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A hybrid game is examined that consists of a stochastic jump process together with a deterministic
part governed by differential equations. Specific results are obtained when the time constants of
the deterministic part are small compared with the time between two events of the jump process.
Under such circumstances, the solution to the hybrid game is built from the solution of a purely
stochastic game—the limit game—by selecting equilibrium strategies of a set of infinite horizon
open-loop deterministic differential games defined by this limit game. These deterministic games,
in turn, are solved each time the jump process switches mode. Such a decomposition principle is
similar to what occurs in singularly perturbed dynamical systems.
The hybrid game Gε, with ε > 0, is played by m players, each player j ∈M = {1, . . . , m}
selecting a value of uj(t) in a compact set Ui

j ⊂ Rνj . The game evolves according to the dy-
namics εẋj(t) = fi

j(xj(t), uj(t)) where the state xj(t) remains in a compact set Xj ⊂ Rnj for
all times. The functions fi

j(xj, uj) are activated depending on the current active mode i deter-
mined by a continuous-time jump process ξ(·) with state set I = {0, . . . , p− 1} and transition
rates qkl(x(t)) = limdt→0

1
dtP [ξ(t + dt) = l | ξ(t) = k, x1(t), . . . , xm(t)]. This means that while

in mode i, each player’s state xj evolves independently from the other players.
However, coupling is introduced through the reward rates Li

j(x(t), uj(t)) that are given to each
player j where x(t) = (x1(t), . . . , xn(t)). All players decide simultaneously upon their strategies
after the jump process has occurred. At jump times τo = 0, τ 1, . . . , τ ν, . . . , of the ξ process,
the players observe the state of the system sν = (ξν, xν

1, . . . , xν
n) and select absolute continuous

functions yj: [0,∞)→Xj with initial conditions yj(0) = xν
j .

Unfortunately, when ε becomes small, the game becomes ill-conditioned. Nevertheless, it is
possible to define a purely stochastic limit game G0 as a controlled Markov chain on the discrete
set I . The strategy of player j is defined by a vector x̃j = (xi

j: i ∈ I) with xi
j ∈ Xj , j ∈M . The

discounted payoff for player j (with discount rate ρj) is

Vj(x̃, i) = Ex̃

[∫ ∞

0
e−ρjtL

ξ(t)
j (xξ(t), 0)dt | ξ(0) = i

]
,

where Li
j(x, zj) is obtained by selecting the supremum value of the reward rates Li

j(x, uj) for all
possible input choices uj constrained by the state velocity zj = fi

j(xj, uj), that is

Li
j(x, zj) =

{
−∞ xj /∈Xj or F i

j (xj, zj) = ∅;
supuj∈F i

j (xj,zj)L
i
j(x, uj) otherwise,

with F i
j (xj, zj) = {uj | zj = fi

j(xj, uj)}. Because the game is the limit game, the state velocity zj

is set to zero.
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It is assumed that the state evolution equation ẋj = fi
j(xj, uj), in the stretched out time scale

ε = 1, is controllable to such an extent that there exists a feedback law determining uj for which
ẋj = si

j(xj, x0, xf) = f(xj, uj) reaches a ball around the final state xf in bounded time (uniform
reachability). Therefore, for any strategy x̃ of the limit gameG0, a strategy γ̃ε = σε(x̃) forGε can
be associated as follows: When in mode i ∈ I , select xi(·): [0,∞)→X , where xj(t) is a solution
of si

j(xj(t), x0, x̃) = εẋj(t) with xi
j(0) = x0

j .
A key result is that

lim
ε→0

|V ε
j (σε(x̃), i, x0)−Vj(x̃, i)| = 0,

with theGε-game payoff
V ε

j (γ, i, x0) =

Eγ

[
e−ρjtL

ξ(t)
j (x(t), εẋj(t))dt | (ξ(t0) = i, x(t0) = x0)

]
,

which fully justifies the definition ofG0 as the limit game.
Moreover, let x̃∗ be an equilibrium ofG0. Then for all positive ζ, there exists ε0 such that for all

0 < ε≤ ε0, the strategym-tuple σε(x̃∗) defines a ζ-Nash equilibrium for the gameGε, that is
V ε

j ([σε
M−j(x̃

∗), γε
j ], i, x

0)≤ V ε
j (σε(x̃∗), i, x0) + ζ.

(The strategy vector [σε
M−j, γ

ε
j ] is obtained from the vector σε by replacing the j-th strategy

component with γε
j .)

Another fundamental aspect about G0 is that its resolution (providing the equilibrium payoffs
V ∗

j (l), l ∈ I) can be used to define a family of infinite-horizon open-loop differential games
(IHOLDGs) with payoffs over the time interval [0,Θ) given as

JΘ
j [x0;x(·)] =

∫ Θ

0

{
Li

j(x(τ), ẋj(τ))+
∑

l∈I

qil(x(τ))V ∗
j (l)

}
dτ,

j ∈M.

When Θ→∞, anM -trajectory (x∗(τ), τ ≥ 0) such that
lim inf

Θ→∞
(JΘ

j [x0;x∗(·)]−JΘ
j [x0; [x∗M−j(·), xj(·)]])≥ 0

is defined to be an overtaking equilibrium for the open-loop game.
It is then shown that whenever—(i) the jump rates qil(x) are affine in x, (ii) the reward functions

Lj(x, zj) are concave in a strong sense (strict diagonal concavity), (iii) in mode i, the overtaking
trajectories of player j, emanating from different initial states x0

j , can be synthesized—then the
Nash equilibria of these IHOLDGs define a piecewise open-loop strategy for the Gε game which
is a ζ-equilibrium if ε is small enough.
This gives a decomposition principle to play the hybrid game: At a high level, the limit stochastic
game G0 is solved. For each player j, both an equilibrium steady state x̃j and an equilibrium
potential function V ∗

j (·) are obtained. These potential functions are transmitted to all players. The
Gε game is then played by observing the state (ξ(t0+), x(t0+)) = (i, xi) at a jump time t0 and
making a time translation to get t0 = 0. This allows the authors to solve the IHOLDG so as to
find the unique Nash overtaking equilibrium and then to follow this trajectory, as long as the jump



process remains in state i.
The paper ends with two interesting examples. The first one is a duopoly example for which the
authors provide a complete, numerical solution. The second example shows how a climate-change
model can be cast as a hybrid game of the kind studied in the paper.

Reviewed byPhilippe A.Müllhaupt
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