
Linear Arithmetic with Stars

Ruzica Piskac and Viktor Kuncak

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract. We consider an extension of integer linear arithmetic with a
“star” operator takes closure under vector addition of the solution set of a
linear arithmetic subformula. We show that the satisfiability problem for
this extended language remains in NP (and therefore NP-complete). Our
proof uses semilinear set characterization of solutions of integer linear
arithmetic formulas, as well as a generalization of a recent result on sparse
solutions of integer linear programming problems. As a consequence of
our result, we present worst-case optimal decision procedures for two
NP-hard problems that were previously not known to be in NP. The
first is the satisfiability problem for a logic of sets, multisets (bags), and
cardinality constraints, which has applications in verification, interactive
theorem proving, and description logics. The second is the reachability
problem for a class of transition systems whose transitions increment the
state vector by solutions of integer linear arithmetic formulas.

1 Introduction

Decision procedures [5, 1, 15, 10, 7] are among key techniques that enable auto-
mated verification of infinite state systems, as, for example, in software model
checkers [2, 6, 12]. These techniques are also increasingly used to raise the level
of automation in interactive theorem provers [24, 8, 17]. We believe that an im-
portant step towards making such theorem provers even more effective is the
development of decision procedures for new classes of formulas that go beyond
the traditionally considered uninterpreted function symbols, arrays, free data
structures, and linear arithmetic. In this paper we present a decision procedure
for one such class, which introduces certain unbounded sums into linear arith-
metic. Specifically, our decision procedure solves the satisfiability problem

F0(~u) ∧ ∃N ≥ 0.∃~x1, . . . , ~xN .~u =
N∑

i=1

~xi ∧
N∧

i=1

F (~xi) (1)

where F0 and F (~x) are any quantifier-free Presburger arithmetic (QFPA) for-
mulas, all variables of F are among ~x, and where ~u, ~xi are integer vectors. Be-
cause N is not known, (1) is not immediately a QFPA formula. Using notation
A∗ = {~u | ∃N ≥ 0.∃~x1, . . . , ~xN ∈ A. ~u =

∑N
i=1 ~xi} for closure of a set of vectors

under addition, we denote (1) by F0(~u)∧~u ∈ {~x | F (~x)}∗. This paper shows that
the satisfiability for the class QFPA∗ of such formulas with ∗ operator (Figure 1)
is in NP, generalizing the well known NP-completeness for QFPA satisfiability.

2

QFPA∗ formulas: F0 ∧ ~u ∈ {~x | F}∗ (free variables of F are among ~x)
QFPA formulas:

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F1

A ::= T1 ≤ T2 | T1 = T2

T ::= k | C | T1 + T2 | C · T1 | ite(F, T1, T2)
terminals: k - integer variable; C - integer constant

Fig. 1. Quantifer-free Presburger arithmetic and our QFPA∗ extension

Previous results. We consider the satisfiability problem for QFPA∗ (Figure 1)
where variables are interpreted over non-negative integers (the version with ar-
bitrary integers reduces to this case by representing integers and their sums as
differences of non-negative integers). The satisfiability problem for QFPA∗ is de-
cidable because the set of solutions of a QFPA formula is a semilinear set [11], and
a closure of a semilinear set under star can be expressed in QFPA [16]. However,
the constructions behind these decidability results do not provide good com-
plexity bounds because semilinear set representation can be exponentially large.
The first algorithm for QFPA∗ satisfiability that avoids explicit construction of
semilinear set representation is the PSPACE algorithm in [21]. The present pa-
per is the first to establish the exact complexity of QFPA∗ satisfiability, namely
NP-completeness. To show this result, we will use bounds on solutions of integer
linear programming problems with exponentially many variables [20], bounds on
seminilinear set generators [22], and Carathéodory bounds for integer cones [9].
Our proof builds on some of the ideas previously introduced in [14,21].
Application to reasoning about collections. Our decision procedure en-
ables reasoning about collections of objects (sets and multisets) and their cardi-
nalities, which was our original motivation for introducing it in [21]. Previously,
Zarba [25] considered decision procedures for multiset constraints but without
the cardinality operator, presenting a direct reduction to QFPA. The cardinality
operator makes the reduction in [25] inapplicable. Section 2 reviews the ap-
proach [21] to reduce multiset constraints with cardinalities to QFPA∗.
Application to reasoning about transition systems. In addition to rea-
soning about multisets, we identify another application of constraints with stars.
We consider infinite-state transitions systems whose state consists of finite con-
trol and a finite number of integer counters, and whose transitions increment
counters by a solution vector of a linear arithmetic formula given by the finite
control. We show that the reachability problem for a class of such systems re-
duces to a generalization of QFPA∗ with multiple nested star operators. We show
that our proof techniques and the NP-membership result extend to this more
general case, which gives NP-completeness of the reachability problem.
Contributions. We summarize the contributions of our paper as follows:

– We present a polynomial-time algorithm (Section 3) for reducing QFPA∗ sat-
isfiability to QFPA satisfiability, showing NP-completeness of QFPA∗ satisfi-
ability. This yields an algorithm for reasoning about constraints on multisets
in the presence of cardinality operators (see Section 2);

3

– We generalize our reduction to multiple nested star operators. We show that
the generalized constraints enable reasoning about reachability in a class of
symbolically represented transition systems (Section 4).

2 From Multisets to Linear Arithmetic with Star

The satisfiability problem for QFPA∗ arises as the key step in checking the sat-
isfiability of constraints on multisets in the presence of a cardinality operator.
The reduction from multiset constraints to QFPA∗ is presented in [21]. We here
motivate multiset constraints and use examples to illustrate the reduction.
Uses of set and multiset constraints. Sets and multisets directly arise
in verification conditions for proving properties of programs in languages and
paradigms such as SETL [23] and Gamma [4, Page 103]. In programming lan-
guages such as Java, data abstraction can be used to show that data structures
satisfy set specifications, and then techniques based on sets become applicable
for verifying data structure clients [13, 18]. Multisets and sets are also present
in libraries of interactive provers Isabelle [19] and KIV [3]. Our results yield
decision procedures that can increase the automation within such systems. As
a simple running example, consider a verification condition for insertion of an
element represented by a singleton multiset s into a container represented by
multiset L. To prove that an integer field correctly maintains the size of a con-
tainer, we need to prove validity of the constraint |s| = 1 → |L] s| = |L| + 1,
that is, unsatisfiability of the corresponding negation |s| = 1 ∧ |L] s| 6= |L|+ 1.
Representation of multisets and sets. We represent sets as well as multisets
(bags) with their characteristic functions. A multiset m is a function E → N,
where E is the universe and N is the set of non-negative integers. The value m(e)
is multiplicity (number of occurrences) of element e in multiset m. We assume
that the domain E is fixed and finite but of unknown size. We represent sets
within our formulas as special multisets m for which m(e) = 0 ∨ m(e) = 1 for
all elements e.
Operations on multisets. We consider a natural class of operations and rela-
tions on multisets that are given pointwise by linear arithmetic formulas. For a re-
lation given by QFPA formula F (x1, . . . , xk), we define the corresponding relation
on multisets m1, . . . ,mk by ∀e. F (m1(e), . . . ,mk(e)). For example, we define sub-
set m1 ⊆ m2 by ∀e.m1(e) ≤ m2(e), multiset sum m1 = m2]m3 by ∀e.m1(e) =
m2(e) + m3(e), and union m1 = m2 ∪ m3 by ∀e.m1(e) = max(m2(e),m3(e)).
To define max and other operations we use if-then-else operator ite(F, t1, t2) in
QFPA, which denotes t1 when F holds and t2 otherwise. We define multiset dif-
ference m1 = m2 \ m3 by ∀e.m1(e) = ite(m2(e) ≤ m3(e), 0,m2(e)−m3(e)). In
our example verification condition, we introduce a new multiset variable y such
that y = L] s and we express this condition by ∀e. y(e) = L(e) + s(e).
Cardinality operator and sums. We also permit the cardinality operator
|m| on multisets, given by |m| =

∑
e∈E m(e). This operator turns a multiset

expression into an integer expression, and we allow arbitrary QFPA operators
on cardinalities. In our example verification condition, in addition to ∀e. y(e) =

4

L(e) + s(e) we have constraint |s| = 1, which becomes
∑

e∈E s(e) = 1, and the
constraint |y| 6= |L|+ 1, which becomes (

∑
e∈E y(e)) 6= (

∑
e∈E L(e)) + 1.

Without changing expressive power, we generalize the sum notation and in-
troduce expressions of the form (u1, . . . , ud) =

∑
e∈E(m1(e), . . . ,md(e)) where

u1, . . . , ud are integer variables and m1, . . . ,md are multiset variables. 1 By in-
troducing non-negative integer variables ui for the results of sums and grouping
multiple sums into sum of vectors, we reduce any multiset formula to form

F0 ∧
c∧

i=1

(∀e.Fi(~m(e))) ∧ ~u =
∑
e∈E

~m(e) (2)

where F0, F1, . . . , Fc are QFPA formulas, ~m(e) denotes (m1(e), . . . ,md(e)), and
~u = (u1, . . . , ud). The negation of our example verification condition becomes

us = 1 ∧ uy 6= uL + 1 ∧
(∀e.y(e) = L(e) + s(e)) ∧ (us, uy, uL) =

∑
e∈E(s(e), y(e), L(e)) (3)

Reduction to QFPA∗. The satisfiability of the example constraint (3) is equiv-
alent to the satisfiability of the QFPA∗ constraint

us = 1 ∧ uy 6= uL + 1 ∧ (us, uy, uL) ∈ {(s′, y′, L′) | y′ = L′ + s′}∗ (4)

We prove equisatisfiability of (3) and (4); see [21, Theorem 2] for the analogous
proof for an arbitrary formulas on multisets. Suppose that (3) has a solution E =
{e1, . . . , eN}. Because functions x, y, L : E → N satisfy ∀e.y(e) = L(e)+s(e), the
vectors (s(ei), y(ei), L(ei)) for 1 ≤ i ≤ N represent N solutions of QFPA formula
y′ = L′ + s′. Consequently, the assignment to us, uy, uL is a sum of N solutions
of y′ = L′+s′, so (4) is satisfiable with the same values of us, uy, uL. Conversely,
given a solution to (4) we know that us, uy, uL is a sum of a finite number, say N ,
of solutions of y′ = L′+ s′, that is, there are N vectors (y′i, L

′
i, s

′
i) such that y′i =

L′i +s′i. We then introduce a distinct element ei for each of these N solutions, let
E = {e1, . . . , eN} and let s(ei) = s′i, y(ei) = y′i, L(ei) = L′i. We obtain a solution
of (4), as desired. Note that this proof did not depend on the structure of QFPA
formulas. In general, we obtain equisatisfiability of (2) and the QFPA∗ formula
F0 ∧ ~u ∈ {~x |

∧c
i=1 Fi(~x)}∗. Therefore, to check satisfiability of an expressive

class of constraints on sets and multisets, we construct (in polynomial time)
an equisatisfiable QFPA∗ formula. We next present an algorithm for checking
QFPA∗ satisfiability.

3 Linear Arithmetic with Star Operator is in NP

We show how to reduce, in polynomial time, QFPA∗ satisfiability to QFPA sat-
isfiability. This will show that QFPA∗ satisfiability is in NP. QFPA and therefore
1 We assume that the summands are multiset variables because we introduce fresh

multiset variables for subterms. However, it is easy to see that we can allow arbitrary
QFPA terms as summands without changing the expressive power, see [21].

5

QFPA∗ subsume propositional logic, their satisfiability is therefore NP-hard, so
our results establish NP-completeness of QFPA∗ satisfiability.

Consider satisfiability of a QFPA∗ formula F0 ∧ ~u ∈ {~v | F (~v)}∗. Because F
is a QFPA formula, its solution set {~v | F (~v)} is a semilinear set [11]. Therefore,
there exist finitely many generating vectors ~ai, ~bij whose non-negative integer
linear combination spans {~v | F (~v)}. The number of generating vectors can be
exponential, so we avoid explicitly constructing them. We instead apply [22]
to compute an upper bound on the size of generating vectors. This gives us
bounds on coefficients in an exponentially large QFPA formula equisatisfiable
with (1). We combine the following two constructions to find a polynomially
large equisatisfiable formula.

1. We apply a small model theorem for QFPA that follows from [20]. Because
the exponential QFPA formula has only polynomially many atomic formulas,
we obtain a polynomial bound on the number of bits needed for ~u in the
smallest solution of (1).

2. We apply twice a theorem on the size of minimal generator of integer cone [9]
to prove that only polynomially many vectors suffice to generate ~u.

Finally, we show that we can group linear combinations of generating vectors into
linear combination of polynomially many variables denoting solution vectors of
F . Despite the multiplication of variables, we can express such linear combination
as a QFPA formula because coefficients in linear combination are bounded by
the bound on ~u.

Our proof builds on several non-trivial previous results, but its algorithmic
consequences are simple: we can replace (1) with a problem where N is bounded
by a polynomial function of F0 and F , and where sum over solutions of F is
replaced by an integer linear combination of solutions of F , with coefficients
of the linear combination polynomially bounded. We proceed to describe our
construction in more detail, including concrete bounds needed to implement our
algorithm.

3.1 Estimating Coefficient Bounds of Disjunctive Form

The results on which we rely are usually expressed for integer linear programming
problems, so we compute dimensions and coefficient bounds for integer linear
programming problems arising from QFPA formula.

Let F be a QFPA formula. We can convert F into an equivalent disjunction
of integer linear programming problems

∨l
i=1 Ai~x = ~bi. Let mi be a number of

rows in Ai and let ni be a number of columns in Ai and let ai be a maximal
absolute value of all coefficient occurring in Ai and bi. For a given F , define
mF = maxl

i=1 mi, nF = maxl
i=1 ni and aF = maxl

i=1 ai.

Lemma 1 (Values of mF , nF and aF). Let F be a QFPA formula. If a subfor-
mula does not occur within any ite expression we say that it has positive polarity
if it occurs under an even number of negations and say it has negative polarity if
it occurs under an odd number of negations. If a subformula occurs within an ite

6

expression we say that it has no polarity. Let g be the number of atomic formula
occurences of the form t1 = t2 that have positive polarity in F , and let h be the
number of remaining atomic formulas. Let v be the number of variables in F
and a the maximum of absolute values of integer constants. Then mF ≤ g + h,
nF ≤ v + h, and aF ≤ a + 1.

Proof. We can transform F [ite(C, t1, t2)] into a disjunction of C ∧ F [t1] and
¬C ∧ F [t2]. Repeating this transformation we eliminate all ite expressions and
obtain disjuncts whose size is polynomial in the size of F . Let D be one of
the disjuncts after such ite elimination. The polarity of all g atomic formulas
t1 = t2 that occur positively in F remains positive in each D. Each of the
remaining h atomic formulas becomes of the form t1 ≤ t2, t1 = t2 or disjunction
t1 ≤ t2∨ t′1 ≤ t′2. In disjunctive normal form of D, each of the h atomic formulas
t1 ≤ t2 may require addition of at most one fresh variable to be converted into
equality t1 + x ≤ t2. The resulting number of variables is therefore bounded by
v + h whereas the total number of atomic formulas is bounded by g + h. When
transforming t1 < t2 into t1 + 1 ≤ t2 we change the constants part of t2 − t1 by
one, so aF ≤ a + 1.

3.2 Existence and Size of Solution Set Generators

This section describes the solutions of a QFPA formula F using semilinear sets,
provides bounds on the norms of vectors that represent these semilinear sets,
and uses this characterization to describe the set {~v | F (~v)}∗. Define vector set
addition by A + B = {~a +~b | ~a ∈ A,~b ∈ B}.

Definition 1. Given a finite set S ⊆ Nn and ~a ∈ Nn, we define the linear set
L(a;S) as {a}+ S∗. We call ~a the base vector, and call elements of S the step
vectors. A semilinear set is a union of finitely many linear sets.

If Z = ∪q
i=1L(ai;Si) is a representation of a semilinear set, we call the base

vectors ai and step vectors bij the generators for semilinear set. [11] showed that
the set of solutions of a QFPA formula is a semilinear, so it is given by some finite
set of generators. Morover, [22] shows that for formula F (~v) of form A~v ≤ b each
generator ~g satisfies ||~g||1 ≤ (2 + ||A||1,∞ + ||~b||∞)m where A is a m× n matrix.
Combining this result with Lemma 1, we obtain the following Lemma 2:

Lemma 2. For each QFPA formula F , there exist q base vectors ~ai, 1 ≤ i ≤ q,
and for each i the corresponding qi step vectors ~bij for 1 ≤ j ≤ qi, all with norms
bounded by (2+2(nF +1)aF)2mF where nF ,mF , aF are from Lemma 1 such that

F (~u) ⇔ ∃νij .

q∨
i=1

(~u = ~ai +
qi∑

j=1

νij
~bij) (5)

We can now express membership in the set {~v | F (~v)}∗ using QFPA formula,
using the following lemma that follows from Lemma 2 and the definition of the
star operator.

7

Lemma 3. Let F by a QFPA formula and ~ai, ~bij be from Lemma 2. Then ~u ∈
{~v | F (~v)}∗ is equivalent to

∃(µi)i, (νij)ij . ~u =
q∑

i=1

(µi~ai +
qi∑

j=1

νij
~bij) ∧

q∧
i=1

(µi = 0 →
qi∑

j=1

νij = 0) (6)

Because the number of ~ai and ~bij vectors can be exponential, Lemma 3 shows
that QFPA∗ satisfiability reduces to satisfiability of an exponentially larger QFPA
formula. Our goal is to improve the reduction and obtain a polynomial QFPA
formula.

3.3 Selecting Polynomially Many Generators

In this section we establish bounds on the number of generators needed to gen-
erate any particular solution vector ~u: if ~u is a linear combination of generators,
then it is also a linear combination of a polynomial subset of generators that
form a smaller semilinear set. We prove this fact using a theorem about sparse
solutions of integer linear programming problems. Given a set of vectors X and a
vector ~b ∈ X∗, the following fact determines the bound on the number of vectors
sufficient for representing ~b as a linear combination of vectors from X.

Fact 1 (Theorem 1 (ii) in [9]) Let X ⊆ Zd be a finite set of integer vectors
and let ~b ∈ X∗. Then there exists a subset X̃ such that ~b ∈ X̃∗ and |X̃| ≤
2d log(4dM), where M = maxx∈X ||x||∞.

Fact 1 has been applied in [14] to show that the satisfiability of constraints on
sets with cardinality operators is in NP. In the case of multisets and QFPA∗ we
need to generalize this idea because of dependencies between the base vectors
and the corresponding step vectors.

Theorem 1. Let F be QFPA formula and ~ai, ~bij, ~u, q, qi be from Lemma 3.
Then there exist sets I0, I1 ⊆ {1, . . . , q} and J ⊆ ∪q

i=1{(i, 1), . . . , (i, qi)} such
that

∃(µi)i, (νij)ij . ~u =
∑
i∈I0

(~ai +
∑

(i,j)∈J

ν′ij
~bij) +

∑
i∈I1

µ′i~ai (7)

and |I0| ≤ |J | ≤ B, and |I1| ≤ B, where B = 2nF (log 4nF +2mF log(2+2(nF +
1)aF)).

Proof. By assumption, ~u =
∑q

i=1(µi~ai +
∑qi

j=1 νij
~bij) and

∧q
i=1(µi = 0 →∑qi

j=1 νij = 0). Removing zero indices, assume that µi and νij are strictly pos-
itive. Define ~a =

∑
i µi~ai and ~b =

∑
ij νij

~bij , so ~u = ~a +~b. From ~b =
∑

i νij
~bij

and Fact 1 we conclude that there exists a set J of indices (i, j) and coefficients
ν′ij such that ~b =

∑
(i,j)∈J ν′ij

~bij and |J | ≤ B = 2nF log(4nF M) where M is

the bound on generators. To satisfy the dependencies between ~bij and ~ai, let
I0 = {i | ∃j.(i, j) ∈ J}. Note |I0| ≤ |J |. Let ~a0 =

∑
i∈I0

~ai. Then ~a0 + ~b is

8

generated by vectors whose indices are I0 and J . It remains to generate ~a− ~a0.
Note that ~a − ~a0 =

∑
i∈I0

(µi − 1)~ai +
∑

i∈{1,...,q}\I0
µi~ai. Applying once again

Fact 1 we conclude that there exists I1 ⊆ {1, . . . , q} with |I1| ≤ B such that
~a−~a0 =

∑
i∈I1

µ′iai. Using the bound M = (2+2(nF +1)aF)2mF from Lemma 2
we obtain the desired value of B.

3.4 Grouping Generators into Solutions

In previous two sections we have shown that if ~u ∈ {~v | F (~v)}∗, then ~u is a
particular linear combination of polynomially many generating vectors ~ai, ~bij

that are themselves polynomially bounded. This suggests the idea of guessing
polynomially many bounded vectors, checking whether they are generators, and
then checking whether ~u is their linear combination. We next show that we can
avoid the problem of checking whether a vector is a generator and reduce the
problem to checking whether a vector is a solution of F . The way we stated
Theorem 1 already suggests this approach.

Lemma 4. Let F be a QFPA formula and ~u ∈ {~v | F (~v)}∗. Then there exist k
vectors ~c1, . . . ,~ck for k ≤ 4nF (log 4nF + 2mF log(2 + 2(nF + 1)aF)) such that
∧k

i=1F (~ci) ∧ u =
∑k

i=1 λi~ci for some non-negative integers λi.

Proof. In Theorem 1 simply note that ~ai +
∑

(i,j)∈J ν′ij
~bij are solutions of F and

that their number is bounded by B. Similarly, ~ai are solutions of F and their
number is bounded by B. The total number of solutions is bounded by 2B where
B is from Theorem 1.

3.5 NP-Algorithm

Our NP-algorithm for checking satisfiability of QFPA∗ formula F0 ∧ ~u ∈ {~v |
F (~v)}∗ uses previously introduced bounds. First, using Lemma 1 we calculate
the values of mF , nF and aF . Using those values and Lemma 4 we estimate an
upper bound k = 4nF (log 4nF + 2mF log(2 + 2(nF + 1)aF)) on the number of
solution vectors ~xi. We obtain the equisatisfiable formula

F0 ∧ ~u = λ1~x1 + . . . + λk~xk ∧
k∧

i=1

F (~xi) (8)

Formula (8) is polynomial in size, but it is not a QFPA formula because it contains
multiplication of variables in λi · ~xi. We address this problem by showing that
the values of λi in smallest solutions have a polynomial number of bits, which
allows us to express multiplication using bitwise expansion.

9

3.6 Multiplication by Bounded Bit Vectors

To express terms λi~ci from Lemma 4 as a QFPA term, we show that the smallest
solution ~u, if exists, is bounded [20]. Suppose that r′ is a bound on ~u of formula
F0 ∧ ~u ∈ {~v | F (~v)}∗. Because λi in formula (8) must be a non-negative integer,
λi ≤ ||~u||∞ ≤ r′, so each λi is also bounded by r′ and can be represented as a
bit-vector of size r for r = dlog r′e. Let λi = λir . . . λi1λi0 =

∑r
j=0 λij2j . Then

λi~ci = (
r∑

j=0

λij2j)~ci =
r∑

j=0

2j(λij~ci) =
r∑

j=0

2j ite(λij ,~ci, 0) =

ite(λi0,~ci, 0) + 2(ite(λi1,~ci, 0) + 2(ite(λi2,~ci, 0) + . . .))

It remains to show how to compute r′.

3.7 Estimating Solution Size Bounds

Theorem 2. Let F0 be a QFPA formula. Let ~u = (u1, . . . , ud) denote a d-
dimensional vector of variables ranging over non-negative integers. Let F be
a QFPA formula which does not share any variable with F0 and ~u. If formula
F0 ∧ ~u ∈ {~v | F (~v)}∗ is satisfiable, then there exists a non-negative solution vec-
tor ~w for variables ~u such that ||~w||∞ ≤ r′ = n(ma)2m+1 where n, m and a are
defined by

1. m := d + mF0

2. n := nF0 + 6d(log(4d) + 2mF log(2 + (nF + 1)aF))
3. a := max{aF0 , (2 + 2(nF + 1)aF)2mF }

Proof. We establish a bound on the size of the solution vector using two facts.
First, as shown in Lemma 3, the fact that ~w is a solution of ~u ∈ {~v | F (~v)}∗
implies that ~w is a linear combination of generators of a semilinear set and can
be expressed as

~w =
q∑

i=1

(µi~ai +
qi∑

j=1

νij
~bij)

If we represent the above condition as form A~x = ~b, the matrix A consists
of generators of semilinear set and the negative identity matrix −I, while the
vector ~x consists of ~u as well parameters µi and νij . The dimensions of the
matrix A are d×(nG +d), where nG is the number of generators. By Theorem 1,
nG ≤ 6d(log(4d) + 2mF log(2 + 2(nF + 1)aF)).

Next, observe that ~w is a component of the solution vector of F0. This implies
that there is a matrix B with dimensions mF0 and nF0 and a vector ~v such that
B ~w = ~v.

Combining matrices A and B we obtain a new matrix C with d + mF0 rows
and the number of columns nF0 + 6d(log(4d) + 2mF log(2 + (nF + 1)aF)). To
establish an upper bound on the maximum of absolute values in C, we use
an upper bound on the size of generating vectors in a semilinear set given by

10

Lemma 2. We obtain the final result by applying to C the theorem on upper
bounds of smallest solutions of integer linear programming problems [20].

Putting everything together, the bound k on the number of solutions of F
and bounds on λi enables us to generate, in polynomial time, a QFPA formula
equisatisfiable with the original QFPA∗ formula.

4 Reachability in a Class of Transition Systems

We next show another application of satisfiability checking for extensions of
QFPA with star operators. We consider the reachability problem in systems
whose state has finite control and an unbounded integer vector, and whose tran-
sitions increase the integer vector by a solution of QFPA formula. We show that
for systems that have only one loop the problem reduces to QFPA∗ satisfiability
and is therefore NP-complete. We show that for arbitrary graphs, the prob-
lem reduces to a generalization of QFPA∗ with multiple star operators, denoted
QFPAREG. We sketch a proof that NP-completeness for QFPA∗ satisfiability ex-
tends to QFPAREG satisfiability.
A class of transition systems. Let Fd be the set of all QFPA formulas with the
set of free variables v1, . . . , vd. If F ∈ Fd is such a formula and a1, . . . , ad ∈ Z, we
write (a1, . . . , ad) |= F to denote that F is true when vi has value ai for 1 ≤ i ≤ d.
We consider transition systems described by a tuple (d, Q, E, T) where 1) d is
a non-negative integer, denoting the number of integer variables in the state; 2)
Q is a finite set, denoting control-flow graph nodes; 3) E ⊆ Q × Q, denoting
control-flow graph edges; and 4) T : E → Fd, specifies possible increments of
counters for each control-flow graph edge. Given (d, Q, E, T) we consider the set
of states S ⊆ Q × Zd and define the transition relation R ⊆ S × S such that
(q,~a), (q′,~a′) ∈ R ⇐⇒ (q, q′) ∈ E ∧ (~a′ − ~a) |= T (q, q′). We are interested in
the question of reachability in the transition systems given by relation R. 2

Single-loop systems. Consider first the case Q = {q}, E = {(q, q)},
T (q, q) = F . Our definitions then imply that (q,~a) reaches (q,~a′) precisely when
the condition (~a′ − ~a) ∈ {~v | F}∗ holds. Therefore, the reachability problems
that test QFPA relationship between initial ~a and final ~a′ state in such systems
reduces QFPA∗ satisfiability.
General case. Now consider arbitrary (d, Q, E, T) and two states q, q′ ∈ Q.
Let r be a regular expression over the alphabet E describing the set of all paths
from q to q′ in graph (Q,E), represented as a set of words over language Q×Q.
For example, a path q, q1, q2, q

′ is represented by word (q, q1)(q1, q2)(q2, q
′). By

conversion algorithm from finite state machines to regular expressions we can
assume that r exists and its size is polynomial in the number of elements of
Q. We map r into a “commutative” regular expression with set addition act-
ing as commutative version of concatenation and closure under vector addition

2 Note that, unlike in Turing-complete transition systems with integer counters, the
set of possible counter increments is given by formula T (q, q′) and does not depend
on the current values of integer counters ~a, but only on control-flow edge (q, q′).

11

acting as Kleene star. We specify this mapping using function h, defined by:
h((q1, q2)) = {x | T (q1, q2)}, h(r1r2) = h(r1) + h(r2), h(r1 ∪ r2) = h(r1) ∪ h(r2),
h(r∗) = h(r)∗. Due to commutativity of set addition and its consequence
A∗ + B∗ = (A ∪ B)∗, we can rewrite r in polynomial time to normal form
stratified according to star height (the number of nested applications of ∗
operator). We call {v | T (q1, q2)} atomic expressions and denote them akij .
Then each commutative regular expression of star height k > 0 has the form
rk = ∪p

i=1(aki1 + ... + akini + r∗i,k−1) where ri,k−1 are expressions of star height
k − 1. If r = r1 i.e. r has no nested stars, then the reachability problem imme-
diately reduces to (1) and is solvable in NP using our algorithm.

More generally, we consider formulas, denoted QFPAREG, of the form F0 ∧ r
where rk is a regular expression over atomic expressions. We show that the
satisfiability of QFPAREG is in NP. First, the condition ~u ∈ rk is equivalent to

∃(~vkij ∈ akij)kij .∃(λkij)kij .~x =
∑
k,i,j

λkij~vkij ∧
∧
k>1
i,j

(λkij = 0 ⇒
∧
i′,j′

λ(k−1)i′j′ = 0)

As in Section 3 our goal is then to show that we can select a polynomial subset
of vectors in this linear combination and still generate vector ~u. The following
notion of “star modulo vector dependencies” captures conditions on coefficients
of linear combinations that arise from repeatedly applying star to semilinear sets.
If X = {~x1, . . . , ~xN} ⊆ Nd is a finite set of vectors and W ⊆ X×X a dependency
graph on X, define X∗(W) = {

∑N
i=1 λi~xi | ∀i, j ≤ N. λi > 0 ∧ (~xi, ~xj) ∈ W ⇒

λj > 0}. The dependency graph in Theorem 1 would have an edge from each
~bij to ~ai. The generalization of Fact 1 to the class of graphs W sufficient for the
more general result is the following.

Theorem 3. Let X ⊆ Zd be a finite set of integer vectors with acyclic de-
pendency graph W ⊆ X × X such that for each node ~x ∈ X the number of
nodes reachable from ~x in W is bounded by a constant C. If ~b ∈ X∗(W) then
there exists X̃ ⊆ X such that ~b ∈ X̃∗(W) and |X̃| ≤ 2C2d log(4dM), where
M = maxx∈X ||x||∞.

Proof sketch. Let B = 2d log(4dM) from Fact 1. Consider a linear combination
~u =

∑
i λi~vi of vectors from X that satisfies the dependencies in W . Our goal is

to find a small number of vectors that generate ~u. In the first step we consider
the source nodes of W , that is, vectors Y0 ⊆ X with no incoming edges in the
graph. Applying Fact 1 to ~v0 =

∑
~vi∈Y0

λi~vi we obtain a subset Z0 ⊆ Y0, with
|Z0| ≤ B, such that ~v0 =

∑
~vi∈Z0

λ′i~vi. To enforce the constraints in the graph
W , we then take closure of Z0 under reachability in W and obtain the set Q0 of
size at most CB. Let ~u0 =

∑
~vi∈Q0

λi~vi.
We repeat the procedure on the vector ~u−~u0. Only in this step we eliminate

all the sources Y0 and vertices belonging to Q0 from the graph and consider the
vectors that are sources in the subgraph of W induced by the remaining vectors
Y1 = X \ (Y0 ∪ Q0). We repeat this procedure as long as there are nodes in
the graph. The number of times we need to repeat it is bounded by the longest

12

path in W , which, by assumption, is bounded by C. At each step we select CB
vectors, so the total number of nodes that we need in the linear combination is
bounded by C2B.

Using Fact 1 we obtain a polynomial subset of vectors that satisfy given
QFPA formulas and whose linear combination is the given vector ~u. We then use
results from previous sections to show that a linear combination of solutions of a
QFPA formula can be represented as a sum of a polynomial number of solutions
of this QFPA formula. This allows us to generalize results of Section 3 to formulas
that contain not just one star operator but any regular expression over solution
sets of QFPA formulas, which in turn proves that the reachability problem for
transition systems described in this section is also in NP.
Acknowledgements. We thank Nikolaj Bjørner for useful comments on a draft
of this paper and CAV 2008 reviewers for their patience and useful feedback.

References

1. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem
proving for predicate abstraction refinement. In CAV, 2004.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Proc. ACM PLDI, 2001.

3. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In FASE, number 1783 in LNCS, 2000.

4. J.-P. Banâtre and D. L. Métayer. Programming by multiset transformation.
Commun. ACM, 36(1):98–111, 1993.

5. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In CAV, volume 3114 of LNCS, 2004.

6. D. Basin and S. Friedrich. Combining WS1S and HOL. In FROCOS, volume 7 of
Studies in Logic and Computation. 2000.

7. L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In CADE,
2007.

8. L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson,
M. Gordon, and T. Melham. The PROSPER toolkit. In TACAS, number 1785 in
LNCS, 2000.

9. F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer cones.
Operations Research Letters, 34(5):564–568, September 2006.
http://dx.doi.org/10.1016/j.orl.2005.09.008.

10. Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using
satisfiability modulo theories. In CADE, 2007.

11. S. Ginsburg and E. Spanier. Semigroups, Pressburger formulas and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

12. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, 2002.

13. V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology, February 2007.

14. V. Kuncak and M. Rinard. Towards efficient satisfiability checking for Boolean
Algebra with Presburger Arithmetic. In CADE-21, 2007.

15. S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In CAV’04, 2004.

http://dx.doi.org/10.1016/j.orl.2005.09.008

13

16. D. Lugiez. Multitree automata that count. Theor. Comput. Sci.,
333(1-2):225–263, 2005.

17. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case
study combining HOL-Light and CVC Lite. In PDPAR, volume 144(2) of
ENTCS, 2006.

18. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of
shape, size and bag properties via separation logic. In VMCAI, 2007.

19. T. Nipkow, M. Wenzel, L. C. Paulson, and N. Voelker. Multiset theory version
1.30 (Isabelle distribution).
http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html, 2005.

20. C. H. Papadimitriou. On the complexity of integer programming. J. ACM,
28(4):765–768, 1981.

21. R. Piskac and V. Kuncak. Decision procedures for multisets with cardinality
constraints. In VMCAI, number 4905 in LNCS, 2008.

22. L. Pottier. Minimal solutions of linear diophantine systems: Bounds and
algorithms. In RTA, volume 488 of LNCS, 1991.

23. J. T. Schwartz. On programming: An interim report on the SETL project.
Technical report, Courant Institute, New York, 1973.

24. N. Shankar. Using decision procedures with a higher-order logic. In TPHOLs,
2001.

25. C. G. Zarba. Combining multisets with integers. In CADE-18, 2002.

http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html

	Linear Arithmetic with Stars
	Ruzica Piskac and Viktor Kuncak

