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Abstract

The growing use of multicore and networked computing systems is increasing the im-
portance of developing reliable parallel and distributed code. Unfortunately, develop-
ing and testing such code is notoriously hard, especially for shared-memory models
of programming. The actor model offers a promising alternative paradigm based on
message passing. Essentially, an actor is an autonomous concurrent object which
interacts with other actors only by exchanging messages. In actor-based systems, the
key source of non-determinism is the order in which messages are delivered to—and
processed by—the actors. Bugs can still occur in actor programs as the interleaving
of messages may be incorrect, or the sequential code within an actor can have bugs.

We developed a general framework, called SEJAP, for exploring possible message
schedules in actor systems compiled to the Java bytecode. Specifically, in this dis-
sertation, we present one instantiation of SEJAP for the actor library of the Scala
programming language. To the best of our knowledge, this is the first framework that
allows systematic exploration of Scala actor programs. We also present two optimiza-
tions that alleviate the state explosion problem typical for such exploration, and thus
speed up the overall exploration of actor programs in SEJAP. We have implemented
our framework, Scala instantiation, and optimizations in Java PathFinder, a widely
used model checker for Java bytecode developed by NASA. Preliminary results show
that SEJAP can effectively explore executions of actor programs. Further, our use
of SEJAP already discovered a previously unknown bug in the sample code from a
popular site for Scala.
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Chapter 1

Introduction

Computing is undergoing a historic change as processor clock speed is not signifi-

cantly increasing any more but instead processors shift to having multiple computing

cores. To fully exploit multicores to improve the performance of applications, software

developers need to write parallel code (either from scratch or by parallelizing exist-

ing sequential code). One category of parallel code is based on shared data, where

multiple threads of computation communicate by reading and writing shared objects.

For example, the Java programming language [43] provides support for threads in

the language and libraries, with shared data residing on the heap. However, mul-

tithreaded code is notoriously hard to get right, with common concurrency bugs

including dataraces, atomicity violations, and deadlocks. An alternative approach for

writing parallel and distributed code is message passing, where multiple entities of

computation communicate by exchanging messages.

In the actor programming model [3, 4], each computation entity (called an actor)

has its own control and state, and communicates with other actors by explicitly send-

ing messages. Existing actor-oriented programming systems include Charm++ [48],

Erlang [69], E [19], Newspeak [12, 59], Ptolemy II [65], Revactor [67], SALSA [80],

Scala [61, 71], and THAL [49], as well as a number of libraries for Java such as Ac-

torFoundry [2], Jetlang [42], Jsasb [47] and Kilim [77]. An actor program can have

different executions (even for the same input) based on the interleaving of messages

exchanged between the actors, in much the same way as a multithreaded program can
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have different executions based on the interleaving of accesses to the shared memory.

While actor programming avoids some of the bugs inherent in shared-memory pro-

gramming, e.g., low-level dataraces involving access to shared data, actor programs

can still have bugs due to incorrect interleaving of messages or incorrect sequen-

tial code within an actor. Identifying and eliminating these bugs becomes remark-

ably important as the use of the actor model increases for parallel and distributed

programming. Systematic testing and model checking are approaches that help in

improving reliability by automatically searching for potential bugs. A key to these

approaches is state-space exploration [17] that searches through the possible exe-

cutions of a program. Previous research on model checking for actor or distributed

systems [7, 8, 10, 23, 74, 86] focuses on (stateless) checking of programs in one specific

system and not on providing a general platform for checking and experimentation.

This dissertation describes SEJAP, a framework for State Exploration of Java-

based Actor Programs. Instead of building a tool for one specific actor implemen-

tation, we developed a general exploration framework that can support several actor

systems with a small adaption layer required for each system. The interface between

the SEJAP core and the adaption layers is designed both to allow direct exploration

of unmodified application code and to ensure that optimizations for exploration (such

as customized actor state comparison or partial order reduction [17]) can be made

available to multiple actor systems by changing only the SEJAP core. To prove the

generality of our approach, we instantiated this framework for two actor-based sys-

tems: the ActorFoundry library [2] for the Java programming language, and the actor

library for the Scala programming language [61]. Specifically, this dissertation will

focus on the Scala instance.

Scala is a modern programming language that combines the object-oriented and

functional paradigms. Scala blends together the best practices of these two worlds and

provides the developer with several advanced abstractions [62] such as type members,

explicit selftypes, and mixin composition, with the goal of providing better language

support for creating modular, reusable components.

Scala enables actor concurrency through a flexible actor library. However, it is
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important to note that we are concerned with the checking (through state-space explo-

ration) of Scala actor application code, not of the actor library itself. The adaption

layer that we developed replicates the behavior of the original actor library from the

point of view of the application code. Therefore, SEJAP does not check the actual

Scala library code but focuses instead on exposing potential bugs in the application

code due to message scheduling, which is the source of non-determinism in actor-based

programs.

Moreover, we choose to build on an existing exploration tool, to foster adoption

and integration with related results. In particular, we build on the Java PathFinder

(JPF) tool [44, 82]. JPF is an explicit-state model checker for Java bytecode [44,

82]. It was developed at NASA and has been used in numerous research projects (a

partial list is available online [45]), primarily for checking programs written directly

in the Java programming language. In contrast, we extended JPF and applied it

to Scala, which also compiles to Java bytecode. JPF provides a specialized Java

Virtual Machine (JVMJPF ) that supports state backtracking and control over non-

deterministic choices such as thread scheduling. Prior to our work, JPF did not have

any direct support for actors, e.g., for high-level choices such as message scheduling.

We chose JPF as our implementation platform due to its popularity and because it can

execute compiled Scala code, but our techniques would be applicable in other explicit-

state model checkers for real code, e.g., BogorVM [68], CMC [57], SpecExplorer [81],

or Zing [6].

1.1 Problem Statement

The actor library available in the Scala programming language offers a powerful ab-

straction to develop concurrent software. Testing is very useful for ensuring that the

concurrent software behaves correctly. However, testing concurrent software is usually

very hard because it is difficult to explore all possible interleavings that may affect

the program execution. Software model checking is a technique used to systematically

explore a large number of executions of a concurrent program, and it has been suc-
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cessfully applied to the verification of concurrent, as well as distributed, applications.

To date, no tool supports systematic exploration for Scala actor programs.

1.2 Proposed Solution and Contributions

This dissertation presents an approach to state-space exploration of Scala actor pro-

grams. Specifically, we describe a Scala instantiation of SEJAP [52], our generic,

library-independent framework for checking actor programs.

This dissertation makes several contributions.

• The first contribution is the description of the design of SEJAP, the framework

that we developed for state-space exploration of actor programs.

• The second contribution is the instantiation of SEJAP for the Scala actor li-

brary. To the best of our knowledge, this is the first tool that enables state-space

exploration of Scala actor programs.

• The third contribution is the implementation of SEJAP as an extension to JPF.

As part of the implementation we also integrated in the framework two global

optimizations:

1. A customized actor state comparison, which can help mitigating the state

explosion problem and generally makes the overall exploration faster.

2. Two different step granularity tactics, which impose a trade-off between

faster straight-line execution and efficient overall exploration.

Prior to this work, JPF did not have any special capability to efficiently explore

Scala actor programs.

• The fourth contribution is an evaluation of our implementation on a number of

programs, demonstrating the effectiveness of our approach.

Our use of SEJAP already discovered a previously unknown bug in a code sample

available on the ScalaWiki website [72], which we have included in Appendix A.
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1.3 Organization of this Dissertation

The rest of this dissertation is organized as follows: Chapter 2 gives a brief overview

of the actor programming model, the Scala programming language, and the Java

PathFinder model checker. Chapter 3 presents a real Scala application that had a

previously unknown bug, and we describe how our verification framework helped us

identify this bug. Chapter 4 covers the main aspects of the framework that we built.

Chapter 5 presents some optimizations that we integrated to speed up the exploration.

Chapter 6 describes how we modified the Scala actor library to integrate it in our

framework. Chapter 7 evaluates our approach on five examples. Finally, Chapter 8

discusses related work, and Chapter 9 concludes and presents ideas for future work.
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Chapter 2

Background

This chapter starts with a discussion on the foundation of the Actor Model in Sec-

tion 2.1. Section 2.2 briefly presents the Scala programming language in general and,

in particular, introduces the Scala actor library through a number of simple examples.

Section 2.3 presents the key aspects of Java PathFinder, a widely used model checker

for Java bytecode, on top of which we implemented our framework for state-space

exploration of actor programs.

2.1 The Actor Model

2.1.1 Actors in a Nutshell

The actor model was originally proposed by Hewitt in the early 1970s [34] where the

term Actor was used to describe the concept of an autonomous agent in Distributed

Artificial Intelligence. Over the years, several contributions [3, 4, 27, 33] have refined

the notion of actor into a rigorous mathematical model for concurrency. Essentially,

an actor is an autonomous concurrent object which interacts with other actors only

by exchanging messages. By default, these messages are asynchronous. Other forms

of communication, e.g., synchronous remote-procedure-calls, are defined in terms of

asynchronous messages [3]. Each actor has a unique actor name (its virtual address)

and mailbox (or mail queue). Figure 2-1 depicts the different parts of an actor.
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Figure 2-1: Representation of an actor

If an actor is busy, messages sent to it are queued in its mailbox. When an actor is

done processing a message, it checks its mail queue for another message. In response

to processing a message, an actor may do one or more of these three actions:

• Send messages to other actors or to itself.

• Create new actors that have their own unique names and mail queues.

• Update the local state to prepare for processing the next message.

Each actor operates asynchronously. Consequently, if two actors send independent

messages (i.e., the sending events are not causally related), the order of arrival of these

messages is indeterminate. Moreover, no assumption is made about the routing of

messages; therefore, by default, two messages sent from the same actor may arrive in

any order. On the other hand, when the message is actually delivered to the actor, its

computation is completely deterministic. Specifically, actors have a history-sensitive

behavior, meaning that the current behavior of an actor is determined by the sequence

of messages that it has received and processed. Another interesting property of actors

is their isolation: an actor is unaware whether it is executing alone or concurrently

with other actors and, indeed, does not need to know. Since actors only update

their local variables and do not share state, the behavior of an actor is completely

independent of external events generated by the system where the actor resides. This

8



entails that actors can be executed atomically or, equivalently, that their execution

respects a macro-step semantic [4, 74]. In the macro-step semantic, the execution of

an actor from the receipt of a message up to the next receipt takes place consecutively

without interleaving with any other actor.

A last interesting aspect of actors is that, by nature, they emphasize the inde-

pendence of what is done (the interface) from how it is done (the representation).

On the one hand, the interface of an actor consists in the shape of messages that the

actor is able to receive and process. On the other hand, the representation determines

how the local state of the actor evolves. Encapsulation and modularity are hence two

fundamental characteristics of actors, which allow better reuse and composition of

fine-grained actors into coarse-grained ones. Essentially, actors enable separation of

concerns and simplify reasoning about complex, potentially concurrent, systems.

2.1.2 Actor Systems

Several actor-oriented programming systems exist nowadays, e.g., Charm++ [48],

Erlang [69], E [19], Newspeak [12, 59], Ptolemy II [65], Revactor [67], SALSA [70],

Scala [61, 71] and THAL [49], as well as a number of libraries for Java such as Ac-

torFoundry [2], Jetlang [42], Jsasb [47] and Kilim [77]. Interestingly, these concrete

implementations all differ from the theoretical actor model. For instance, actor lan-

guages typically provide higher level language constructs for synchronous (or request-

reply) communication, where a value is returned by the actor receiving a message;

the sending actor waits until this value is received before carrying out further com-

putation. Also, in many actor languages, the developer may specify synchronization

constraints [36], which allow the enforcement of an order on the sequence of messages

processed by the actor. Nonetheless, these constructs can be translated into basic

actor primitives [38], and hence are not part of the theoretical model.
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2.2 The Scala Programming Language

2.2.1 Scala in Brief

Scala [60, 61, 71] is a general purpose programming language developed by Martin

Odersky and his team at EPFL. The language’s first official release dates back to

November 2003 [60].

In the words of its author:

Scala is a general purpose programming language designed to express

common programming patterns in a concise, elegant, and type-safe way.

It smoothly integrates features of object-oriented and functional languages.

Scala is tailored to both the Java Virtual Machine (JVM) and the Common Lan-

guage Runtime1(CLR), and shares with Java and C# a similar syntax for many

language constructs (e.g., class definition and control structures). However, Scala’s

unified object model2 enables a new style of programming which is both more concise

and allows for greater reuse. An important addition to the language consisted of

the integration of an actor library (since version 2.1.73), which enabled Erlang-style

concurrency [69].

In Section 2.2.3 we cover the basic building blocks of the Scala actor library. This

is a recommended reading to understand the code example presented in Chapter 3.

We now introduce pattern matching, a specific Scala programming language feature

that we will extensively use in all the code examples described in this dissertation.

2.2.2 Pattern Matching

Pattern matching is a widely used conditional construct in programming languages,

particularly in functional ones, e.g., Erlang [69], Haskell [79], ML [1], or OCaml [9].

It specifies a computation as a sequence of tests on the shape of a given value and

1The Common Language Runtime is part of the Microsoft .NET framework.
2Every value is an object and every operation is a method invocation.
3At the time of this writing the official Scala release is version 2.7.3.
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binds variables to value components if the test succeeds, generalizing if-then-else and

case statements.

A pattern matching expression with n patterns takes the following form in Scala:

s match {

case p1 ⇒ expr1

case p2 ⇒ expr2

. . .

case pn ⇒ exprn

}

Patterns p1, p2, . . ., pn are tested against the selector s sequentially. As soon as a

pattern matches the selector’s shape, the pattern variables are bound and the entire

match expression evaluates to what is on the right-hand side, which, in turn, can be

any valid Scala expression. If no pattern matches the selector, a runtime exception is

reported to the user. The patterns pi allowed in a pattern matching expression vary

a lot, ranging from simple (primitive4) values to complex compound objects.

Semantically, Scala treats blocks of pattern matching cases as instances of partial

functions. Partial functions are functions that are defined only in some part of their

domain. Actors use partial functions to concisely define their behavior, as we will

show in the examples of the next subsection.

2.2.3 Actors by Examples

In this subsection we start exploring the Scala actor library. Specifically, we will

present how actors can be created and started, along with the basic building blocks

for actor communication (i.e., message send and receive).

In Scala, an actor is any object whose class realizes the Actor trait. A trait

resembles a Java abstract class, in the sense that it can contains both concrete and

abstract methods. However, unlike Java abstract classes, traits can be composed

4Primitive types in Scala are exactly the same as in Java i.e., integer, boolean, char, double, float,
long, and byte.
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together and they allow for broader class reuse (this language feature is called mixin-

class composition, see [61] for more details).

A class that extends the Actor trait needs only to implement the act method.

This method defines the initial behavior of the actor. The Actor trait also contains

a method named start which is the entry point for the actor’s execution. When an

actor is started it implicitly calls its act method.

The simplest possible behavior that an actor can have is to do nothing or, as in

the below example, output a message on the standard output.

class MyFirstActor extends Actor {

def act = println(”I’m an actor”)

}

val anActor = new MyFirstActor

anActor.start // will implicitly call the actor’s ‘act‘ method

Despite its evident simplicity, this example already shows an interesting particu-

larity of the library. We can observe that starting an actor is a two-steps operation

involving a) the creation of the actor, and b) a call to start on the freshly created

instance. When started, the actor begins its computation by executing the body of

the act method. It is important to note that messages sent to a non-started actor

are queued in its mailbox and will be processed only after the actor is started.

The library also offers some syntactic alternatives to create actors. For instance,

the previous example is equivalent to the following one-line statement.

val anActor = actor { println(”I’m an actor”) }

The actor expression will create a new actor, define the body of act with the

sequence of statements inside the block (which in this example consists only of printing

on the standard output), and immediately start the actor.

The main characteristic of actors is that they can send and receive messages; the

next example introduces the syntax for these operations.
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val anActor = actor { receive { case msg ⇒ println(msg) } }

actor { anActor ! ”Hello” //asynchronous send }

Here, we first create an actor that waits until a message is received. Then, a

second actor sends message “Hello” to anActor, which will react by printing the value

on the standard output. The example shows that in Scala receiving a message is

an explicit operation. Hence, an actor will process only as many messages as the

number of receive statements defined in its body (fortunately, the library provides

combinators for creating an infinite chain of reactions). In this example, anActor

terminates its life-cycle upon receipt of the first message. Moreover, the actor that

sends the “Hello” message ends its computation immediately after having executed

the send. This is an important variation from the theoretical model [4], where actors

receive messages implicitly and stay idle when their mailboxes are empty.

The library also offers a second solution for receiving messages. Namely, instead

of using receive we could have used react and obtained the very same execution.

The difference between the semantics for these two operations consists in the returned

values (note that receive and react are both standard function calls). While receive

returns normally, react always throws an exception at the end of its execution5;

entailing that any instruction that follows will never get executed. For example, the

following definition of anActor has the very same behavior as the previous one.

val anActor = actor {

react { case any ⇒ println(any) }

assert(false) // unreachable code

}

Because of the particular semantics of react, the failing assertion is never exe-

cuted. At first glance, this might appear to be a surprising execution. However, the

motivation is in the core of the Scala actor library. By now, it should be clear that

5This is done to detach the thread from the actor, as will be explained later in this section.
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actors are entities which may (potentially) execute in parallel. Since Scala compiles to

Java bytecode, the only way to execute two or more actors concurrently is by running

them on distinct threads. However, threads in Java are costly (since they are mapped

to heavy OS threads) and need to be used with care, since a large number of them

can quickly deteriorate the overall performances of the system. To help mitigate this

cost, the Scala actor library provides two alternatives for mapping actors to threads.

When a developer uses receive, the library maps the actor to a unique thread, which

is held even when the actor cannot progress, e.g., no message is available. Alterna-

tively, when react is used, the actor frees (at the end of its computation) the thread

that it is using, so that the thread can be reused. (The library contains a compo-

nent that manages a dynamic pool of threads for executing actors.) This entails that

the total number of threads is usually considerably lower than the overall number

of actors in the system. The interested reader can find more insights concerning the

library implementation in [29, 30].

2.2.4 Impurities of the Library

In Section 2.1.2 we briefly mentioned that concrete implementations of actor systems

tend to differ in several aspects from the theoretical model. Scala is no exception,

and it is important to know and understand these differences. The main reason being

that those additional “language features” can result in subtle bugs in the application,

when the developer is unaware of their existence.

First, in Section 2.1 we stated that, because actors execute atomically, multiple

actors running in parallel do not interfere. In other words, actors are ensured to be

isolated one from the other and, in general, from the rest of the system. However,

this property is not currently ensured in Scala6. A developer is not prevented from

creating an actor that exposes part of its state. This is not a problem in itself, as

long as the part of the actor state that gets exposed is immutable. On the other

hand, if it is mutable, classic shared-memory issues arise since multiple threads can

potentially access, concurrently, the visible members (forcing the developer to resort

6A type system to ensure isolation is under development.
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to lock/unlocking strategies to regulate access to the contended objects).

The lack of isolation is also responsible for a second critical issue, which is related

to the cost of sending messages. Specifically, in many actor languages and libraries,

the cost of message passing is minimized by transferring ownership rather than by

copying data. Unfortunately, these actor languages and libraries generally require the

programmer to ensure that passing messages by transferring data ownership is correct

(i.e., that the sender does not subsequently attempt to access the data). Evidently,

this requirement can be a source of bugs. An easy solution to this problem is to

ensure (again) that only immutable messages are exchanged among actors. However,

this might not always be possible. An alternative is to resort to static verification

techniques to identify read/write operation on shared messages. Specifically, the Scala

team is considering the integration of linear types [83], which would ensure that only

one reference to any object exists at a time. Consequently, sending a message would

also transfer its ownership.

Finally, in one of the examples in Section 2.2.3 we have already seen that because

of the particular semantics of react, it is possible to create unreachable code. This

might lead to hard-to-explain executions, since the developer has to be aware of the

semantics of each actor’s method.

2.2.5 Actor Semantics

In this subsection, we present the semantics of the actor’s methods defined in the

Actor trait. It is important to remark that the correct semantics of these methods

is only ensured if the methods are called within the scope of another actor7. This is

enforced by throwing a runtime exception in case of violations. The only exception

to this rule are methods start and act, which are used to initialize the life-cycle of

an actor and to define its initial behavior.

The Actor trait includes the following methods:

• act() Define the behavior of the actor.

7Therefore, the existence of a this value that refers to the executing actor is assumed.
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• start() It is the starting point of the actor’s execution. When an actor is

started it implicitly calls its act method.

• mailboxSize() Return the number of messages queued in the actor’s mailbox.

• recv.send(msg, sender) Send (asynchronously) a message to actor recv, and

explicitly specify the sender actor for the sent message. From the perspective

of the actor that receives the message, sender is the actor that has sent the

message.

• recv.!(msg) Send asynchronously a message to actor recv and (implicitly) at-

tach the sender’s reference to the message payload (equivalent to rcv.send(msg,this)).

• recv.!?(msg) Send synchronously a message to actor recv and (implicitly)

attach the sender’s reference to the message payload. The actor that sent the

message then pauses its execution until actor rcv sends back a reply.

• recv.!?(msg, msec) Same semantic as !?, with the important difference that

the sender actor is forced to continue its computation if it doesn’t get a reply

within the given time span of msec milliseconds.

• sender() Return the reference to the actor that is associated with the message

that is currently processed by this actor.

• recv.forward(msg) Send (asynchronously) a message to actor recv and (im-

plicitly) attach to the message’s payload the reference of the sender actor that

is associated with the message currently processed by this actor (equivalent to

rcv.send(msg,sender())).

• receive(f) Takes out of the actor’s mailbox a message that is in the domain of

function f, and applies f to the message. If no message is available, then pause

the actor until a message is received.
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• receiveWithin(f, msec) It has the exact same semantic as receive; with the

important difference that if no message is delivered to the current actor within

a time span (specified in milliseconds), the system generates a timeout message

and the actor starts immediately processing it. timeout has to be in f’s domain

or the actor will continue to wait.

• react(f) It has a semantics similar to receive. However, when function f

completes its computation, an exception is always thrown.

• reactWithin(f, msec) Works in the very same way of receiveWithin; but when

f terminates an exception is always thrown.

• ?() Takes out of the current actor mailbox a message and returns it. If no

message is available the actor blocks until a new message is enqueued.

• link(to) Add actor to to the list of actors known by current actor. Also

add the current actor to the list of actors known by to. link can be used to

coordinate an action among a group of (linked) actors.

• unlink(from) Inverse of calling link; mutually detach actor from from the

current actor.

• exit() Immediately terminates the execution of the current actor. For each

linked actor (with state variable trapExit8 set to true) send (asynchronously)

an exit message to inform them that the current actor is shutting down.

2.3 Java PathFinder

2.3.1 A Model Checker for Java Bytecode

Java PathFinder [44, 82] (JPF) is an explicit-state model checker for Java bytecode

developed at NASA Ames since 1999 (the project became open source in 2005). In

8This is a member of the Actor trait, hence it is inherited by all actors.
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its first incarnation, JPF was implemented as a translator from Java to the Promela

language of the SPIN model checker [32]. This strategy soon proved to be inappro-

priate since each feature in Java needed to be encoded into a semantically equivalent

Promela feature (and this was not always feasible). Thus, the decision was made to

completely rewrite JPF as a customized model checker able to directly execute Java

bytecode. We next describe this new version.

2.3.2 JPF Architecture and Design

JPF is implemented in Java and at its core is a specialized Java Virtual Machine

(JVMJPF ) that can execute Java bytecode. This enables the model checker to have

multiple hooks in the runtime, which allow it to obtain control over the program

execution. Specifically, the JVMJPF is invoked from the model checker to interpret

the bytecode while the different traces of the program are being explored. The fact

that JPF is executed on top of a standard JVM (hence the program that is verified

in JPF is interpreted) results in a large execution overhead. However, JPF aims to

explore all possible executions of a concurrent application, with the intent of making

the overall exploration fast. To this end, the JVMJPF allows state backtracking and

the entire state of the application is saved each time that a non-deterministic choice

(e.g., thread scheduling) is faced. Specifically, each state consists of all full stack

frames for every thread, the entire heap, and the static information about the loaded

classes. JPF uses a “collapse” algorithm to transform a concrete state into a list of

indexes indicating which components compose the state itself. A fundamental aspect

of the transformation is that the decomposition must be unique, so that by comparing

the indexes it is possible to determine state equality. This special representation used

to store the program’s state allows JPF to achieve fast backtracking. Lastly, to

alleviate the state space explosion problem, JPF provides [82] several verification

techniques such as partial order reduction, symmetry reduction, slicing, abstraction,

and runtime analysis.

JPF is able to execute any pure Java program. However, not all programs consist

of only pure Java code. Java classes that contain native (to the system) methods
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cannot always be handled directly by JPF. The issue is that these native methods

are usually implemented in languages such a C/C++, and thus their body cannot

be interpreted as is by JPF. Consequently, JPF cannot keep track of the state infor-

mation, and JPF will fail when attempting to execute the code. Unfortunately, any

interesting Java application is likely to be impure, since many Java library classes

contain native methods9. Therefore a solution to this problem is mandatory. For-

tunately, in many cases it is not too difficult to create Java code that emulates the

behavior of the native operation. For instance, wrappers can be built to match the

native operations.

We already mentioned that one of the most important drawbacks of JPF is that

the program is interpreted, which imposes a significant overhead to the verification

task. To alleviate this problem, JPF allows portions of the program to execute di-

rectly on the host JVM. This mechanism is implemented through the Model Java

Interface (MJI). The MJI is a powerful component of the JPF architecture that en-

ables communication between the JVMJPF and the underlying host JVM. The design

goals of the MJI strictly resemble the ones of the well known Java Native Interface [55]

(JNI), which allows Java code running in the JVM to call and be called by native

applications and libraries written in other languages, e.g., C/C++. When executing

parts of the program on the host JVM, JPF cannot keep track of (potential) mod-

ifications to the state of the program; therefore the developer must ensure that no

relevant information is lost.

The interested reader can find more information about JPF in [31, 44].

9For instance, many of the Java library classes that provide file I/O (java.io and java.nio), user
interface (java.awt and java.swing), and networking communication (java.net) functionalities contain
several native methods.
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Chapter 3

Example

This chapter presents a simplified version of a sample actor program available on

ScalaWiki [72], a popular website that provides a number of widely used resources for

Scala, including code samples contributed by some developers of the Scala program-

ming language. Using our framework, we discovered a bug in one of these samples.

Section 3.1 presents the example and describes the possible executions that lead the

system to an inconsistent state. Section 3.2 provides some insights into the framework

that we built and describes how it achieves systematic exploration of actor program

executions.

3.1 A Simple Client-Server Program

Figure 3-1 shows the code for a simplified version of the real sample code. The server

actor accepts three kinds of messages: Set, Get, and Kill. This actor simply stores

and retrieves an integer value1. In addition to storing and retrieving the value, the

server actor can also process a Kill message, which instructs the actor to terminate

itself by invoking the exit actor library method.

The program starts from the main method, where a client actor is created and au-

tomatically starts executing. The client first asynchronously sends (using the bang ‘!‘

1The actual server from the ScalaWiki code was keeping track of an inventory of items with
specified prices and quantities.
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1 object ClientServer {
2 case class Set(v: Int)
3 case object Get
4 case object Kill
5

6 def main(args: Array[String]) = {
7 val client = actor {
8 server ! Set(1)
9 val v1 = (server !? Get).asInstanceOf[Int]

10 val v2 = (server !? Get).asInstanceOf[Int]
11 // assert (v1 == v2)
12 server ! Kill
13 }
14 }
15

16 val server = actor {
17 var value = 0
18 loop {
19 react {
20 case Set(v) ⇒ value = v
21 case Get ⇒ reply(value)
22 case Kill ⇒ exit()
23 }
24 }
25 }
26 }

Figure 3-1: Buggy client-server code sample

operator) a Set message to the server to store value 1. The client then queries (twice)

the server and retrieves the current integer value maintained by the server. (Note

the use of the !?, which enables synchronous—blocking—actor communication.) The

original source assumed v1 and v2 to be identical2; we could have made this explicit

by inserting an assertion. Finally, the client sends a Kill message to the server and

terminates its execution.

The cause of problems in this example is the order of message deliveries. Actor

systems, including Scala, usually do not guarantee in-order delivery of the messages.

2The actual code on ScalaWiki was also retrieving the inventory of items twice but performing
two different computations on the inventory.
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Figure 3-2: Possible message schedules and final states: correct, incorrect, correct,
warning

In other words, the default communication channels among the actors are not FIFO.

However, anecdotal experience shows that assuming in-order delivery is a common

cause of programming errors in many actor programs. In our example, for instance,

the server need not process the message Set before the first Get.

Figure 3-2 shows some possible executions for our example program. Specifically,

if the server interleaves processing Get between the two Set messages, it will return

inconsistent values for v1 and v2. This faulty execution can be observed in the

execution trace labeled F2 in Figure 3-2. While this execution is not very likely3, it

is possible. The program therefore may expose an atomicity violation. (The Scala

developers confirmed the bug that we reported for their code on ScalaWiki). Also

observe that in Figure 3-2 we used a Reply message to carry the returned payload

of a synchronous call; however, this type of message does not get created in the real

program (the value is simply returned with no message wrapper) and is included here

to clarify the description of the example.

3We ran our example code on the standard Scala run-time 1000 times, and it always processed
message Set before Get.
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3.2 Description of the Space Exploration

In the framework that we developed, the program exploration starts from the main

method and explores all non-deterministic choices that arise when several messages

can be delivered. We assume for this example a depth-first strategy for driving the

exploration, but other strategies are also possible. Figure 3-3 shows the state space

that is explored for the above example code. Each state of an actor program consists

of the actors’ state (in our example, the field value in the server and the variables v1

and v2 in the client) and a message cloud (a multiset of all messages that have been

sent but not yet delivered). In Figure 3-3, a slash denotes an undefined state variable.

Each arrow corresponds to the delivery of a message to an actor, and a dashed arrow

is used to emphasize that the new state has been already visited (which entails that

state comparison is enabled). Thick states (labeled with FN) are final states.

In this example, our framework explores 20 states and finds two potential bugs.

In the state labeled E (for “error”) in Figure 3-3, the values of v1 and v2 differ, being

0 and 1. Figure 3-2 helps visualize this fact. If the assert statement in Figure 3-1

was uncommented, we would have reported an error and stopped the exploration for

that trace. Additionally, in the state labeled F4, the framework reports a warning

because the server actor is not alive even though there are undelivered messages for

that actor. This case occurs when the server actor processes Kill before Get, as shown

in Figure 3-2.

Interestingly, this example already demonstrates the importance of identifying

states that have been visited previously. In fact, equivalent states lead to the same

execution and thus, they are of no interest if they have already been executed once.

For example, in Figure 3-3, B and D can be visited through various executions. To

effectively spot these similarities we implemented a customized state comparison for

actor programs. We describe this first optimization in Section 5.1. Without this, we

would have explored the executions from B to F2 and from D to F3 twice.
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Chapter 4

Framework

This chapter presents SEJAP, our general framework for state-space exploration of

actor-based programs. SEJAP’s design goal is to provide common, library-independent

functionality for running actor programs and exploring different schedules of messages.

SEJAP aims to be a platform efficient for stateful exploration but not necessarily

efficient for straight-line execution of actor programs. This goal affects the design

decisions we made for the execution of actors. The three main modules of SEJAP

handle actor states (keeping track of created and destroyed actors, and comparing

states), actor execution (managing actor threads and the granularity of execution

steps), and message management (scheduling and delivering messages). This chapter

first discusses the responsibilities of these three modules and presents a high-level

algorithm for state exploration. Lastly, Section 4.5 presents the concept of library

instantiation, a design element that is key to SEJAP’s flexibility.

4.1 Actor States

Each actor program creates several actors that compute and exchange messages. Var-

ious actor libraries provide different specialized operators for actors and, specifically,

actor creation and termination are handled differently for each particular implemen-

tation. SEJAP therefore does not create the concrete actors by itself, but delegates

that task to particular instantiations. On the other hand, SEJAP maintains generic
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information about actors, e.g., keeping track of all created and destroyed actors dur-

ing an execution. Through our experience with SEJAP, and the two current library

instantiations that are tailored to it, we identified the following list of states that are

common to any actor, independent of the library to which it belongs:

• SUSPENDED An actor that has been created (hence a name or a reference for the

actor object has been produced) but is not yet able to process a message.

• RUNNING An actor that is making progress.

• IDLE An actor that is idle and waiting to receive (and process) a message.

• BLOCKED An actor that is blocked waiting. Typically this is the state of an actor

that has sent a message synchronously and is now waiting an answer from the

receiver of the message.

• TERMINATED An actor whose execution terminated but that may be started again

in the future (not all libraries allows this i.e., this is not possible in Actor-

Foundry, but it is in Scala).

• DESTROYED An actor that has been completely removed from the application and

hence it cannot be resurrected.

SEJAP currently uses this state information for state comparison (as discussed in

Section 5.1), statistics about the exploration, and logging. Furthermore, additional

features such as deadlock detection, could be implemented by collecting (at every

program step) the list of actors in the state BLOCKED. If a circular dependency is

found, a deadlock exists, and an error could be reported.

4.2 Actor Execution

A crucial part of an actor system is how to execute the actor code that processes

each message. Semantically, each actor has its own thread of control. However,

efficient implementations of actor libraries [61, 77] typically do not assign one native
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thread/process per actor and do not create a new thread every time a new actor is

created, because these operations are expensive. Instead, they employ thread pools

to reuse threads for new actors, migrate actors among threads, and/or use more

lightweight parallel constructs, such as the Java Fork/Join Framework [53].

Exploring all possible fine-grain interleaving of instructions from these threads

would be very costly and is not necessary when actors have no shared state1. Instead,

SEJAP uses the macro-step semantic [4, 74] for actor execution: after SEJAP delivers

a message to an actor, the actor executes atomically until the next blocking point

(e.g., a synchronous send or when the actor waits for the next message). In our

initial design, we even considered avoiding threads altogether, since we execute actors

using the macro-step semantic. However, when an actor blocks in the middle of its

computation (i.e., synchronous send) we need to save the stack frame of the current

execution (or, alternatively, its continuation) before switching to a different actor, so

that context information about the current execution is not lost. Considering that

when using threads we obtain (for free) a separate stack frame for each thread, and

because SEJAP aims for efficient exploration (not execution) of actor programs, we

decided to attach every actor to a separate object/Thread (named SEJAPActThread).

Similarly as for the actors, SEJAP does not itself create actor threads but instead

delegates that task to particular instantiations. The actor thread provides the main

control for processing of one message. Section 5.2 discusses the granularity at which

SEJAP combines processing of several messages.

4.3 Message Management

Actors communicate by exchanging messages. SEJAP again delegates the creation

of concrete messages to instantiations, but SEJAP maintains a message cloud of all

messages that were sent but not yet delivered to actors. The main loop in SEJAP

1Many actor libraries allow state sharing but some avoid it, say, by using functional languages
(e.g., Erlang [69]), pass-by-copy rather than pass-by-reference messages (e.g., ActorFoundry [2]), or
a type system based on linear types to statically check for absence of sharing (a feature that may
be integrated in Scala in a near future).
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controls the delivery schedule of these messages. Whenever the cloud has more than

one deliverable message, SEJAP non-deterministically chooses to deliver one of these

messages to the receiver actor. SEJAP then systematically explores all the program

states that arise from the delivery of the cloud’s messages.

It is important to point out that not all messages are deliverable at all times.

One reason is that an actor can terminate itself while there might still be sent but

undelivered messages for that actor. SEJAP is able to detect this situation and warns

the user of a possible unwanted execution. Another reason is that most actor libraries

allow the use of synchronization constraints [36] to narrow the shape of messages

that an actor can receive (and hence process). Scala, for instance, expresses these

constraints by using guards on the cases of the pattern matching expression [61]. If

a message sent to some actor does not match any of its patterns, the message cannot

be delivered until the behavior of the actor changes (so that its pattern matching

accepts the message).

4.4 Exploration Algorithm

Algorithm 1 shows pseudo code for the algorithm that the main controller uses

to explore all possible orders of message delivery for an actor program. The al-

gorithm maintains two sets of program states: states that need to be explored

(StatesToExplore), and states that have been already visited (VisitedStates). The

set of states that still have to be explored initially contains only the starting state.

The algorithm first selects the next state to explore and removes it from the set

StatesToExplore. The search strategy2 determines which message gets selected. Ev-

ery state consists of the set of messages (stored in the cloud) and the set of actors.

From the cloud, the algorithm selects all messages that can be delivered to the actors

in their current state. Then, the algorithm non-deterministically selects a message

from this set, removes it from the cloud, and delivers it to the receiver actor. At this

point, the main controller gives control to the receiver actor so that it can process

2Common heuristics are depth-first search (DFS) and breadth-first search (BFS).
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the message. When the actor blocks its execution (either because of a synchronous

call or because it finishes processing the current message), the actor gives control

back to the exploration loop. Any modifications to the program state performed by

the executing actor (e.g., new messages sent, new actors created, the actor’s state

changed, or the actor’s self destruction) are reflected in the current cloud and actors,

which together form the new state. If this new state has not already been visited, it

is added to both the set of visited states and the set of states that still need to be

explored. The exploration then continues until there are no states to be explored.

Algorithm 1 Pseudo-code for exploration in SEJAP

1: StatesToExplore← { initial program state } ⊲ singleton set
2: V isitedStates← ∅ ⊲ empty set of states
3: while StatesToExplore 6= ∅ do

4: State← choose a state from StatesToExplore
5: remove State from StatesToExplore
6: DeliverableMsgs← filter deliverable messages from State.Cloud
7: for all Msg ∈ DeliverableMsgs do

8: Cloud← State.Cloud ⊲ set of message objects
9: remove Msg from Cloud

10: Actors← State.Actors ⊲ set of actor objects
11: (NewMsgs, NewActors)← process Msg by the Msg.Receiver actor ⊲

processing can send new messages, create new actors, and change the local state
of the receiver actor including terminates the actor itself

12: Cloud← Cloud ∪NewMsgs
13: Actors← Actors ∪NewActors
14: NewState← (Cloud, Actors)
15: if NewState /∈ V isitedStates then

16: V isitedStates← V isitedStates ∪NewState
17: StatesToExplore← StatesToExplore ∪NewState
18: end if

19: end for

20: end while

We should point out that the algorithm we have just presented is an ideal rep-

resentation of the engine that drives the exploration. Specifically, when comparing

states (line 15 in the algorithm), it is generally not possible to always exactly identify

whether two states are equivalent. Furthermore, this is an involved operation which

can be very costly. Therefore, in concrete implementation, there exists a trade-off
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between the accuracy and the overall cost of this operation. Section 5.1 discusses the

challenges that we faced while implementing state comparison in our framework.

4.5 Library Instantiation

The concept of library instantiation is a key element of SEJAP, because it enables

the reuse of SEJAP’s core for different concrete actor libraries.

This section presents the necessary steps needed to plug into SEJAP a new actor

library. Based on our experience with SEJAP and the two actor libraries (Scala

and ActorFoundry) that we have integrated into the framework, we identified best

practices for carrying out this particular task. In each case, we always started from

the existing library source code and we modified it with the following goals:

• Preserve the API of the library toward actor programs (such that we can check

unmodified actor applications).

• Simplify the library, considering that we want fast exploration (for relatively

small program states) and not necessarily fast executions (for relatively large

program states, e.g., scaling up to thousands of actors). These modifications

are likely to remove some parts of the library (e.g., distribution of actors across

various systems), and replace other parts (e.g., when a message is sent to an

actor, the message has to be rerouted into SEJAP).

• Hook the library into the SEJAP framework to enable exploration. We describe

this process in the rest of this section.

While these modifications to the library may appear time consuming from the

description, they were actually much easier to perform than building the framework.

4.5.1 Binding a Concrete Actor Library to the Framework

During our experience with SEJAP, we identified that the actor (plus the related

actor thread object) and the message, are library-dependent elements that need to
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be provided separately for each actor language. Nevertheless, the SEJAP core needs

to manipulate actors, actor threads and messages, in order to explore the state space

of an application; hence the need for a general and uniform representation of actors

and messages. We defined three (abstract) classes: SEJAPActor, SEJAPActThread and

SEJAPMsg. They represent: an actor, an actor thread and a message respectively,

these classes are part of SEJAP’s Core API. Developers that wish to hook a new

language to SEJAP need to extend the Core API’s classes by providing a set of

Adapter classes that realize the Core’s interfaces. The UML diagram in Figure 4-1

depicts this situation. The Actor class (shaded in the UML diagram) plays a decisive

role, since it is the element connecting the concrete actor library to SEJAP’s core.

Specifically, we assume that every actor library provides a class Actor (the name

is irrelevant) that clients of the library use to create actors in the application. By

modifying the interface of this class, all actors that get created by the user application

will conform to the SEJAPActor type that the framework expects. Furthermore, this

change does not break the user code, meaning that the user application does not need

to be modified or recompiled when run on our verification framework.

This layered structure permits SEJAP to manipulate generic instances of actors,
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actor threads and messages. However, SEJAP also requires the ability to create con-

crete instances of these objects. This is problematic because SEJAP cannot know

in advance which concrete set of classes needs to be instantiated, since actors, ac-

tor threads and messages are different for each library instantiation. Consequently,

SEJAP does not directly create these entities but instead uses the Abstract Fac-

tory design pattern [24] to carry out this task. The framework itself refers to the

SEJAPEntitiesFactory interface, and each library instantiation provides a concrete

factory class that can create appropriate objects (the AdapterEntitiesFactory class

in Figure 4-1).

Ultimately, the Core API’s classes also provide common behavior that can be

reused. For example, send (send a message asynchronously) and call (send a message

synchronously) are already implemented in the SEJAPActor class and can hence be

reused (freeing the developer from maintaining the logic of these common methods).

Naturally, if the semantics of one or more of these operators does not match the one

in use in the library, the developer can always provide a customized version. Finally,

there are only a few methods—which are used internally by SEJAP—that are asked

to be implemented by the developer e.g., canBeDelivered(SEJAPMsg msg) (which is

used to determine whether an actor is in a state that allows the reception of the

specific message msg).

4.5.2 Adapting the Library Interface

Above we described how an actor library can be plugged into SEJAP. Specifically,

the class’ interface that enables actors to be created in the original library (Actor in

Figure 4-1) needs to be modified; since it should extend the SEJAPActor class. This

strategy cannot be pursued if the language does not support multiple inheritance and

the Actor class already extends some other class (this is a common issue for actor

libraries written in the Java programming language). Fortunately, we can overcome

this issue using the Adapter design pattern [24]. The idea is the following: if the

interface of the original actor class cannot be modified, the developer can create a

concrete AdapterActor class that wraps the reference to the original actor instance,
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public class AdapterActor extends SEJAPActor {
private Actor adaptee; //‘‘‘Actor’’ is the library’s type for an actor
public AdapterActor(Actor ref) {

this.adaptee = ref;
}
. . .
}

Figure 4-2: Skeleton of an adapter class for an actor library.

the adaptee (the snippet of code in Figure 4-2 provides a sample of how this can be

implemented in Java). Furthermore, the adaptee needs to be able to call the adapter’s

methods. Two solutions exist. The simpler one is to add a new member to the original

Actor class, so that the adaptee knows about the adapter. However, this solution

might not always work, e.g., because of Scala compilation model, members added to

the Actor trait are not visible to previously compiled subclasses. The alternative is to

maintain the correspondence between the adaptee and the adapter in a map, outside

of the Actor class. Each actor operation that needs to communicate with SEJAP will

hence use this map. In Section 6.4 we discuss how we used this solution to adapt the

Scala actor library and integrate it into our framework.
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Chapter 5

Optimizations

One of the major concerns of software model checking is the combinatorial blow-

up of the state-space (also known as the state-explosion problem) that it is faced

when dealing with real applications. Researchers have been working on this problem

for a long time, and several solutions have been considered to mitigate this issue.

Examples are symbolic execution [46] (where a symbolic state represents a set of

concrete states1), bounded model checking [16] (where a system property is checked

only up to a certain program depth), partial order reduction [17](works by exploiting

commutativity of concurrently executed transitions), symmetry reduction [40] (works

by identifying equivalence classes of executions). Although these analyses are not a

definitive answer to the problem, they all are interesting techniques that can improve

the scalability of a tool.

As we will see in Chapter 6, our framework for state exploration of actor programs

has been implemented on top of Java PathFinder (JPF), a stateful model checker for

Java bytecode. Due to JPF’s nature, states are compared at every thread scheduling

relevant program step. Therefore, it is important to spot equivalent classes of states

to prevent exploration of previously seen traces. To achieve this, we used model ab-

straction and symmetry reduction to effectively reduce the state-space of an actor

program; this is presented in Section 5.1. However, comparing states is a costly oper-

1The downside of this approach is that executing a program symbolically is hard since the con-
straint on the values need to be solved, and this can quickly become impossible or very time-
consuming.
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ation and might not always be the best strategy, e.g., stateless model checkers explore

different traces through program re-execution, see [63] for example. Section 5.2 de-

scribes two different step granularity tactics that impose a trade-off between faster

straight-line execution and efficient overall exploration.

5.1 State Comparison

The algorithm that drives the program exploration (discussed in Section 4.4) checks

whether a new state has been already visited previously, effectively comparing one

state against a set of states. This is a common operation in explicit-state model

checking [17]. A challenge for object-oriented programs (whose state include heaps

with connected objects) is that states need to be compared for isomorphism [11, 39,

56]. Namely, two states are equivalent when their heaps have the same shape among

connected objects and the same primitive values, even if they have different object

identities. Typical comparison of states for isomorphism involves linearizing the entire

state into an integer sequence that normalizes object identities, so that isomorphic

states have equal sequences [39, 56].

An additional challenge we faced when comparing the state of actor programs

is that the top-level (roots) state items—actors and message clouds—are sets. The

usual JFP linearization does not specially treat sets but simply compares them at

the concrete level at which they are implemented, say, as arrays or lists. Therefore,

two sets that have the same elements may be deemed different because of the order

of their elements. To compare states of actor programs in SEJAP, we use a heuristic

that first sorts set elements and then linearizes them as usual. This provides more

opportunity to identify equivalent sets and states, but does not guarantee that all

equivalent states will be found. Specifically, the sorting is done only for the elements,

without following any pointers from these elements and, therefore, does not handle

arbitrary graph isomorphism [76].

Additional care has to be taken with actor names/references, since they are not

relevant for state comparison, i.e., the states are equivalent up to α-conversion. More-
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over, the usual JPF linearization considers entire states, while in SEJAP we want to

consider only the application state (i.e., the actors and message cloud) and ignore the

irrelevant parts of the library state and the SEJAP framework: even if these irrelevant

parts do differ, the application states are equivalent.

5.2 Step Granularity

The primary source of non-determinism for actor programs is the order in which

messages are delivered to the actors. When exploring different message schedules,

the standard step used by SEJAP consists of all instructions starting from some

actor receiving a message up to the point where the actor blocks, either because it

is waiting to receive the next message or because it executed a synchronous send.

This step is called a macro step [4, 74]. Provided that an actor program is limited to

message passing only, no interleaving of different actor threads is necessary, i.e., all the

behaviors of the program with fine-grained thread interleaving can be obtained with

the macro step interleaving. SEJAP always explores macro steps of actor programs.

An additional consideration is whether to merge macro steps from several actors

when there is only one message in the cloud. We refer to such steps that combine

several deterministic macro steps from different actors as Big steps. Recall the state

space from Figure 3-3. After the Set(1) message is processed from the initial state, the

rest of the execution (until the F1 state) is deterministic: there are several macro steps

alternatively executed by the server and client actors, but there is always one message

in the cloud. A Big step would thus execute the program until F1, without performing

state comparison for the intermediate states shown in the figure. In contrast, a Little

step executes only one macro step at a time and performs state comparison for each

intermediate state. In other words, Figure 3-3 shows the exploration that SEJAP

performs for Little step.

Whether Big or Little steps provide faster exploration is not immediately clear.

The trade-off is that Big steps are faster for straight-line execution since they perform

longer executions without stopping to compare states. Big steps, however, can miss
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the opportunity to find equivalent states and thus end up re-executing a number of

transitions, which may result in a slower overall exploration. For example, in the state

space from Figure 3-3, Big steps would miss that states B and D are equal along two

different execution paths, and would thus end up re-executing twice the code from B

to F2 and from D to F3. On the other hand, Little steps have slower straight-line exe-

cution due to more frequent state comparison. This increases opportunities to avoid

execution of already explored traces, but also runs the risk that frequent comparisons

unnecessarily slow down the exploration if (most of) the states are different. Whether

program re-execution or aggressive state comparison is more costly depends on the

particular execution platform and the frequency with which states are repeated dur-

ing state exploration. Our experiments with Java PathFinder and the subject actor

programs described in Chapter 7 show that Little step performs better than Big step.
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Chapter 6

Implementation

We implemented SEJAP on top of Java PathFinder, an extensible, explicit-state

model checker for Java bytecode [44, 82]. We decided to use JPF because of the

following considerations:

• JPF executes Java bytecode and hence represents a natural candidate for exe-

cuting Scala code (since Scala compiles to Java bytecode).

• JPF has been designed with the intent of being extensible.

• JPF is open source and it implements many state-of-the-art verification tech-

niques to efficiently explore the state space of concurrent applications.

In this chapter we discuss some of the challenges that we faced while implementing

SEJAP. Section 6.1 provides a high-level overview of how SEJAP interacts with JPF,

the modified Scala actor library, and the compiled user code. Section 6.2 briefly intro-

duces JPF and how we modified it to control thread switching for actors. Section 6.3

motivates why the standard JPF’s distribution cannot be used to verify Scala actor

programs. Ultimately, in Section 6.4, we present the relevant modifications performed

on the original library to enable execution of Scala actors into SEJAP.

Prior to this work, JPF did not have any special capability for efficiently explore

actor programs. Moreover, this is the first framework that enables state exploration

of actors for the Scala programming language.
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User Application

Figure 6-1: Framework’s stack.

6.1 System Overview

Figure 6-1 depicts a stack view of the system. On the bottom there is the host JVM

together with JPF. One layer up we find the modules that allows execution and state

exploration of actor programs (we described these in Chapter 4). At this level we also

implemented the optimizations presented in Chapter 5, which are de facto available

to any library instantiations tailored to SEJAP. One layer up there are the Core API

classes described in Section 4.5 and, on top of them, there is the adapted Scala actor

library (the modifications that we made are described in Section 6.4). Finally, at the

top is the compiled user application. Note that the user code only knows about the

actor library. Because we maintained the interfaces of the library, the user application

does not need to be modified or recompiled when executed in SEJAP.

6.2 Java PathFinder Modifications

JPF is written in Java and provides a specialized Java Virtual Machine (JVMJPF )

that supports state backtracking and control over non-deterministic choices. The

default non-deterministic choices in JPF are thread scheduling and explicit choices

made in the code using JPF library calls such as Verify.getInt [31]. The JVMJPF is

42



an interpreter that executes the bytecode of the application under exploration. JPF

itself runs on top of a host, native JVM. JPF provides an interface, called Model

Java Interface (MJI), for communication between the JVMJPF and the host JVM

(we described the MJI in Section 2.3.2).

The key change we made to JPF is in the control of thread scheduling. Recall

that SEJAP architecture puts each actor in its own thread. The actor code itself is in

Java (more precisely, compiled to Java bytecode). Additionally, SEJAP has a main

controller thread that decides which actor(s) should be executed at which point. We

wrote the main controller itself in Java so that it runs in the JVMJPF (and not on the

host JVM). All these threads are actual JPF/Java threads1. Based on the macro-step

semantics (discussed in Section 2.1.1), it is not necessary to explore all fine-grained

interleaving of these threads; the non-determinism in actor programs is due to the

order in which messages are processed by the actors. Therefore, SEJAP makes only

one of these threads enabled at a time.

Note that the thread switch could not be implemented in pure Java executing

in the JVMJPF . Namely, the main loop in SEJAP proceeds as follows: the main

controller chooses one actor to execute (more specifically, one message to deliver to an

actor that then starts processing the message), and when that actor blocks (waiting

to receive a new message or because it synchronously send a message), the main

controller should take control back and execute to schedule the next actor (Section 4.4

for further details on the exploration algorithm). However, once the actor blocks, it

cannot return the control to the main controller at the Java level because Java doesn’t

offer this kind of fine-grained control over the runtime execution. So, we used the

MJI to implement thread switches, effectively replacing JPF’s thread scheduler.

Besides thread switching, we also modified JPF to implement two further opti-

mizations (which have been discussed in Chapter 5). First, we optimized the core of

SEJAP to eliminate JPF backtracking points when switching back and forth between

the actor threads and the main controller thread. Second, our implementation of the

1JPF provides a customized version of thread that emulates the behavior of the java.lang.Thread
Java library class. This is needed to enable JPF to have fine-grained control over threads scheduling.
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Big step requires executing several threads as one transition in JPF. Since the JPF

main loop is structured around executing only one thread in a transition, we had to

modify the JPF code to enable longer transitions. To the best of our knowledge, this

is the first JPF extension that considered state transitions with bytecode executed

by more than one thread.

6.3 Java PathFinder and Scala

One question that we may ask is why not just run the user program with the standard

JPF distribution, considering that Scala compiles to Java bytecode. The downside

of doing this is that the actor library is model checked together with the user ap-

plication. The Scala actor library is a complex multi-threaded, highly concurrent,

software component. This entails that even the simplest application, e.g., a single

actor that prints “Hello, World!” to the terminal, when run on the standard JPF

distribution, generates a huge number of different states that need to be explored,

making it impractical to perform an exhaustive exploration. We even tried to simplify

the original library as much as possible (i.e., forced the pool thread to contain exactly

one thread, removed the unused timer thread that is automatically started when an

actor is created, disabled the actor garbage collector and some other minor modifica-

tions). With all these modifications, JPF was able to finish the exploration in about

7 minutes. In contrast, SEJAP needs less than one second. Moreover, any attempt

at checking a more involved actor application using directly JPF failed miserably.

In our approach we assume the library to be correct and focus on the task of

verifying the correctness of the user application. Ascertaining the correctness of

the library is an important aspect that can be done as a separate effort, since it is

orthogonal to our work.

44



MessageQueue

Element

ActorMessageQueue

AbstractActor

OutputChannel

Channel

InputChannel

Reaction

Scheduler

IScheduler

java.lang.Runnable FJTask

FJTaskScheduler2 java.lang.Thread

FJTaskRunnerGroup FJTaskRunner

dependency

navigability

generalization

Legend:

Mailbox

Scheduler

Figure 6-2: UML class diagram of the Scala actor library.
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6.4 Adapting the Scala Actor Library

In Section 4.5, we provided general guidelines for integrating a new actor library in

SEJAP. In this section, we describe our experience with the Scala actor library.

The very first step was to identify which parts of the library are exposed to

the developer and how the different components of the library relate to each other.

Therefore, we started from a (simplified) sketch of the library’s design (depicted in

Figure 6-2). The class diagram is not complete, but it aims to provide an overview of

most of the elements that constitute the library. The class diagram clearly shows that

the classes that manage actor execution (Scheduler dashed box in the diagram) are

loosely coupled to the classes that contain the actor logic (basically, the Actor trait).

This has greatly simplified our job since SEJAP’s core takes care of the program’s

exploration, and hence there is no need for the library to be linked to a scheduler.

Consequently, we removed from the Actor trait all interaction with the scheduling

side of the library. We should point out that clients of the library are allowed to

provide a customized scheduler, and hence potentially change the semantic of actor

execution (e.g., the scheduler could implement FIFO queues for message delivery, or

even filter some kind of messages depending on the system state/configuration). We

restrained our implementation to handle the current default scheduler provided with

the library, where no order on the message delivery can be assumed.

In Scala, each actor has access to the list of messages that have been delivered

to the actor (the Mailbox dashed box of Figure 6-2). This is a potential source

of problems because side-effects on the mailbox are allowed (e.g., messages may be

deleted/added without calling the usual actor send operator). In the current im-

plementation we decided to follow the theoretical model where actors do not have

control over their mailbox, because the receipt of a message is an implicit operation.

As a matter of fact, in SEJAP, we have a centralized container for yet to be delivered

messages, the message cloud (described in Section 4.3), and actors only have access

to the currently processed message. At present, if an actor tries to access its mailbox,

an error message is delivered and the exploration stops.
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After having unlinked the Scheduler and the Mailbox classes from the library,

what remains is essentially the logic that allows actors to send, receive and process

messages. Specifically, the Actor trait is the only visible element that we modified2

to interface the library to SEJAP. However, this step has some nuances that are

worth discussing. The problem is the following: the Actor trait needs to preserve

the actual interface (so that the user code does not need to be re-compiled), and

also needs to subclass the core class SEJAPActor (which enables the communication

with the internal of the framework). Despite Scala permitting multiple inheritance,

extending the Actor trait with the abstract SEJAPActor class doesn’t yield the desired

result. This is due to the way that Scala compiles its sources and, specifically, how

Scala traits are transformed into several Java interfaces and abstract classes when the

source code is compiled [73]. Hence we used the strategy described in Section 4.5.2

to hook up the Scala actor library in our framework; namely, we created an adapter

class ScalaActor that contains a pointer to the original Actor object and maintained

an external map to allow the Scala actor instance to call the adapter actor. Lastly,

we modified the body of methods for sending and receiving messages (and a few

other methods that are not visible to clients) in the Actor trait, so that they use the

corresponding methods (e.g., send, call) of the adapter ScalaActor class, which is

responsible for managing the communication to and from the SEJAP’s core.

2We also had to edit one line in ActorProxy, a class used internally to the library to unify actors
and threads.
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Chapter 7

Evaluation

This chapter present our evaluation of the performance of the SEJAP framework.

Section 7.1 discusses the implications of one, JPF related, global optimization that

we integrated in the framework. Section 7.2 briefly introduces the subjects that we

used to assess how well SEJAP performs. We evaluate the results of executing these

tests in Section 7.3. Section 7.4 concludes by presenting how Little and Big steps

(two optimizations that we have implemented) compares for the analyzed programs.

All experiments were performed using Sun’s JVM 1.6.0 01-b06 on a 3.4GHz Pen-

tium 4 with 2GB of RAM workstation, running RedHat Enterprise Linux 4.

We would like to remind the reader that using the original Scala actor library

together with the standard JPF distribution would not work for any of the subjects

that we use to evaluate SEJAP. In Section 6.3, we described a number of modification

that we made on the original JPF and Scala actor library distribution, which allowed

to terminate the exploration of a trivial (helloworld) actor in about 7 minutes (while

in SEJAP this takes less than a second). Using this same configuration, we also

tried to explore the state-space of the subject programs described in this chapter.

However, for none of them JPF was able to terminate the exploration (not even of

one execution-trace) within the time limit of one hour.
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7.1 Optimized Thread Context Switching

In Section 6.2, we mentioned that we eliminated JPF backtracking points when

switching back and forth between the actor threads, and the main controller thread.

This change is simply a consequence of our implementation in JPF, and not a gen-

eral characteristic of SEJAP. Specifically, saving the state when executing a context

switch in SEJAP is completely useless because the program’s state1 can change only

while an actor is making progress. In Section 4.4, we presented the algorithm that

drives the program exploration and is executed by the main controller thread. The

algorithm highlights two facts: (1) saving the state before the actor starts processing

a message is useless, since the program’s state can change only when an actor makes

progress, and the actor cannot make progress if we did not yet context switch to it;

and (2) storing the state when the actor stops and gives control back to the main

controller is also useless, since the program’s state is already saved by the algorithm

(at line 16), and hence there is no need to store the exact same state twice.

We ran some experiments2 and, as expected, the results showed that avoiding

these state operations at context switches resulted in JPF exploring fewer states

and transitions, and also produced less state backtracking, thus speeding up the

exploration. Hence, we integrated this optimization as part of the framework’s core

and all the discussed results already take advantage of this enhancement.

7.2 Subjects

To evaluate the performances of SEJAP, we use five actor program examples. We have

implemented all the examples but the serverreal one. This is the original client-server

application available on the ScalaWiki website3 [72], which exposed an atomicity

violation bug (we spotted this error thanks to SEJAP and we reported it to the

community, which confirmed it). The serversimple subject is the simplified version

1Which is composed of the set of actors and the set of messages (as mentioned in Section 4.4).
2Numbers for these experiments have not been reported because they do not provide any inter-

esting source of discussion, besides supporting our intuition.
3Appendix A provides the original source code of the example.
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of the serverreal that we used in Chapter 3 to describe the main characteristics of

SEJAP. All tests can be run in both the standard Scala run-time and SEJAP with

no modifications. The remaining four subjects implement more complex algorithms

and were previously used in a study on testing actor applications [74]. We will now

briefly describe the main characteristics of each of the implemented programs.

Leader Election is an implementation of the famous Peterson algorithm [64], gen-

erally used in distributed computing to select a single process as the organizer (leader)

of some task. Before running the algorithm, the nodes are unaware of which node

will serve as the coordinator of the task. However, after the algorithm is run, every

single node recognizes the same unique node as the task leader. We evaluated our

leader election implementation for a system with three nodes.

Spin Sort is an implementation of a parallel sorting algorithm similar to systolic

sorting [84]. The system has N nodes and every node has an identity so that a

strict total order exists among the different nodes. Each single node only knows

about its closest neighbor (defined as the node with the smallest identity higher than

the current node’s identity). The algorithm works as follows: initially, the node with

smallest identity receives a set of messages, each of them containing a value. The node

keeps the smallest value and forwards to its neighbor the other values; the neighbor,

in turn, keeps the smallest value among the received messages and passes the values

left to its neighbors (and so forth for each of the remaining nodes). At the end of

the computation, we can retrieve the sorted list by looking at the value contained in

each node, starting from the node with smallest identity and then by looking at the

neighbor of each subsequent node. We evaluated our spin sort implementation for a

list of four elements.

Shortest Path is an implementation of the Chandy-Misra’s shortest path algo-

rithm [15] used to find a path between two nodes, such that the sum of the weights

of its constituent edges is minimum. The implemented algorithm computes the min-

imum distance that separates a particular node ni from all the other nodes nj of the
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graph. We evaluated our implementation for a network topology with three nodes

fully connected.

Fibonacci is an example frequently used to illustrate and evaluate actor implemen-

tations. The algorithm computes the N -th element in the Fibonacci sequence and

follows a standard divide and conquer strategy. We evaluated our implementation for

the input N = 4.

All the implemented subjects have been instantiated for a relatively small input

size. The rationale is that a high proportion of bugs in concurrent programs can be

found by testing the program with a small test input. This assumption is sometimes

called the small scope hypothesis [41] in the literature.

7.3 State Comparison

In Section 5.1, we discussed how we improved state comparison within JPF, with the

intent of increasing the chances of identifying previously visited states. The abstrac-

tion that we use for state comparison allows for more aggressive pruning of redundant

message schedules, which results in faster state-space exploration. Table 7.1 shows the

results of experiments comparing the JPF’s standard state comparison (State Comp

= JPF) against our optimized actor state comparison (State Comp = Actor). For

reference purposes, the table also provides results with the state comparison disabled

altogether (State Comp = None), which shows how important it is to identify, as

soon as possible, equivalent states in JPF. Each experiment was performed using the

Little step granularity (since for these programs it is faster than Big step, as shown

by the results in the next section).

For each type of state comparison, we tabulate the total exploration time in min-

utes and seconds, memory usage in MB, the number of states identified during the

entire exploration, the maximum exploration depth (i.e., the length of the longest

trace of Little steps), and the total number of messages (across all execution traces)

that were delivered during the exploration. Effectively, the number of states and
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Table 7.1: Evaluating different state comparison implementations

Experiment Resources Statistics
State Exploration Memory # of Max # of Msgs

Subject Comp. Time (mm:ss) (MB) States Depth Delivered

None 0:22 25 768 9 767
fib JPF 0:06 24 80 9 144

Actor 0:05 24 43 9 75
None 0:36 25 1467 11 1466

leader JPF 0:11 26 255 11 341
Actor 0:08 26 187 11 237
None 8:13 97 22522 19 22521

serverreal JPF 2:38 96 6513 19 7303
Actor 2:20 100 5456 19 6267
None 0:03 16 26 5 25

serversimple JPF 0:03 18 23 5 23
Actor 0:03 23 20 5 21
None 4:00 27 10000 10 9999

shortpath JPF 0:32 28 534 10 1160
Actor 0:18 28 230 10 556
None 1:55 26 5045 9 5044

spinsort JPF 0:15 26 317 9 508
Actor 0:13 27 269 9 432

messages are the number of nodes and edges, respectively, in the state-space graph

that SEJAP explores for these programs (Figure 3-3 depicts the state-space graph for

the server example). Also, for all the tests we used a depth-first strategy to explore

the program execution.

Exploration time typically improves as we progress through the three types of

state comparison, from None to JPF to our Actor comparison. The only seeming

exception is for the the server subject, where the time difference is due to the impre-

cision of the measurements. In all cases, the Actor comparison results in the fastest

exploration. Memory utilization remains reasonable across all of the experiments.

Similar to reducing exploration time, the Actor comparison also reduces the number

of explored states and the number of delivered messages. As the abstraction used by

the state comparison is refined to consider only relevant state differences, the number

of states and executions that can be pruned increases.
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Table 7.2: Comparing step granularity – Big vs. Little steps

Experiment Resources Statistics
Exploration Memory # of Max # of Msgs

Subject Step Size Time (mm:ss) (MB) States Depth Delivered

fib Big 0:05 25 41 6 109
Little 0:05 24 43 9 75

leader Big 0:10 28 132 7 308
Little 0:08 26 187 11 237

serverreal Big 3:26 100 2872 18 8715
Little 2:20 100 5456 19 6267

serversimple Big 0:03 23 11 4 25
Little 0:03 23 20 5 21

shortpath Big 0:20 28 275 8 639
Little 0:18 28 230 10 556

spinsort Big 0:16 27 221 7 552
Little 0:13 27 269 9 432

7.4 Step Granularity

In Section 5.2, we discussed the trade-off associated with performing explorations

using Big steps versus Little steps. We performed experiments to compare the per-

formance of state-space explorations that enforced Little steps with explorations that

allowed combining multiple Little steps into Big steps when appropriate. Each exper-

iment was performed using our optimized Actor state comparison, since the previous

sections shows it to be the fastest. Table 7.2 shows the results of these experiments.

For both Little and Big step granularity, we tabulate the same information as for the

state comparison experiments.

The table shows that Little step granularity results in explorations that are faster

than explorations using Big step granularity. This is due to increased opportunities

for state pruning (exposed by using the smaller step size for our subject programs).

This is not to say, however, that Little step granularity is always faster. Subjects

may exist where Big step granularity outperforms Little step.
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Chapter 8

Related Work

The most related work to SEJAP is on model checking actor programs. Sen and Agha

present dCUTE [74] which checks a given actor program, written in a simplified li-

brary, by re-executing the program for various message schedules. dCUTE uses a

dynamic partial-order reduction [17] to avoid exploring equivalent schedules. dCUTE

combines the happens-before relation [50] with a mixed concrete and symbolic ex-

ecution for test generation [14, 26, 75]. In contrast, SEJAP provides a common

framework for stateful exploration of Java-based actor libraries, handles full actor

libraries for Scala and ActorFoundry (including dynamic creation and destruction of

actors), and provides state comparison and varying granularity of execution steps.

Also, SEJAP is built on top of JPF and can reuse its functionality for state-space

exploration (e.g., heuristics for ordering exploration). The partial order reduction

discussed in dCUTE is an orthogonal optimization that could further improve the

quality of our framework. This is discussed in further detail in Chapter 9.1.

Fredlund and Svensson present McErlang [23], a stateful model checker for ac-

tor programs written in the Erlang programming language [69]. McErlang is itself

written in Erlang and modifies the concurrency system of the Erlang run-time li-

brary. A previous model checker for Erlang, etomcrl [8], checked Erlang programs

by translating them into µCRL [28] and using off-the-shelf model checkers, similarly

as the very first version of JPF [32] checked Java programs by translating them into

Promela and using SPIN [35]. Again, SEJAP does not focus on one language/library
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but provides a general framework, builds on an existing tool (JPF), and incorporates

several optimizations for exploration.

Related work is also on checking distributed systems [7, 10, 37, 78, 85]. In par-

ticular, Artho and Garoche [7] and Barlas and Bultan [10] provide frameworks for

executing distributed Java code in JPF. A key problem is that such code uses network

calls that JPF does not support as they depend on native code from the Java standard

libraries. These two projects solve this problem by instrumenting the bytecode [7]

or providing stub classes [10]. These solutions are conceptually similar to SEJAP in

that they replace/avoid the standard Java network library as SEJAP replaces actor

libraries. However, both solutions focus on low-level communication, whereas SEJAP

focuses on high-level exploration of possible behaviors for actor programs.

Yabandeh et al. [85] describe CrystalBall, which is a lightweight framework for

online model checking of loosely coupled distributed applications. Specifically, each

node in the system executes CrystalBall in parallel with the application, and ex-

plores several possible message interleavings with the intent of preventing the system

from reaching an inconsistent state. Since CrystalBall is run in parallel with the

real application (on each node), the exploration algorithm needs to detect potential

inconsistencies before it is too late, e.g., before the system has already passed the

execution depth at which the violation occurs. Therefore, a heuristic is used to drive

the exploration. The key difference between CrystalBall and SEJAP is that while

CrystalBall focuses on preventing a deployed system from reaching an inconsistent

state (CrystalBall might alter the execution of the application to achieve this goal),

SEJAP is intended to be used as a traditional testing framework that can help the

developer identify bugs before deployment. In short, the two frameworks are orthog-

onal to each other. A framework similar to CrystalBall could improve the reliability

of distributed actor programs when tailored to the runtime of an actor system.

Partial-order reduction is an important optimization for alleviating the state-space

explosion in model checking [5, 17, 22, 25, 85, 86]. It uses static or dynamic analysis

to avoid exploring certain message schedules altogether. In contrast, SEJAP executes

the schedules and uses state comparison to determine when to prune exploration. In
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effect, partial-order reduction for actor programs is complementary to our work, and

we plan to integrate it as an optimization in SEJAP.
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Chapter 9

Conclusions

This dissertation presented a tool for systematic exploration of actor programs written

in the Scala programming language. To the best of our knowledge, this is the first

tool that allows systematic exploration of the state space of Scala actor programs. We

developed this tool as an instantiation of SEJAP, a general framework for systematic

exploration of actor programs based on Java bytecode.

A common issue for verification frameworks such as SEJAP is the combinatorial

explosion of the state-space when dealing with large applications. We presented two

optimizations, based on the granularity of execution steps and actor state comparison,

which alleviate the state-space explosion problem and thus, speed up the overall

exploration of actor programs in SEJAP.

We implemented our framework, instantiations, and optimizations on top of Java

PathFinder, a widely used model checker for Java bytecode developed by the NASA.

The experiments presented show that SEJAP can effectively explore executions of

actor programs.

SEJAP already helped in discovering a previously unknown error (which was con-

firmed by the authors after we reported it) in a sample Scala code from the ScalaWiki

website [72].
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9.1 Future Work

Future work includes supporting actor distribution for the Scala actor library, opti-

mizing SEJAP further and using it for testing larger applications. Further questions

of interest include unit testing and debugging actor programs.

Currently, we do not support actor distribution for the Scala actor library. One

problem with distribution is that actors may reside on different machines and the

library uses network protocols (e.g., TCP) to enable standard actor communication.

This is an issue because model checkers usually work on closed (or self-contained) sys-

tems, which means that the program execution does not depend on interaction with

its environment. Two alternatives are possible to address this problem: (1) We could

implement in SEJAP a set of stub classes that replace low-level network communi-

cation (Java) classes, so that it would be possible to explore the state of distributed

actor programs on a single machine. Barlans and Bultan [10] presented this idea in

their framework for verification of distributed applications (we have discussed their

work in Chapter 8). (2) Since the source code of the Scala actor library is publicly

available, we could directly modify library code to remove low-level network commu-

nication. The advantage of the first solution is that it is more general, since different

actor libraries are likely to use similar network protocols for implementing actors dis-

tribution. On the other hand, the second solution is easier to implement and would

also allow faster exploration of Scala actor programs, since we would considerably

simplify the library.

An important optimization that we are planning to implement is a variation of

the partial order reduction algorithm presented in dCUTE [74]. dCUTE uses vector

clocks [21] to track a partial order, through the happens-before relation [50], among

the exchanged messages, and it uses this knowledge to avoid exploring traces that

would have equivalent execution. Vector clocks require that the number of processes

in the distributed system has to be constant and known in advance, therefore only

static actor programs (actors are neither created nor destroyed during the program

execution) are currently handled by dCUTE. SEJAP could explore a similar solution;
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however, in order to enable actors to be dynamically created and removed during

execution, it would need a more flexible abstraction than vector clocks. Our prelim-

inary study indicates that tree clocks [51] and hierarchical clocks [66] may represent

interesting alternatives for implementing a generic partial order reduction for actor

programs.

A second possible optimization is improving the actual state comparison (pre-

sented in Section 5.1). Currently, we do not handle arbitrary graph isomorphism

and, therefore, we might miss opportunities for pruning the program’s state-space.

Spermann and Leuschel [76] presented an efficient approach for identifying state sym-

metries in the ProB [54] model checker. The idea is to convert the concrete state into

a vertex-colored graph and then use NAUTY [58] to obtain the canonical form of the

graph1. The resulting graph can be used to effectively compare the original concrete

states. The trade-off of this solution is the cost that such translation requires, ver-

sus the higher opportunities for identifying state symmetries. It would be of interest

to implement a similar approach in our framework and to evaluate its performance.

Note that this refined state comparison could also be integrated within the standard

JPF distribution, since it is not specific to actor systems.

Despite all optimizations, the combinatorial explosion of the state space still re-

mains the major limitation of verification frameworks that aim to systematically

explores all possible executions of an application. Because of this, it is important

that the algorithm that drives the exploration is tuned to the goal of prioritizing exe-

cution paths that are more likely to lead to bugs. Finding heuristics that can quickly

expose bugs in actor programs is an interesting area where there is still room for

contributions. SEJAP can currently use generic search strategies that are provided

by Java PathFinder (depth-first search, breadth-first search, heuristic search), but

the heuristics in JPF are not specifically tailored to actors and messages.

Orthogonal to our work is the question of how actor programs should be unit

tested. In fact, model checking is usually time-consuming and cannot often be applied

1NAUTY is an efficient library that can be used to obtain canonically-labeled isomorph of the
input graph.
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as a part of the software development process. A common problem when unit testing

concurrent software is that for the same input, very different executions may be

possible. As a consequence, what appears to be correct most of the time, might

manifest a failure for some sporadic execution. These type of software bugs are usually

described as heisenbugs. Furthermore, when unit testing a concurrent application,

it is usually not possible to have a fine-grained control over the threads’ execution.

Common strategies are the use of sleeping timeouts to create a particular interleaving.

For instance, the ConTest tool [18, 20] uses instrumentation of the Java bytecode to

force different timing scenarios to happen in tests. However, this is an empirical

solution that lacks precision. Some initial work on unit testing actor programs has

been done by Burmeister [13].

It would also be interesting to provide better debugging support for actors in future

debugging tools. For instance, the Eclipse IDE allows the user (when debugging Java

code) to manually control the next thread’s statement to execute. We think that

a similar feature that would enable the developer to have fine-grained control over

the order in which messages are delivered to actors, would considerably improve

user productivity and simplify the task of identifying and correcting bugs in actor

programs.
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Appendix A

Original Client-Server ScalaWiki

Code

This appendix presents the full (untouched) code for the original client-server sample,

publicly available on the ScalaWiki website [72], which expose an atomicity violation

bug. The data inconsistency appears if the SafeServer actor interleaves the processing

of the "items" messages (generated by the Server actor in the expressions at line 170

and 173) with the processing of the Update message (sent by the Server actor at

line 94). In Chapter 3 we presented a simplified version of this example where the

SafeServer and Server actors have been renamed server and client, respectively.

Furthermore, in the simplified version, the overall number of messages exchanged

between the actors has been reduced, so that the atomicity violation bug stands out.

We also renamed the original messages Update, "items" and "exit" (used to shutdown

the SafeServer), into Set, Get and Kill, respectively. It is important to remark that

the communication pattern that leads to the data inconsistency in the simplified code

sample is exactly the same of the one exposed by the original version, whose source

code is provided here.

In Chapter 7 we used the below code as part of SEJAP’s evaluation (we named

this code example serverreal in the Table 7.1 and 7.2).
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1 // we use an immutable TreeMap to store our items

2 import scala.collection.immutable.TreeMap

3 import scala.xml.{Node, NodeSeq, Elem, Text}

4

5 // We use actors to manage our inventory

6 // to allow for concurrency and remote access

7 import scala.actors.Actor

8 import scala.actors.Actor.

9

10 // define a holder for items

11 // It differs from Step 1’s Item in that this implementation is non−mutable.

12 // It’s like a Java string, once you create it

13 // you cannot change it. To get a new one, you make a copy.

14 case class Item(name: String, pn: String, price: double, qnty: int) {

15 // add to the quantity, return a new instance

16 // (like ”123”.substring(2) == ”3”)

17 def add(toAdd: int) = {

18 itemWithQnty(qnty + toAdd) // create a new, immutable instance

19 }

20

21 // take a certain number out of the item

22 // return the number that was taken and the new item

23 def take(howMany: int) = {

24 val toTake = Math.max(howMany, qnty)

25 // return the number ”taken” and the rebuilt item

26 Pair(toTake, itemWithQnty(qnty − toTake))

27 }

28 // a private function that creates a new Item with the new quantity

29 private def itemWithQnty(newQnty: int) = Item(name, pn, price, newQnty)
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30

31 // convert this item to XML

32 def toXml = <item name={name} pn={pn} price={price.toString}

33 qnty={qnty.toString} />

34 }

35

36 // an ”object” (singleton) that extends the ”Application”

37 // class will get run like a Java class with public static void main(String[])

38 object Sample2 extends Application {

39 // create mock XML inventory updates

40 val inv1 = <update>

41 <item pn=’a’ qnty=’25’ name=’Apple’ price=’0.25’ />

42 </update>

43 val inv2 = <update>

44 <item pn=’o’ qnty=’45’ name=”Orange” price=’0.4’ />

45 <item pn=’b’ qnty=’4’ name=”Banana” price=”0.15” />

46 </update>

47

48 // Send them to the server

49 Console.println(Server.update(inv1))

50 Console.println(Server.update(inv2))

51

52 // create a mock XML purchase order (note the embedded XML)

53 val purchase = <order>

54 <item pn=’a’ qnty=’20’/>

55 <item pn=’b’ qnty=’10’/>

56 <item pn=’o’ qnty=’35’/>

57 <item pn=’na’ qnty=’23’/>

58 </order>

59
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60 // send the XML to the server and print the response

61 Console.println(Server.order(purchase))

62

63 // shut down the server so we can exit gracefully

64 Server.shutdown

65 }

66

67 /∗

68 The singleton ”inventory server”

69 Implemented as an ”Actor”

70 Actors are ”share nothing” constructs that receive messages and

71 process them one by one. Actors provide a concurrency model

72 that (1) is deadlock free (or at least deadlock reduced) (2)

73 has been proven in Erlang over 10+ years and (3) does not

74 require ”synchronizes” or other keywords

75 ∗/

76 object Server {

77 // the server actor.

78 // vals are created the first time they are used... singletons

79 private val server = {

80 val ret = new SafeServer

81 ret.start

82 ret

83 }

84 private var v1 = 0

85 private var v2 = 0

86

87 // shut the server down by sending it ”exit”

88 def shutdown = server ! ”exit”

89

66



90 def update(in: Elem) = {

91 eachItem(in) {

92 (e, pn, qnty) ⇒

93 // send an update message to our server

94 server ! Update(pn, e.attribute(”name”).get.text,

95 java.lang.Double.parseDouble(e.attribute(”price”).

96 get.text), qnty)

97 // no reason to return anything meaningful because we’re not using

98 // the XML return block

99 Text(””)

100 }

101 currentInventory // return the current inventory

102 }

103

104 // place an order and return an <order>...</order> XML block

105 def order(in: Elem) = {

106 <order>

107 {

108 eachItem(in) { // for each item

109 (e, pn, qnty) ⇒

110 // send the server an ”Order” and wait for the response

111 server !? Order(pn, qnty) match {

112

113 // if there’s no matching part, generate a <not found/> tag

114 case None ⇒ <not found pn={pn}/>

115

116 case s: Some[Pair[int, Item]] ⇒ {// deconstruct the return value

117 val item = s.get. 2 // the item

118 val took = s.get. 1 // the number of items taken

119
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120 // generate the XML tag

121 <shipped pn={pn} ordered={qnty.toString} shipped={took.toString}

122 cost={(item.price ∗ took).toString}/>

123 }

124 }

125 }

126 }

127 </order>

128 }

129

130 // iterate over each ”item” node and call f

131 private def eachItem(in: Elem)(f : (Node, String, int) ⇒ Node): NodeSeq = {

132 in.child.map { // for each node

133 node ⇒

134 node match {

135 // we’ve got an <item> tag and an ’pn’ attribute

136 case n @ <item/> if (!n.attribute(”pn”).isEmpty &&

137 // and a ’qnty’ attribute

138 !n.attribute(”qnty”).isEmpty) ⇒

139 // call the function

140 f(n, n.attribute(”pn”).get.text,

141 Integer.parseInt(n.attribute(”qnty”).get.

142 text))

143

144 // if there’s no match, return a ”no op” Node

145 case ⇒ Text(””)

146 }

147 }

148 }

149
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150 // get a list of items from the server

151 private def items: Iterator[Item] = {

152 /∗

153 send an ”items” message (note that you can pass Any object

154 to an actor server and the server can response with Any object.

155 This is a lot like ”duck typing” or dynamic typing. Actors

156 either respond to the message or ignore it.

157 ∗/

158 server !? ”items” match {

159 // if the response is an Iterotor[Item] return it

160 case i: Iterator[Item] ⇒ i

161

162 // otherwise, return a zero length iterator

163 case ⇒ new Array[Item](0).elements

164 }

165 }

166

167 // generate the XML of the current inventory

168 def currentInventory = {

169 // the inventory value is the sum of price ∗ qnty

170 val invValue = items.foldRight(0.0){(i,sum) ⇒ sum + i.price ∗ i.qnty}

171 // return the XML including the inventory value and the XML of each node

172 <inventory value={invValue.toString}>{

173 items.filter{i ⇒ i.qnty > 0}.

174 map {i ⇒ Text(”\n ”) concat i.toXml}.

175 toList

176 }

177 </inventory>

178 }

179 }
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180

181 /∗

182 Scala Actors are stand−alone units of computation. They get messages

183 sent to them and they do something (or nothing) with the messages.

184 They may send an asynchronous response, or not.

185

186 Erlang has a time proven, very successful model of distrubuted computing

187 based on Actors.

188

189 You can read more about Actors in ’Event−Based Programming without Inversion

190 of Control’ @ http://lampwww.epfl.ch/˜odersky/papers/jmlc06.pdf

191 ∗/

192 class SafeServer extends Actor {

193 // start the message receive loop

194 // with an empty map of our inventory

195 def act = loop(new TreeMap[String, Item])

196

197 // this function continues to receive

198 // messages and processes the messages

199 def loop(info: TreeMap[String, Item]) {

200

201 // receive a message that matches

202 // one of the cases

203 receive {

204

205 // if it’s ”items” reply to the sender with

206 // the values of our inventory and then loop

207 case ”items” ⇒ {reply(info.values) ; loop(info)}

208

209
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210 // exit from listening if we get ”exit”

211 case ”exit” ⇒ exit(”done”)

212

213 // If the message is an ”Update” object

214 // process the update without responding

215 // to the sender

216 case Update(pn, name, price, qnty) ⇒

217 {

218 /∗ If the Item is in our inventory,

219 update the quantity (remember that

220 Item is immutable, so an inventory

221 update creates a new instance of Item.

222

223 If the Item is not in inventory, create

224 a new one ∗/

225 val tmpItem = info.get(pn) match {

226 case None⇒ Item(name, pn, price, qnty)

227 case Some(item) ⇒ item.add(qnty)

228 }

229

230 // loop back on ourself with an updated inventory

231 // tree

232 loop(info.update(tmpItem.pn, tmpItem))

233 }

234

235 // Process an ”order” which requires a reply

236 case Order(pn, qnty) ⇒

237 {

238 // create a new info tree based on

239 // matching the inventory level
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240 val tmpInfo = info.get(pn) match {

241 // the part number is not found, respond with

242 // None and the info tree does not change

243 case None ⇒ {reply( None); info}

244

245 // we’ve got a match

246 case Some(item) ⇒ {

247 // update the item

248 val res = item.take(qnty)

249 // reply

250 reply( Some(res))

251 // update the info tree

252 info.update(res. 2.pn, res. 2)

253 }

254 }

255 // continue looping

256 loop(tmpInfo)

257 }

258 }

259 }

260 }

261

262 // an order has a part number and a quantity

263 case class Order(pn: String, qnty: int)

264

265 // update has more

266 case class Update(pn: String, name: String, price: double, qnty: int)
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