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Abstract

Given a two-dimensional smooth manifold M and a bijective projection p from M on a
fixed plane (or a subset of that plane), we explore systematically how a wavelet transform

(WT) on M may be generated from a plane WT by the inverse projection p~!. Examples

where the projection maps the whole manifold onto a plane include the two-sphere, the upper
sheet of the two-sheeted hyperboloid and the paraboloid. When no such global projection is
available, the construction may be performed locally, i.e., around a given point on M. We
apply this procedure both to the Continuous WT, already treated in the literature, and to the
Discrete WT. Finally, we discuss the case of a WT on a graph, for instance, the graph defined
by linking the elements of a discrete set of points on the manifold.

1 Introduction

Around 1985, Jean Morlet struggled with the noisy data encountered while prospecting for oil
using microseisms. The standard technique was, of course, Fourier transform or better, Short
Time Fourier transform. One day he had the brilliant idea of adapting the width of the analysis
window to the mean frequency it contains — and it worked! After a thorough collaboration
with Alex Grossmann, this purely empirical trick turned into a full-fledged mathematical theory,
wavelet analysis was born. Actually, in the founding paper [15], the famous-to-be Morlet wavelet
is barely given (one finds only the approximate version “plane wave times Gaussian envelope”).
The rest of the story is well-known and most of it, including the original papers, may be found in
the compendium [16]: the continuous wavelet transform (CWT), the discrete wavelet transform
(DWT), based on the concept of multiresolution analysis, the extension to higher dimension, etc.

Two-dimensional wavelets are by now a standard tool in image processing, under the two
concurrent approaches, CWT and DWT. The point is that, while the DWT often leads to wavelet
bases, the CWT has to be discretized for numerical implementation and produces in general only
frames. However, many situations yield data on spherical surfaces. For instance, in Earth and
Space sciences (geography, geodesy, meteorology, astronomy, cosmology, etc.), in crystallography
(texture analysis of crystals), in medicine (some organs are regarded as sphere-like surfaces), or in
computer graphics (modelling of closed surfaces as the graph of a function defined on the sphere).
Thus one needs suitable techniques for analyzing such data. In the spherical case, the Fourier
transform amounts to an expansion in spherical harmonics, whose support is the whole sphere.
Fourier analysis on the sphere is thus global and cumbersome. Therefore many different methods
have been proposed to replace it with some sort of wavelet analysis.
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In addition, some data may live on more complicated manifolds, such as a two-sheeted hyper-
boloid, in cosmology for instance (an open expanding model of the universe). In optics also, in the
catadioptric image processing, where a sensor overlooks a mirror with the shape of a hyperboloid
or a paraboloid. Another example is a closed sphere-like surface, that is, a surface obtained from
a sphere by a smooth deformation. Thus it would be useful to have a wavelet transform available
on such manifolds as well.

More generally, we will assume data are given on a two-dimensional smooth manifold M and
we are given a bijective projection p from M (or a subset N' C M) on a plane R?, for instance
a tangent plane or an equatorial plane. We call the projection global when it maps the whole
manifold bijectively on the plane. Then the idea is to lift WT from R? to M by inverse projection
p~'. When no such global projection is available, but only a restricted one, from the subset
N C M to the plane, the analysis may still be performed, but locally. As we will see in the
sequel, this method applies both to the CWT and to the DWT. Concrete examples with global
projections for M we have in mind are the two-sphere S2, the upper sheet of the two-sheeted
hyperboloid H? and the paraboloid P2.

The paper is organized as follows. In Section 2, we describe several types of projections from
the manifold M on a plane, stereographic, vertical, conical, radial. Then, in Section 3, we describe
the construction of a global CWT on M. Here we have to distinguish whether M admits a global
isometry group, as S? or H?, or does not have one, as P2. In the latter case or more general
ones, one can only build a local CWT on M, that is, in a (possibly large) neighborhood of a
fixed point of M, and this new result is described in Section 4. Here the major difficulty is
of (differential) geometrical nature, namely, how to glue together the various local CWTs into
a global one. Next, in Section 5, we turn to the case of the DWT and show that, here too, a
suitable inverse projection will do the job. Finally, in Section 6, we consider what can be seen as
the ultimate discrete manifold, namely, a graph, obtained for instance by linking a given set of
points on M, and show how to design a WT on it. As far as we know, such a construction has
not been proposed in the literature.

2 Preliminaries: Geometry of projections

Let M be a C! -surface defined by the equation ¢ = ((x) = (¢1(z,v), Ca(7, ), 3(7,y)), x =
(x,5) € D C R2. We consider the function .J : D — R,

¢ 0
J(z,y) = (%Csxc‘?gi .

Let p: M — D denote the projection of the surface M onto the plane Oxy, that is

p(cl(x7y)aCQ(may)vc?)(xay)) = (%,y), for all (.fC,y) eD.

This projection is bijective and its inverse is obviously

p_1 : D — Ma p_l(xvy) = (Cl(l‘ay)aCQ(:E?y)aC?)(xay))'

The projection p is global if D = R?, local if D is a proper subset of R2. The relations between
dx = dz dy, the area element of R?, and du(¢), the area element of M, are

du(C) = J (%) dx,

dx — (Jo::))(C)d'u(O’ where ¢ = ((1,(2,(3) € M.



In L?(M) we define the scalar product (-, ), as
(F.G)s = (Fop ., Gop Y2op, forall F,G € L*(M). (2.1)

If we consider the function v : M — R, v = (J o p)~'/2, then one has
F.9). = [ Fo w0 e dedy

- / F10) 6(0) () dul©).
M
2

Thus, the scalar product (-, -). is a weighted scalar product, with the weight function v~.
On the other hand, if F,G € L?(D) are given, then

(F,G)12(p) =/ F(X)G(X)dX=/MF(p(C))G(D(C))VZ(C)dM(C),

D
which means that

(F,G)r2p) = (v~ (Fop),v-(Gop))r2(m); (2.2)
or, using the definition (2.1), one can write
(Fop,Gop)y=(Fopop },Gopo p_1>L2(D) = (F,G)2(p)- (2.3)
In other words, the map
! F Fi=v-(Fop) (2.4)

is unitary from L?(D) onto L?(M) and, similarly, the map F + Fop from L?(D) onto L?(M, x),
i.e., M with the scalar product (2.1). In particular, this implies that, if the functions F, G € L?(D)
are orthogonal with respect to the usual scalar product of L?(D), then:

e v - (Fop) € L*M), v-(Gop) € L*(M) and they are orthogonal with respect to the usual
scalar product of L?(M) ;

e Fope L?(M), Gop € L*(M) and they are orthogonal with respect to the weighted scalar
product defined in (2.1).

These facts will allow us to use any orthogonal wavelet basis defined on D in order to construct
an orthogonal wavelet basis defined on the manifold M.
An important property of the scalar product (-, ), is given in the next proposition.

Proposition 2.1 If there exist m,M € (0,00) such that

m < v(() <M, forall { € M, (2.5)
then the norm | - ||« = <-,->i/2, induced by the scalar product (-,-)., is equivalent to the usual
2-norm of L?(M).

Proof. It is immediate that
m*F2(¢) < v (OF(¢) < MPF*(Q),
for all ¢ = (¢1,(2,(3) € M. Thus, integrating on M, we obtain
ml| Fllz < [[F[ls < M[[F]2.

O

Now we consider some particular cases. If the manifold M is a surface of revolution and the

projection p conserves the longitude, it is more natural to use polar coordinates { = (s,¢) on M,

with ¢ € [0,27), the longitude angle, and s a coordinate along the section ¢ = const. Then, in
planar polar coordinates (r, ), the projection reads p(¢) = p(s, ) = (r(s), ¥).



2.1 The stereographic projection

(a) Stereographic projection of the two-sphere

With the notations in Section 2, let M be the pointed two-sphere S = {(¢1, (2, G3) € R3, (2 +
2+ (¢G—1)2=1}\{(0,0,2)} and let p : M — R? be the stereographic projection from the North
Pole N(0,0,2) onto the tangent plane at the South Pole. If we take polar coordinates ¢ = (6, ¢),
where s = 0 € [0,7) is the colatitude and ¢ € [0,27) is the longitude, then the stereographic
projection is given by 7(f) = 2tan g, and it is the only longitude preserving projection that is
conformal [33].

Then one can easily see that

and this function does not satisfy the condition (2.5) in Proposition 2.1. The relations between
and x = p(() are
z=qv(C), y=Gwv{),

and
1

G == 0x), @=yo(x), G3= (" +y")ex),
with o(x) = 4(z2 + > + 4)~. Yet we still have a unitary map between L?(R?) and L(S?).
(b) Stereographic projection of the two-sheeted hyperboloid

Consider the upper sheet Hi of the two-sheeted hyperboloid H?, given by the explicit equation

G3=/1+G+G.

The stereographic projection from the South Pole of H? maps the upper sheet Hi onto the open
unit disk in the equatorial plane (3 = 0 (it maps the lower sheet onto the exterior of the unit
disk). In terms of polar coordinates ¢ = (x, ), where x > 0 and ¢ € [0, 27) is the longitude, the
stereographic projection is given by 7(x) = tanh §. Then a direct computation yields

1

2 cosh? 3 ’

v(€) =v(x; p)
Thus one has 0 < v(() < % and condition (2.5) is not satisfied.

2.2 The vertical projection

Suppose that the surface M is given by the explicit equation z = f(x), x = (z,y) € D C R% In
this case we consider the vertical projection p: M — D,

p(z,y, f(z,y)) = (z,y), for all (z,y) € D.

() -G

and the relations between ¢ = ({1, (2,(3) € M and (z,y) = p(¢) are

The function v is

rT=C, y=C



and

Cl =, €2 =Y, €3 :f(x7y)

(a) Vertical projection of the two-sphere

Let M be a unit sphere centered in (0,0,1). Then the two hemispheres obey the equations
z2=14+1—22—42

Obviously the corresponding function v does not satisfy the condition (2.5).
(b) Vertical projection of the hyperboloid

Consider again the upper sheet of the (general) two-sheeted hyperboloid, given by the explicit
equation
22 42
z=-c\/1 + ﬁ + b7

(the normalized case H% correspond to a = b = ¢ = 1). The calculation shows that

v(Q)=(1 ¢ _Wirdg o
- a?b? b33 + a3 + a?b?

and condition (2.5) is satisfied with

2 —-1/4
M=1,m= (14—
- <+MMﬁM>

For the normalized case Hi, the vertical projection yields r(x) = sinh y and

—1/4
v(¢) = <1 + tanh? g) .

(c) Vertical projection of the paraboloid

Consider the elliptic paraboloid with explicit equation

2 2
T Y
rE Ty
Simple calculations show that
ab

v(¢) =

(4642 + 4at(2 + atbt) /!

and obviously the function v does not satisfy condition (2.5) in Proposition 2.1.



2.3 The conical projection of the hyperboloid

In the case of the two-sheeted hyperboloid ]HI?'_, an alternative consists in projecting it first on its
tangent half null-cone

Ci:{xz(z,:n,y)€R3:22—x2—y220, z > 0},

then vertically on the plane z = 0. The result is 7(x) = 2sinh X. In fact, there is an infinite family
of projections from H%L onto the plane z = 0, leading to r(yx) = %sinhpx, but the case p = %
seems the most natural one. More details may be found in [5, 7, 9].

The same technique can be used for the one-sheeted hyperboloid HM!, of equation 2> =

—1 4 22 + 9%, which has the same tangent null-cone C? = {x = (z,z,y) € R?: 22 — 22 — 4% = 0}.

2.4 Radial projection from a convex polyhedron onto the sphere

A variant of the preceding constructions consists in projecting radially the faces of a convex
polyhedron onto the sphere [23, 27]. Let S? be the unit sphere centered in 0 and let I' be a convex
polyhedron, containing 0 in its interior and with triangular faces (if some faces are non-triangular,
one simply triangularizes them). Let = OI" denote the boundary of I' and let p :  — S? denote
the radial projection from the origin:

p(CC, Y, Z) =p (xvyv Z)v where p = p(CC, Y, Z) = 1/ \% x? + y2 + 22.
Let 7 denote the set of triangular faces of I' and consider the following weighted scalar product
on L?(S?):
FGr =Y [ FOOQurOdu(Q), ¢= (6t €5 F.G e XS,

TeT p(T)

Here wy(¢1,(2,(3) = 2d2T larCy + bra + cTC3|73, with ar, bp, er, dr the coefficients of z,y, z, 1,
respectively, in the determinant

r y =z 1
T z1 1
1 ! = aTx+bTy+cTz+dT1,
T2 Y2 22 1
r3 ys 23 1

where (z;, i, 2i), i = 1,2, 3, are the vertices of the planar triangle 7' € 7. Then, as in the case of
1/2

condition (2.5) in Proposition 2.1, one proves that the norm ||| := (-,-)[/~ is equivalent to the
usual norm in L?(S?), i.e., there exist constants mp > 0, M < oo such that

mr | fllr < [Ifll, < Mr || fllp, ¥ F € L*(S?).

Explicit expressions for optimal bounds mp and Mr are given in [28].

3 Constructing a global CWT on the manifold M

In order to build a CWT on the manifold M, one starts by identifying the operations one wants
to perform on the finite energy signals living on M, that is, functions in L?(M, du), where y is a
suitable measure on M. Next one realizes these operations by unitary operators on L?(M,dpu).
Mimicking the flat case, the required transformations are of two types: (i) motions, which are



realized by isometries of M, and (ii) dilations of some sort by a scale factor a > 0. In addition,
one may look for a possible group-theoretical derivation.

For motions, we may distinguish two cases, depending whether M admits a global isometry
group or not. As for dilations, the problem is how to define properly them on the manifold M
itself. One possibility is to lift them, by an inverse projection, from dilations in a tangent plane
or cone, that is, the dilation on M is defined as
DM =164, 0p, (3.1)

a

where p is the projection of M on the plane or cone and d, is the known dilation on the latter.

3.1 M with global isometry group

In the first class, manifolds which admit a global isometry group, we find the two-sphere S? and
the two-sheeted hyperboloid. Their isometry group are the (compact) rotation group SO(3) and
the (noncompact) Lorentz-type group SO,(2, 1), respectively.

(a) The two-sphere S?

The construction of a CWT on the two-sphere S? with help of the stereographic projection
has been thoroughly treated in the literature [1, 3, 4], so we just quote the results.

(1) The spherical CWT of a function f € L(S?, du) with respect to the (admissible) wavelet v
is defined as

Wilo.0) = (oa f) = [ ale Q) FQ (O, 0€50B).a>0,  (32)

where p is the usual rotation invariant measure on S? and 1, (¢) := A(a, 9)1/2w(C1/a), a > 0.
In these relations, (, = (04, ¢), 0, is defined by cot %“ = acotg for a > 0 and the nor-
malization factor A(a,#)'/? (Radon-Nikodym derivative) is needed for compensating the
noninvariance of the measure ;2 under dilation. Clearly the operator f(¢) — f((i/q) is built
on the model (3.1), with p the stereographic projection.

(2) The transform (3.2) has all the properties of the plane CWT: exact inversion (reconstruction
formula), reproducing kernel, etc. In addition, it has a correct Euclidean limit. That is, if
we construct the transform on a sphere of radius R and then let R — oo, the spherical CWT
tends to the usual plane 2-D CW'T on the tangent plane at the South Pole.

(3) The transform (3.2) can be obtained by a group-theoretical derivation (the so-called coherent
state method), using the Lorentz group SO,(3,1) (which is the conformal group both of S?
and of its tangent plane R?).

(4) The unitary map 7! defined in (2.4) allows to generate a spherical wavelet 7=1(¢)) from
any plane 2-D wavelet ). Examples are the familiar Mexican hat, Difference-of-Gaussians,
and Morlet wavelets. The latter, in particular, behaves on the sphere exactly as its plane
counterpart does on the plane [3].

(5) Discretization of the spherical CWT leads to various types of (generalized) frames, either
half-continuous (only the scale variable is discretized) or fully discrete. Technical details
may be found in [8].



(b) The two-sheeted hyperboloid H?

This case is entirely parallel to the previous one, replacing SO(3) by the isometry group
SO,(2,1), the elements of which are of two types: (i) rotations : z(x,¢) — (x,¢ + ©o); and (ii)
hyperbolic motions : z(x, ) — (x + X0, ¥). As for dilations, a choice has to be made, each type
being defined by one of the available projections described above. Details may be found in [7, 9].

(1) Given an (admissible) hyperbolic wavelet v, the hyperbolic CWT of f € L? (ng) with respect
to v is

Wi(a.0)i= (Wya £) = [ Bula0) FQ) (). g €502 1)a >0, (33)

As in the spherical case, 1. (z) = A(a,()¥(d;/4(), with d, an appropriate dilation, and
Aa, z) is the corresponding Radon-Nikodym derivative, and p is the SO,(2,1)-invariant
measure on H2. Once again, this operation is built on the model (3.1).

(2) The key for developing the CWT is the possibility of performing harmonic analysis on H?
including a convolution theorem, thanks to the so-called Fourier-Helgason transform. As a
consequence, the usual properies hold true, for instance,an exact reconstruction formula.

(3) However, no result is known concerning frames that would be obtained by discretization.

(c) The one-sheeted hyperboloid H'!

The same analysis can be made for the one-sheeted hyperboloid H!!, since it has the same
isometry group SO, (2, 1), the same tangent null-cone C?, hence the same type of conical projec-
tions, and a Fourier-Helgason-type transform with the required properties [6, 10].

3.2 M without global isometry group

If the manifold M does not admit a global isometry group, the previous method cannot be used.
A case in point is the axisymmetric paraboloid P2, of equation z = 2 4+ y?. A group-theoretical
tentative exists [19], based on a homeomorphim from a cylinder onto the pointed paraboloid
P2 .= P2 \ {0}, but it does not produce convincing results, in particular, the formalism does not
allow for a local dilation around an arbitrary point. Some additional details may be found in [5].

This being so, an alternative consists in lifting the wavelets from the tangent plane at the
origin onto P2, using the inverse vertical projection. Another one is to define a local wavelet
transform, as explained in the next section in the case of a general manifold.

4 CWT on a general manifold: Local wavelet transform

For simplicity, we continue to assume that M is a smooth 2-D surface. However, the analysis
extends easily to a smooth manifold of arbitrary dimension n. Let $ = L?(M, du) be the Hilbert
space of square-integrable functions on M, for a proper measure du, with scalar product (-, -)g.
In the following T (M) will denote the tangent space at ¢ € M.

Our construction is entirely local and rooted in differential geometry. At any point { € M, we
start by constructing a prototype wavelet. Generally speaking, this is a square integrable function
¥»(©) € § that is compactly supported in a neighborhood B¢ of ¢ € M. The size of B; will depend
on the local geometry of M. The second step is to define a suitable local dilation operator. In



order to exploit dilations in R", we will equip M with a local Euclidean structure by mapping B
to T¢(M). A simple way to implement this mapping is by flattening B along the normal to M
at (. Let p¢ be that local flattening map:

P¢ - BC = Tg(./\/l) (41)

In order for that mapping to be useful, we choose the size of B such that p¢ is a diffeomorphism.
Let o € B¢. A local dilation of coordinates is defined as in (3.1):

o g = p;t 0 a0 pe(0). (12)
Obviously, the definition of p¢ sets a local maximum scale a(mcix so that (4.2) is well-defined.
We can now easily construct a dilation operator acting on functions with support in B¢. For

convenience, we will denote by $(B;) this subspace of $. Given ¢ € $(B), the following
operator maps 9 (B;) unitarily to itself:

D¢(a) : 99 (a) = A2 (a, ) (ag-1),
where, as usual,
dp(ag-1)
dp(ar)

is the corresponding Radon-Nikodym derivative that takes care of the possible noninvariance of
the measure p under dilation. For the sake of compactness, we will use the shorter notation

Ma,a) =

¢((f) = Dg(a)dJ(C). Note that, by construction, D¢ will be continuous as a function of ¢ provided
the normal to M at ( varies smoothly.
Given a signal f € 9, we can now define its wavelet transform at ( € M and scale a as

Wi(¢,a) = (W, fs: (4.3)

The inverse transform will take the general form:

ay(Q) da
F= [ [T Wi ol

The bound ay(¢) used in this formula is a cut-off ensuring that the support of the dilated wavelet
wéi)(o stays under control, i.e., supp(wéi)(o) C B¢. As for the exponent 3, it depends on the
manifold at hand and serves the same purpose.

4.1 The case of the circle

As an example of the preceding construction, but in dimension 1, we take the case where M = S!,
the unit circle in R? and perform the calculation explicitly. The same calculation will then yield
the CWT on the two-sphere generated by the vertical projection.

4.1.1 Construction of local dilations

In this case, § = L2(S!,da) and ¢ is the angle ¢ € S'. A simple calculation shows that the
flattening map (4.1) has the following explicit form:

Py () = sin (a — o).



Obviously, p, coincides with the vertical projection defined in Section 2.2(a). In particular, for
¢ = —m/2 (the South “Pole”), p_r/2(a) = cos @, as it should.

This operation is defined in a neighborhood of size m centered on ¢, i.e., B, = [p—7/2, o+m/2].
A dilation of coordinates around ¢ will then be given by

o — a, = arcsin (asin (a — ¢)) + ¢, a >0, (4.4)
and the maximum local dilation that can be applied to a point « is amax = |sin(a — )| 1.

In order to define the dilation operator acting on $(B,,), we first compute the Radon-Nikodym
derivative:

dog—1 cos (a — @)
A = = .
(o) = Tt = P

It is easy to check that indeed it satisfies a cocycle relation: A~'(a, ag)A(a, o) = 1. If (¥ is a
bounded function compactly supported in [¢p — A, ¢ + A] C By, we have

Ve (@) = Aa, )2 1) (g 1), (4.5)
and the maximal dilation applicable to the wavelet 1#(“") is
ay(p) = |sin(p + A — )|~ = |sin A7

4.1.2 Local wavelet transform

The wavelet transform at ¢ then reads as follows:

20—
Wilpa) = | () f(a) da (4.6)

2w
= /0 Aa, a)'/? () (arcsin (a='sin (o — ¢)) + ¢) f(a) dav.

In this particular case, we have a nice group of translations acting on the circle, so that we can
write any locally defined function (#) as

VP (a) = pla - o).

Acting with D (a) on this function yields a simpler expression for the dilation. Namely, combining
(4.5) and (4.4), we get immediately

¥ = Pl - ¢).

Inserting this expression in (4.6) we see that the continuous wavelet transform takes the familiar
form of a convolution between the signal f and the dilated wavelet:

2m cos (v — 12
We(p,a) = / da( ( ?) ) ¥ (arcsin (a=tsin (o — ¢))) f(a). (4.7)
0 )

Va2 —sin?(a —
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4.1.3 Admissibility condition and reconstruction

We impose the following form for the reconstruction integral, to be understood in the strong sense:

2 ay(p)
At = [Cde [T G Wiea)ta ) (1.9

The following theorem shows that the operator Ay, is actually a simple Fourier multiplier.

Theorem 4.1 (Admissibility condition) Let ¥ € $ and m, M two constants such that, for all
n € Z, one has

ap(P) 5 da
0<ms = [ TP % <M< e, (19)

where %(n) is a Fourier coefficient of 1q. Then the linear operator Ay, defined in (4.8) is bounded

with bounded inverse. In other words, the family of wavelets {@bc(fo), p €S 0<a<ay(p)}is
a frame, with frame bounds m, M. More precisely Ay is uniquely characterized by the following
Fourier multiplier:

—~~ — ~ Gy da ~

Ay fn) = A5 ) = Tl [ ) 55 = Ayt o).
It should be noted that, here as in the standard construction [11], the admissibility condition and
the reconstruction formula do not depend on the explicit form of dilation chosen. In all cases,
the unique ingredient is the dilated wavelet @bc(fo) and its Fourier coeficients, no matter how the
dilation is defined.

4.2 Generalizations

The last remark allows us to treat the case of the two-sphere exactly as in the standard derivation
described at length in our previous papers [1, 3] and summarized briefly in Section 3.1 (a). The
treatment extends to the n-sphere as well [2].

We may also generalize the treatment of the circle directly, using the vertical projection defined
in Section 2.2(a). Indeed, since the two-sphere is invariant under rotation around any axis, the
projection process takes place in a section of fixed longitude, that is, a circle. Let us fix the point
Co = (Ao, o) € S%. Then vertical projection P¢, means projection along the axis O¢p onto T¢,, the
plane tangent at (3. This projection is given by

Peo (0, ) = (sin(d — bp), ) € Tt,, Co = (6o, ¢o)-

For instance, if we take 6y = 7 (the usual vertical projection on the plane tangent at the South Pole
S), then p¢, (6, ) = (sinf, ¢) (in polar coordinates in the tangent plane Ts). The corresponding
formula for an arbitrary point {y = (6p, po) may be obtained by performing a rotation of 6y around
the axis Ox, but the result is not illuminating.

This being said, there remains an open problem, namely, how to go from a local WT to a
global one. In other words, how can we go from one point to another one on M. In the language
of differential geometry, this means going from one local chart to the next one, and the tools for
that are available. For example, in the case of the sphere S? (or the circle), one needs two charts,
one for each hemisphere, with an overlap around the equator, a well-known problem familiar to
physicists of the 1970s in the context of a proper treatment of magnetic monopoles, for instance.
Clearly, some work remains to be done here on the wavelet side.

11



5 Lifting the DWT onto M

5.1 Lifting the DWT onto S? by inverse stereographic projection

The same technique of lifting a wavelet transform from a tangent plane to the manifold M, by
a suitable inverse projection, may be applied to the discrete WT. In this way, one can obtain
orthonormal wavelet bases on M, locally or globally, depending on the projection used. We
illustrate this technique first for the case of the pointed two-sphere $? with the stereographic
projection from the North Pole.

In the notations of Section 2.1(a), we know that the stereographic projection p induces a
unitary map « : L2(S?) — L%(R?) with inverse

(m F)(C) = F*(C) = v(O)F (p(C)), for all F € L*(R?),
ie, Fs=v.(Fop)e L*$?), and one has
<F7 G>L2(R2) = <F57GS>L2(§2)7 VF,G e L2(R2)7
which is the particularization of (2.2) to S2. Therefore, F,G are orthogonal in L2(R?) if and only
if 'S, G* are orthogonal in L?(S?).
Now consider the DWT in the tangent plane. Start from a 2-D plane multiresolution analysis

(MRA)
...CV oCV_1CVygCViCVyocC...

Taking for simplicity the tensor product scaling function (x) = ¢(z)p(y), one gets
Vit =V; o W;
where W has an orthonormal basis generated by the three wavelets
" (z,y) = @)(y), "W(x,y) = D(@)b(y), W(wy) = P)d(y).
For any F € L%(R?), write
Fijx(z,y) =2F(2z — k1,27y — ko), j € Z, k = (k1, k2) € Z°.

Then {)‘\Iljyk, k = (k1,ko) € Z*, X = h,v,d} is an orthonormal basis for W, and {’\\lek, j €7,

k € Z%, A\ = h,v,d} is an orthonormal basis for Dz W, = L?(R?).

Next, we lift everything onto S? by p~L. For j € Z, define V7 := {v-(Fop), F eV} where
{VI, jeZ}is the 2-D plane multiresolution analysis. Then Vi c Vit for j € Z, VI are closed
subspaces of L?(S?) and one has

V' ={0}, [JVvi=r*&.
JEZ JEZL

If {®gx, k € Z%} is an orthonormal basis of VY, then {®0x k€ Z*} is an orthonormal basis of

V0. In other words, (V7);ez is a multiresolution analysis of L?(S?).
As usual, define the wavelet spaces W/ = Vi1 o Vi Then {/\\I’iw k € Z® X\ = h,v,d} is
an orthonormal basis of W/ and {’\\I/;k, j €7, k €Z:, X\ = h,v,d} is an orthonormal basis of

(B ms) = 12,
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It follows that all the features of the plane WT are transported to the spherical WT. If ® has
compact support in R?, then CI);k has local support on $2 (indeed, the ‘diameter’ of supp (I)j,k
tends to 0 as j — 00). An orthonormal 2-D wavelet basis yields an orthonormal spherical wavelet
basis. Smooth 2-D wavelets yield smooth spherical wavelets. In particular, Daubechies wavelets
yield locally supported and orthonormal wavelets on S2. Thus the same tools as in the planar 2-D
case can be used for the decomposition and reconstruction matrices, so that existing toolboxes
may be used. Further details and examples may be found in [29].

A similar construction may be performed for the other conic sections, the upper sheet of
the two sheeted hyperboloid H? (using any of the conical projections described in Section 2.3
or the vertical projection, since the stereographic projection is somewhat pathological) and the
paraboloid (using the vertical projection).

5.2 Building a DWT on S? by radial projection

An alternative that has proven to be remarkably efficient is to design a DW'T on the sphere by
radial projection from the faces of a convex polyhedron, as described in Section 2.4 [23, 27].

Let again I' be a convex polyhedron with triangular faces, containing the origin in its interior.
The idea of the method is to obtain wavelets on S? first by moving planar, compactly supported,
wavelets to the faces of I' and then projecting them radially onto S?. Using this technique, one
may obtain the following results:

(1) Piecewise constant orthogonal wavelet bases on the faces of T' yield piecewise constant
wavelet bases on spherical triangulations [24]. Here the orthogonality is with respect to the scalar
product (-, -)r, not the usual scalar product in L%(S?), but the main advantage is that the matrices
used in decomposition and reconstruction are orthogonal and sparse.

(2) Locally supported piecewise linear wavelet bases on triangulations of R? yield piecewise ra-
tional semi-orthogonal wavelet bases on S?, having local support and satisfying the Riesz stability
property, hence continuous [23].

(3) Wavelets on S?, taking a cube for I and wavelets on an interval [26].

In addition, the method can be extended to the construction of wavelets on sphere-like surfaces
(closed surfaces obtained by a smooth deformation of S?) [25].

6 A continuous wavelet transform on graphs

As ultimate step of our analysis, we consider the case of a WT on a graph. A graph is a mathemat-
ical object that is well suited to model pairwise relations between objects of a certain collection,
such as the nodes of a sensor network or points sampled out of a surface or manifold. A graph
can thus be defined as a collection V' of vertices or nodes and a collection F of edges that connect
pairs of vertices. We shall only consider finite graphs, hence both sets will be finite. A graph may
be undirected, when there is no distinction between the two endpoints of each edge, or directed if
edges carry a notion of direction, i.e., the edge from vertex a to vertex b is distinguished from the
edge from vertex b to vertex a. We shall consider undirected graphs only. Another way of defining
an (undirected) graph is provided by its adjacency matriz A, that is, a square matrix A = (ai;); ;
of dimension d = |V, whose entry a;; equals the number of edges between vertex i and vertex
7. In the sequel, we will use the notation ¢ ~ j to denote that vertices ¢ and j are linked by an
edge. For undirected graphs, the adjacency matrix is of course symmetric. A walk is a sequence of
vertices v1,va, ..., v such that vjv is an edge, for [ =1,2,...,k — 1. The walk is called a path
if no vertex (and therefore no edge) is repeated. There is a natural notion of distance between
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any two vertices, namely, the length of the shortest path between them. It is well-known that the
(i,7) entry of the matrix A™ equals the number of walks of length n between vertices i and j.

In the sequel, we will assume that our signals of interest are functions f : V' — R, which can
be identified with d-dimensional real vectors f € R%. We want to design a wavelet transform on
the graph. In particular, we would like that the scaling parameter of the wavelet be in accordance
with the notion of distance between vertices. Several approaches to this problem have already
been considered, although with quite different mathematical formulations and properties:

e In [13], simple compactly supported wavelets are constructed using the hop distance neigh-
borhoods on graphs and applied to Internet traffic data. This construction is purely discrete
and does not involve spectral arguments. Moreover there is no generic reconstruction for-
mula.

e Diffusion wavelets [12] form an orthogonal basis of wavelet-like functions on a graph. The
construction partly shares our idea of using the spectral domain induced by the Laplacian
operator, but is then quite constrained by the orthogonality requirement.

Our construction depends on two fundamental ingredients. First, a suitable notion of Fourier
transform on the graph, that will be used to construct explicitly a scaling. Then, we will need a
way to localize wavelets around any chosen vertex of the graph. The key notion for both steps
is the fundamental object of spectral graph theory, namely, the Laplacian matriz. In our finite
dimensional, undirected setting, the Laplacian is defined as the matrix L with entries

deg@)? if i =7,
b= -1, ifi#jand i~ j, (6.1)
0, otherwise,

where deg(i), the degree of i, is the number of edges incident to i. The Laplacian is known to be
a positive semi-definite matrix. Thus it has a well-defined eigendecomposition. We will denote
by A\ and ¢ = (¢(7))i=1,..d, k = 0,...,d — 1, its eigenvalues and corresponding eigenvectors,
respectively. We order the eigenvalues in increasing order, A\g < A < ... < Ag—1. Note that
we always have A\g = 0. For simplicity, we consider that no eigenvalue is degenerate, but this
assumption can easily be relaxed. The eigenvectors form an orthonormal system that we can
use to decompose any signal (in the case of degenerate eigenvalues, this can always be enforced).
They will play essentially the same role as traditional Fourier modes, which are also defined as
eigenfunctions of the Laplacian. The Fourier coefficients of f € R? are defined as f,, = (¢m, f),
with the traditional Euclidean scalar product.

The Laplacian eigenfunctions can be used to define a class of operator valued functions via
their spectral decomposition (this is called the Borel functional calculus). Let 1) : RT — R be a
square integrable function. Define the operator valued function W(L) by its action on functions

on V:
d—1

V(L) f=> (M) Ji &n, for feRY
k=0

For instance, choosing 1 (u) = u, we recover the spectral decomposition of the Laplacian:

d—1

Lf =" M fr

k=0

With a slight abuse of language, we will call ¥(Ag) the Fourier transform of the operator ¥, a
statement meaning that () fr are the Fourier coefficients of the function W(L)f. Using this
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analogy, the class of operators we consider are thus Fourier multipliers. In our finite dimensional
setting, W(L) is simply a d x d matrix. Using this indirect description, it is natural to dilate the
operator-valued function W(L) by properly scaling its Fourier coefficients:

d—1

(L) F) () =D w(ths) frdn(l), t ERS, j=1,....d.

k=0

This idea, originally due to Holschneider [18] and Freeden [14], has been revived in the context of
spherical wavelets [21, 30, 32] and the so-called needlets [22]. Of particular interest to us is the
case where the signal of interest is a Kronecker delta at vertex :

9
Ju

(B(L)G:)(G) = > (tAR) b (@) dr(4)-

0

T

We will interpret this equation as the definition of a function of scale ¢t and localized at vertex i.
Both operations, scaling and localization, depend on 1, that we call a generator. By using these
mechanisms at various scales and for all vertices of the graph, we construct a familly of functions,
{14 : V — R}, indexed by scale and location, namely,

Yig:=V(tL)s;, i€V, teRS,.

It is natural to call wavelets such localized and scaled functions and, by extension, we can formally
define the wavelet transform of a function f: V — R as the set of coefficients

Wi(i,a) = (ia f)
= > (%ia) () F0)-

JjeEV
For a genuine wavelet transform, we still need an inversion formula. Intuitively, it should take
the following form:
da
-1 .
f=cy Z/RJr G—BW}Z’(Z,@) Py, (6.2)
% *

where (8 is an arbitrary weight. The characterization of generators that allow for such a general
inversion is given by the following result.

Theorem 6.1 (Graph Wavelet Generator) Let ¢ € L*(R") and ¢y be a constant such that

400 ) da
0<cy= ; |9 (a)] 5 < +00. (6.3)

Then the reconstruction formula (6.2) holds true for any f € RY.

The proof is a trivial application of the spectral decomposition of L. Note that we recover a
condition which is very reminiscent of the classical wavelet admissibility condition. In particular,
the condition is satisfied whenever the generator v is a continuous function that vanishes at the
origin, i.e., ¥(0) = 0, which implies

D (T(tL)S:) () =0,V t e RS, i € V.
jev

15



An admissible wavelet v is thus a zero mean, or more generally oscillating, function associated to
the graph. Note as well that it is absolutely trivial to construct admissible wavelet generators. In
particular, Euclidean wavelets can be used as generators.

Links with the traditional continuous wavelet transform can be drawn much further. Consider
Z as the set of vertices, with edges of unit length connecting any vertex (integer number) to its two
nearest neighbours. One easily checks that the Laplacian is just a finite difference approximation to
the second derivative and the associated eigenvectors are the normal Fourier modes. In that case,
our arguments provide a simple digital wavelet transform with continuous scales, defined in the
Fourier domain. Similarities can be observed with other wavelet constructions, at least informally.
Indeed, suppose the vertices are sampled from an underlying smooth compact manifold. Then it
has been shown in [17, 31] that the Laplacian matrix converges to the matrix representing the
Laplace-Beltrami operator on the manifold as one increases the sampling density. In that case,
graph wavelets would resemble wavelets on the underlying manifold, more and more closely. This
can have significant practical impact to design digital wavelets on sampled manifolds without
even having to consider the underlying geometry: it is also automatically embedded in the graph
connectivity. Note also that the sampling does not have to be uniform, this construction handles
scattered data in a completely natural way. Figure 1 illustrates this construction for an undirected
graph made of scattered points in the plane.* In this example we have used the following generator
(Mexican Hat wavelet):

Y(u) = ule™™.
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