with Hanks salts. The medium was supplemented with 20 U ml~!
penicillin, 20 pg ml~! streptomycin, 20 gg ml~! vitamin B12, 100 M
bromodeoxyuridine, pg ml~! L-glutamine, and 10% neonatal calf serum.
The cell suspension was preplated in a large culture flask and incubated
for 2 hours at 35°C in a humidified atmosphere containing 1.2% COs.
This procedure served to enrich the cardiomyocyte fraction.

Prior to cell seeding, the surface of the microfabricated platforms was
sterilized by rinsing 5 min with bleach (NaClO + NaCl solution), fol-
lowed by rinsing with deionized water and ethanol 70%. The glass sur-
face was treated with a solution of collagen (collagen type IV, human
placenta, Sigma) for 5 min, followed by rinsing with HBSS and UV ster-
ilization.

The cardiomyocytes were seeded at a density of 1.4-10% cells mm~2.
Medium exchanges were performed on the first day after seeding with
supplemented M199 containing a reduced concentration of calf serum
(5%) and lacking bromodeoxyuridine.

After 2 days of on-chip culturing, cell cultures were washed three times
using a HEPES buffer saline solution (HBS, 21 mM HEPES, 137 mM
NaCl, 5 mM KCl, 0.7 mM NayHPOy, 6 M glucose, pH 7.5). A solution
of HBS + 5 uM fluorescein was then added, and the electroporation as-
say was performed at room temperature (20°C). Single electroporation
pulses of between 1 V to 10 V were generated by an Agilent 33120A
function generator. After the electroporation pulse, 15 min rest time
was allowed to pore resealing. The cell culture was washed three times
with HBS, to eliminate excess fluorescein [36]. The fluorescein intake
was observed with a microscope equipped for epifluorescence (Axiovert
135 M, Zeiss).

wISE stability assay.

Calibration of the potassium-selective platform with KCI solutions com-
prising 150 mM NaCl background was performed prior to and after the
electroporation pulse assay, to verify the functionality of the electrodes.
The electrical pulse assays were performed in a phosphate buffer saline
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solution (PBS: 7.7 mM NasHPOy, 2.7 mM NaH,POy, 154 mM NaCl, pH
adjusted to 7.4 with NaOH). Monophasic single electroporation pulses
of 250 pus, 10 V were applied between two adjacent on-chip electropo-
ration electrodes (gap 150 um, for a schematic view of the geometry of
the electrode array, see figure . A single pulse and series of 5 and
10 pulses, with 1 s between each pulse, were applied.

5.5 Results and discussion

5.5.1 On-chip electroporation

The stability of thin film Pt microelectrodes upon pulses up to 40 V was
verified by cyclic voltammetry and optical inspection.

The applicability of electroporation to adherent cell cultures was tested
with this assay. The effectiveness and the reversibility of the electro-
poration process were tested by observation of the accelerated intake of
fluorescein by the cells. Fluorescein is a hydrophilic fluorescent dye that
under normal cell culture conditions penetrates slowly in the cells. Fig-
ure [5.4lb-c shows an example of an electroporation test performed with
a single square pulse of 250 us and 8 V amplitude. These experiments
showed that the cells in the immediate vicinity of the electrodes have
been exposed to an excessively high electric field, inducing irreversible
electroporation, and the subsequent cell lysis (in figure a: EP non vi-
able). The cells located further away from the electrodes clearly showed
the fluorescein intake, obtained by reversible electroporation (EP viable).
Cells located at a larger distance from the electroporation electrodes have
not been exposed to a sufficiently high electric field, and thus have not
been affected by the electric pulse (viable). The results thus confirm the
possibility of using Pt planar microelectrodes for performing the electro-
poration of cells.
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Figure 5.4: Electroporation on cardiomyocytes cultured on-chip. Elec-
troporation (EP) was performed in HBS + 5 uM fluorescein, with a
single monophasic pulse of 250 us, 8 V. Gap between the electrodes:
100 pm. a. Schematic view of the electroporation procedure. After
the application of the electroporation pulse, a fraction of the cells is irre-
versibly electroporated and lysed (EP non viable), a fraction is reversibly
electroporated and show an increased fluorescein intake (EP viable), and
the remaining are not affected by the electroporation pulse (viable). b.
Optical image of the cardiomyocyte culture after electroporation. The
cells in the bottom left corner of the image have been lysed, while the
others are intact. c. Fluorescence image of the same cells shown in b.,
showing fluorescein intake of a part of the cells. Scale bars are 100 um.
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5.5.2 pISE stability assay

The functionality of the uISE array after the application of an electro-
poration pulse was tested. Based on the results of the on-chip electropo-
ration assay, single monophasic pulses of 10 V, 250 ps, inducing cellular
lysis in the vicinity of the electrodes were applied.

Figure illustrates the response of a KT-selective uISE prior to and
after the application of a series of electrical pulses. After the applica-
tion of 5 pulses, only a small increase in the detection limit is observed,
and after 10 pulses, the pISE are still responsive in the high concen-
tration range. Usually, the ion-selective microelectrodes revealed to be
strongly affected by the application of a series of 10 pulses: the electrode
response was completely lost, and the ion-selective membrane was ex-
pelled from the micropipette. Covalent bonding of the membrane with
the micropipettes wall could be beneficial for the ISE stability. In con-
trast, the application of up to 5 pulses affected the electrode response
only slightly.
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Figure 5.5: Calibration curves of a KT-selective microelectrode recorded
prior to and after the application of a series of 5 and 10 single monophasic
10V, 250 us electrical pulses. The curves are offset for the sake of clarity.
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It should be stressed that the applied pulse is the upper limit necessary
for a complete lysis of a number of cells. For local lysis, pulses of lower
amplitude, and a short pulse time will be applied. Lysis of the entire
cell population obtained by application of simultaneous pulses from the
whole Pt electrode array also needs a weaker pulse amplitude.

The potentiometric signal of the pyISE array recorded during the appli-
cation of the pulses did not suffer from drift, potential steps or other
artefacts induced by the electroporation pulses.

Reversible local electroporation will need a fine control of the electropo-
ration conditions. Jain et al. have reported an optimal viability after
electroporation of adherent cells cultured on 100 pm square gold micro-
electrodes (100 pm interelectrode gap) after pulses of 20 ms (1-8 pulses,
1‘sec between pulses) and 3 V amplitude [24]. Figure [5.6| reports results
of a simulation of the electric field values in an aqueous solution (conduc-
tivity 1.6 pS, similar to PBS [24]) induced by a difference in potential

Electric field [V/m] 30

Figure 5.6: Electric field intensity between two 45 pm diameter Pt elec-
trodes in water (conductivity 1.6 uS), interelectrode gap: 100 pm, po-
tential difference: 10 V. Courtesy of L. MacQueen, Polytechnique de
Montréal, Canada.
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of 10 V between two circular Pt electrodes of 45 ym diameter divided
by a 100 pm gap. The simulation was performed with the COMSOL
Multiphysics software. It can be noticed that the electric field is strong
only in the vicinity of the electrodes and decays rapidly in the bulk of the
solution. Consequently, to have a very local electroporation, a low pulse
amplitude should be sufficient. Obviously, the parameters are dependent
on the cell culture type.

5.6 Summary

The realization of a combined pISE/Pt electrode array has been proven
to be feasible. Both irreversible and reversible electroporation of adher-
ent cells, cultured on a microfabricated glass chip have been performed
with a single monophasic pulse of 8 V and 250 us applied between two
Pt electrodes divided by a gap of 100 pm. It has been shown that such
electrical stimuli do not affect the functionality of pISE filled with mem-
brane K*-B (see table . The potentiometric signal starts to degrade
after a series of 5 pulses, and in general is lost after 10 pulses. As the
electric field strength decays rapidly with the distance from the elec-
trodes surface, a lower pulse amplitude should be sufficient to induce
local electroporation. We can thus expect that pISE would be less af-
fected.

As the pISE can withstand these stimuli, other cell manipulations us-
ing electrical forces could be implemented in parallel with pISE. An
interesting idea to be tested is the feasibility to achieve intracellular
measurements by electroporation-assisted impalement. Electrical pulses
destabilize the cell membrane, and thus facilitate the cell impalement
by a micropipette. Combined mechanical/electroporation microinjec-
tion methods have been used to impale liposomes with a 2 pm diameter
glass capillary micropipette, too large to enter the liposome only by me-
chanical impalement [37].
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5.7 Epilogue: a pulISE-patch clamp hybrid
platform

Patch clamp is a technique allowing the study of ionic current through
the cell membrane [38]. Classical patch clamp uses electrolyte filled
glass capillary micropipettes that adhere to the cell membrane, forming
a seal. In the whole cell patch clamp configuration, the cell membrane
is subsequently opened by suction, allowing the access to intracellular
space and the recording of electrical current flowing through the cell
membrane. The main issue in patch clamp is the ability to realize a
good seal between the patch clamp pipette and the cell membrane. For
measurements on transmembrane ion fluxes, the seal resistance must be
greater than 1 GQ. Good results are obtained with glass micropipettes,
but the seal is of a less good quality when using silicon-based materials
or plastics, as well as when the geometry of the patch clamp aperture is
planar [39]. The quality of the seal decays rapidly with the increase of
the patch clamp apertures [40], especially for apertures above 5 pm. The
success rate of the seal varies widely, going from 75% (60% guaranteed by
the producer) for the coated glass biochips offered by Aviva Biosciences
[39, 41], to 24% for the PDMS devices of Sigworth’s group [42].

5.7.1 Implementation of a patch clamp microchannel
on the pISE platform

In our micropipette-based uISE design, the micropipette could in theory
be coupled to a microfluidic channel, in a similar design as the one used
by the ”Cytocentering” chip [43, [44], schematically shown in figure
The outer aperture, of 10 um diameter is used to trap the cell, the
smaller channel is used as the patch pipette. In our case, as shown in
figure the pipette would have been filled with IS-membrane and the
outer aperture used for both cell trapping and patch clamp.

To adapt a geometry similar to the one presented in figure to a
combined pISE-patch clamp platform, an array of micron size channels,
combined with openings for cell positioning and opening of 5 um to
10 pm diameter, and internal electrodes, to monitor the seal resistance,
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Figure 5.7: Schematic view of a coupled pulSE-patch clamp platform.

has to be implemented. To date, an established technology allowing the
direct on wafer patterning of micron size open channels is not available.
An interesting approach based on non standard multidirectional pho-
tolithography has been proposed by Suzuki et al. [45, [46]. The process
is based on SU-8 processing with backside exposure through a glass sub-
strate. The substrate is exposed twice with different incident angles, as
illustrated in figure [5.8] The incidence angle of the UV light and the
width of the Al photomask can be varied to fabricate closed channels or
holes. Moreover, the Al (or other metal) photomask could be used as an
internal patch clamp electrode.
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Figure 5.8: Microchannels and apertures fabrication process by multidi-
rectional photolithography. Adapted from [45].
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As the realization of the patch clamp channel array would require a long
development, a solution for the use of patch clamp in combination with
the ionic measurements would be to use the silicon-based micropipettes
for both patch clamp and potentiometry. A similar study, where double
barreled glass capillary uISE have been used as patch clamp pipettes has
been published several years ago [47]. Although possibilities of having
patch clamp and pISE measurements without the need of a modification
of the platform are interesting, their feasibility has not been verified.

5.7.2 The perforated patch technique

Amphotericin B is an antifungal drug that has been observed to lead to
KT efflux when brought in contact with the cell membrane. A modified
ion-selective membrane containing amphotericin B has been prepared to
test the interference of this compound with the IS-membrane function-
ality.

The cross-sectional area of amphotericin B channels has been reported
to be 0.5 nm? [48]. Successful perforated patch experiments have re-
quired the presence of pores on 0.16% of the total patch area [48]. For
the preparation of the modified ion-selective membrane cocktail, we as-
sumed that 1% of the amphotericin B molecules present in the silicon ni-
tride micropipette would migrate in the cell membrane, and form pores.
In this case, to obtain pores on 0.16% of the area in contact with a
1.5 pm diameter, 50 pm long micropipette, the formation of 5’600 pores
is necessary. This corresponds to an amphotericin B concentration in
the IS-membrane of 1.05-1075 M.

Ambhotericin B (Vetranal analytical standard, Riedel -de Haén) is dis-
solved in N,N-dimethylformamide (DMF; 99.8%, ACS reagent, from
Aldrich) to a concentration of 3.41-10~3 M. Subsequently, the DMF so-
lution is diluted in cyclohexanone on a ratio 1:99, and 15.4 ul of this new
cyclohexanone solution are added to 150 ul of the KT-B IS-membrane
cocktail (see table for composition).
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We observed that the addition of 5-10~® M amphotericin B to the potassium-selective
membrane KT-B does not influence the response of the electrodes in cal-
ibration solutions.

5.7.3 Implementation of other functionalities on the
uISE platform

The geometry of the planar SQUARE platform has been designed to fa-
cilitate further implementation of other functionalities, in parallel with
the ion-selective microelectrode array. The planar design allows the mi-
crostructuring of the surface, and the large surface of the chip, 18x20 mm?,
allows to adapt the size of the fluidic cell culture chamber according to
the needs of the cell culture in use. The realized platform is flexible to the
completion by other functionalities, and thus enlarges the possibilities of
adaptation for specific applications.
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Chapter 6

Conclusion

In the course of this work, several platforms based on microfabricated
ion-selective microelectrode (uISE) arrays were realized and validated
for recordings of K¥ and Ca™ activities in cell cultures. While two plat-
forms comprise an array of protruding micropipette electrodes, planar
uISE electrodes were implemented on the third one. The platform al-
lows parallel measurements on 16 completely independent electrodes of
1.5 pm to 6 pm diameter with an interelectrode gap of 150 yum or 300 pm.
The detection limits of pK 5.8 and pCa 9 were achieved in background
solutions with cellular concentrations of interfering ions, which makes
the platforms suitable for investigations for both intra- and extracellular
concentration ranges.

In order to assess the performance of the platforms in biological assays,
a KT-selective microelectrode array was used for monitoring the release
of intracellular potassium upon cell lysis. Kidney cell lysis was induced
by a hypo-osmotic shock inducing a mechanism of cell volume regula-
tion wich relies on cellular K+ efflux. Since this mechanism is similar
to what is observed in apoptotic cells, this test is of large interest for
both fundamental and applied (for example toxicity) investigations on
cellular physiology.

A detection limit of 200 cells was achieved. This detection limit is essen-
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tially determined by the current setup geometry: with a partial redesign
of the cell culture microwell, the detection of a single cell can be envis-
aged. It was also shown, that the presence of cells and cell debris did
not seem to interfere with the K sensors or to induce a degradation of
the sensor signal, allowing thus multiple uses of the platform.

In a further step, the uISE arrays were integrated with Pt microelec-
trodes. This hybrid pISE-Pt array allows in parallel to ionic activity
measurements, electrical manipulation of cells. The first application of
this uISE-Pt hybrid platform was for in situ electroporation. The elec-
troporation of cardiomyocytes was confirmed by fluorescence imaging.
Importantly, these electroporation tests showed that pISE maintained
their functionality upon application of up to five pulses of 8 V.

The microelectrode array approach opens new horizons in physiologi-
cal research, in particular the possibility to perform multiple local and
spatially defined measurements of ionic activities in a cell culture, and
thus gain information on the cellular network physiology. The flexibility
of the developed technology allows further implementation of additional
functionalities to yield a complete cell analysis system for fundamental
and applied cellular physiology.



Appendix A

Symbols and
abbreviations

Symbols

ax: activity of ion X [M]

cx: concentration of ion X [M]

E: potential difference, EMF [V]

E: electric field [V m™]

F: Faraday constant: 96 485 C mol~!

I: primary ion

I: ionic strength

J: interfering ion(s)

KP9": potentiometric selectivity coefficient
pry: highest tolerable measurement error of a; [%] (see eq. [3.12])
pX = -logig ax

R: gas constant: 8.314 J K=! mol~!

T: temperature [K]

zx: charge number of the ion X

Ap: cell transmembrane potential [mV]
~vx: activity coeflicient of the ion X

p: micro-, (1076)



126 A. Symbols and abbreviations

Abbreviations
BHEF: buffered hydrofluoric acid
DL: detection limit
DMEM: Dulbecco’s modified Eagle’s medium
DMEF: N,N-dimethylformamide
DMNB: 2,3-dimethyl nitrobenzene
DOS: bis(2-ethylhexyl) sebacate
DRIE: deep reactive ion etching

EGTA: ethylene glycol 0-0-bis(2-aminoethyl)-N,N N’-N’-tetra-
acetic acid, calcium buffer

ETH 129: N-N-N’-N’-tetracyclohexyl-3-oxapentanediamide

ETH 500: tetradodecylammonium tetrakis(4-chlorophenyl)borate

FBS: foetal bovine serum

HBS: HEPES buffered saline

HBSS: Hank’s balanced salts solution

HEPES: N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic
acid), pH buffer, range 6.8-8.2

HF: hydrofluoric acid
HMDS: hexamethyldisilazane
IKP: ("Institut fiir Klinische Pharmakologie”), is the name of

a microfabricated ion-selective platform comprising an
array protruding microelectrodes, located in a 360 pum
deep, 2x2 mm? square recess

IS: ion-selective
ISE: ion-selective electrodes
KOH: potassium hydroxyde

KTCIPB: potassium tetrakis(4-chlorophenyl)borate

KTFPB:  potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate

LPCVD: low pressure chemical vapor deposition

MGH: (”Massachussetts General Hospital”), is the name of a
microfabricated ion-selective platform comprising an ar-
ray protruding microelectrodes, located in a 360 pum
deep, channel-based recess

o-NPOE:  2-nitrophenyl octyl ether

PBS: phosphate buffered saline
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Abbreviations - continued

RE: reference electrode

RIE: reactive ion etching

SQUARE: is the name of a microfabricated hybrid non protruding
#ISE-Pt combined platform
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Appendix B

Fabrication processes

B.1 IKP design

Wafer Si 390 pm thick, double side polished
Standard cleaning
Photolithography back side DRIE (micropipettes cavities ope-

ning).

Surface preparation: dehydration 30”@200°C, HMDS surface
silanization

Spinning: AZ1518, 500 rpm (3”), 3000 rpm (40”), 1’ hotplate
@100°C

Exposition: 55 mJ cm?, low vacuum contact mode. Mask cleaning
every 2-3 exposures.
Development: 1°, AZ351:water 1:4
Plasma O, 4’
Postbake 180° @85°C
1. DRIE etching 30 to 50 ym depth
Photoresist stripping, plasma O, 100°C, 30’
Standard cleaning
2. Thermal wet oxidation, 1100°C, thickness depends on the desired
final micropipette diameter
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B. Fabrication processes

3.

LPCVD low stress silicon nitride deposition, 300 nm
Photolithography top side (KOH opening).

Surface preparation: dehydration 30”7 @200°C, HMDS surface
silanization

Spinning: AZ1518, 500 rpm (3”), 3000 rpm (40”), 1’ hotplate
@100°C

Exposition: 55 mJ cm?, low vacuum contact mode. Mask cleaning
every 2-3 exposures.

Development: 1°, AZ351:water 1:4

Postbake 35’ @125°C

RIE opening of silicon nitride and silicon dioxide

Photoresist stripping, plasma O, 100°C, 30’

KOH wet etch, 40% KOH, 60°C

BHF wet etch (BHF 7:1): etch of the oxide at the surface of the
protruding micropipettes

RIE opening of the silicon nitride micropipettes

Standard cleaning

Thermal wet oxidation, 1100°C, 200 nm

Photolithography lift off (Pt ISE internal electrodes).

Surface preparation: dehydration 307 @200°C, NO HMDS !
Support for spinning: gelpack gel-film™, retention level X0
(see: www.gelpak.com)

Spinning: LOR 3B, 500 rpm (10”) dynamic photoresist dispen-
sing, 4000 rpm (40”), 5’ hotplate @190°C

Spinning: S1813, 1000 rpm (3”), 5500 rpm (40”), 1’ hotplate
@115°C. Mask cleaning after each exposure.

Exposition: 45 mJ cm?, low vacuum contact mode

Development: AZ400:water, three-steps development: 1:4, 447,
very poor agitation; 1:4, 8”, gentle agitation, 1:8, 8”, gentle agi-
tation; change the development baths every 3 wafers.

Plasma Og, 2’

Metal evaporation: 20 nm Ta + 120 nm Pt.

Photoresist stripping: PG remover, 2 baths @60°C, 30’ in the
first bath, 60’ in the second bath, MOS isopropanol, water, 2x
semitool.

Dicing

Surface cleaning: HoSO4 96% + H202 30%, 107, immediately be-
fore anodic bonding

Anodic bonding, 4, 1200 V
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. O SiO, deposition
. B SiyNy deposition

4. SixNy + SiO, dry etch
5. Si efch,
DRIE for MGH, wet for IKP

6. SiO, wet etch
7. SixNy dry etch

8. O SiO, deposition

9. M Pt deposition, lift off

Figure B.1: IKP and MGH designs fabrication process.
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B.2 MGH design

Wafer Si 390 um thick, double side polished
Standard cleaning
Photolithography back side DRIE (micropipettes cavities ope-

ning).

Surface preparation: dehydration 30”7 @200°C, HMDS surface
silanization

Spinning: AZ1518, 500 rpm (3”), 3000 rpm (40”), 1’ hotplate
@100°C

Exposition: 55 mJ cm?, low vacuum contact mode. Mask cleaning
every 2-3 exposures.
Development: 1’, AZ351:water 1:4
Plasma O, 4’
Postbake 180" @85°C

1. DRIE etching 30 to 50 pm depth
Photoresist stripping, plasma Oz, 100°C, 30’
Standard cleaning

2. Thermal wet oxidation, 1100°C, 800 nm

3. LPCVD low stress silicon nitride deposition, 800°C, 300 nm
Photolithography top side DRIE (multichannel design opening).
Surface preparation: dehydration 30”7 @200°C, HMDS surface
silanization
Spinning: AZ4562, 500 rpm (10”), 2000 rpm (40”), 10’ hotplate
@100°C
Exposition: 3 x 45 mJ cm?, low vacuum contact mode. Mask
cleaning every 2-3 exposures.
Development: 4’, AZ351:water 1:3
Postbake 900 @70°C

4. RIE opening of low stress silicon nitride and silicon dioxide

5. DRIE etching 350 pm depth
Photoresist stripping, plasma Oz, 100°C, 30’

6. BHF wet etch (BHF 7:1): etch of the oxide at the surface of the
protruding micropipettes

7. RIE opening of the silicon nitride micropipettes
Standard cleaning
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8.

Thermal wet oxidation, 1100°C, 200 nm

Photolithography lift off (Pt ISE internal electrodes).

Surface preparation: dehydration 307 @200°C, NO HMDS !
Support for spinning: gelpack gel-film™ retention level X0
(see: www.gelpak.com)

Spinning: LOR 3B, 500 rpm (10”) dynamic photoresist dispen-
sing, 4000 rpm (40”), 5’ hotplate @190°C

Spinning: S1813, 1000 rpm (3”), 5500 rpm (40”), 1’ hotplate
@115°C. Mask cleaning after each exposure.

Exposition: 45 mJ cm?, low vacuum contact mode
Development: AZ400:water, three-steps development: 1:4, 44",
very poor agitation; 1:4, 8”, gentle agitation, 1:8, 8", gentle agi-
tation; change the development baths every 3 wafers.

Plasma Os, 2’

Metal evaporation: 20 nm Ta + 120 nm Pt.

Photoresist stripping: PG remover, 2 baths @60°C, 30’ in the
first bath, 60’ in the second bath, MOS isopropanol, water, 2x
semitool.

Dicing, fill the cavities with AZ1518 photoresist to protect the
thin silicon membrane during the dicing.

Photoresist stripping: acetone + isopropanol + water.

Surface cleaning: HoSO4 96% + H205 30%, 10°, immediately be-
fore anodic bonding

Anodic bonding, 4’, 1200 V
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B. Fabrication processes

B.3 SQUARE design

Wafer Si 390 pm thick, double side polished

Standard cleaning

Photolithography back side DRIE (microelectrodes cavities, 3-
5 pm diameter).

Surface preparation: dehydration 30”7 @200°C, HMDS surface
silanization

Spinning: AZ1518, 500 rpm (3”), 3000rpm (40”), 1’ hotplate
@100°C

Exposition: 55 mJ cm?, low vacuum contact mode. Mask cleaning
every 2-3 exposures.

Development: 1’7, AZ351:water 1:4

Plasma Os, 4’

Postbake 180’ @85°C

DRIE etching 50 pm depth

Photoresist stripping, plasma Oz, 100°C, 30’

Standard cleaning

Thermal wet oxidation, 1100°C, at least 1 um

Photolithography top side DRIE (microelectrodes cavities, 45 ym
diameter).

Surface preparation: dehydration 307 @200°C, HMDS surface
silanization

Spinning: AZ4562, 500 rpm (10”), 2000 rpm (40”), 10’ hotplate
@100°C

Exposition: 3 x 45 mJ cm?, low vacuum contact mode. Mask
cleaning every 2-3 exposures.

Development: 4°, AZ351:water 1:3

Postbake 900 @70°C

RIE opening of silicon dioxide

DRIE etching 350 um depth

Photoresist stripping, plasma O, 100°C, 30’

Surface cleaning: H2SO4 96% + H202 30%, dehydration 15’ @
200°C

HF vapour (50% HF) etch, 40°C, 210’ at the back side + 90 at
the top side.

Standard cleaning
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5.

Thermal wet oxidation, 1100°C, thickness depends on the desired
final micropipette diameter

RIE backside etch, thinning of silicon dioxide to 200 nm
Photolithography lift off (Pt metallic electrodes, wafer top side).
Surface preparation : dehydration 30”7 @200°C, NO HMDS !
Support for spinning: gelpack gel-film”™ | retention level X0
(see: www.gelpak.com)

Spinning : LOR 3B, 500 rpm (10”) dynamic photoresist dispens-
ing, 4000 rpm (40”), 5’ hotplate @190°C

Spinning : S1813, 1000 rpm (3”), 5500 rpm (40”), 1’ hotplate
@115°C. Mask cleaning after each exposure.

Exposition: 45 mJ cm?, low vacuum contact mode

Development: AZ400:water, three-steps development: 1:4, 447,
very poor agitation; 1:4, 8”, gentle agitation, 1:8, 8”, gentle agi-
tation; change the development baths every 3 wafers.

Plasma Og 2’

Metal evaporation: 20 nm Ta 4+ 120 nm Pt.

Photoresist stripping: PG remover, 2 baths @60<¢"¢, 30’ in the
first bath, 60’ in the second bath, MOS isopropanol, water, 2x
semitool.

LPCVD low stress silicon nitride deposition, 800°C, 300 nm
Photolithography passivation opening (Pt metallic electrodes,
wafer top side).

Surface preparation: dehydration 30’ '@200°C, HMDS surface
silanization

Spinning: AZ1518, 500 rpm (3”), 3000 rpm (40”), 1’ hotplate
@100°C

Exposition: 55 mJ cm?, low vacuum contact mode.
Development: 1’, AZ351:water 1:4

Plasma O, 4’

Postbake 30 @125°C

RIE opening of low stress silicon nitride

Photoresist stripping, plasma O, 100°C, 30’
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Photolithography lift off (Pt ISE internal electrodes, wafer back
side).

Surface preparation: dehydration 30”@200°C, NO HMDS !
Support for spinning: gelpack gel-ilm™, retention level X0
(see: www.gelpak.com)

Spinning: LOR 3B, 500 rpm (10”) dynamic photoresist dispens-
ing, 4000 rpm (40”), 5’ hotplate @190°C

Spinning: S1813, 1000 rpm (3”), 5500 rpm (40”), 1’ hotplate
@115°C. Mask cleaning after each exposure.

Exposition: 45 mJ cm?, low vacuum contact mode

Development: AZ400:water, three-steps development: 1:4, 447,
very poor agitation; 1:4, 8”, gentle agitation, 1:8, 8”, gentle agi-
tation; change the development baths every 3 wafers.

Plasma O, 2’

Metal evaporation: 20 nm Ta + 120 nm Pt.

Photoresist stripping: PG remover, 2 baths @60°, 30’ in the first
bath, 60’ in the second bath, MOS isopropanol, water, 2x semitool.
Dicing

Surface cleaning: HoSO4 96% + H205 30%, 10°, immediately be-
fore anodic bonding

Anodic bonding, 4’, 1200 V



B.3. SQUARE design 137

L

1. DRIE Si etch
2. I SiO, deposition

3. DRIE Si etch

4. HF, SO, etch

5. O SiO, deposition
6. B Pt deposition, lift off

7. E SixNy deposition

8. W Pt deposition, lift off

Figure B.2: SQUARE design fabrication process.
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B.4 Pyrex microchannels

Wafer Pyrex, 500 or 1000 pum thick, drilled, grid 3 mm x 4 mm, 1 mm
diameter holes

Standard cleaning

LPCVD polysilicon deposition, 560°C, 2 x 200 nm

Photolithography microchannels.

Surface preparation: dehydration 30”7 @200°C, HMDS surface silaniza-
tion

Support for spinning: non-drilled wafer, fixed with double sided tape
Spinning: AZ4562, dispensing on the entire surface, 500 rpm (3”), 1200 rpm
(40”), 10” hotplate @100°C

Exposition: 5 x 36 mJ cm?, low vacuum contact mode.

Development: 4’, AZ351:water 1:3

Postbake 30" @125°C

RIE opening of polysilicon

Photoresist stripping: acetone + isopropanol + water

HF 20% Pyrex wet etch, 20 pm

Polysilicon mask stripping: KOH 40%, 60°C

Dicing

Surface cleaning: HNOgs, fuming, 30’, immediately before anodic bon-
ding

Anodic bonding, 4, 1200 V
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Ca?t buffer solutions

The calibration solutions have different primary ion concentrations and a
fixed interfering ion background. In all solution a background of 50 mM
KT is present, coming from the EGTA salt. The pH was adjusted by HCI
titration. All the calculations have been performed for a temperature of
25°C.

Table C.1: Ca?t + 150 mM K+, 5 mM EGTA, 5 mM HEPES, I=0.218 N.
-log cog2+ free  Total cog2+ M] pH

4 5.10 - 10~3 7.4
5 4.97 - 103 7.4
6 4.67 - 1073 7.4
6.5 4.07 - 1073 7.4
7 2.91-1073 7.4
7.5 1.52 - 10—3 7.4
7.6 1.29 - 1073 7.4
8.5 1.91-108 8.0
9 2.48 - 1073 8.4

10 1.98 - 103 9.0
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Table C.2: Ca?t + 15 mM Nat, 50 mM K*, 5 mM EGTA,

5 mM HEPES, 1=0.133 N.
-log cog2+ free  Total coge+ [M] pH

5.10 - 10~3 7.4
5 4.98 - 1073 7.4
6 4.71 - 1073 7.4
6.5 4.18 - 1073 7.4
7 3.09 - 103 7.4
7.5 1.69 - 10~3 7.4
7.7 1.21 - 103 7.4
8.5 2.11 - 10—3 8.0
9 2.73 - 1073 8.4
10 2.36 - 103 9.0

Table C.3: Ca?* + 5 mM free Mg?t, 50 mM KT, 5 mM EGTA,

5 mM HEPES, 1=0.083 N.
-log cog2+ free  Total cou2+ [M]  Total cprp2+ [M]  pH

4 5.10 - 103 5.00 - 103 7.4
5 4.97 1073 5.02 - 10~3 7.4
6 4.59 - 1073 5.16 - 103 7.4
6.5 3.90 - 103 5.43 - 1073 7.4
7 2.65 - 103 5.92 1073 7.4
7.5 1.31 - 1073 6.44 - 103 7.4
7.7 9.20 - 104 6.59 - 103 7.4
8.5 6.21 - 104 8.65 - 103 8.0
9 2.94 - 1074 9.50 - 103 8.4

10 3.60 - 107° 9.93 - 1073 9.0
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