
Elastic Transactions

Pascal Felber

Univ. of Neuchâtel, Switzerland
pascal.felber@unine.ch

Vincent Gramoli

EPFL and Univ. of Neuchâtel
vincent.gramoli@epfl.ch

Rachid Guerraoui

EPFL, Switzerland
rachid.guerraoui@epfl.ch

Abstract
This paper presents elastic transactions, a variant of the
transactional model. Upon conflict detection, an elastic
transaction might drop what it did so far within a sepa-
rate transaction that immediately commits, and initiate
a new transaction which might itself be elastic. Elastic
transactions are a complementary alternative to tradi-
tional transactions, particularly appealing when imple-
menting search structures. Both forms of transactions
can safely be combined within the same application.

We implemented software support for elastic trans-
actions and evaluated them on four common data struc-
ture applications, namely linked list, skip list, red-black
tree and hash table. Our implementation is faster than a
state-of-the-art software transactional memory in vari-
ous workloads and with an improvement of 36% on av-
erage. It also presents an improvement over lock-based
solutions of 89% on average.

1. Introduction
Background. Transactional memory (TM) is an ap-
pealing synchronization paradigm for leveraging mod-
ern multicore architectures. The power of the paradigm
lies in its abstract nature: no need to know the inter-
nals of shared object implementations, it suffices to de-
limit any critical sequence of shared object accesses
using transactional boundaries. Not surprisingly, how-
ever, this abstraction sometimes severely hampers par-
allelism. This is particularly true for search data struc-
tures where transactions do not know a priori where to
add an element unless it explores a large part of the data
structure. Consider for instance an integer set that sup-
ports search, insert, and remove operations. Assume
furthermore that the set is implemented with a bucket
hash table. A bucket, implemented with a sorted linked
list, indicates where an integer should be stored. Con-
sider a situation where one transaction searches for an

integer whereas another one seeks to insert an integer
after a node that has been read by the first transaction:
in a strict sense, there is a read-write conflict, yet this is
a false (search-insert) conflict.

We propose elastic transactions, a new type of
transactions that enables to efficiently implement
search data structures and use them with regular
transactional applications. As for a regular transaction,
the programmer must simply delimit the blocks of
code that represent elastic transactions. Nevertheless,
during its execution, an elastic transaction can be
cut into multiple normal transactions, depending on
the conflicts detected. We show that this model is
very effective whenever operations parse a large part
of the structure while their effective update is localized.

Elastic transactions: a primer. To give an intuition
of the idea behind elastic transactions, consider again
the integer set abstraction. Each of the insert, remove,
and search operations consists of lower-level opera-
tions: some reads and possibly some writes. Consider
an execution in which two transactions, i and j, try to
insert keys 3 and 1 concurrently in the same linked list.
Each insert transaction parses the nodes in ascending
order up to the node before which they should insert
their key. Let {2} be the initial state of the integer set
and let h, n, t denote respectively the memory locations
where the head pointer, the single node (its key and
next pointer) and the tail key are stored. Let H be the
following resulting history of operations where trans-
action j inserts 1 while transaction i is parsing the data
structure to insert 3 at its end. (In the following history
examples we indicate only operations of non-aborting
transactions, thus, commit events have been omitted for
simplicity.)

H = r(h)i, r(n)i, r(h)j , r(n)j , w(h)j , r(t)i, w(n)i.

This history is clearly not serializable since there is
no sequential history that allows r(h)i to occur before
w(h)j and also r(n)j to occur before w(n)i. A tradi-
tional transactional model would detect a conflict be-
tween transactions i and j, and the transactions could
not both commit. Nonetheless, history H does not vi-
olate the high-level linearizability of the integer set: 1
appears to be inserted before 3 in the linked list and
both are present at the end of the execution.

To make a transaction elastic, the programmer has
simply to label this transaction as being so and use
its associated operations to access the shared memory.
Assume indeed that transaction i has been labelled as
elastic. History H can now be viewed as a slightly
different history, f(H):

r(h)i, r(n)i
s1
, r(h)j , r(n)j , w(h)j , r(t)i, w(n)i

s2
.

The elastic transaction has been cut in two transactions
s1 and s2, each being atomic. The cut is only possible
because the value returned by the read of t has been the
successor of n at some point in time. More precisely,
the specific operations inside the elastic transaction
ensure that no modifications on n and t have occurred
between r(n)s1 and r(t)s2 . Otherwise the transaction
would have to abort.

Even though a read value has been freshly modi-
fied by another transaction, it might not be necessary
to abort and restart from the beginning. Assume that a
transaction i searches for a key that is not in the linked
list while a transaction j is inserting a node after the kth

node. Let h, n1, ..., n`, t denote respectively the mem-
ory locations of the linked list: nk denotes the memory
location of the kth node key and its next pointer. In the
following history H′, transaction i reads node nk and
can detect that it has freshly been modified by another
transaction j.

..., r(nk)j , r(nk−1)i, w(nk)j , r(nk)i, r(nk+1)i, ...

In this example, transaction i does not have to abort
and restart from the beginning because it is the first
time it accesses nk and because the preceding node ac-
cessed by i has not been overwritten since then. Hence,
after making sure that the previously read node nk−1

has not been modified, transaction i can resume and
commit, as if its read of nk was part of a new transac-
tion sk, serialized after j. Hence, we get the following
history.

..., r(nk)j , r(nk−1)i, w(nk)j , r(nk)i, r(nk+1)i
sk

, ...

E-STM. We propose E-STM, an implementation of our
transactional model that uses timestamps, two-phase-
locking, and universal atomic primitives. It provides
both normal transactions and elastic transactions, al-
lowing the latter ones to be cut to achieve high concur-
rency, but it retains the abstraction simplicity of trans-
actional memory.

To evaluate the performance and simplicity of our
solution, we implement it on four data structure appli-
cations: (i) linked list, (ii) skip list, (iii) red-black tree,
and (iv) hash table. We compared E-STM with three
other synchronization techniques: (i) regular STM
transactions, (ii) lock-based, and (iii) lock-free. The
regular STM technique relies on TinySTM [2], the
fastest STM for micro-benchmarks we know of [2,
5]. The lock-based and lock-free implementations are
based on the algorithms of Herlihy, Luchangco, Shavit
et al. [8, 10], and of Fraser, Harris, and Michael [3, 6,
12], respectively. We also implemented complex opera-
tions, move and sum, to illustrate how transactions can
be combined.

The results we obtained indicate that E-STM speeds
up regular transactions on all workloads and with
an average improvement of 36%. E-STM presents
competitive performance compared to lock-based
techniques and its average improvement is 89%.
Although it is less efficient than lock-free techniques,
(regression of 47% on average), it is significantly
simpler and, as we will argue in Section 6, does not
hamper extensibility.

Roadmap. In the remainder of this paper, we present
our system model (Section 2) and our transactional
model (Section 3), and we give an implementation of it,
called E-STM (Section 4) that we prove correct (Sec-
tion 5). Then, we elaborate on the advantage of using
E-STM, we present four data structure applications that
take advantage of the simplicity of our implementation,
and we compare their performance with other synchro-
nization techniques (Section 6). Finally, we present the
related work (Section 7) before concluding (Section 8).
The optional appendix includes the correctness proof
of our E-STM-based linked list implementation (Ap-
pendix A).

2. System Model
Our system comprises transactions and objects simi-
larly to [19]. The states of all objects define the state
of the system. A transaction is a sequence of read and
write operations that can examine and modify, respec-
tively, the state of the objects. More precisely, it con-
sists of a sequence of events that are an operation in-
vocation, an operation response, a commit invocation,
a commit response, and an abort event.

An operation whose response event occurred is con-
sidered as terminated while a transaction whose com-
mit response or abort event occurred is considered as
completed.

The set of transactions is denoted by T and we
consider two types of transactions: normal and elas-
tic. We assume that the type of all transactions is ini-
tially known. The sets of normal transactions and elas-
tic transactions are denoted by N and E , respectively.
The set of possible objects is denoted by X and the set
of possible values is V . An operation accessing an ob-
ject x and belonging to a transaction t, can be of two
types (read or write), and either takes as an argument
or returns a value v. Hence, an operation is denoted by
a tuple in X × T × V × type.

2.1 Histories
We consider only well-formed sequences of events that
consist of a set of transactions, each satisfying the fol-
lowing constraints: (i) a transaction must wait until its
operation terminates before invoking a new one, (ii) no
transaction both commit and abort, and (iii) a transac-
tion cannot invoke an operation after having completed.
We refer to these well-formed sequences as histories.

A history H is complete if all its transactions are
completed. We define a completing function complete
that maps any history H to a set of complete histories
by appending an event q to each non-completed trans-
action t ofH such that:

• q is an abort event if there is no commit invocation
for t inH;
• q is a commit or an abort event if there is a commit

invocation for t inH.

Given a set of transactions T and a history H, we de-
fine H|T , the restriction of H to T , to be the subse-
quence of H consisting of all events of any transaction
t ∈ T . We refer to the set of transactions that have com-
mitted (resp. aborted) in H as committed(H) (resp.

aborted(H)). The history of all committed transactions
of a given history H is denoted by permanent(H) =
H|committed(H). Similarly, for a set of objects X we
denote by H|X the subsequence of H restricted to X .
For the sake of simplicity, to denoteH|{x}, for x ∈ X
(resp. H|{t}, for t ∈ T) we simply write H|x (resp.
H|t).

Let→H be the total order on the events inH. We say
that t precedes t′ inH (denoted by t→H t′) if there are
no events q ∈ H|t and q′ ∈ H|t′ such that q′ →H q.
Two transactions t and t′ are called concurrent if none
precedes the other, i.e., t 6→H t′ and t′ 6→H t. A
history H is sequential if no two transactions of H are
concurrent.

2.2 Operation sequences
For simplicity, we consider a sequence of operations
instead of a sequence of events to describe histories
and transactions. An operation π is a pair of invocation
event and response event such that the invocation and
response correspond to the same operation, accessing
the same object and being part of the same transaction.
A given history H is thus an operation sequence SH =
π1, ..., πn resulting fromH where commit invocations,
commit responses, and invocations that do not have
a matching response have been omitted. Concurrent
operations ordering is determined by the object serial
specification described below. We say that two histories
H andH′ are equivalent if for any transaction t,H|t =
H′|t.

The serial specification of an object is the set of
acceptable sequences of its operations. Each object x is
initialized with a default value vx and accessed either
by a write operation, π(x, v), that writes a value v or
by a read operation, π(x) : v , that returns a value v.
That is, we only focus on read/write objects the serial
specification of which requires that a read operation on
x returns the last value written on x, or its default value
vx (if the value has not been written before). Without
loss of generality, we assume that each written value is
unique, hence: let π(x, v) and π′(x′, v′) be two write
operations, if v = v′ then x = x′ and π = π′.

Next, we define three binary relations on the read
and write operations of transactions. First, π1 precedes
directly π2, denoted by π1 ≺d π2 if π1 and π2 are two
consecutive operations of the same transaction t. Sec-
ond, π1 precedes π2 on object x, denoted by π1 ≺x π2

if π1(x, v) is a write operation and π2(x) : v is a read

operation that returns the value written by π1 (π2 reads
from π1) or π1 is a read or a write operation and π2

is a write operation that overwrites the value accessed
by π1. The transitive closure of the union of these two
precedence relations is denoted ≺. More precisely, let
≺∗ be the union of the two relations ≺d and ≺x, hence
π1 ≺∗ π2 if and only if either π1 ≺d π2 or π1 ≺x π2.
We obtain the following recursive definition for the
precedence relation≺. We say that π1 ≺ π2 if and only
if one of the two following properties hold:

• either π1 ≺∗ π2,
• or there exists π3 such that π1 ≺∗ π3 and π3 ≺ π2.

A sequential history H is legal if each read opera-
tion π on some object x returns either the value writ-
ten by the last write operation on x, preceding π, or
the default value vx if no such write operation exists.
More precisely, H is legal if the value v returned by
any π(x) : v ∈ H is either such that π′(x, v) =
max→H{π′(x, ∗) ∈ H s.t. π′ →H π} or vx if there
is no π′(x, ∗) ∈ H such that π′ →H π.

We refer to a transaction that never writes an ob-
ject value in the shared memory as an invisible trans-
action. Observe that an invisible transaction may, how-
ever, write some metadata (e.g., lock ownership) in the
shared memory. An example is a transaction that ac-
quires some locks before aborting.

3. Elastic Transactions: Definition
An elastic transaction is a transaction the size of which
may vary depending on conflicts. More precisely, such
transaction may cut itself upon conflict detection as
if the start of the transaction has moved forward,
hence the name elastic. Next, we explain how a cut is
achieved.

First, note that a sequence of operations is a totally
ordered set, hence, we refer to a history H as a tuple
〈SH,→H〉 where SH is the corresponding set of oper-
ations and→H a total order defined over SH.

A sub-history H′ of history H = 〈SH,→H〉 is a
history H′ = 〈SH′ ,→H′〉 such that SH′ ⊆ SH and
→H′⊆→H. Next, we define the notion of cut and its
well-formedness.

DEFINITION 3.1 (Cut). A cut of a history H is a se-
quence C = 〈SC ,→C〉 of sub-histories ofH such that:

1. each of the cut sub-histories contains only consec-
utive operations of H: for any sub-history H′ =

π1, ..., πn in SC , if there exists πi ∈ H such that
π1 →H πi →H πn, then πi ∈ H′;

2. if one sub-history precedes another in C then the
operations of the first precede the operations of the
second in H: for any sub-histories H1 and H2 in
SC and two operations π1 ∈ H1 and π2 ∈ H2, if
H1 →C H2 then π1 →H π2;

3. any operation of H is in exactly one sub-history of
the cut:

⋃
∀H′∈SC SH′ = SH and for any H1,H2 ∈

SC , we have SH1 ∩ SH2 = ∅.

For example, there are four cuts of history a, b, c, de-
noted by C1 = {a, b ; c}, C2 = {a ; b, c}, C3 =
{a ; b ; c}, and C4 = {a, b, c}, where semi-colons
are used to separate consecutive sub-histories of the cut
and braces are used for clarity to enclose a cut. In con-
trast, neither {a, c ; b} nor {a ; a, b, c} are cuts of H.
The reason it that the former violates property (1) while
the latter violates property (3) of Definition 3.1.

DEFINITION 3.2 (Well-formed cut). A cut Ct of his-
toryH|t, where t is a transaction, is well-formed if for
any of its sub-histories si the following properties are
satisfied:

1. if si contains only one operation, then there is no
other sj ∈ SCt;

2. if πi ∈ si and πj ∈ sj are two write operations of t,
then si = sj;

3. if πi is the first operation of si, then either πi is a
read operation or πi is the first operation of t.

For example, consider the following history H1|t
where t is an elastic transaction, and where r(x) and
w(x) refer to a read and a write operation on x. (For
the following examples, we omit the values returned
by the read operations and consider that the object se-
rial specification is satisfied.)

H1|t = r(u), r(v), w(x), r(y), r(z).

There are two well-formed cuts of history H1|t that
are C1′ = {r(u), r(v), w(x), r(y), r(z)} and C2′ =
{r(u), r(v), w(x) ; r(y), r(z)}, however, neither
C3′ = {r(u) ; r(v), w(x) ; r(y), r(z)} nor C4′ =
{r(u), r(v) ; w(x), r(y), r(z)} are well-formed. More
precisely, the first sub-history of C3′ contains only one
operation violating property (1) of Definition 3.2 and
the second sub-history of C4′ starts with a write oper-
ation, that is, property (3) of Definition 3.2 is violated.

In the remainder of this paper, we only consider well-
formed cuts.

Next, we define a consistent cut with respect to a
history of potentially concurrent transactions. This def-
inition is crucial as it indicates the singularity of elastic
transactions. The programmer can label a transaction
as elastic if he(she) does not need this transaction to
appear as atomic, but still he(she) requires that a set
of consecutive operations in this transaction appear as
atomic, as formalized below. In a history H, a cut is
consistent if there are no writes separating two of its
sub-histories each accessing one of the object written
by these writes.

DEFINITION 3.3 (Consistent cut). A cut Ct of H|t is
consistent with respect to history H if, for any oper-
ation πi and πj of any two of its sub-histories si and
sj respectively (si 6= sj), the two following properties
hold:

• there is no write operation π′(x) from a transaction
t′ 6= t such that πi(x)→H π′(x)→H πj(x);
• there are no two write operations π′(x) and π′′(y)

from transactions t′ 6= t and t′′ 6= t such that
πi(x) →H π′(x) →H πj(y) and πi(x) →H
π′′(y)→H πj(y).

For example, consider the following history H2 where
e is an elastic transaction and n is a normal transaction,
and where r(x)t and w(x)t refer to a read and a write
operation on x in transaction t.

H2 = r(x)e, r(y)e, w(y)n, r(z)e, w(u)e.

Two consistent cuts of H2|e with respect to H2

are possible. One contains two sub-histories C1 =
{r(x)e, r(y)e ; r(z)e, w(u)e} while the other contains
one sub-history C2 = {r(x)e, r(y)e, r(z)e, w(u)e}.
Observe that C1 is consistent because there are no two
writes from other transactions that occur at objects be-
tween the accesses of e to these objects, hence r(y)e

and r(z)e seem to execute atomically at the time r(y)e

occurs. In contrast, consider historyH3 where e is elas-
tic and n is normal.

H3 = r(x)e, r(y)e, w(y)n, w(z)n, r(z)e, w(u)e.

There is no consistent cut of H3|e with respect to H3

because n writes y and z between the times e reads
each of them.

Given a cut Ct = st1, ..., s
t
n of H|t for each elas-

tic transaction t ∈ H|E , we define a cutting function

fCt that replaces an elastic transaction t by the trans-
actions sti resulting from its cut. More precisely, fCt
maps a history H = π1, ..., πn to a history fCt(H) =
π′1, ..., π

′
n where if πi = 〈x, t, v, type〉 ∈ sti then

π′i = 〈x, sti, v, type〉, otherwise πi = π′i, and if t ∈
committed(H) then sti ∈ committed(fCt(H)), oth-
erwise sti ∈ aborted(fCt(H)). We denote the com-
position of f for a set of cuts C = {C1, ..., Cm} by
fC = fC1 ◦ ... ◦ fCm .

Next, we define an elastic-opaque transactional sys-
tem, which combines normal and elastic transactions;
this definition relies on Definition 3.3 of consistent cut,
and the definition of opacity [4]. More precisely, it
states that a system is elastic-opaque if, for any his-
tory of this system, there exists a consistent cut for each
elastic transaction such that the history resulting from
the composition of these cuts is opaque.

DEFINITION 3.4 (Elastic-opacity). A transactional
system is elastic-opaque if, for any history H of this
system, there exists a consistent cut Ct for each elastic
transaction t of H|E with C = {Ct}, such that fC(H)
is opaque.

As an example, consider the following history H4

and assume e is elastic while n is normal and both
transactions commit:

r(x)e, r(y)e, r(x)n, r(y)n, r(z)n, w(x)n, r(t)e, w(z)e.

This history would clearly not be serializable in a tra-
ditional model (with e and n two normal transactions)
since there is no sequential histories that allow not only
r(x)e to occur before w(x)n but also r(z)n to occur
before w(z)e. However, there exists one consistent cut
Ce of H4|e with respect to H4, Ce = s1, s2 where
s1 = r(x)e, r(y)e and s2 = r(t)e, w(z)e such that,
for C = {Ce}, we have fC(H4):

r(x)s1 , r(y)s1 , r(x)n, r(y)n, r(z)n, w(x)n, r(t)s2 , w(z)s2 .

And H4 is elastic-opaque as fC(H4) is equivalent to a
sequential history: s1, n, s2 (and fC(H4) is opaque).

4. Elastic Transactions: Implementation
This section introduces E-STM, a software transac-
tional memory system that implements elastic trans-
actions. The corresponding pseudocode appears in
Algorithm 1. E-STM combines two-phase locking,
timestamp mechanism, and atomic operations that

Algorithm 1 E-STM
1: clock ∈ N, initially 0

2: State of variable x:
3: val ∈ V
4: tlk a record with fields: // time-based lock
5: owner ∈ T , the lock owner, initially ⊥
6: time ∈ N, a version counter, initally 0
7: w-entry ∈ X×V ×N, an entry address
8: initally ⊥
9: // time/w-entry share the same location

10: State of transaction t:
11: type ∈ {elastic, normal}, initially the
12: type of the ancestor transaction or ⊥
13: r-set and w-set , sets of entries with fields:
14: addr ∈ X , an address
15: val ∈ V , its value
16: ts ∈ N, its version timestamp
17: last-r-entry ∈ X × N, an entry,
18: initally ⊥
19: lb ∈ N, initially 0 // time lower bound
20: ub ∈ N, initially 0 // time upper bound

21: begin(tx-type)t:
22: ub ← clock
23: lb ← clock
24: // if it is nested inside a normal, be normal
25: if type 6= normal then type ← tx-type

26: try-extend()t:
27: // make sure read values have not changed
28: now ← clock
29: for all 〈y, ∗, ts〉 ∈ r-set do
30: ow ← y.tlk .owner
31: last ← y.tlk .time
32: if ow /∈ {t,⊥}∨
33: (ow = ⊥ ∧ last 6= ts) then
34: abort()

35: ub ← now

36: ver-val-ver(x, evenlocked)t:
37: // load a versioned value from memory
38: repeat:
39: `1 ← x .tlk
40: v ← x.val
41: `2 ← x .tlk

42: until (`1 = `2∧
43: (`1 .owner = ⊥ ∨ evenlocked))
44: return 〈`1, v〉

45: read(x)t:
46: // log normal reads for later extensions
47: if type = normal ∨ w-set 6= ∅ then
48: 〈`x , vx〉 ← ver-val-ver(x, true)
49: if `x.owner /∈ {t,⊥} then ctn_mgt()
50: else if `x.owner = t then
51: vx ← `x .w-entry.val
52: else // `x.owner = ⊥
53: if `x.time > ub then try-extend()

54: r-set ← r-set ∪ {〈x, vx, `x.time〉}
55: // ...or log only the most recent elastic read
56: if type = elastic ∧ w-set = ∅ then
57: 〈`x , vx〉 ← ver-val-ver(x, false)
58: if `x .time > ub then
59: if last-r-entry 6= ⊥ then
60: 〈y, ∗〉 ← last-r-entry
61: 〈`y , ∗〉 ← ver-val-ver(y, false)
62: if `y .time > ub then abort()

63: ub ← `x .time

64: last-r-entry ← 〈x, `x.time〉
65: return vx

66: write(x, v)t:
67: // lock and postpone the write until commit
68: repeat:
69: `← x .tlk
70: if `.owner /∈ {⊥, t} then ctn_mgt()
71: else if `.time > ub then
72: if type = normal then try-extend()
73: else abort()

74: w-entry ← 〈x, v, `.time〉
75: x .tlk ← 〈t, ∗,w-entry〉 // cas
76: until (x .tlk .owner = t)
77: lb ← max(lb, `.time)
78: w-set ← (w-set \ {〈x, ∗, ∗〉})
79: ∪{w-entry}
80: // make sure last value read is unchanged
81: if type = elastic∧ last-r-entry 6= ⊥ then
82: 〈e, te〉 ← last-r-entry
83: 〈`e, ∗〉 ← ver-val-ver(e, true)
84: ow ← `e .owner
85: last ← `e .time
86: if ow 6= ⊥ ∨ last 6= te then abort()

87: last-r-entry ← ⊥

88: abort()t:
89: for all 〈x, ∗, ∗〉 ∈ write-set do
90: x .tlk .owner ← ⊥
91: begin(type) // restart from the beginning

92: commit()t:
93: // apply writes to memory and release locks
94: if w-set 6= ∅ then
95: ts ← clock++ // fetch&increment
96: if lb 6= ts − 1 then try-extend()

97: for all 〈x, v, ts〉 ∈ write-set do
98: x .val ← v
99: x .tlk .time ← ts

100: x .tlk .owner ← ⊥

are supported at the hardware level by most com-
mon architectures: compare-and-swap (Lines 75),
fetch-and-increment (Line 95), and atomic loads and
stores.

4.1 Transaction and Variable State
A transaction t starts with a begin(type) indicating
whether its type is elastic or normal. Then, it accesses
the memory locations using read or write operations.
Finally, it completes either by a commit call or by an
abort that restarts the same transaction. The try-extend
and ver-val-ver are helper functions. A transaction t
may keep track of the variable it has accessed since it
has lastly started using a r-set to log the reads and a
w-set to log the writes. More precisely, the entries of
these sets contain the variable address, addr , its value
val , and its version ts (Lines 13–16). If t is elastic, it

may only need to keep track of the last read operation,
so it uses last-r-entry (Lines 17 and 18) to log a single
address and its version instead of the entire set r-set .
The two last fields of t indicate a lower-bound lb and
an upper-bound ub on the logical times at which t can
be serialized (Lines 19 and 20).

For the sake of clarity in the pseudocode presen-
tation, we consider that each memory location is
protected by a distinct lock. We call it the associated
memory location of the lock. More precisely, each
shared variable x can be represented by a value
(Line 3) val and a timestamped lock tlk , also called
versioned write-lock [1]. A timestamped lock has three
fields: (i) the owner indicating which transaction has
acquired the lock, if any, (ii) the time the associated
memory location of the lock has the most recently
been written, and (iii) w-entry , a reference to the

corresponding entry in the owner’s write set (Lines 4–
8). Timestamps are given by a global counter, clock
(Line 1), that does not hamper scalability [1, 2, 15].

4.2 Normal Transactions
The algorithm restricted to normal transactions builds
upon TinySTM [2] logging all operations. All transac-
tions use two-phase locking when writing to a memory
location. While the location is locked by the transaction
at the time it executes the write, all updates are buffered
into a write-set, w-set , until the commit time at which
these updates are applied to the memory. When a trans-
action performs a write(x, ∗), it acquires the lock of
x using a compare-and-swap (Line 75) and holds it
until it commits or aborts. When accessing a locked
variable, the transaction detects a conflict and calls the
contention manager, which typically aborts the current
transaction (Lines 49 and 70). Various contention man-
agement policies could be used instead to handle con-
flicts between normal transactions.

When a read request on variable x as part of
transaction t is received by E-STM, the value of x is
read in a three-step process called ver-val-ver, which
consists in loading its timestamped lock x.tlk , loading
its value x.val , and re-loading its lock x.tlk . This
read-version-value-version is repeated until the two
versions read are identical (Line 42) indicating that
the value corresponds to that version. Only in some
cases needs the value be returned unlocked, hence the
use of the boolean evenlocked . The transactions of
E-STM use the extension mechanism of LSA [2, 15].
Each transaction t maintains an interval of time [lb, ub]
indicating the time during which t can be serialized.
More precisely, for a given transaction t, lb and ub
represent respectively lower and upper bounds on the
versions of values accessed by t during its execution.
When t reads x, it records the last time x has been
modified in its read-set, r-set , for future potential
check. Later on, if t accesses a variable y that has
been recently updated (y .tlk .time > ub), t first tries
to extend its interval of time by calling try-extend().
Transaction t detects a conflict only if this extension
is impossible (Lines 34), meaning that some variables,
among the ones t has read, have been updated by
another transaction since then.

4.3 Elastic Transactions
An important difference between normal and elastic
transactions is that elastic transactions never use the
r-set until they read after a write, as there is at most
one read operation the transaction has to keep track of:
the most recent one. Hence, elastic transactions use the
last-r-entry field to log the last read operation. In our
implementation all reads following a write in an elastic
transaction will use the r-set like normal transactions
(Lines 46–54), however, the implementation could be
improved using static analysis to require this only for
reads that are both preceded and succeeded by write
operations in the same transaction.

Upon reading x (without having written before) an
elastic transaction must make sure that the value vx it
reads was present at the time the immediately preced-
ing read occurs. This typically ensures that a thread
does not return an inconsistent value vx after having
been pre-empted, for example. If the version vx of the
value is too recent, `x .time > ub, then the read opera-
tion must recheck the value logged in last-r-entry to be
sure that the value read has not been overwritten since
then (Lines 58–63). This can be viewed as a partial roll-
back similar to the one provided by nested models, ex-
cept that no on-abort definition is necessary and only
a single operation would have to be re-executed here.
Upon writing x, a similar verification regarding the last
value read is made. If the lock corresponding to this ad-
dress has been acquired, ow 6= ⊥, or if the version has
changed since then, last 6= timee, then the transaction
aborts (Line 86). If, however, no other transaction tried
to update this address since it has been read, then the
write executes as normal (Lines 67–79).

5. Correctness of E-STM
Here, we show that E-STM is elastic-opaque in three
steps. First, we give preliminary definitions. Second,
we show that for each committed elastic transaction of
E-STM, there exists a consistent cut so that fC is well-
defined. Third, we show that E-STM is elastic-opaque
by differentiating histories restricted to aborting trans-
actions from histories restricted to committed transac-
tions.

THEOREM 5.1. E-STM is elastic-opaque.

DEFINITION 5.2 (Opacity). A historyH is opaque if it
satisfies the following properties:

1. All transactions that abort in complete(H) are in-
visible.

2. The history permanent(complete(H)) is equiv-
alent to a sequential history (where all non-
concurrent transactions are ordered as in H) that
is legal.

We define sub-complete as a mapping between his-
tory H and a history H′ = sub-complete(H) in which
(i) all non-completed transactions of H that have a
commit invocation and that do not write any object
value into the memory are aborted in H′, (ii) all the
transactions of H that have written an object value
into the memory are committed in H′, and (iii) all
non-completed transactions of H with no commit-
request are aborted in H′. Observe that for any H,
sub-complete(H) ∈ complete(H).

First-of-all, we show that there exists a consistent
cut for any elastic transaction t in H|E . This ensures
that the fCt(H|t) is well defined and more generally,
that fC(H) is well-defined.

LEMMA 5.3. Let H be any history of E-STM. There
exists a consistent cut Ct ofH|t with respect toH.

Proof. The proof relies essentially on the definition of
a consistent cut (Definition 3.3). First, if t contains
a single operation, then Ct contains only t and the
definition is straightforwardly satisfied.

Now consider the case where t has more than one
operation. We show that there can neither be a write
operation π(x)t

′
from transaction t′ 6= t such that

π(x)t →H π(x)t
′ →H π(x)t nor be two writes op-

erations π(x)t
′
π(y)t

′′
from transaction t′ 6= t and

t′′ 6= t such that π(y)t →H π(x)t
′ →H π(x)t and

π(y)t →H π(y)t
′′ →H π(x)t. First, we start by show-

ing that the latter case cannot happen, the impossibility
of the former case will follow.

Assume that such writes π(x)t
′

and π(y)t
′′

ex-
ist, we show that t would abort leading to a con-
sistent cut. When π(x)t

′
executes, it locks x by set-

ting x .tlk .owner to t′ until it commits and sets the
associated timestamp x .tlk .time to a new strictly
higher clock value than t .ub. For the same reason,
y .tlk .time > t .ub just after the execution of π(y)t

′′
.

Hence, t reads x after t′ and t′′ have committed and t
observes that x .tlk .time is larger than its t .ub. Since
t is elastic, this observation leads it to verify that the
version of y has not changed (Line 58). Since, we have

y .tlk .time > t .ub, the transaction aborts as indicated
Line 62 and the resulting sequence of operations of t is
a consistent cut. The same proof holds also for the case
where x = y.

As a result, there always exists a consistent cut Ct of
an elastic transaction t ofH. �

In the remainder of the proof, we refer to the cut
history fC(H) as the history H where each commit-
ted elastic transaction has been replaced by its sub-
transactions in one of its consistent cut. Property (1)
of Definition 5.2 comes from the fact that no value is
written in memory unless the transaction is ensured to
commit. Hence, the first Lemma shows that an aborting
transaction is invisible to other transactions.

LEMMA 5.4. Let H be any history of E-STM and let
H′ = sub-complete(fC(H)). If t′ ∈ aborted(H′) then
t′ is an invisible transaction.

Proof. The proof is divided in two parts whether we
consider the completed transactions of H or the trans-
actions that were not completed inH but that are com-
pleted inH′.

1. First, we show that if t ∈ aborted(H), then t is in-
visible. By transaction well-formedness, no abort()t
can occur after a commit()t completes. By examina-
tion of the code, we know that memory can only be
updated during the for-loop of the commit()t func-
tion (Line 97). With no loss of generality let τ1 be
the starting time of the for-loop. A transaction that
issued a commit invocation can only abort at time
τ2, before the try-extend() call returns at Line 96.
Since Line 96 is before the beginning of the for-
loop, τ2 < τ1 and the result follows.

2. Second, we show that if t ∈ aborted(H′) \
aborted(H) then t is invisible. Since a transaction
can only write after a commit invocation, all abort
events that are not in H but that are in H′ are ap-
pended only to invisible transactions.

The conjunction of the two parts of the proof states
that there exists H′ ∈ complete(H) such that if t ∈
aborted(H′) then t is invisible. �

To show Property (2) of Definition 5.2, we determine
a serialization point for each operation and show that
each transaction appears “as if” it was executed atomi-
cally at this point in time.

1. read operation π: its serialization point ser(π) is the
time the last `1 ← x .tlk of the loop occurs (Line 39).

2. write operation π: its serialization point ser(π) is
the time its compare-and-swap occurs (Line 75).

Observe that serialization points are defined at the time
an atomic operation occurs. Hence, two distinct oper-
ations on the same object cannot have the same serial-
ization point.

LEMMA 5.5. Let H be any history of E-STM and let
H′ = sub-complete(fC(H)). Let t1 and t2 be two
transactions in permanent(H′). For any two distinct
operations π1 and π2 executed respectively in t1 and t2
and accessing location x: if ser(π1) < ser(π2), then
π2 6≺d π1.

Proof. We show by contradiction that we cannot have
ser(π1) < ser(π2) and π2 ≺d π1. Assume by absurd
that π2 ≺d π1, there are three cases to consider.

• If π1 and π2 are executed in order by the same
transaction, then the result follows directly by the
well-formedness assumption.
• If π1 reads or overwrites the value written by π2,

then π2 ≺d π1 implies that ser(t1) is after t2
releases its lock on x (Line 43 or 76) otherwise
t1 would have aborted (Line 49 if π1 is a read
or Line 70 if π1 is a write) contradicting t1 ∈
permanent(H′).
• If π1 overwrites the value read by π2, then either π2

would detect that its transaction owns the lock and
so it would return the value written by π1 contra-
dicting that π1 ≺d π2, or π2 would detect that an-
other transaction owns the lock, so t2 would abort
(Line 49) contradicting that t2 ∈ permanent(H′).

Hence, all cases assuming that π2 ≺d π1 lead to a con-
tradiction, implying that ser(π2) ≤ ser(π1). Hence,
the equivalent contrapositive ser(π1) < ser(π2) ⇒
π2 6≺d π1 gives the result. �

INVARIANT 5.6. clock ≥ lb.

Proof. Initially, clock = x .tlk .time = 0, for any
variable x. Since clock is monotonically increasing,
x .tlk .time can only be set to clock , and lb can only
be set to clock or x .tlk .time , the result follows. �

Next, we generalize the previous lemma to ≺, the
transitive closure of ≺d.

COROLLARY 5.7. Let H be any history of E-STM and
let H′ = sub-complete(fC(H)). Let t1 and t2 be two
transactions in permanent(H′). For any two opera-
tions π1 and π2 executed respectively in t1 and t2: if
ser(π1) < ser(π2), then π2 6≺ π1.

Next lemma indicates that any history is equivalent
to some sequential history. More precisely, it shows
that all operations of a single transaction are ordered in
the same manner with respect to distant transactional
operations. For the proof, let aπ denote the state of a
when it is set in operation π for the first time, or when
π starts if it is never set by π.

LEMMA 5.8. Let H be any history of E-STM and let
H′ = sub-complete(fC(H)). Let t1 and t2 be two
transactions in permanent(H′). Let π1 and π2 be some
operation of transaction t1 and t2, respectively. If π1 ≺
π2, then for any π′1 ∈ t1 : π2 6≺ π′1.

Proof. By contradition we assume that π1 ≺ π2 ≺ π′1
and we show that t′1 aborts. With no loss of generality,
let π1 and π′1 access a and a′ respectively, we first show
that π1 can only be a read and then consider the two
cases whether π′1 is a write or a read.
π1 cannot be a write operation, otherwise there

should be a read operation r(a) such that π1(a) ≺d
r(a) ≺ π′1, but r(a) as a read would have aborted
(because x .tlk .owner r = t1, Line 49), or would loop
while x .tlk .owner r = t1 (Line 43), leading in both
cases to the contradiction r(a) 6≺ π′1. Since π1 is a read
π1 ≺ π2 implies that there is a write operation w such
that π1(a) ≺d w(a) ≺ π′1.

There are two cases to consider whether π′1 is a
write. First, assume that π′1 is a write. By Invari-
ant 5.6 we know that lbπ1 ≤ clockπ1 and by the write
w: clockπ1 < clockπ′1 so that lbπ1 < clockπ′1 and
try-extend occurs in t1 or t1 would have aborted (con-
tradicting the assumption). Second, if π′1 is a read, there
is a write w′(a′) such that π2 ≺ w′(a′) ≺d π′1(a′).
Hence x .tlk .timeπ′1 > clockw ≥ clockπ1 , and by In-
variant 5.6 we have clockπ1 ≥ ubπ1 ≥ ubπ′1 , whose
conjunction leads to x .tlk .timeπ′1 > ubπ′1 . Now ob-
serve that either a ′.tlk .owner /∈ {⊥, t1} and t1 aborts,
a ′.tlk .owner = t1, and w′ would have aborted, or
try-extend occurs in t1. Hence, whether π′1 is a read
or a write, try-extend occurs at t1.

Finally, because π1 is a read and w is a write that oc-
curs between π1 and π′1, t1 aborts during the try-extend

occurrence of π′1. This contradicts the assumption and
the result follows. �

COROLLARY 5.9. Let H be any history of E-STM
and let H′ = sub-complete(fC(H)). History
permanent(H′) is equivalent to a sequential history
that is legal.

Proof. Let ≺t be an ordering on the set of transactions
of H′ such that ∀t1 6= t2, t1 ≺t t2 if there exist
operations π1 in t1 and π2 in t2 such that π1 ≺ π2. This
ordering ≺t is an irreflexive partial order because (i) it
is antisymmetric by Lemma 5.8, and (ii) it is irreflexive
and transitive by definition of ≺. This ordering ≺t
defines a set S of histories that are equivalent to H′.
This set is non-empty because ≺t is a partial order. It
is easy to see that for any s ∈ S, s is sequential by
the antisymmetry property of ≺t. Finally and because
≺t⊆≺, s is legal as well. �

6. Elastic Transactions: Evaluations
We evaluate here the performance of elastic transac-
tions on four data structure applications.

6.1 Qualitative Assessment
E-STM is simple to program with for two reasons: (i) it
indeed provides a high-level abstraction that do not ex-
pose synchronization mechanisms to the programmer,
and (ii) it enables code composition.

6.1.1 Abstraction
As with a classical transactional model, the program-
mer can use E-STM to write a concurrent program al-
most as if he (she) was writing a sequential program.
Like all TMs, E-STM provides the programmer with
labels begin and commit that can delimit the transac-
tions. Hence, all calls to reading and writing the shared
memory are redirected to the wrappers read and write
of E-STM, but this redirection does not incur efforts
from the programmer and can be made automatic: some
compilers already detect transaction labels and redirect
memory accesses of these transactions automatically
even though it is known that over instrumentation of
accesses may unnecessarily impact performance.

To illustrate this, consider the sorted linked list im-
plementation of an integer set, where integers (node
keys) can be searched, removed, and inserted. Algo-
rithm 2 depicts the entire program that uses E-STM
plus a lock-free harris-ll-find function for comparison

purpose. This function is at the core of the lock-free
linked list of Harris [6]. It is pretty clear that the
harris-ll-find function is more complex than its ll-find
counterpart based on E-STM. In fact, harris-ll-find re-
lies on the use of a mark bit to indicate that a node is
logically deleted, and must physically delete the nodes
that have been logically deleted to ensure that the size
of the list does not grow with each operation. Unlike
the Harris lock-free function, E-STM-based functions
are very simple, as all synchronizations are handled
transparently underneath by E-STM. The pseudocode
is the same as the non-thread-safe version, except that
begin(elastic), and commit have been added at the
right places in the code.

6.1.2 Extensibility
E-STM combines elastic transactions with normal
transactions. As a result the code that uses E-STM is
easily extensible. To illustrate this, we implemented
the hash table example presented in Section 1 extended
with operations move and sum. The pseudocode is pre-
sented in Algorithm 3.

More specifically, we implemented the insert,
search, and remove operations using elastic transac-
tions. Since each bucket of the hash table is imple-
mented with a linked list, we re-used (Lines 12, 18,
and 24) the program of the linked list written above.
More complex operations like move and sum have
been implemented using normal transactions. The elas-
tic transactions nested inside the normal transactions of
move (Lines 22 and 16) execute in the normal mode.
Although it is also possible to implement an elastic
version of move, sum cannot be elastic as it requires
an atomic snapshot of all elements of the data struc-
ture. This example illustrates the way elastic and nor-
mal transactions can be combined.

Observe that, although moving a value from one
node to one of its predecessors in the same linked list
may lead an elastic search not to see the moved value,
the two operations remain correct. Indeed, the search
looks for a key associated with a value while the move
changes the key of a value v. Hence, if the search looks
for the initial key k of v and fails in finding it, then
search will be serialized after move, if search looks for
the targeted key k′ of v and does not find it, then search
will be serialized before move. In contrast, a less usual
search-value operation looking for the associated value
rather than the key of an element would have to be im-

Algorithm 2 Linked list implementation built on E-STM (the lock-free harris-ll-find is given for comparison)
1: State of process p:
2: node a record with fields:
3: key , an integer
4: next , a node
5: set a linked-list of nodes with:
6: head at the beginning,
7: tail at the end.
8: Initially, the set contains head and
9: tail nodes, and head .key = min,

10: and tail .key = max.

11: free(x)t:
12: // memory disposal is postponed
13: write(x, 0)

14: ll-find(i)p:
15: curr ← set .head
16: while true do
17: next ← read(curr .next)
18: if next .key ≥ i then break

19: curr ← next
20: return 〈curr ,next〉

21: ll-insert(i)p:
22: begin(elastic)
23: 〈curr ,next〉 ← ll-find(i)
24: in ← (next .key = i)
25: if !in then
26: new-node ← 〈i ,next〉
27: write(curr .next ,new-node)

28: commit()
29: return (!in)

30: ll-search(i)p:
31: begin(elastic)
32: 〈curr ,next〉 ← ll-find(i)
33: in ← (next .key = i)
34: commit()
35: return (in)

36: ll-remove(i)p:
37: begin(elastic)
38: 〈curr ,next〉 ← ll-find(i)
39: in ← (next .key = i)
40: if in then
41: n ← read(next .next)
42: write(curr .next ,n)
43: free(next)

44: commit()
45: return (in)

46: harris-ll-find(i)p:
47: loop
48: t ← set .head
49: t_next ← read(curr .next)
50: // 1. find left and right nodes
51: repeat:
52: if !is_marked(t_next) then
53: curr ← t
54: c_next ← t_next

55: curr ← unmarked(next)
56: if !t_next then break

57: t_next ← t .next

58: until is_marked(t_next)∨(t .key < i)

59: next = t
60: // 2. check nodes are adjacent
61: if c_next = next then
62: if (next .next∧
63: is_marked(next .next) then
64: goto line 48
65: else return 〈curr ,next〉
66: // 3. remove one or more marked node
67: if cas(curr .next , c_next ,next) then
68: if (next .next∧
69: is_marked(next .next)) then
70: goto line 48
71: else return 〈curr ,next〉
72: end loop

plemented using normal transactions, otherwise, a con-
current move may lead to an inconsistent state. Another
issue, pointed out in [17], may arise when one transac-
tion inserts x if y is absent and another inserts y if x is
absent. If executed concurrently, these two transactions
may lead to an inconsistent state where both x and y
are present. Again, our model copes with this issue as
the programmer can use a normal transaction to encap-
sulate each conditional insertion. All these normal and
elastic transactions are safely combined.

Unlike elastic transactions, existing synchronization
techniques (e.g., based on locks or compare-and-swap)
cannot be easily combined with normal transactions.
They furthermore introduce a significant complexity.
Using a coarse-grained lock to make the hash table
move operation atomic would prevent concurrent ac-
cesses to the data structure. In contrast, using fine-
grained locks may lead to a deadlock if one process
moves from bucket `1 to bucket `2 while another moves
from `2 to `1. With a lock-free approach (e.g., based
on an underlying compare-and-swap), one could either
modify a copy of the data structure before switching a
pointer from one copy to another, or use a multi-word
compare-and-swap instruction. Unfortunately, the for-
mer solution is costly in memory usage whereas the

latter solution requires a rarely supported instruction
that is also considered as inefficient. Extending a lock-
free hash table further to provide a resize operation re-
veals even more as this requires to replace its internal
bucket linked lists by a single linked list imposing to
re-implement the whole data structure [16].

6.2 Quantitative Assessment
In this section, we present the performance results ob-
tained when running E-STM, locks, regular STM trans-
actions, and lock-free algorithms on our data structure
applications. We also compare the obtained results to
the non-thread-safe code executed sequentially.

6.2.1 Testbed data structures
A linked list is an appealing data structure: it is simple
yet flexible, and it provides insert and remove opera-
tions that only affect a localized part of the data struc-
ture, as opposed to arrays. The pseudocode of our E-
STM-based linked list have been given in Algorithm 2
and its proof of consistency has been deferred to Ap-
pendix A.

Skip lists are known to provide logarithmic search
time complexity while being simpler to program than
balanced trees. For instance, insert and remove in an

Algorithm 3 Hash table implementation built on E-STM and linked-list
1: State of process p:
2: node a record with fields:
3: key , an integer
4: next , a node
5: set a mapping from an integer to a
6: linkedlist representing a bucket.
7: Initially, all buckets of the set are empty
8: lists.

9: ht-search(i)p:
10: begin(elastic)
11: a← hash(i)
12: result ← set [a].ll-search(i)
13: commit()
14: return result

15: ht-insert(i)p:
16: begin(elastic)
17: a← hash(i)
18: result ← set [a].ll-insert(i)
19: commit()
20: return result

21: ht-remove(i)p:
22: begin(elastic)
23: a← hash(i)
24: result ← set [a].ll-remove(i)
25: commit()
26: return result

27: ht-sum()p:
28: begin(normal)
29: for each bucket in set do
30: next ← read(bucket .head .next)
31: while next .next 6= ⊥ do
32: sum ← sum + read(next .val)
33: next ← read(next .next)

34: commit()
35: return sum

36: ht-move(i, j)p:
37: begin(normal)
38: ht-remove(i)
39: ht-insert(j)
40: commit()
41: return result

AVL tree induce complex re-balancing operations.
Red-black trees are binary trees where each node is
colored (red or black) and where leaves have no keys.
The coloring is such that the root and the leaves are
black, all paths from the root to leaves contain the
same number of black nodes, and all children of a red
node are black. As a result, a red-black tree remains
balanced enough to provide logarithmic operation
complexity and relaxes the strict balancing of AVLs.
Red-black trees have been largely used as micro-
benchmarks in concurrent programming and especially
for the evaluation of numerous STMs [1, 2, 11].
Hash tables provide constant access complexity. Our
corresponding pseudocode is given in Algorithm 3.
Due to lack of space, the pseudocode of the skip list
and the red-black tree has been omitted here. Our
implementations consist simply of a non-thread-safe
code simply enriched with elastic transaction calls
(begin(elastic), begin(normal), read,write, commit)
as for the linked list.

6.2.2 Lock-based, lock-free, and STM alternatives
Our lock-based linked list implements the lazy algo-
rithm which is more efficient than fine-grained alterna-
tives [8] (e.g., lock-coupling or hand-over-hand lock-
ing); our lock-based version of the hash table builds
upon it. Using a similar technique, our lock-based skip
list is a C version of the optimistic algorithm of [10],
the most recent lock-based skip list algorithm we know
of.

We consider the Harris-Michael implementation of
the lock-free linked list as presented in [6] and the hash
table version that is based on it [12]. Unfortunately,

this hash table algorithm cannot support complex op-
erations like sum and move, so we ran two distinct sets
of experiment on hash tables. For our needs (x86-64),
we re-implemented the Fraser lock-free skip list that
uses the low-order bit marking technique of Harris-
Michael’s linked list [3]. Only miss the lock-free and
lock-based versions of the red-black tree.

We chose TinySTM [2] v0.9.8 (in its default mode)
to compare regular transactions with E-STM because
TinySTM is, as far as we know, the most efficient
STM on micro-benchmarks such as linked lists and
red-black trees [2, 5].

6.2.3 Experimental results
We tested the performance of these data structure im-
plementations on a 4 quad-core AMD Opteron ma-
chine, i.e., including 16 cores in total. We ran the afore-
mentioned algorithms using 16 threads and their non-
thread-safe counterpart using a single thread, all written
in C. Each point on the graphs represents the average
value obtained from 5 runs of 10 seconds each.

Figure 1 depicts the results obtained when running
90% of search operations, 5% of insert, and 5% of
remove, except in the 4th row. We varied the initial
size of the sets, and we insert and remove the same
integers to keep the set size roughly constant in each
experiment. As we do not know of any lock-free im-
plementation of a move, we ran two sets of hash ta-
ble experiments: (i) experiments of row 4 include 10%
of move, 10% of sum with 80% of search while the
load factor is fixed to 5 (the load factor corresponds to
the mean ratio of the number of nodes over the number

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

24 26 28 210 212 214

Operations/millisecond

Li
nk

ed
 lis

t

normal-tx
!-stm

lock-free
lock-based
sequential

-1
 0
 1
 2
 3
 4
 5

24 26 28 210 212 214

Speedup-1 of !-STM

w.r.t. normal-tx
w.r.t. lock-free

w.r.t. lock-based
w.r.t. sequential

 0
 2000
 4000
 6000
 8000

 10000
 12000

28 210 212 214 216 218 220

Sk
ip

 lis
t

-2
 0
 2
 4
 6
 8

 10
 12
 14

28 210 212 214 216 218 220

 0
 2000
 4000
 6000
 8000

 10000
 12000

28 210 212 214 216 218 220

Re
d-

bl
ac

k
tre

e

 0
 1
 2
 3
 4
 5
 6
 7
 8

28 210 212 214 216 218 220

 0

 5000

 10000

 15000

 20000

 25000

24 26 28 210 212 214

Mean set sizeHa
sh

 ta
bl

e
w/

 m
ov

e
an

d
su

m

 0

 5

 10

 15

 20

24 26 28 210 212 214

Mean set size

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000

 1 2 3 4 5 6 7 8 9 10
Load factor

Ha
sh

 ta
bl

e

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

 1 2 3 4 5 6 7 8 9 10
Load factor

Figure 1. Performance results when running integer set operations. Left side: operation throughput of all synchronization techniques (with
16 threads) compared to non-thread-safe throughput (with a single thread) on linked list (1st row), skip list (2nd row), red-black tree (3rd
row), and hash table (5th row) with 5% insert, 5% remove, and 90% search operations; and hash table with 10% move, 10% sum, and
80% search (4th row). Right side: resulting improvement i (or speedup-1) of throughput u of E-STM over the throughput v of each other
techniques (where i = u

v
− 1), the solid lines representing f(x) = 0 is the limit above which E-STM presents better performance than other

techniques.

of buckets); (ii) experiments of row 5 include only the
three basic integer set operations in the same propor-
tion as above (5-5-90) while the load factor varies and
the hash table contains 256 buckets. We chose a reason-
ably low amount of updating operations (10%) in these
experiments because transactions are already known to
perform well in highly-contended environment.

The results show that E-STM always improves the
performance of the regular STM and can speed up
the regular STM by more than 2.3x in some circum-
stances, with an averaged speedup of 1.36x.1 We aver-
aged the speedups over linked list, skip list, and hash
table using only insert, remove, and search operations
for which we had values regarding each implementa-
tion. We observe that E-STM performance competes
with lock-based performance: the improvement factor
of E-STM over lock-based implementations is 1.89x
on average. Our implementation is on average slower
than lock-free implementations (averaged slowdown of
1.47x) yet significantly simpler. It is noteworthy that,
unlike all other implementations, the Harris lock-free
algorithms have been implemented “as is” without any
memory re-allocation, which may impact the perfor-
mance. In addition, the E-STM average speedup over
the sequential performance is of 2.8x. Finally, E-STM
is on average 1.2x faster than regular STM transactions
and up to 8.2x faster than sequential, on red-black trees.

More particularly, the fourth row indicates a speedup
of E-STM over regular STM transactions that goes up
to 1.9x, over the sequential version that goes up to 3.6x,
and over lock-based that goes up to 20x, outlining the
inherent efficiency obtained when combining normal
and elastic transactions like E-STM does.

7. Discussion and Related Work
One programmer may think of cutting normal transac-
tions himself (herself) instead of using elastic transac-
tions. Nevertheless, hand-crafted cuts must be defined
prior to execution which may lead to inconsistencies.
As an example, consider that a transaction t searches
a linked list. A hand-crafted cut of t between two read
operations on x and y may lead to an inconsistent state
if another transaction deletes y (by modifying the next

1 The improvement (or speedup-1) represented in the graphs is
i = u

v
− 1 and corresponds to the improvement of u over v so that

positive values indicate gains and negative values indicate losses,
while in the text we refer to the speedup s = u

v
as the multiplying

factor between u and v.

pointers of x and y) between those reads: t does not de-
tect that it stops parsing the data structure as soon as it
tries to access y. In contrast, elastic transactions avoid
this issue by checking dynamically if a transaction can
be safely cut and aborting otherwise.

Besides elastic transactions, there have been several
attempts to extend the classical transactional model.
Open nesting [13] provides sub-transactions that can
commit while the outermost transaction is not com-
pleted yet. More precisely, open nesting makes sub-
transactions visible before the outermost transaction
commits. This requires the programmer to define com-
plex roll-backs [14].

Transactional boosting [9] is a methodology for
transforming linearizable objects into transactional ob-
jects, which builds upon techniques from the database
literature. Although transactional boosting enhances
concurrency by relaxing constraints imposed by read-
/write semantics at low-level, it requires the program-
mer to identify the commutative operations and to de-
fine inverse operations for non-commutative ones.

Abstract nesting [7] allows to abort partially in case
of low-level conflict. As the authors illustrate, abstract
nested transactions can encapsulate independent sub-
parts of regular transactions like insert and remove sub-
parts of a move transaction. In contrast, abstract nested
transactions cannot encapsulate sub-parts of the parsing
(as in search/insert/remove) of a data structure. More-
over, abstract nested transactions aim at reducing the
roll-back cost due to low-level conflicts, but not at re-
ducing the amount of low-level conflicts.

Early release [11] is the action of forgetting past
reads before a transaction ends. This mechanism, pre-
sented for DSTM, enhances concurrency by decreas-
ing the number of low-level conflicts for some pointer
structures. It requires the programmer to carefully de-
termine when and which objects in every transaction
can be safely released [17]: if an object is released
too early then the same inconsistency problem as with
hand-crafted cuts arises. Finally, early release provides
less concurrency than elastic transactions. Consider a
transaction t that accesses x and y before releasing x.
If y is modified between t accessing x and y then a
conflict is always detected. In contrast, if t is an elastic
transaction then a conflict is detected only if x and y are
consecutively accessed by t and both x and y are mod-
ified between those accesses, which is very unlikely in
practice.

8. Conclusion
We have proposed a new transactional model that en-
hances concurrency in a simple fashion. The core idea
relies on the combination of traditional transactions
with a new type of transactions that are elastic in the
sense that their size evolves dynamically depending on
conflict detection.

We implemented this model in an STM, called E-
STM, that only requires to differentiate elastic from
traditional transactions, making it simple to program
with. Comparisons on four well-known data structures
have confirmed that elastic transactions perform sig-
nificantly better than traditional transactions and lock-
based alternatives, and is much simpler to program with
than existing lock-free solutions.

We have evaluated the performance of our approach
with data structures where operations parsing the struc-
ture are loosely dependent on the subsequent opera-
tions modifying a region of it. It could be interesting
to investigate how much performance other applica-
tions could gain from using this model. For example,
the counter increment on which the rest of the transac-
tion does not depend.

Acknowledgments
This work is supported in part by the Velox European
project (ICT-216852).

References
[1] Dave Dice, Ori Shalev, and Nir Shavit. Transactional

locking II. In DISC ’06: Proceedings of the 20th
International Symposium on Distributed Computing,
September 2006.

[2] Pascal Felber, Christof Fetzer, and Torvald Riegel.
Dynamic performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2008.

[3] Keir Fraser. Practical lock freedom. PhD thesis,
University of Cambridge, September 2003.

[4] Rachid Guerraoui and Michał Kapałka. On the
correctness of transactional memory. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 175–184, February 2008.

[5] Derin Harmanci, Pascal Felber, Vincent Gramoli, and
Christof Fetzer. TMunit: Testing software transactional
memories. In TRANSACT ’09: 4th ACM SIGPLAN
Workshop on Transactional Computing, February

2009.

[6] Tim Harris. A pragmatic implementation of non-
blocking linked-lists. In DISC ’01: Proceedings
of the 15th International Conference on Distributed
Computing, pages 300–314, London, UK, 2001.
Springer-Verlag.

[7] Tim Harris and Srdjan Stipić. Abstract nested
transactions. In The 2nd ACM SIGPLAN Workshop
on Transactional Computing, 2007.

[8] Steve Heller, Maurice Herlihy, Victor Luchangco,
Mark Moir, William N. Scherer III, and Nir Shavit.
A lazy concurrent list-based set algorithm. In OPODIS
’05: Proceedings of the 9th International Conference
on Principles of Distributed Systems, volume 3974 of
LNCS, pages 3–16. Springer, December 2005.

[9] Maurice Herlihy and Eric Koskinen. Transactional
boosting: A methodology for highly-concurrent trans-
actional objects. In PPoPP ’07: Proceedings of the
12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2008.

[10] Maurice Herlihy, Yossi Lev, Victor Luchangco, and
Nir Shavit. A simple optimistic skiplist algorithm. In
SIROCCO ’07: Proceedings of the 14th Colloquium
on Structural Information and Communication Com-
plexity, volume 4474 of Lecture Notes in Computer
Science, pages 124–138. Springer, 2007.

[11] Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer III. Software transactional memory
for dynamic-sized data structures. In PODC ’03:
Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 92–101,
New York, NY, USA, 2003. ACM.

[12] Maged M. Michael. High performance dynamic lock-
free hash tables and list-based sets. In SPAA ’02:
Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures, pages 73–82,
New York, NY, USA, 2002. ACM.

[13] J. Eliot B. Moss. Open nested transactions: Semantics
and support. In Workshop on Memory Performance
Issues (WMPI 2006), February 2006.

[14] Yang Ni, Vijay Menon, Ali-Reza Abd-Tabatabai,
Antony L. Hosking, Richard L. Hudson, J. Eliot B.
Moss, Bratin Saha, and Tatiana Shpeisman. Open nest-
ing in software transactional memory. In PPoPP ’07:
Proceedings of the 12th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
2007.

[15] Torvald Riegel, Pascal Felber, and Christof Fetzer.
A Lazy Snapshot Algorithm with Eager Validation.
In DISC ’06: Proceedings of the 20th International
Symposium on Distributed Computing, pages 284–

298, September 2006.

[16] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-
free extensible hash tables. J. ACM, 53(3):379–405,
2006.

[17] Travis Skare and Christos Kozyrakis. Early release:
Friend or foe? In Workshop on Transactional Memory
Workloads, June 2006.

[18] John D. Valois. Lock-free linked lists using compare-
and-swap. In PODC ’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed
computing, pages 214–222, New York, NY, USA,
1995. ACM.

[19] William E. Weihl. Local atomicity properties: Modular
concurrency control for abstract data types. ACM
Trans. Program. Lang. Syst., 11(2):249–283, 1989.

A. Proof of Correctness of the Linked list
Here, we prove that our linked list algorithm imple-
ments an integer set. The proof relies on elastic opacity
(Definition 3.4) and the pseudocode of Algorithm 2.
First-of-all, we recall the semantics of the integer set.
Given a set S:

• search(i) operation returns true if the node i is
present in S, false otherwise;
• insert(i) operation augments the set S with the node
i if i is not in S, S is unchanged otherwise;
• remove(i) operation removes the node i from S if i

is in S, S is unchanged otherwise.

In the following, we refer to such an integer set opera-
tion as Π. Next, we state preliminary definitions.

DEFINITION A.1. A node n is reachable if one of the
two following properties holds:

• set .head .next = n or
• there exists a reachable nodem such that m.next =
n.

DEFINITION A.2. Integer i is in the set if and only if
there is a reachable node n such that n.key = i.

First lemma gives an important result for proving
the correctness of operation search(∗) and relies on the
definition of consistent cut (Definition 3.3).

LEMMA A.3. Operation find(i) returns a pair of nodes
〈curr ,next〉 such that

1. curr .key < i ≤ next .key and

2. curr and next are consecutive nodes of the list at
some point in time during the corresponding execu-
tion of find.

Proof. We show the two points separately.

1. First, we show that curr .key < i ≤ next .key .
At the beginning curr is initialized at the head of
the linked list, while next is initialized to its suc-
cessor in the linked list. As the loop iterates, the
curr and next parses the linked list in ascending
order, unless the transaction aborts. Observe that
the function exits the main loop (and returns) if
next .key ≥ i at Line 18. If so, curr and next are
returned as is. By absurd, if curr .key ≥ i then the
loop would have ended at least one iteration before,
so curr .key < i ≤ next .key . Finally, observe that
next ← read(curr .next). Hence, during the last it-
eration of the main loop of read, curr .next = next .

2. Second, we show that curr and next are consecu-
tive nodes of the list at some point in time during the
corresponding execution of find. Observe that a find
operation is always called as part of an elastic trans-
action. As a consequence of Definition 3.3, there is
no two write operations on curr and next between
read(curr) and read(next) executed by find. Hence,
there are two cases to consider whether one of these
two writes is missing. If there is no write on curr ,
then at the time the second read occurs on next , a
read of curr would return the same value as the
one that has been returned before by read(curr).
If there is no write on next , then at the time the
first read on curr occurs, the second would have re-
turned the same value as the one it will return with
read(next). Note that both cases are true for the case
next = curr , because none of these writes can oc-
cur between the reads by Definition 3.3. It follows
that each of the two nodes are consecutive at some
time during the execution of this find.

The result follows. �

We know by elastic-opacity (Definition 3.4) that no
aborting transactions modify the state of the system
hence if a transaction aborts, we are ensured that safety
is preserved (only committing transactions can violate
safety). The major difficulties when implementing inte-
ger set stem from the concurrent updates problem [18].
For instance, when attempting to insert two distinct val-
ues concurrently between nodes a and b, particular ef-

forts are required to prevent one of these insert from
hiding the result of the other. Another critical example
is when one inserts a value between a and b while an-
other is concurrently deleting a, special care is needed
to ensure that the insert will be effective. Finally delet-
ing two successive nodes a and b concurrently may eas-
ily result in the sole deletion of node a. Next, we show
that no update can annihilate the effect of another up-
date on our linked list implementation.

LEMMA A.4. Let π be the write(curr .next , ∗) of an
insert or a read(curr .next) or a write(curr .next , ∗)
of a remove operation. While π executes:

• either curr .next = next ,
• or π aborts its transaction.

Proof. Assume that curr .next 6= next . The proof
relies on the fact that π detects that curr and next are
not consecutive and aborts its transaction.

By functions find() and read(), at some time t during
the last iteration of its main loop we have curr .next =
next . At this time t, either curr .tlk .time ≤ ub and
next .tlk .time ≤ ub or ub is updated to next .tlk .time
such that next .tlk .time > curr .tlk .time before
find() returns. Hence curr .tlk .time ≤ ub and
next .tlk .time ≤ ub when the normal transaction of
π starts.

Since any modification uses a two-phase locking
mechanism to modify the value and the timestamp of
a location, either π detects that curr is locked, i.e.,
curr .tlk .owner 6= ⊥ or it detects that its version is too
recent, i.e., curr .tlk .time > ub. In the former case,
since no previous write operation occurs in the same
transaction, curr .tlk .owner 6= t and this transaction
aborts as indicated Lines 49 and 70 of Algorithm 1. In
the latter case, it cannot extend and aborts because the
transaction type is elastic (Line 73).

Consequently, either curr .next = next or π aborts
its enclosing transaction (Line 70 or Line 73 of Algo-
rithm 1). �

Next, we show that the time at which insert or
remove operation acquires its lock during its write op-
eration serves as a serialization point for the operation.

LEMMA A.5. Let Π1 and Π2 be two update operations
on the linked list. Then among them, the first to acquire
the lock in its write appears to have executed before the
other.

Proof. There are only two types of operations to con-
sider here: insert(∗) and remove(∗). It is easy to see
that if these operations do not conflict then they can be
arbitrarily ordered and if these operations are not con-
current then the first to execute can not see the result of
the second one.

Consider the cases where they conflict, hence either
(i) insert(∗) inserts a node between nodes a and b and
remove(a) deletes a or deletes b, or (ii) two insert(a)
insert at node a, or (iii) two remove(a) delete node a,
or finally, (iv) remove(a) deletes node a and remove(b)
deletes node b.

If insert acquires the lock first before remove ac-
quires it then insert acquires the lock on a either be-
fore the read of remove occurs, or between the read
and write of remove. In the former case, the read de-
tects it and aborts as indicated in Lemma A.4. In the
latter case, by the elastic-opacity of transactions (The-
orem 5.1), one must abort (i.e, when the transaction of
the remove commits, it sees that clock has been in-
creased leading to an abort). Hence insert appears as
occurring before the remove if it acquires the lock first.

In the other cases, the operations conflict on
write(a.next, ∗) so that one acquires the lock before
the other, modifying a.next and the other aborts as in-
dicated by Lemma A.4. Again the first to acquire the
lock executes while the other aborts and restarts later.
�

LEMMA A.6. A search(i) operation appears as if it is
executed atomically at the time the read(next) of its
find occurs such that curr .next .key ≥ i.

Proof. If a search occurs immediately after an update
acquires a lock on curr , then search will spin over
the lock until curr .tlk .owner = ⊥. Hence the read
will observe the result of the update and will appear
to be ordered after, so as the enclosing search. If how-
ever, it consults curr before any operation acquires a
lock on it, then it will be ordered before. Finally, by
Lemma A.3, curr .next .key ≥ i. �

INVARIANT A.7. For any node curr in the linked list,
if curr .next = next then curr .key < next .key .

Proof. By Lemma A.3, the curr and next returned by
find(i) are such that curr .key < i ≤ next .key . By
examination of the code of insert(i) node i can only be

inserted between a and b such that a.key < i < b.key .
The result follows. �

THEOREM A.8. The linked list implementation pre-
sented in Algorithm 2 is correct.

Proof. By Invariant A.7 the linked list is a sorted linked
list with no duplicates. By Lemma A.5, an update op-

eration admits a serialization point at which it appears
to be atomic. Hence the semantics of remove and insert
are satisfied. Finally, by Lemma A.3 the search opera-
tion respects its semantics and by Lemma A.6, search
is linearizable. �

