
Fractional Collections with Cardinality Bounds,
and Mixed Linear Arithmetic with Stars

Ruzica Piskac and Viktor Kuncak

LARA - I&C - EPFL
emails: firstname.lastname@epfl.ch

INR 318, Station 15, CH-1015 Lausanne, Switzerland

Abstract. We present decision procedures for logical constraints involv-
ing collections such as sets, multisets, and fuzzy sets. Element member-
ship in our collections is given by characteristic functions from a finite
universe (of unknown size) to a user-defined subset of rational numbers.
Our logic supports standard operators such as union, intersection, dif-
ference, or any operation defined pointwise using mixed linear integer-
rational arithmetic. Moreover, it supports the notion of cardinality of
the collection, defined as the sum of occurrences of all elements. Decid-
ing formulas in such logic has applications in software verification.
Our decision procedure reduces satisfiability of formulas with collec-
tions to satisfiability of formulas in an extension of mixed linear integer-
rational arithmetic with a “star” operator. The star operator computes
the integer cone (closure under vector addition) of the solution set of
a given formula. We give an algorithm for eliminating the star opera-
tor, which reduces the problem to mixed linear integer-rational arith-
metic. Star elimination combines naturally with quantifier elimination
for mixed integer-rational arithmetic. Our decidability result subsumes
previous special cases for sets and multisets. The extension with star is
interesting in its own right because it can encode reachability problems
for a simple class of transition systems.

Keywords: verification and program analysis, sets, multisets, fuzzy sets,
cardinality operator, mixed linear integer-rational arithmetic

1 Introduction

In this paper we show decidability of a logic for reasoning about collections of
elements such as sets, multisets (bags), and fuzzy sets. We present a unified
logic that can express all these kinds of collections and supports the cardinality
operator on collections.

Our approach represents a collection of elements using its characteristic func-
tion f : E → R. Inspired by applications in software verification [9], we assume
that the domain E is a finite but of unknown size. The range R depends on the
kind of the collection: for sets, R = {0, 1}; for multisets, R = {0, 1, 2, . . . , }; for
fuzzy sets, R is the interval [0, 1] of rational numbers, denoted Q[0,1]. With this

2

representation, operations and relations on collections such as union, difference,
and subset are all expressed using operations of linear arithmetic. For example,
the condition A ∪ B = C becomes ∀e∈E. max(A(e), B(e)) = C(e), a definition
that applies whether A,B are sets, multisets, or fuzzy sets. A distinguishing
feature of our constraints, compared to many other approaches for reasoning
about functions E → R, e.g. [2, Chapter 11], is the presence of the cardinality
operator, defined by |A| =

∑
e∈E A(e). The resulting language freely combines

the uses linear arithmetic at two levels: the level of individual elements, as in
the subformula max(A(e), B(e)) = C(e), and the level of sizes of collections,
as in the formula |A ∪ B| + |A ∩ B| = |A| + |B|. The language subsumes con-
straints such as quantifier-free Boolean Algebra with Presburger Arithmetic [9]
and therefore contains both set algebra and integer linear arithmetic. It also
subsumes decidable constraints on multisets with cardinality bounds [12,13].

The contribution of this paper is the decidability of constraints on collections
where the range R is the set Q of all rational numbers. Our constraints can
express the condition (∀e.int(A(e)) ∧A(e) ≥ 0) that the number of occurrences
A(e) for each element e is a non-negative integer number, so they subsume the
case R = {0, 1, 2, . . . } solved in [14, 13], which, in turn, subsumes the case of
sets [9]. Moreover, our constraints can express the condition ∀e.(0 ≤ A(e) ≤ 1),
which makes them appropriate for modelling fuzzy sets.

Analogously to [12], our decision procedure is based on a translation of a
formula with collections and cardinality constraints into a conjunction of a mixed
linear integer-rational arithmetic (MLIRA) formula and a new form of condition,
denoted u ∈ {v | F (v)}∗. Here the star operator denotes the integer conic hull
of a set of rational vectors [5]. Therefore, {v | F (v)}∗ denotes the closure under
vector addition of the set of solution vectors v of the MLIRA formula F . Formally,

u ∈ {v | F (v)}∗ ↔ ∃K ∈ {0, 1, 2, . . .}. ∃v1, . . . ,vK . u =
K∑

i=1

vi ∧
K∧

i=1

F (vi)

The star operator is interesting beyond its use in decidability of constraints on
collections. For example, it can express the reachability condition for a transi-
tion system whose state is an integer or rational vector and whose transitions
increment the vector by a solution of a given formula [13].

In contrast to the previous work [12, 13], the formula F in this paper is not
restricted to integers, but can be arbitrary MLIRA formula. Consequently, we are
faced with the problem of solving an extension of satisfiability of MLIRA formulas
with the conditions u ∈ {v | F (v)}∗ where F is an arbitrary MLIRA formula. To
solve this problem, we describe a finite and effectively computable representation
of the solution set S = {v | F (v)}. We use this representation to express the
condition u ∈ S∗ as a new MLIRA formula. This gives a “star elimination”
algorithm. As one consequence, we obtain a unified decision procedure for sets,
multisets, and fuzzy sets in the presence of the cardinality operator. As another
consequence, we obtain the decidability of the extension of quantified mixed
linear constraints [18] with stars.

3

Examples of constraints on sets. For each set variable s we assume the
constraint ∀e.(s(e) = 0 ∨ s(e) = 1).

formula informal description

x /∈ content ∧ size = card content −→
(size = 0 ↔ content = ∅)

using invariant on size to
prove correctness of an
efficient emptiness check

x /∈ content ∧ size = card content −→
size + 1 = card({x} ∪ content)

maintaining correct size
when inserting fresh element
into set

size = card content ∧
size1 = card({x} ∪ content) −→

size1 ≤ size + 1

maintaining size after
inserting an element into set

content ⊆ alloc ∧
x1 /∈ alloc ∧
x2 /∈ alloc ∪ {x1} ∧
x3 /∈ alloc ∪ {x1} ∪ {x2} −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting
three objects into a
container data structure

content ⊆ alloc0 ∧ x1 /∈ alloc0 ∧
alloc0 ∪ {x1} ⊆ alloc1 ∧ x2 /∈ alloc1 ∧
alloc1 ∪ {x2} ⊆ alloc2 ∧ x3 /∈ alloc2 −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting at
least three objects into a
container data structure

x ∈ C ∧ C1 = (C \ {x}) ∧
card(alloc1 \ alloc0) ≤ 1 ∧
card(alloc2 \ alloc1) ≤ cardC1 −→

card (alloc2 \ alloc0) ≤ cardC

bound on the number of
allocated objects in a
recursive function that
incorporates container C into
another container

Examples of constraints on multisets. For each multiset variable m we as-
sume the constraint ∀e.int(m(e)) ∧A(e) ≥ 0.

size = card content ∧
size1 = card({x}] content) −→

size1 = size + 1

maintaining size after inserting an
element into multiset

Examples of constraints on fuzzy sets. For each fuzzy set variable f we
assume the constraint ∀e.0 ≤ f(e) ≤ 1.

2|A| 6= 2|B|+ 1 example formula valid over
multisets but invalid over fuzzy sets

(∀e.U(e) = 1) → |A ∩B|+ |A ∪B| ≤ |A|+ |U | example formula valid over fuzzy
sets but invalid over multisets

(∀e.C(e) = λA(e) + (1− λ)B(e)) →
A ∩B ⊆ C ⊆ A ∪B

basic property of convex
combination of fuzzy sets [19], for
any fixed constant λ ∈ [0, 1]

Fig. 1. Example constraints in our class.

4

2 Examples

Figure 1 shows small example formulas over sets, multisets, and fuzzy sets that
are expressible in our logic. The examples for sets and multisets are based on
verification conditions from software verification [9]. The remaining examples
illustrate basic differences in valid formulas over multisets and fuzzy sets.

We illustrate our technique on one of the examples shown in Figure 1: we
show that formula ∀e.U(e) = 1 → |A ∩ B| + |A ∪ B| ≤ |A| + |U | is valid where
U,A, and B are fuzzy sets. To prove formula validity, we prove unsatisfiability
of its negation, conjoined with the constraints ensuring that the collections are
fuzzy sets:

∀e.U(e) = 1 ∧ |A|+ |U | < |A ∩B|+ |A ∪B| ∧
∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

We first reduce the formula to the normal form, as follows. We flatten the formula
by introducing fresh variables ni for each cardinality operator. The formula
reduces to:

n1 + n2 < n3 + n4 ∧ n1 = |A| ∧ n2 = |U | ∧ n3 = |A ∩B| ∧ n4 = |A ∪B| ∧
∀e.U(e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

We next apply the definition of the cardinality operator, |C| =
∑

e∈E C(e):

n1 + n2 < n3 + n4 ∧ n1 =
∑

e∈E A(e) ∧ n2 =
∑

e∈E U(e) ∧
n3 =

∑
e∈E(A ∩B)(e) ∧ n4 =

∑
e∈E(A ∪B)(e) ∧

∀e.U(e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

Operators ∪ and ∩ are defined pointwise using ite operator:
(C1 ∪ C2)(e) = max{C1(e), C2(e)} = ite(C1(e) ≤ C2(e), C2(e), C1(e))
(C1 ∩ C2)(e) = min{C1(e), C2(e)} = ite(C1(e) ≤ C2(e), C1(e), C2(e)),

where ite(A,B, C) is the standard if-then-else operator, denoting B when A is
true and C otherwise. Using these definitions, the example formula becomes:

n1 + n2 < n3 + n4 ∧ n1 =
∑
e∈E

A(e) ∧ n2 =
∑
e∈E

U(e) ∧

n3 =
∑
e∈E

ite(A(e) ≤ B(e), A(e), B(e)) ∧ n4 =
∑
e∈E

ite(A(e) ≤ B(e), B(e), A(e)) ∧

∀e.U(e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

Using vectors of integers, we then group all the sums into one, and also group
all universally quantified constraints:

n1 + n2 < n3 + n4 ∧
(
n1, n2, n3, n4

)
=∑

e∈E

(
A(e), U(e), ite(A(e) ≤ B(e), A(e), B(e)), ite(A(e) ≤ B(e), B(e), A(e))

)
∧ ∀e.

(
U(e) = 1 ∧ 0 ≤ A(e) ≤ 1 ∧ 0 ≤ B(e) ≤ 1 ∧ 0 ≤ U(e) ≤ 1

)

5

As we prove in Theorem 1 below, the last formula is equisatisfiable with

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) ∈
{
(
a, u, ite(a ≤ b, a, b), ite(a ≤ b, b, a)

)
| u = 1 ∧ 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1}∗

The subject of this paper are general techniques for solving such satisfiability
problems that contain a MLIRA formula and a star operator applied to another
MLIRA formula. We next illustrate some of the ideas of the general technique,
taking several shortcuts to keep the exposition brief.

Because the value of the variable u is determined (u = 1), we can simplify
the last formula to:

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) ∈ S∗

where S = {
(
a, 1, ite(a ≤ b, a, b), ite(a ≤ b, b, a)

)
| 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1}. By

case analysis on a ≤ b, we conclude S = S1 ∪ S2 for

S1 = {(a, 1, a, b) | 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ a ≤ b}
S2 = {(a, 1, b, a) | 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ b < a}

This eliminates the ite expressions and we have:

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) ∈ (S1 ∪ S2)∗

By definition of star operator, the last condition is equivalent to

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) = (n1
1, n

1
2, n

1
3, n

1
4) + (n2

1, n
2
2, n

2
3, n

2
4) ∧

(n1
1, n

1
2, n

1
3, n

1
4) ∈ S∗

1 ∧ (n2
1, n

2
2, n

2
3, n

2
4) ∈ S∗

2

Let us characterize the condition (n1
1, n

1
2, n

1
3, n

1
4) ∈ S∗

1 . Let K1 denote the number
of vectors in S1 whose sum is (n1

1, n
1
2, n

1
3, n

1
4). By definition of the star operator,

there are a1
1, . . . , a

1
K1

and b1
1, . . . , b

1
K1

such that 0 ≤ a1
i ≤ b1

i ≤ 1 and

(n1
1, n

1
2, n

1
3, n

1
4) =

K1∑
i=1

(a1
i , 1, a1

i , b
1
i)

We obtain that n1
1 = n1

3 =
∑K1

i=1 a1
i = A1, n2 = K1, n4 =

∑K1
i=1 b1

i = B1. The
other case for S2 is analogous and we derive (n2

1, n
2
2, n

2
3, n

2
4) = (A2,K2, B2, A2).

This way we eliminate the star operator and the example formula becomes:

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) = (A1,K1, A1, B1) + (A2,K2, B2, A2)

This formula further reduces to K1 + K2 < B1 + B2. If we apply the definitions
of Bi and properties of bj

i we obtain the following formula:

K1 + K2 <

K1∑
i=1

b1
i +

K2∑
i=1

b2
i ∧

K1∧
i=1

b1
i ≤ 1 ∧

K2∧
i=1

b2
i ≤ 1

6

In this case, it is easy to see that the resulting formula is contradictory. This
shows that the initial formula is valid over fuzzy sets. Our paper shows that, in
general, such formulas are equivalent to existentially quantified MLIRA formulas,
despite the fact that their initial formulation involves sums with parameters such
as K1 and K2. This is possible thanks to the special structure of the sets of
solutions of MLIRA formulas, which we describe building on results such as [7]
and the theory of linear programming.

Having seen the use of our method to prove formula validity, we illustrate its
use in producing counterexamples by showing that the original formula is invalid
over multisets. Restricting the range of each collection to integers and using the
same reduction, we derive formula

n1 + n2 < n3 + n4 ∧
(n1, n2, n3, n4) ∈ {

(
a, 1, ite(a ≤ b, a, b), ite(a ≤ b, b, a)

)
| a, b ∈ N}∗

Applying again a similar case analysis, we deduce K1 +K2 <
∑K1

i=1 b1
i +

∑K2
i=1 b2

i

where all bj
i ’s are non-negative integers. This formula is satisfiable, for example,

with a satisfying variable assignment K1 = 1, b1
1 = 2 and K2 = 0. The corre-

spondence of Theorem 1 then allows us to construct a multiset counterexample.
Because K2 = 0, no vector from S2 contributes to sum and we consider only
S1. Variable K1 denotes the number of elements of a domain set E, so we con-
sider the domain set E = {e1}. Multisets A,B and U are defined by A(e1) = 1,
B(e1) = 2, and U(e1) = 1. It can easily be verified that this is a counterexample
for validity of the formula over multisets.

3 From Collections to Stars

This section describes the translation from constraints on collections to con-
straints that use star operator. We first present the syntax of our constraints
and clarify the semantics of selected constructs (the semantics of the remaining
constructs can be derived from their translation into simpler ones).

We model each collection f as a function whose domain is a finite set E
of unknown size and whose range is the set of rational numbers. When the
constraints imply that the range of f is {0, 1}, then f models sets, when the
range of f are non-negative integers, then f denotes standard multisets (bags),
in which an element can occur multiple times. We call the number of occurrences
of an element e, denoted f(e), the multiplicity of an element. When the range
of f is restricted to be in interval [0, 1], then f describes a fuzzy set [19].

In addition to standard operations on collections (such as plus, union, in-
tersection, difference) we also allow the cardinality operator, defined as |f | =∑

e∈E f(e). This is the desired definition for sets and multisets and we believe
it is a natural notion for fuzzy sets over a finite universe E. Figure 2 shows a
context-free grammar of our formulas involving collections.

Semantics of some less commonly known operators is defined as follows:
ite(A,B, C) denotes the if-then-else expression, which evaluates to B when A is

7

top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= C=C | C ⊆ C | ∀e.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
P
Fin

(tin, . . . , tin)

tout ::= k | |C| | K | tout + tout | K · tout | btoutc | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= f(e) | K | tin + tin | K · tin | btinc | ite(Fin, tin, tin)
expressions about collections:

C ::= c | ∅ | C ∩ C | C ∪ C | C] C | C \ C | C \\C | setof(C)
terminals:

c - collection variable; e - index variable (fixed)
k - rational variable; K - rational constant

Fig. 2. Quantifier-Free Formulas about Collection with Cardinality Operator

true and evaluates to C when A is false. The setof(C) operator takes as an argu-
ment collection C and returns the set of all elements for which C(e) is positive. To
constrain a variable s to denote a set, use formula ∀e.s(e) = 0∨s(e) = 1. To con-
straint a variable m to denote a multiset, use formula (∀e.int(m(e))∧m(e) ≥ 0).
Here int(x) is a shorthand for bxc = x where bxc is the largest integer smaller
than or equal to x.

A decision procedure for checking satisfiability of the subclass of integer
formulas was described in [12]. The novelty of constraints in Figure 2 compared
to the language in [12] is the presence of the floor operator bxc and not only
integer but also rational constants. All variables in our current language are
interpreted over rationals, but any of them can be restricted to be integer using
the constraint int(x).

To reduce reasoning about collections to reasoning in linear arithmetic with
stars, we follow the idea from [12] and convert a formula to the sum normal
form.

Definition 1. A formula is in sum normal form iff it is of the form

P ∧ (u1, . . . , un) =
∑
e∈E

(t1, . . . , tn) ∧ ∀e.F

where P is a quantifier-free linear arithmetic formula with no collection variables,
and where variables in t1, . . . , tn and F occur only as expressions of the form
c(e) for a collection variable c and e the fixed index variable.

8

Figure 3 summarizes the process of transforming formula into sum normal form.1

The previous example section illustrated this idea. As another example, consider
a negation of a formula that verifies the change in the size of a list after insertion
of an element: |x| = 1 ∧ |L] x| 6= |L|+ 1. The sum normal form of this formula
is: k1 6= k2 + 1 ∧ (1, k1, k2) =

∑
e∈E(x(e), y(e), L(e)) ∧ ∀e.y(e) = L(e) + x(e).

INPUT: formula in the syntax of Figure 2
OUTPUT: formula in sum normal form (Definition 1)

1. Flatten expressions that we wish to eliminate:
C[exp] ; (x = exp ∧ C[x])

where exp is one of the expressions ∅, c1 ∪ c2, c1 ∩ c2, c1] c2, c1 \ c2, setof(c1), |c1|,
and where the occurrence of exp is not already in a top-level conjunct of the form
x = exp or exp = x for some variable x.

2. Reduce colection relations to pointwise linear arithmetic conditions:
C[c0 = ∅] ; C[∀e. c0(e) = 0]
C[c0 = c1 ∩ c2] ; C[∀e. c0(e) = ite(c1(e) ≤ c2(e), c1(e), c2(e))]
C[c0 = c1 ∪ c2] ; C[∀e. c0(e) = ite(c1(e) ≤ c2(e), c2(e), c1(e))]
C[c0 = c1] c2] ; C[∀e. c0(e) = c1(e) + c2(e)]
C[c0 = c1 \ c2] ; C[∀e. c0(e) = ite(c1(e) ≤ c2(e), 0, c1(e)− c2(e))]
C[c0 = c1 \\ c2] ; C[∀e. c0(e) = ite(c2(e) = 0, c1(e), 0)]
C[c0 = setof(c1)] ; C[∀e. c0(e) = ite(0 < c1(e), 1, 0)]
C[c1 ⊆ c2] ; C[∀e. (c1(e) ≤ c2(e))]
C[c1 = c2] ; C[∀e. (c1(e) = c2(e))]

3. Express each cardinality operator using a sum:
C[|c|] ; C[

P
e∈E

c(e)]

4. Express negatively occurring pointwise definitions using the sum:
C[∀e.F] ; C[0 =

P
e∈E

ite(F (e), 0, 1)]

5. Flatten any sums that are not already top-level conjuncts:

C[(u1, . . . , un)=
P
F

(t1, . . . , tn)] ; (w1, . . . , wn)=
P
F

(t1, . . . , tn) ∧ C[
nV

i=1

ui=wi]

6. Eliminate conditions from sums:
C[

P
F

(t1, . . . , tn)] ; C[
P

e∈E

(ite(F, t1, 0), . . . , ite(F, tn, 0))]

7. Group all sums into one:

P∧
qV

i=1

(ui
1, . . . , u

i
ni

) =
P

e∈E

(ti
1, . . . , t

i
ni

) ;

P∧ (u1
1, . . . , u

1
n1 , . . . , uq

1, . . . , u
q
nq

) =
P

e∈E

(t11, . . . , t
1
n1 , . . . , tq

1, . . . , t
q
nq

)

8. Group all pointwise defined operations into one:

P ∧
qV

i=1

(∀e.Fi) ; P ∧ ∀e.
qV

i=1

Fi

Fig. 3. Algorithm for reducing collections formulas to sum normal form

1 Note that the part ∀e.F could be omitted from normal form definition and expressed
as an additional component of the sum. However, its use leads to somewhat simpler
constraints.

9

Formulas in sum normal form contain only one top-level sum which ranges
over elements of an existentially quantified set E. To study such constraints we
introduce the star operator.

Definition 2 (Star operator, integer conic hull [5]). Let C be a set of
rational vectors. Define C∗ = {v1+. . .+vK | K ∈ {0, 1, 2, . . .},v1, . . . ,vK ∈ C}.
The fact that the bound variable K in Definition 2 ranges over non-negative
integers as opposed to rational or real numbers differentiates the integer conic
hull (star) from the notion of conic hull in linear programming [17].

Theorem 1. A formula (u1, . . . , un) =
∑

e∈E(t1, . . . , tn) ∧ ∀e.F is equisatis-
fiable with the formula (u1, . . . , un) ∈ {(t′1, . . . , t′n) | xi ∈ Q ∧ F ′}∗ where t′j and
F ′ are tj and F respectively in which each ci(e) is replaced by a fresh variable
xi.

Proof. ⇐): Assume (u1, . . . , un) ∈ {(t′1, . . . , t′n) | xi ∈ Q ∧ F ′}∗ is satisfiable.
Then there exists an integer k ≥ 0 such that (u1, . . . , un) =

∑k
j=1(t

j
1, . . . , t

j
n). We

define set E to consist of k distinct elements, E = {e1, . . . , ek}. Every variable xi

occurring in t′1, . . . , t
′
n and F ′ corresponds to the collection ci. Let xj

i denote the
value of xi in jth summand (tj1, . . . , t

j
n). Define each collection ci by ci(ej) = xj

i .
The finite set E and collections ci defined as above make formula (u1, . . . , un) =∑

e∈E(t1, . . . , tn) ∧ ∀e.F satisfiable.
⇒): The other direction is analogous. Given E, for each ej ∈ E we obtain a

set of values ci(ej) that give the values for xi in jth summand.

Applying Theorem 1 to our example of insertion into a list, we obtain that
k1 6= k2 + 1 ∧ (1, k1, k2) =

∑
e∈E

(x(e), y(e), L(e)) ∧ ∀e.y(e) = L(e) + x(e)

is equisatisfiable with
k1 6= k2 + 1 ∧ (1, k1, k2) ∈ {(x, y, L) | y = L + x}∗

Thanks to Theorem 1, in the rest of the paper we investigate the satisfiability
problem for such formulas, whose syntax is given in Figure 4. These formulas
are sufficient to check satisfiability for formulas in Figure 2. In Section 6 we
present a more general decidable language that allows nesting of terms, logical
operations, quantifiers, and stars.

4 Separating Mixed Constraints

As justified in previous sections, we consider the satisfiability problem for
G(r,w) ∧ w ∈ {x | F (x)}∗ where F and G are quantifier-free, mixed linear
integer-rational arithmetic (MLIRA) formulas.

Our goal is to give an algorithm for constructing another MLIRA formula F ′

such that w ∈ {x | F (x)}∗ is equivalent to ∃w′.F ′(w′,w). This will reduce the
satisfiability problem to the satisfiability of G(r,w) ∧ F ′(w′,w).

As a first stage towards this goal, this section shows how to represent the
set {x | F (x)} using solutions of pure integer constraints and solutions of pure
rational constraints. We proceed in several steps.

10

top-level, outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)∈{(tin, . . . , tin) | Fin}∗
tout ::= kout | K | tout + tout | K · tout | btoutc | ite(Fout, tout, tout)

inner linear arithmetic formulas:
Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= kin | K | tin + tin | K · tin | btinc | ite(Fin, tin, tin)
terminals:

kin, kout - rational variable (two disjoint sets); K - rational constants

Fig. 4. Syntax of Mixed Integer-Rational Linear Arithmetic with Star

Step 1. Eliminate the floor functions from F using integer and real variables,
applying from left to right the equivalence

C(btc) ↔ ∃yQ ∈ Q.∃yZ ∈ Z. t = yQ ∧ yZ ≤ yQ < yZ + 1 ∧ C(yZ)

The result is an equivalent formula without the floor operators, where some of
the variables are restricted to be integer.

Step 2. Transform F into linear programming problems, as follows. First, elim-
inate if-then-else expressions by introducing fresh variables and using disjunc-
tion (see e.g. [12]). Then transform formula to negation normal form. Eliminate
t1 = t2 by transforming it into t1 ≤ t2 ∧ t2 ≤ t1. Eliminate t1 6= t2 by transform-
ing it into t1 < t2 ∨ t2 < t1. Following [4, Section 3.3], replace each t1 < t2 with
t1 + δ ≤ t2 where δ is a special variable (the same for all strict inequalities), for
which we require 0 < δ ≤ 1. We obtain for some d matrices Ai for 1 ≤ i ≤ d
such that

F (x) ↔ ∃yZ ∈ ZdZ .∃yQ ∈ QdQ .∃δ ∈ Q(0,1].

d∨
i=1

Ai · (x,yZ ,yQ) ≤ b

where Ai · (x,yZ ,yQ) denotes multiplication of matrix Ai by the vector
(x,yZ ,yQ) obtained by stacking vectors x, yZ , and yQ.

Step 3. Represent the rational variables x, yQ as a sum of its integer part and
its fractional part from Q[0,1], obtaining

F (x) ↔
(
∃(xZ ,yZ) ∈ Zd′

Z .∃(xR,yR) ∈ Qd′
Q

[0,1].∃δ ∈ Q(0,1].

x = xZ + xR ∧
d∨

i=1

A′
i · (xZ ,yZ ,xR,yR) ≤ b′

)
Note that w ∈ {x | ∃y.H(x,y)}∗ is equivalent to

∃w′.(w,w′) ∈ {(x,y) | H(x,y)}∗

11

In other words, we can push existential quantifiers to the top-level of the formula.
Therefore, the original problem (after renaming) becomes

G(r,w) ∧ ∃z. (uZ ,uQ,∆) ∈

{(xZ ,xR, δ) |
d∨

i=1

Ai · (xZ ,xR, δ) ≤ bi, xZ ∈ ZdZ ,xR ∈ QdR

[0,1], δ ∈ Q(0,1]}∗

where the vector z contains a subset of variables uZ ,uQ,∆.

Step 4. Separate integer and rational parts, as follows. Consider one of the
disjuncts A · (xZ ,yR, δ) ≤ b. For A = [AZ AR c] this linear condition can be
written as AZxZ + ARxR + cδ ≤ b, that is

ARxR + cδ ≤ b−AZxZ (1)

Because the right-hand side is integer, for a denoting dARxR + cδe (left-hand
side rounded up), the equation becomes ARxR + cδ ≤ a ≤ b− AZxZ . Because
xR ∈ QdQ

[0,1], δ ∈ Q(0,1], vector a is bounded by the norm M1 of the matrix [AR c].
Formula (1) is therefore equivalent to the finite disjunction∨

a∈Zd,||a||≤M1

AZxZ ≤ b− a ∧ARxR + cδ ≤ a (2)

Note that each disjunct is a conjunction of a purely integer constraint and a
purely rational constraint.

Step 5. Propagate star through disjunction, using the property

w ∈ {x |
n∨

i=1

Hi(x)}∗ ↔ ∃w1, . . . ,wn. w =
n∑

i=1

wi ∧
n∧

i=1

wi ∈ {x | Hi(x)}∗

The final result is an equivalent conjunction of a MLIRA formula and an exis-
tentially quantified conjunction of formulas of the form

(uZ ,uQ,∆) ∈ {(xZ ,xR, δ) | AZxZ ≤ bZ , AR · (xR, δ) ≤ bR,

xZ ∈ ZdZ ,xR ∈ QdR

[0,1], δ ∈ Q(0,1]}∗
(3)

5 Eliminating Star Operator from Formulas

The previous section sets the stage for the following star-elimination theorem,
which is the core result of this paper.

Theorem 2. Let F be a quantifier-free MLIRA formula. Then there exist effec-
tively computable integer vectors ai and bij and effectively computable rational
vectors c1, . . . , cn with coordinates in Q[0,1] such that formula (3) is equivalent

12

to a formula of the form

∃K ∈ N. ∃µ1, . . . , µq, ν11, . . . , νqqq ∈ N. ∃β1, . . . , βn ∈ Q.(
uZ =

q∑
i=1

(µiai +
qi∑

j=1

νijbij) ∧
q∧

i=1

(µi = 0 →
qi∑

j=1

νij = 0) ∧ (
q∑

i=1

µi = K)
)

∧
(
(K = 0 ∧∆ = 0 ∧ uQ = 0) ∨

(K ≥ 1 ∧∆ > 0 ∧ (uQ,∆) =
n∑

i=1

βici ∧
n∧

i=1

βi ≥ 0 ∧
n∑

i=1

βi = K)
)

(4)

Proof. For a set of vectors S and an integer variable K, we define KS = {v1 +
. . .+ vK | v1, . . . , vK ∈ S}. Formula (3) is satisfiable iff there exists non-negative
integer K ∈ N such that both

uZ ∈ K{xZ | AZxZ ≤ bZ} (5)

and

(uQ,∆) ∈ K{(xR, δ) | AR · (xR, δ) ≤ bR,xR ∈ QdR

[0,1], δ ∈ Q(0,1]} (6)

hold. We show how to describe (5) and (6) as existentially quantified MLIRA
formulas that share the variable K.

To express formula (5) as a MLIRA formula, we use the fact that solutions
of integer linear arithmetic formulas are semilinear sets (see [7], [11, Proposition
2]). Semilinear sets are finite unions of sets of a form {a}+{b1, . . . , bn}∗. A sum
of two sets is the Minkowski sum: A + B = {a + b | a ∈ A, b ∈ B}. It was
shown in [14, 12] that if S is a semilinear set then u ∈ S∗ can be expressed as
Presburger arithmetic formula. In particular, formula (5) is equivalent to

∃µ1, . . . , µq, ν11, . . . , νqqq ∈ N. uZ =
∑q

i=1(µiai +
∑qi

j=1 νijbij) ∧
q∧

i=1

(µi = 0 →
∑qi

j=1 νij = 0) ∧ (
q∑

i=1

µi = K)

(7)
where vectors ai’s and bij can be computed effectively from AZ and bZ .

We next characterize condition (6). Renaming variables and incorporating
the boundedness of x, δ into the linear inequations, we can write such condition
in the form

(uQ,∆) ∈ K{(x, δ) | A · (x, δ) ≤ b, δ > 0} (8)

Here A · (x, δ) ≤ b subsumes the conditions 0 ≤ x ≤ 1, 0 ≤ δ ≤ 1. From the
theory of linear programming [17] it follows that the set {(x, δ) | A · (x, δ) ≤ b}
is a polyhedron, and because the solution set is bounded, it is in fact a polytope.
Therefore, there exist finitely many vertices c1, . . . , cn ∈ Qd

[0,1] for some d such
that A · (x, δ) ≤ b is equivalent to

∃λ1, . . . , λn ∈ Q[0,1].

n∑
i=1

λi = 1 ∧ (x, δ) =
n∑

i=1

λici

13

Consequently, (8) is equivalent to

∃u1, . . . ,uK . (uQ,∆) =
K∑

j=1

(uj , δj) ∧ ∃λ11, . . . , λKn.

K∧
j=1

(n∧
i=1

λij ≥ 0 ∧
n∑

i=1

λij = 1 ∧ (uj , δj) =
n∑

i=1

λijci ∧ δj > 0
) (9)

It remains to show that the above condition is equivalent to

∃β1, . . . , βn.
(
(K = 0 ∧∆ = 0 ∧ u = 0) ∨

(K ≥ 1 ∧∆ > 0 ∧ (uQ,∆) =
n∑

i=1

βici ∧
n∧

i=1

βi ≥ 0 ∧
n∑

i=1

βi = K)
)

(10)
Case K = 0 is trivial, so assume K 6= 0. Consider a solution of (9). Letting
βi =

∑K
j=1 λij we obtain a solution of (10). Conversely, consider a solution

of (10). Letting αij = βi/K, uj = u/K, δj = ∆/n we obtain a solution of (9).
This shows the equivalence of (9) and (10).

Conjoining formulas (10) and (7) we complete the proof of Theorem 2.

Satisfiability checking for collection formulas. Because star elimination
(as well as the preparatory steps in Section 4) introduce only existential quan-
tifiers, and the satisfiability of MLIRA formulas is decidable (see e.g. [4, 3]), we
obtain the decidability of the initial formula G(r,w)∧w ∈ {x | F (x)}∗. Thanks
to transformation to sum normal form and Theorem 1, we obtain the decidability
of formulas involving sets, multisets and fuzzy sets.2

6 Language with Nested Star Operators and Quantifiers

F ::= A | F ∧ F | ¬F | ∃x.F
A ::= t ≤ t | t=t | (t, . . . , t)∈{(t, . . . , t)|F}∗
t ::= k | K | t + t | K · t | btc | ite(F, t, t)

Fig. 5. Syntax of Constraints with Nested Stars and Quantifiers

Theorem 2 can be combined with quantifier elimination for MLIRA formulas [18]
to decide a language that permits nested uses of quantifiers and stars. Fig-
ure 5 summarizes the syntax of one such language. Note that the expression
(r1, . . . , rn)∈{(t1, . . . , tn)|F}∗ has the same meaning as before and its only free
2 Using the results in this paper, as well as the results in [13], we can also show that the

satisfiability problem is in NP and therefore NP-complete. We describe this result
in a follow-up report.

14

variables are in r1, . . . , rn (the variables in {(t1, . . . , tn)|F} are all bound). To
decide constraints in this language, we eliminate stars and quantifiers starting
from the innermost ones. If the innermost operator is a quantifier, we eliminate
it as in [18]. If the innermost operator is a star, we use results of Section 4
and Theorem 2 while keeping all existential quantifiers explicitly to preserve
equivalence of the subformula. We obtain an existentially quantifier subformula
without stars. We eliminate the generated existential quantifiers by again apply-
ing quantifier elimination [18]. Repeating this method we obtain a quantifier-free
formula without stars, whose satisfiability can be checked [4, 3].

The language of Figure 5 can be further generalized to allow atomic formulas
of the form (t, . . . , t) ∈ S where the syntax of S is given by

S ::= {(t, . . . , t)|F} | S ∪ S | S \ S | S + S | t · S | S∗

The basic idea is to flatten such set expressions, eliminate operators ∪, \, +
using their definition, and eliminate S∗ using the algorithms we just described.
The case of t · S is similar to S∗ but the value K from Theorem 2 is fixed and
given by term t, as opposed to being existentially quantified.

7 Related Work

Logical constraints on collections that do not support cardinality bounds have
been studied in the past. Zarba [20] considered decision procedures for quantifier-
free multisets but without the cardinality operator, showing that it reduces to
quantifier-free pointwise reasoning. The cardinality operator makes that reduc-
tion impossible. Notions of the cardinality operator naturally arising from the
Feferman-Vaught theorem [6] can express only a finite amount of information for
each element e ∈ E, so they are appropriate only for cardinality sets or for the
cardinality of the support of the multisets or a fuzzy set. Recently, Lugiez [10]
shows the decidability of constraints with a weaker form of such a limited car-
dinality operator that counts only distinct elements in a multiset, and shows
decidability of certain quantifier-free expressible constraints with cardinality op-
erator.

Note that, because our Theorem 1 is only equisatisfiability and not equiv-
alence, we do not obtain decidability of constraints with quantified collections.
In fact, although quantified sets with cardinality bounds are decidable [6, 8],
quantified multisets with cardinality bounds are undecidable [12, Section 6].

The work in this paper is based on previous results for the special cases of
sets [9] and multisets [14, 13, 12]. We rely on the fact that solutions of formulas
of Presburger arithmetic are semilinear sets [7]. Bounds on generators of such
sets are presented in [15].

Techniques for deciding formulas of MLIRA formulas are part of implementa-
tions of modern satisfiability modulo theory theorem provers [4,3,1] and typically
use SAT solving techniques along with techniques from mixed integer-linear pro-
gramming, or the Omega test [16].

15

8 Conclusions

We have shown decidability of a rich logic for reasoning about collections. The
logic is expressive enough for reasoning about sets, multisets, and fuzzy sets
as well as their cardinality bounds. Our results also show that star, much like
quantifiers, is a natural operator of MLIRA formulas and can also be eliminated.
A direct application of our star elimination technique creates an exponentially
larger MLIRA formula. We leave for future work the question whether it is possi-
ble to generate polynomially large equisatisfiable formulas as for multisets [13].

Acknowledgements. We thank Nikolaj Bjørner for useful discussions.

References

1. Sergey Berezin, Vijay Ganesh, and David L. Dill. An online proof-producing
decision procedure for mixed-integer linear arithmetic. In TACAS, 2003.

2. Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer,
2007.

3. Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In CAV, volume 4144 of LNCS, 2006.

4. Bruno Dutertre and Leonardo de Moura. Integrating Simplex with DPLL(T).
Technical Report SRI-CSL-06-01, SRI International, 2006.

5. Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer
cones. Operations Research Letters, 34(5):564–568, September 2006.
http://dx.doi.org/10.1016/j.orl.2005.09.008.

6. S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

7. S. Ginsburg and E. Spanier. Semigroups, Pressburger formulas and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

8. Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean Algebra
with Presburger Arithmetic. J. of Automated Reasoning, 2006.
http://dx.doi.org/10.1007/s10817-006-9042-1.

9. Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for
Boolean Algebra with Presburger Arithmetic. In CADE-21, 2007.

10. D. Lugiez. Multitree automata that count. Theor. Comput. Sci.,
333(1-2):225–263, 2005.

11. Denis Lugiez and Silvano Dal Zilio. Multitrees Automata, Presburger’s
Constraints and Tree Logics. Research report 08-2002, LIF, Marseille, France,
June 2002. http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html.

12. Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with
cardinality constraints. In VMCAI, number 4905 in LNCS, 2008.

13. Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In CAV, 2008.

14. Ruzica Piskac and Viktor Kuncak. On linear arithmetic with stars. Technical
Report LARA-REPORT-2008-005, EPFL, 2008.

15. Löıc Pottier. Minimal solutions of linear diophantine systems: Bounds and
algorithms. In RTA, volume 488 of LNCS, 1991.

16. William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In ACM/IEEE conf. Supercomputing, 1991.

http://dx.doi.org/10.1016/j.orl.2005.09.008
http://dx.doi.org/10.1007/s10817-006-9042-1

16

17. Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, 1998.

18. Volker Weispfenning. Mixed real-integer linear quantifier elimination. In ISSAC,
pages 129–136, 1999.

19. L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
20. Calogero G. Zarba. Combining multisets with integers. In CADE-18, 2002.

	Fractional Collections with Cardinality Bounds, and Mixed Linear Arithmetic with Stars
	Ruzica Piskac and Viktor Kuncak

