
Concurrent Programming Paradigms,
A Comparison in Scala

Mohsen Lesani
EPFL, IC

Martin Odersky
EPFL, IC

Rachid Guerraoui
EPFL, IC

ABSTRACT
There is a rapid rise of multi-cores in recent hardware
architectures. To exploit computational power of multi-core
architectures, software should shift to be as concurrent as
possible; and therefore should have concurrency control
mechanisms. There are different concurrency programming
paradigms such as locking and conditions, non-blocking
algorithms, actors and software transactional memory (STM).
There is a need to compare these approaches in terms of ease of
use and performance. This work implements three fundamental
cases of credit transfer, producer-consumer and token ring with
different paradigms in Scala and the quantitative and qualitative
results of the experiments are presented. Besides an STM
implementation in Scala is presented.

Keywords
Concurrent Programming, Actors, STM.

1. INTRODUCTION
As modern hardware architectures require concurrent software,
the need for a concurrent programming model is sensed more than
ever before. There are four known concurrency programming
models: locking and conditions, non-blocking algorithms, actors
and software transactional memory. Locks and conditions is the
primitive concurrency programming model that is provided by
most languages. Non-blocking algorithms are ad-hoc algorithms
that are lockless and hence provide progress. Actor [6] is an
abstraction over thread with high level message passing features.
A transaction [2] [3] [4] [7] [8] is a code block that its reads and
writes to the shared memory occur logically at a time instant. This
study is to compare these paradigms and identify the strengths of
each.

To compare these paradigms three fundamental cases are selected:
bank account credit transfer, producer-consumer and token ring.
Each case is implemented with each of the paradigms. The
comparison is based on ease of use and performance results.

The report starts by giving an introduction for each of the
paradigms. Then the cases and their implementation with each of
the paradigms are explained. Results are presented and finally
conclusions and future works follow.

2. Paradigms
Fundamentally, the two mechanisms that are expected from a

concurrency programming model are isolation and signaling.
Isolation mechanism prevents concurrent operations from
accessing shared data in an intermediate (and probably
inconsistent) state. Signaling is the mechanism that a process
employs to inform another process about an event.

Signaling can be implemented using the isolation mechanism and
a shared memory variable. The signaling thread writes on the
variable in isolation and the waiting thread continuously reads
from the variable in isolation. The problem with this
implementation of signaling is that it is polling (i.e. busy waiting).
To have an efficient implementation of signaling, the scheduler
should also be engaged. It should not schedule the waiting process
until the variable is written by the signaling thread. In fact, this is
why intrinsic condition is supported in Java Object class besides
the intrinsic lock.

2.1 Locks and Conditions

2.1.1 Isolation
The pessimistic approach to preserve isolation is to prevent
executions that may violate it. To isolate some operations, a
pessimistic approach is to allow them to be executed only one at a
time. This approach is called mutual exclusion. Lock is an
abstraction to provide mutual exclusion. When a process acquires
a lock, any later process that ties to acquire the lock is suspended
until the first process releases the lock. Therefore, a block can be
mutually exclusive by acquiring and releasing a lock respectively
before and after the block. Hence, blocks with the same lock can
execute operations in isolation.

Using one lock for all operations is too restrictive. It can serialize
processes that could potentially execute in parallel; and hence
may sacrifice concurrency. Using few locks (and one in the
extreme) is called coarse-grained locking. In fact, each process
needs to prevent others from accessing only the data that it is
going to access. This observation, leads to the idea of defining
separate locks for separate parts of shared data which is called
fine-grained locking. To be more precise, a lock can be defined
for each largest part of shared data that has the same set of
concurrently accessing operations. Each operation is to acquire
and release the set of locks that correspond to parts of data that it
is going to access. The problem with acquiring multiple locks is
that if they are not acquired in the same order in different
processes deadlock may happen. There is a tradeoff between
deadlock safety of coarse-grained locking and performance of
fine-grained locking.

Locks are known to have some inherent shortcomings. The
first shortcoming of locks is their lack of compositionality. For
instance, suppose that objects of two or more classes should be
composed to define a new class. If there is an operation of the new
class that should perform some operations of the composed
objects in isolation, fine-grained locking is possible only when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

composed classes expose their internal locks. Exposing locks out
of classes has an intense effect on modularity.

The second problem of locks is that they prevent progress. A
process trying to acquire a lock that is previously acquired by
another process is blocked. If the current lock owner is delayed,
every process that is blocked for the lock is also delayed. Cache
misses, page faults and preemption by the operating system delay
processes. Such long delays are undesirable in real-time and event
driven systems. When a low priority task holds a lock that is
required by a high priority task, the latter has to block until the
former releases the lock. In such situations, the relative priorities
of the two tasks are inverted. This is called priority inversion.
Besides, if an interrupt handler needs to acquire a lock that is
previously acquired by a preempted process, the handler cannot
proceed. This is while separate event handling processes
maintaining GUI, real-time audio rendering, and disk and network
I/O need to proceed timely. This is especially true for interactive
and rich multimedia applications like electronic games.

2.1.2 Signaling
Condition is the signaling mechanism that is used with locks. A
process that calls wait on a condition object is suspended until
another process calls signal on the same condition.

2.2 Non-blocking Algorithms
To circumvent blocking problems of locks that are mentioned
before, ad hoc non-blocking algorithms are devised for some data
structures. Non-blocking algorithms are lockless and their basic
idea is redundant data and rechecking.

An operation is wait-free if every concurrent execution of it
finishes in a finite number of steps. Hence, wait-free operations do
not produce priority inversion and not hinder event handlers.
Wait-freedom is the strongest progress property. Although
stronger progress properties are more attractive, they are usually
harder to devise and sometimes inefficient. Hence, weaker
properties are sometimes settled for. An operation is lock-free if at
least one concurrent execution of it finishes in a finite number of
steps. An operation is obstruction-free if when it is executed
alone, it finishes in a finite number of steps. Every wait-free
algorithm is lock-free and every lock-free algorithm is
obstruction-free. So the properties are ordered in strength as wait-
freedom, lock-freedom and obstruction-freedom.

2.3 Actors
Processes with a unique memory space can communicate via the
shared memory. In contrast, processes on different memory spaces
communicate by message passing. Communication via message
passing can be applied to shared memory processes too. Actor is
an abstraction on threads with message passing features. Although
actors can share data, it is a design recommendation not to have
shared objects in actors and to do communication only by
message passing.

2.3.1 Isolation
Actors provide isolation by the fact that for each actor instance,
there is one (virtual) thread that executes the actor code. This
means that operations executed in the actor code are serialized and
hence are done in isolation. Accesses to the actor message boxes
by send and receive operations are also already synchronized by
the supporting library or language. This mechanism for isolation
is coarse-grained. For example, handling messages of different

types may need to access different data inside the actor and hence
can be done concurrently but are done in sequence by the actor.

2.3.2 Signaling
On the other hand actors provide a rich mechanism for signaling.
Primitive condition objects can only send plain signals. To pass
informative messages, they should be used together with shared
objects. This is while actor message passing mechanisms are self
contained and easy to use.

2.4 Software Transactional Memory

2.4.1 Isolation
The optimistic approach to maintain isolation is to let operations
execute without any prevention at the beginning and to rollback
and retry an operation if it is invalidated. An operation is
invalidated when it is found that its execution has not been or will
not be in isolation. The following paragraphs present how this
work has implemented transactional memory.

The atomic method creates a transaction descriptor object for
every transaction. The transaction descriptor is saved as a thread
local variable to be accessed later by read and write methods of
transactional objects.

In order to rollback, transactional objects should be backed up
before being written. As only one of concurrent transactions that
write on a transactional object can finally commit, only one
transaction at a time is allowed to write on an object. As there is
only one writing transaction at a time, transactional objects have
only a single backup of their fields.

Every transactional object stores a reference to the descriptor of
its last writing transaction. When the last writing transaction of an
object is still active and the current transaction wants to write on
the object i.e. on a write-write conflict, the current transaction
should select to abort the last writing transaction or itself. It can
abort itself by throwing an abort exception. The atomic method
catches the exception and retries executing the transaction code. It
can abort the last writing transaction by setting the status in its
descriptor to aborted. As a transaction status may be set to aborted
by other transactions, any transaction checks not to have an
aborted status before any read, write and also commit.

Multiple transactions are allowed to read from an object.

The read-write conflict is when a transaction Tr reads an object O
and then another transaction Tw writes on O. The problem is that
then Tw can commit and update some objects S1 including O and
Tr can then read some committed objects S2 from S1. Tr can
experience reading inconsistency between the old value of O and
S2. There are two approaches to the read-write problem: visible
and invisible reads.

With invisible reads, the DSTM2 approach, transaction descriptor
has a read list. Every transaction that reads an object adds the
object to the read list in its descriptor. On any subsequent read or
write, transactions check at the beginning whether all the read
objects are still current; if not, the transaction can abort itself.

With visible reads, this implementation’s approach, transactional
objects have read lists. Every transaction that reads an object adds
its own descriptor to the read list of the object. On read-write
conflict, Tw should select to abort itself or to abort all the
previously reading transactions Trs of O. To abort Trs, Tw changes
the status of all the transaction descriptors in the read list of O to

aborted. This is because not only these transactions can observe
inconsistency but also they can propagate it to writes and finally
commit.

The write-read conflict is when the last writing transaction Tw of
an object O is active and another transaction Tr wants to read from
O. Tr can get the current stable value of O or its tentative value
from Tw. For the latter, the current transaction will be dependent
on the writing transaction and following this dependency is hard.
Hence, Tr usually reads the current stable state of the object. The
problem is that then Tw can commit and update a set of objects S1
in addition to O. Then Tr can read some objects S2 from S1 and
experience inconsistency between the old value of O and new
values of S2 objects. There are two approaches to this problem
based on the strategy chosen for read-write conflict.

With invisible reads, validation is done on the read list of the
transaction on any read. Hence the fact that O is updated is
detected in the validation that is done when Tr wants to read any
object from S1. Hence the transaction can abort itself not to
observe any inconsistent data.

It is notable that in visible reads, on the write-read conflict, one of
the transactions should be aborted. Otherwise, Tr is unable to
detect inconsistencies later and reading inconsistency can lead to
written inconsistency by Tr that can finally commit.

Committing of a transaction i.e. updating written objects to new
values should be done at once; otherwise some transactions may
experience inconsistencies by accessing some new and old objects
together. This is usually done by atomically setting the transaction
status as committed in its descriptor and also the fact that if the
last writing transaction of an object is committed, any first read or
write on the object updates the current fields with the new values
from the last writing transaction.

2.4.2 Signaling
There is no signaling mechanism in the fundamental STM model.
Waiting for a condition can be throwing an abort exception and
retrying the atomic block. In other words, signaling is
implemented by isolation. This is busy waiting and hence affects
performance. An optimization to STM conditions is to retry the
transaction only when at least one of the previously read
transactional objects is written by another transaction [5].
Although many useless retries are eliminated by this optimization,
some are still present. This is because updates to any of the
previously read objects that are irrelevant to the waited condition
cause the transaction to be retried.

The following paragraphs explain how STM conditions are
implemented in Scala. When a transaction calls conditionWait, a
wait exception is thrown that is caught in the transaction retry
loop. On catching a wait exception from a try, the current thread
sets the status of the transaction to waiting and waits on the
intrinsic condition of the transaction descriptor.

In the visible reads strategy, a read list is maintained by each
transactional object. A new list called waiting list is added to each
transactional object. A transaction that writes on the object
traverses the read list of the object. Active transactions of the list
are aborted and waiting transactions are enqueued to the waiting
list.

A new list named write list is added to each transaction descriptor.
When a transaction writes on a transactional object, it adds the

object to the write list of its descriptor. When a transaction
succeeds in committing, it traverses the objects in the write list of
its descriptor. From each of these objects, it gets the waiting list
and notifies the transactions in the waiting lists.

3. Cases
The three cases that are selected for comparison are chosen
according to expected fundamental mechanisms that are
previously mentioned i.e. isolation and signaling. Transfer of
credit in bank accounts should be done in isolation or the integrity
of the bank account balances is violated. In addition to isolation,
producer-consumer case needs signaling to inform waiting
consumers of a new production. The token ring case employs
signaling to pass the token to the next stations.

3.1 Bank Account Credit Transfer
Transferring of credits between bank accounts is the classical
example of concurrent access to shared data. An amount of credit
should be debited from an account and credited to another
account.

3.1.1 Locks and Conditions

3.1.1.1 Coarse-grained
In the coarse-grained locking all the transfers even if they are not
conflicting are serialized by the bank intrinsic lock.

this.synchronized {
account1.withdraw(amount)
account2.deposit(amount)

}

3.1.1.2 Fine-grained
In the fine-grained locking rather than having a lock for the whole
bank, each account has a lock. It is notable that locks are always
acquired in the same order.

if (accNo1 <= accNo2) {
account1.lock.lock
account2.lock.lock

} else {
account2.lock.lock
account1.lock.lock

}

account1.withdraw(amount)
account2.deposit(amount)

account1.lock.unlock
account2.lock.unlock

3.1.2 Actors
The bank account case is implemented twice with two different
designs.

3.1.2.1 First implementation
For each bank account, a transferer actor is created. The transferer
of an account is responsible for credit transfers of the account to
and from other accounts with larger account numbers. Client
transfer requests are forwarded by the bank class to the right
transferer.

if (accNo1 < accNo2)
transferers(accNo1) ! TransferRequest(/*...*/)

else
transferers(accNo2) ! TransferRequest(/*...*/)

def act() {
 react {
 case itr @ ITransferRequest(/*...*/ accountNo2, amount, forward) =>
 //...
 transferers(accountNo2) ! WaitRequest
 react {
 case WaitOK =>

 if (forward)
 transfer(accountNo1, accountNo2, amount)
 else
 transfer(accountNo2, accountNo1, amount)
 sender ! GoOnRequest
 // ...
 act
 }
 case WaitRequest =>
 sender ! WaitOK
 react {
 case GoOnRequest =>
 act
 }
 case BalanceRequest =>
 sender ! accounts(accountNo1).balance
 case TerminateRequest =>
 }
}

The code of transferer actor is presented in the following code
snippet. Assume two bank accounts B1 and B2 respectively with
transferer actors TB1 and TB2 where without loss of generality,
account number of B1 is less than that of B2. A transfer between
accounts B1 and B2 is forwarded to TB1. It is the owner of B1 and
can readily access it. But for accessing B2, it should communicate
with TB2 to preserve isolation of transfer operations. To be more
precise, before performing a transfer, TB1 sends a message to TB2
to ask him to wait. When a transferer (i.e. TB2) receives a wait
request, it sends an acknowledge message to the requester (i.e.
TB1) and waits until the requester (i.e. TB1) sends a “go on”

message. When the wait request is acknowledged by TB2, TB1

performs the transfer operation and then a message is sent to the
TB2 to go on. When a transfer is being done, only one transferer
actor is accessing the two accounts; and hence isolation is
preserved.

The transferer of an account only waits for transferers of accounts
with smaller account numbers. Hence there can be no cycle in the
waiting chains and there is no deadlock in waiting transferers.

3.1.2.2 Second implementation
Each account is modeled as an actor that handles withdraw and
deposit requests.

def act() {
 react {
 case Withdraw(amount) =>

 b -= amount
 sender ! WithdrawDone
 act
 case Deposit(amount) =>
 b += amount
 sender ! DepositDone
 act
 case BalanceRequest =>
 sender ! Balance(b)
 act
 case TerminateRequest =>
 }
}

As messages are handled one at a time by actors, withdraw,
deposit and balance requests are done is isolation.

The transfer operation of the bank sends withdraw and deposit
requests to account actors and wait for their acknowledgments
before returning.

accounts(accNo1) ! Withdraw(amount)
accounts(accNo2) ! Deposit(amount)
receive {
 case WithdrawDone =>
 receive {
 case DepositDone =>

}
}

The first implementation provides isolation but this
implementation turns out to be very inefficient. The second
implementation provides an eventual guarantee. Finally the sum
of all the account balances is the same as before the transfers. The
second implementation is more efficient and hence it is used in
performance comparisons.

3.1.3 STM
Credit transfer is simply an atomic block in STM.

atomic {
accounts(accNo1).withdraw(amount)
accounts(accNo1).deposit(amount)

}

3.2 Producer-Consumer
Producer-consumer is a pattern that reoccurs in designs of various
software systems. Several producers concurrently produce
productions that are concurrently consumed by consumers.
Addition to and elimination from the entity that holds the
productions should be done in isolation to preserve consistency
and prevent production loss. When there is no production
available, consumers should wait until one is produced.

3.2.1 Locks and Conditions

3.2.1.1 Coarse-grained
In the coarse-grained locking, the implicit lock of the Queue
synchronizes the whole bodies of enqueue and dequeue
operations.

3.2.1.2 Fine-grained
The code is presented in the following code snippet. Two locks
are defined for the rear and front cursors of the queue. For each of
the enqueue and dequeue operations, acquiring both locks is
required only in the worst case. To maximize parallelism of
enqueue and dequeue, the most often needed lock which is
rearLock for enqueue and frontLock for dequeue is acquired first.
The other lock can be acquired later, if needed.

def enqueue(v: Int) = {
 val newNode = new Node(0, null)
 newNode.value = v
 rearLock.lock
 val rear = rearCursor.node
 if (rear != null) {
 rear.next = newNode
 rearCursor.node = newNode
 } else {
 frontLock.lock
 frontCursor.node = newNode
 rearCursor.node = newNode
 //To awaken the threads that
 //are waiting to dequeue.
 notEmptyForFront.signalAll
 notEmptyForRear.signalAll
 frontLock.unlock
 }
 rearLock.unlock
 enqueueCount += 1
}

def dequeue(): Int = {
 frontLock.lock
 while (frontCursor.node == null)
 notEmptyForFront.await()
 var front = frontCursor.node
 var value = front.value
 front = front.next
 if (front != null) {
 frontCursor.node = front
 frontLock.unlock
 } else {
 frontLock.unlock
 value = conservativeDequeue
 }
 dequeueCount += 1
 value
}

def conservativeDequeue(): Int = {
 rearLock.lock
 while (rearCursor.node == null)
 notEmptyForRear.await()
 frontLock.lock
 var front = frontCursor.node
 var value = front.value
 front = front.next

 frontCursor.node = front
 if (front == null)
 rearCursor.node = null
 frontLock.unlock
 rearLock.unlock

 value
}

If the current state of the object necessitates acquisition of the
second lock to perform the operation, the previously executed part
of the operation may have not been run in isolation. Hence, all or
some lines of the executed part may be needed to be repeated after
the second lock acquisition. In the dequeue operation, it is after
the "else" that it is known that rearLock should also be acquired.
If the rearLock had been acquired after the "else" and then the
rearCursor had been made null, that could generate a race. An
enqueue could be done just after the "else" and then the
rearCursor would be made null. That is lost of the just enqueued
value! The fact that the next field is null cannot be relied on just
after the "else". Null inequality should be checked again after the
second lock acquisition. Such a non-isolation cannot happen in the
enqueue operation. This is because in the “else” where it is known
that the second lock should be acquired, rear is null and that
means the queue is empty. When the queue is empty, dequeue
operation cannot change this state. The current thread is already in
enqueue operation and has acquired the first lock; hence no other
thread can enter enqueue and change the state. Therefore no
operation can change the current state and enqueue operation can
safely rely on its current information about the object state and go
on its execution.

To prevent dead-lock, the order of acquiring the locks should be
the same in all operations. To have the same order of lock
acquisition, as enqueue and dequeue operations have acquired
different locks at the beginning, one of the operations should
release its current lock and restart the operation by acquiring the
other lock first and then its current lock again. Concerning
performance, it seems better not to restart the operation that does
not need to repeat some previously done parts of the operation and
leave it as is; but to restart the operation that needs some
repetitions anyway. This is why dequeue is repeated in the
conservative dequeue method.

Before waiting on a condition, the lock related to it should have
been acquired. Non-emptiness condition should be waited on at
the beginning of both dequeue and conservative dequeue methods.
As the frontLock and rearLock are respectively acquired at the
beginning of these methods, a non-empty condition is defined on
each of these locks. Both of these conditions are also signaled
when an enqueue is done on an empty queue.

3.2.2 Non-blocking algorithms
The performance evaluations employ the wait-free algorithm
proposed in [1].

3.2.3 Actors
The mediator actor is the single reference point for producers and
consumers. When it receives a request from the producers (or
consumers) and there is no previously stored request from
consumers (or producers), the mediator stores the request in an
internal queue for producers (or consumers). If there is a stored
request from the other party, it simply services the current and the
stored requests.

def act() {
 if (count != TOTAL_PRODUCTION_COUNT)
 react {
 case p: Production =>
 if (! consumerQueue.isEmpty) {
 consumerQueue.dequeue ! p

 count = count + 1
 } else

 prodcutionQueue.enqueue(p)
 act

 case ConsumeRequest =>
 if (! prodcutionQueue.isEmpty) {
 sender ! prodcutionQueue.dequeue
 count = count + 1
 } else

 consumerQueue.enqueue(sender)
 act

 }
}

3.2.4 STM
The STM implementation of a queue is straightforward from the
sequential implementation. The enqueue and dequeue operations
are put inside atomic blocks. When the queue is empty an abort or
wait exception should be thrown to retry the transaction. Cursor
and Node classes with the same definition as the sequential ones
are annotated as atomic.

3.3 Token Ring
Token ring is basically a local area network (LAN) protocol at the
data link layer (DLL). Stations on a token ring LAN are logically
organized in a ring topology with data being transmitted
sequentially from one ring station to the next. A control token
circulates around the ring controlling access.

As passing of the token to the next station is essentially signaling,
the simulation of token ring protocol can compare different
paradigms according to their signaling mechanisms.

3.3.1 Locks and Conditions
The station waits on the intrinsic condition of the incoming port
while the token is not inside the port yet. When the station finds
the token inside the incoming port (maybe after being notified by
the neighbor station), it takes the token from the incoming port
and puts it inside the outgoing port. The next station may have
been suspended after a wait on the outgoing port. To awake the
next station, the station notifies on the outgoing port after putting
the token in it.

 inPort.synchronized {
 while (inPort.value == null)
 inPort.wait
 outPort.synchronized {
 outPort.value = inPort.value
 outPort.notify
 inPort.value = null
 }
 }

3.3.2 Actors
The token ring is very straightforward with Actors. The actor
reacts to receiving of the token by sending it to the next station.

def act {
 if (currentRound != roundCount)
 react {

 case Token =>
 nextStation ! Token
 currentRound += 1
 act
}

}

3.3.3 STM
Port is defined as a transactional object. Inside an atomic block,
the station reads the value of the incoming port. If there is no
value inside it, conditionWait is called. As explained in section
2.4.2, by calling conditionWait, the transaction is essentially
aborted and not retried until only after the incoming port object is
updated. When a (retrying) transaction succeeds in reading the
token from the incoming port, it updates values of both incoming
and outgoing ports to null and the token respectively.

atomic {
 if (inPort.value == null) {
 //throw new AbortException
 conditionWait
 }
 else {
 outPort.value = inPort.value
 inPort.value = null
 }
}

4. Results
The paradigms are compared in ease of use and performance in
the following subsections.

4.1 Ease of use
According to the presented implementations, the simplest
paradigm to implement Credit Transfer case with was STM; on
the other hand, Actor implementations were the most
straightforward implementation of Producer-Consumer and Token
Ring cases. A subjective order of simplicity of paradigms for
Credit Transfer case is STM, Coarse-grained locking, Fine-
grained locking and Actors. For Producer-Consumer case the
order would be Actors, STM, Coarse-grained locking, Fine-
grained locking and the wait-free algorithm. For Token Ring case,
the order is Actors, STM, and locks.

4.2 Performance
For each case, separate experiments are done and in each case,
variation of definite parameters is studied. A chart shows total
time spent by each paradigm against variation of the definite
parameter.

The experiments are done on two different machines M1 and M2.
Machine M1 is a Dell Latitude E6400 Intel® Core™2 Duo CPU
P8600 @2.40GHz and machine M2 is <lpdquad spec> with eight
cores.

4.2.1 Bank Account Credit Transfer
Two experiments that are done on this case are based on variation
of two parameters: total transfer count and number of accounts.

Clients request equal number of transfers in both experiments.

4.2.1.1 Total Time vs. Total Transfer Count
Figure 1: Total time vs. total transfer count in M1Figure 1 depicts
the time spent by each paradigm for various number of transfers
in machine M1 where constant parameters are client count that is
equal to 20 and account count that is equal to 100. Client count is
the number of concurrently requesting threads or actors. To have a
closer view of less time consuming paradigms, Figure 2 depicts
only these paradigms from Figure 1.

Figure 1: Total time vs. total transfer count in M1

Figure 2: Total time vs. total transfer count in M1 (without
actors)

As expected, there is a monotonic increase of total time against
transfer count in all the paradigms.

4.2.1.2 Total Time vs. Number of accounts
Figure 3 depicts the time spent by each paradigm for various
number of accounts in machine M1 where constant parameters are
client count that is equal to 100 and total transfer count that is
equal to 10000000. A closer view of actors is depicted in Figure 5.
A closer view for the other paradigms is depicted in Figure 5.

Figure 3: Total time vs. account count in M1

Figure 4: Total time vs. account count in M1 (actors)

Figure 5: Total time vs. account count in M1 (without actors)

In coarse-grained locking, it is obvious that increasing account
count has no effect on performance. This is because there is only
one lock for all the accounts. In the other paradigms, increasing
the number of accounts decreases the probability of contention on
each account. In fine-grained locking, less contention on an
account means less blocking for clients that try to acquire its lock
and hence faster lock acquisition and faster transfers. It is

interesting that with small number of accounts, coarse-grained
locking is more efficient than fine-grained locking. This is
because contention is high and very few transfers can be
performed concurrently anyway. This is while one lock should be
acquired for coarse-grained locking while fine-grained locking
needs two. In STM, less contention means less abortion and
invalidation and hence less retries. Less retries lead to faster
execution. In Actors, less contention means shorter message
queues for the account actors and hence less waiting time for
service. That leads to faster withdraw and deposit and therefore,
faster transfers.

4.2.2 Producer-Consumer
The parameters that their variation for producer-consumer case is
studied are production count and producer/consumer count.

In the experiments, the number of producers is equal to the
number of consumers and all the producers/consumers perform
equal number of productions/consumptions.

4.2.2.1 Total Time vs. Total Production Count
Figure 6 and Figure 7 depict the total time for various production
counts respectively in machines M1 and M2 where the number of
producers/consumers is equal to 20.

Figure 6. Total time vs. production count in M1

Figure 7: Total time vs. production count in M2

4.2.2.2 Total Time vs. Producer/Consumer Count
In this experiment, the total number of productions/consumptions
is constant (equal to 9,000,000). The varying parameter is the

number of producers/consumers (and hence the number of
productions per producer/consumer). Figure 8 shows the chart for
machine M1. This experiment shows how paradigms behave in
different number of context switches.

Figure 8: Total time vs. producer/consumer count in M1

There is not much performance change in the coarse and fine-
grained locking. In coarse-grained locking, all the operations are
serialized by the intrinsic lock of the queue. The operations are
always executed in sequence regardless of the number of
concurrent operations on the queue. This argument also applied to
fine-grained locking. The only difference is the fact that all
enqueue and dequeue operations are respectively serialized on the
rear and front locks. There is a noticeable performance decrease in
STM. When there are more threads, there is more context switch.
In STM, the more context switch, the more the probability of
contention and abortion. All the messages sent to an actor are
handled in sequence regardless of the number of concurrent
requests; hence little change in performance is expected by
increase in the producer/consumer count. The step in the actor’s
performance curve is because of thread creations by the actor
scheduler. This happens when there are many blocked consumers.

Locks show the least sensitivity to context switch in this case.

4.2.3 Token Ring
4.2.3.1 Total time vs. total token passings
This experiment shows the total time spent for various number of
total token passings in a ring with forty stations. Figure 9 and
Figure 10 are respectively from machines M1 and M2.

Figure 9: Total time vs. total token passing in M1

Figure 10: Total time vs. total token passing in M2

Interestingly actors are even more efficient than locks and
conditions in this case. This is because of efficient scheduling of
actors. When an actor sends a message, the code of the receiving
actor can be executed by the current thread. Hence much of the
context switches are eliminated this way.

In this case, the transactions are never retried because of update to
irrelevant objects. Transactional signaling is expected to have
even less efficiency for transactions that read several objects
before waiting on a condition.

4.2.3.2 Total Time vs. Station Count
In this experiment, the total number of token passings is constant
(equal to 450000) and the number of station counts vary. Varying
the number of active entities shows how each paradigm behaves
against context switch. Figure 11 shows results from execution on
M1.

Figure 11: Total time vs. station count in M1

Increase of context switch increases the abortion probability in
STM. Hence, STM has the most performance sensitivity to
context switch.

5. Conclusions and Future Work
Although locking is very efficient, it is hard to program fine-
grained locking and more importantly it has some inherent
shortcomings such as lack of compositionality, possibility of
priority inversion and blocking event handlers. Non-blocking
algorithms are also well at performance but developing such
algorithms are hard enough to expect them only from experts.
Non-blocking algorithms seem to be the best paradigm for thread
safe libraries as they don’t block and are also efficient. Hence
STM or Actors are the choices for a general concurrent
programming paradigm.

Based on the performed experiments, from the programmer point
of view, some applications are suited to be programmed with
STM while others are more easily programmed with Actors. The
choice of STM vs. Actors is a question of application and design.

The simulations show STM to be more efficient in providing
isolation. This is while the operations that are experimented are
short or medium-sized transactions and longer transactions should
also be experimented. In addition, experiments show sensitivity of
STM performance to context switch. The simulations show that
Actors are very efficient in providing signaling. Interestingly they
are even more efficient than primitive conditions.

Actor and STM have strength in different aspects. Actors support
high level message passing while transactions support isolation
well. If the problem is a data consistency problem then it is better
to take advantage of efficiency of STM isolation. On the other
hand, if it is a coordination problem then it can be implemented
efficiently with Actors.

A future work is how to integrate the two approaches in a
semantically well-defined and efficient way. It should be
investigated how the isolation ideas from transactions and the
message passing ideas from actors can be integrated in a
semantically well defined and efficient way.

6. REFERENCES
[1] Michael, M. M. and Scott M. L. Simple, Fast, and Practical

Non-Blocking and Blocking Concurrent Queue Algorithms,
Proc. 15th ACM Symp. on Principles of Distributed
Computing

[2] Herlihy, M., Luchangco, V., Moir, M., and Scherer, W. N.
2003. Software transactional memory for dynamic-sized data
structures. In Proceedings of the Twenty-Second Annual
Symposium on Principles of Distributed Computing (Boston,
Massachusetts, July 13 - 16, 2003). PODC '03. ACM, New
York, NY, 92-101. DOI=
http://doi.acm.org/10.1145/872035.872048

[3] Herlihy, M., Luchangco, V., and Moir, M. 2006. A flexible
framework for implementing software transactional memory.
In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Portland, Oregon, USA,
October 22 - 26, 2006). OOPSLA '06. ACM, New York, NY,
253-262. DOI= http://doi.acm.org/10.1145/1167473.1167495

[4] Dice, D., Shalev, O., and Shavit, N. Transactional Locking
II, Lecture Notes in Computer Science

[5] Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M.
2005. Composable memory transactions. In Proceedings of
the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Chicago, IL, USA, June
15 - 17, 2005). PPoPP '05. ACM, New York, NY, 48-60.
DOI= http://doi.acm.org/10.1145/1065944.1065952

[6] Scala Actors: Unifying thread-based and event-based
programming, Philipp Haller and Martin Odersky,
Theoretical Computer Science, Volume 410, Issues 2-3,
February 2009, Pages 202-220. (PDF, abstract,
doi:10.1016/j.tcs.2008.09.019)

[7] Dragojevic, A., Guerraoui, R., Kapalka, M. Stretching
Transactional Memory

[8] H. T. Kung, John T. Robinson. On optimistic methods for
concurrency control, ACM Transactions on Database System

