A confined, evanescent nano-source based on the excitation of Surface Plasmon Polaritons (SPP) on structured thin metal films is proposed. With the help of a suitable cavity, we numerically demonstrate that it is possible to trap SPP over a spatial region smaller than the diffraction limit. In particular, the enhanced plasmonic field associated with the zero-order cavity mode can be used as a virtual probe in scanning near-field microscopy systems. The proposed device shows both the advantages of a localized, non-radiating source and the high sensitivity of SPP-based sensors. The lateral resolution is limited by the lateral extension of the virtual probe. Results from simulated scans of small objects reveal that details with feature sizes down to 50 nm can be detected. © 2005 Optical Society of America.