Abstract

A study of the optical properties of microfabricated, fully-metal-coated quartz probes collecting longitudinal and transverse optical fields is presented. The measurements are performed by raster scanning the focal plane of an objective, focusing azimuthally and radially polarized beams by use of two metal-coated quartz probes with different metal coatings. A quantitative estimation of the collection efficiencies and spatial resolutions in imaging both longitudinal and transverse fields is made. Longitudinally polarized fields are collected with a resolution approximately 1.5 times higher as compared with transversely polarized fields, and this behavior is almost independent of the roughness of the probe's metal coating. Moreover, the coating roughness is a critical parameter in the relative collection efficiency of the two field orientations. © 2005 Optical Society of America.

Details

Actions