
A Complexity-Effective Architecture for Accelerating
Full-System Multiprocessor Simulations Using FPGAs

Eric S. Chung*, Eriko Nurvitadhi*, James C. Hoe*, Babak Falsafi*†, Ken Mai*

* Computer Architecture Laboratory at Carnegie Mellon (CALCM), Carnegie Mellon University
† School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne

{echung, enurvita, jhoe, babak, kenmai}@ece.cmu.edu
http://www.ece.cmu.edu/~simflex

ABSTRACT
Functional full-system simulators are powerful and versatile re-
search tools for accelerating architectural exploration and ad-
vanced software development. Their main shortcoming is limited
throughput when simulating systems with hundreds of processors
or more. To overcome this bottleneck, we propose the PROTOFLEX
simulation architecture, which uses FPGAs to accelerate simula-
tion. Prior FPGA approaches that prototype a complete system in
hardware are either too complex when scaling to large-scale con-
figurations or require significant effort to provide full-system
support. In contrast, PROTOFLEX reduces complexity by virtualiz-
ing the execution of many logical processors onto a consolidated
set of multiple-context execution engines on the FPGA. Through
virtualization, the number of engines can be judiciously scaled, as
needed, to deliver on necessary simulation performance. To
achieve low-complexity full-system support, a hybrid simulation
technique called transplanting allows implementing in the FPGA
only the frequently encountered behaviors, while a software simu-
lator preserves the abstraction of a complete system.

We have created a first instance of the PROTOFLEX simulation
architecture, which is an FPGA-based, full-system functional
simulator for a 16-way UltraSPARC III symmetric multiprocessor
server hosted on a single Xilinx Virtex-II XCV2P70 FPGA. On
average, the simulator achieves a 39x speedup (and as high as
49x) over comparable software simulation across a suite of appli-
cations, including OLTP on a commercial database server.

Categories and Subject Descriptors
C.4 [Performance of System]: Modeling Techniques.

General Terms: Design, Experimentation, Performance

Keywords
FPGA, simulator, emulator, prototype, multicore, multiprocessor

1. INTRODUCTION
The rapid adoption of parallel computing in the form of multi-
cores has re-energized computer architecture research. The re-

search focus has now shifted toward architectural mechanisms for
enhancing programmability and scalability in future, highly-
concurrent computing platforms. Architectural research of this
kind will require close collaborations between hardware and soft-
ware researchers.

To co-develop new systems successfully, two conflicting depend-
encies must be resolved. First, software researchers cannot afford
to wait until the hardware development cycle is complete. Sec-
ond, developing new hardware requires feedback from software
research which is difficult to attain before a design can be final-
ized. Fast and flexible functional full-system simulators will play
a vital role in helping to resolve these dependences.

In the past and particularly in the uniprocessor setting, full-system
functional simulators (e.g., [MCE02, MSB05, RHW95, WWF06])
have stayed within a 100x slowdown relative to the real system, a
performance deemed acceptable by many hardware and software
researchers. However, when simulating multiprocessor systems,
the slowdown grows at least linearly in proportion to the number
of simulated processors. Additionally, up to 10x or more slow-
down is incurred with any meaningful instrumentation [NFS04].
As a result of these effects, modern architectural simulators are
limited to simulating only tens of processors at speeds practical
for functional exploration. The recent multicore scaling trends
only exacerbate this problem further.

Parallelization efforts for improving multiprocessor simulation
performance have not been fruitful due to the managing of com-
munication overheads between distributed simulated components.
The scalability of a distributed simulation is limited if the simu-
lated components must interact at an interval below the communi-
cation granularity supported by the underlying host system
[LW95, PFH06]. As a result, prior attempts to parallelize soft-
ware simulators have been met with only limited success.

In this paper, we present the PROTOFLEX simulation architecture,
which aims to leverage fine-grained concurrency in the form of
FPGA acceleration to overcome the software simulation bottle-
neck. The goal of the PROTOFLEX simulation architecture is to
simulate the functional execution of a multiprocessor system us-
ing FPGAs while lowering the development effort and cost to a
justifiable level in a computer architecture research setting. This
goal is distinct from prototyping the accurate structure or timing
of a multiprocessor system. Specifically, the requirements for the
architecture are to (1) functionally simulate large-scale multiproc-
essor systems with an acceptable slowdown (<100x), (2) model
full-system fidelity [MSB05] to execute realistic workloads in-
cluding operating systems, and (3) provide fast, low-overhead

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee.
FPGA’08, February 24-26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/02...$5.00.

instrumentation for architectural-level research. Below, we out-
line how PROTOFLEX achieves these goals.

Addressing large-scale system complexity. Prior FPGA simula-
tors—even functional simulators (e.g., [WCN07])—implemented
their models in a way that maintain structural correspondence to
the simulated target system. In other words, 16 independent cores
are instantiated and integrated together to deliver the functionality
of a 16-way multiprocessor. While evidently feasible with small-
scale systems, building an FPGA-based simulator with adherence
to structural correspondence becomes difficult to justify when
studying configurations with hundreds or thousands of processors.

We observe that in the case of providing fast, functional simula-
tion, re-implementing the target system exactly in an FPGA is
unnecessary. In the PROTOFLEX simulation architecture, the logi-
cal execution and resources of many processors can be virtualized
onto a consolidated set of host execution engines on the FPGA.
Within each engine, multiple processor contexts are interleaved
onto a multiple-context high-throughput instruction pipeline.
Through virtualization, the simulator architect is able to judi-
ciously scale or consolidate the number of engines in the FPGA
host, as needed, to deliver on necessary simulation performance.

Addressing full-system complexity. Apart from limitations in
scale, prior FPGA efforts also typically forgo full-system fidelity
and are limited to user-level custom-compiled applications (e.g.,
[OBI95]). Full-system fidelity enables a simulator to model real
machines to a level of functional detail (e.g., devices) such that
the simulated software, including the BIOS and operating sys-
tems, cannot make the distinction between the simulator and a
real machine. This capability is supported in software simulators
today (e.g., [MCE02, MSB05, RHW95, WWF06]) and is espe-
cially important for evaluating unmodified applications on real
operating systems. Implementing the same capabilities entirely in
FPGAs would require detailed hardware design knowledge and
effort typically beyond the resources of the simulator architect.
To address this challenge, we observe that the great majority of
behaviors encountered dynamically in a full-system simulation
make up a very small subset of total system behaviors. It is this
small subset of behaviors that primarily determines the overall
simulation performance. To exploit this observation, the PROTO-
FLEX simulation architecture incorporates a hybrid simulation
technique called transplanting, which allows a simulated entity
such as a processor to be dynamically reassigned from FPGA
hardware into software-based simulation. The simulator architect
is now given the option to select only a subset of common-case
behaviors for implementation on the FPGA while still retaining
the abstraction of a complete system.

Supporting fast functional instrumentation. As mentioned
previously, any form of substantial instrumentation (e.g., memory
address tracing) can introduce 10x or more slowdown to software-
based functional simulation. One of the advantages with using
FPGA-based simulation is the ability to instrument the hardware
with little overheads in performance (e.g., many passive counters
in parallel). As we discuss in Section 2, this capability allows us
to overcome the functional software simulation bottleneck for
cycle-accurate simulation sampling methodologies.

Contributions. We developed an instantiation of a functional
full-system, FPGA-based simulator called BlueSPARC that in-
corporates the two key concepts of the PROTOFLEX simulation

architecture: (1) time-multiplexed interleaving and (2) hybrid
simulation with transplanting. BlueSPARC is our first step to-
ward simulating large-scale multiprocessor systems and currently
models the architectural behavior of a 16-CPU UltraSPARC III
SMP server. BlueSPARC is hosted on a single 16-way multi-
threaded instruction-interleaved pipeline running on the BEE2
FPGA platform [CWB05], while Virtutech Simics provides the
backing software substrate during hybrid simulation. In the future,
we envision combining multiple BlueSPARC pipelines to simu-
late even larger systems. BlueSPARC currently executes real
applications on an unmodified Solaris 8 operating system, includ-
ing On-Line Transaction Processing (OLTP) on Oracle. Our per-
formance evaluation shows that we achieve a 39× speedup aver-
age over comparable software simulation using Simics. The ma-
jority of the BlueSPARC development effort has been carried out
by a single graduate student in a little over a year.

Outline. Section 2 describes work related to FPGA-based simu-
lation and prototyping. Section 3 presents the PROTOFLEX simu-
lation architecture in detail. Section 4 presents an instantiation of
the PROTOFLEX simulation architecture called the BlueSPARC
simulator. Section 5 presents an evaluation and a performance
model for the BlueSPARC simulator. Section 6 discusses current
limitations of the BlueSPARC simulator and suggests future de-
velopments for the PROTOFLEX simulation architecture. We con-
clude in Section 7.

2. RELATED WORK
FPGA prototyping. Recent FPGA efforts such as
[LYK07,VH07] have produced full-system prototypes involving a
CPU implemented in an FPGA, while real motherboards and PC
components are used to provide the CPU-external full-system
environment. In both examples, the CPU designs are comman-
deered from existing low-level RTL models developed originally
for standard cell technologies. While the implementation effort
only requires a porting effort to the FPGA, neither the CPU inter-
nals nor the system environment is easily amenable to the modifi-
cations needed for architectural design exploration.
Other approaches such as [WCN07, OBI95] implement functional
multiprocessor models with approximate timing fidelity—that is,
they are not cycle-accurate but retain timing similarities to the
target system. However, these approaches forgo full-system fi-
delity and also maintain structural correspondence to the target
system in the number of processors implemented in the FPGA.

Cycle-accurate FPGA-based simulation. UT-FAST [CSK07] is
another form of hybrid simulation that uses FPGAs to accelerate
cycle-accurate simulation of uniprocessor microarchitectures.
UT-FAST is currently divided into a software functional partition
[BE05] and a timing model implemented in the FPGA. Their
simulation performance is constrained in part by the speed of the
full-system functional partition—an issue the PROTOFLEX simula-
tion architecture potentially addresses.

Simulation sampling. Note that functional simulation speed is
not only important to studying architecture issues but also to mi-
croarchitectural-level performance studies. Our prior research in
the SIMFLEX project has developed a sampling-based timing simu-
lation methodology that leverages fast architectural simulation
[WWF06]. Simulation sampling research has shown that it is
possible to achieve very accurate estimation of uniprocessor and
multi-processor performance by simulating a small fraction of the

total benchmark in cycle-accurate mode. In short, the perform-
ance of the detailed cycle-accurate simulator is itself inconse-
quential to the latency of performance data collection. The per-
formance bottleneck now lies in the amount of time it takes to
advance the system's architectural state across the large gaps be-
tween sampled sections of the benchmark and to perform func-
tional warming of microarchitectural structures (e.g., caches). As
opposed to software, a key benefit of using FPGA-based simula-
tion is the ability to carry out this instrumentation activity at-
speed without a performance overhead.

3. PROTOFLEX
In this section, we expand on the PROTOFLEX simulation architec-
ture for FPGA acceleration of functional full-system simulation.
We discuss both hybrid simulation with transplanting and inter-
leaving of multiple processor contexts [CNH07]. Note that the
PROTOFLEX simulation architecture is not a specific instance of
hardware or infrastructure but embodies a set of general design
concepts when approaching an FPGA-based simulation design.

3.1 Hybrid Simulation
Hybrid Simulation is motivated by the observation that the great
majority of behaviors encountered dynamically in a simulation
during runtime are contained by a small subset of total system
behaviors. It is this small subset of behaviors that primarily de-
termines the overall simulation performance. Thus, to improve
software simulation performance while minimizing the hardware
development, one only applies FPGA acceleration to components
that exhibit the most frequently encountered behaviors.
A key ingredient in developing an FPGA-based simulation plat-
form is to have an existing software reference model of a target
system at hand. Not only is this the most tractable way to capture
and debug the wide range of behaviors necessary, but it is also a
crucial enabler in validating the FPGA hardware.

Hybrid simulation. Figure 1 offers a high-level depiction of the
hybrid simulation of a multiprocessor system. In the figure, all
components are either hosted on the FPGA or simulated by the
reference simulator; specifically, the main memory and CPUs are
hosted in the FPGA while the remaining components are hosted in
the reference simulator (e.g., disks and network interfaces, etc).
When a software-simulated DMA-capable I/O device accesses
memory, it accesses a hardware memory module on the FPGA
platform. In a simulation, both the FPGA-hosted and software-
simulated components are advanced concurrently to model the

progress of a complete system (e.g., simulating disk activity in
parallel with processors running on the FPGA).

Transplanting. A component such as the CPU can be partitioned
into a small core set of frequent behaviors and an extensive set of
complicated or rare behaviors. Assigning the complete set of
CPU behaviors statically to either software simulation or FPGA
results in either the simulation being too slow or the FPGA devel-
opment being too complicated. The conflicting goals can be rec-
onciled by supporting “transplantable” components which can be
re-assigned to the FPGA or software simulation at runtime. In the
CPU example, the FPGA would only implement the subset of the
most frequently encountered instructions. When the partially im-
plemented CPU encounters an unimplemented behavior (e.g., a
page table walk following a TLB miss), the FPGA-hosted CPU
component is suspended. Immediately after, its state is “trans-
planted” to its corresponding software-simulated component in
the reference simulator (in Figure 1). The software-simulated
CPU component is then activated to carry out the unimplemented
behavior before becoming de-activated again. Finally, the CPU
state is then transplanted back to the suspended FPGA-hosted
CPU component to resume acceleration on the FPGA (in Fig-
ure 1).

Hierarchical transplanting. While transplanting is a straight-
forward way to achieve full behavior coverage of a complex com-
ponent like the CPU, there is a significant performance overhead
associated with the hand-off between FPGA and software simula-
tion. This includes both the time to transfer data between the
FPGA and the software hosts, and the time for the software simu-

CPUCPU CPU

Memory

CDROM Fibre

Graphics NIC PCI

Terminal

SCSI

SW full‐system
simulator host

Hybrid Simulation

FPGA
host 11

22

CPUCPU

CPUCPU CPU

Memory

CDROM Fibre

Graphics NIC PCI

Terminal

SCSI

SW full‐system
simulator host

CPU

Software‐only simulation

Figure 1 Partitioning a simulated target system across an FPGA and software simulator during hybrid simulation

FPGA

Embedded
ISA simulator

Full‐system
simulator

FPGA

Full‐system
simulator

coverage=99.9999%
CPI = 1

coverage=99.99999%
CPI=1000

coverage=100%
CPI=1000000

coverage=
99.9999%
CPI = 1

coverage=
100%
CPI=1000000

No micro‐transplants With micro‐transplants

Full transplant

Micro‐transplant

Full transplant

MIPS
s

LrMIPS
MIPSMIPS

tptpraw

raw
effective

50
)10)(1)(100(1

100

1

2 =
+

=

+
=

− MIPS
ss

LrMIPSLrMIPS
MIPSMIPS

mtpmtprawtptpraw

raw
effective

91
)10)(1)(100()10)(1.0)(100(1

100

1

52 =
++

=
++

=

−−

Figure 2 Improving performance with hierarchical transplanting

lator to carry out the unimplemented behavior on behalf of the
FPGA. This exchange could take several milliseconds if the
FPGA and the software simulation hosts are separated far apart
(e.g., over Ethernet).
The effective hybrid simulation throughput for a 1-CPU pipeline
with transplanting is

MIPSeffective= MIPSraw / (1+MIPSraw⋅ratetplant-per-million⋅Ltplant)
where MIPSraw is the simulation throughput of a single FPGA-
hosted CPU; ratetplant is the number transplants per million in-
structions; and Ltplant is the latency cost of a transplant in seconds.
Figure 2 (left) illustrates an example calculation assuming a
100MHz FPGA-hosted CPU with CPI=1. Even if the FPGA-
hosted CPU transplants just once every 1,000,000 instructions,
50% of the 100 MIPS raw throughput potential would be lost due
to the high transplant penalty (10msec=1 million cycles). Because
MIPSraw appears in the denominator of the discount factor, at-
tempting to improve performance by increasing MIPSraw would
yield diminishing returns. Attempts to raise performance by re-
ducing ratetplant would also face diminishing returns because in-
creasingly more instructions would have to be built in the FPGA-
hosted CPU to reduce the transplant rate further.
A better solution is to introduce a hierarchy of CPU transplant
hosts with staggered, increasing instruction coverage and per-
formance costs. For example, an embedded processor (e.g., the
embedded PPC405 in the Xilinx Virtex architecture or even a
synthesized soft core) can support a simple software-based simu-
lation kernel for the CPU. The simple software-based simulation
kernel would still be slow relative to the FPGA-hosted CPU, but
would be much faster than a full transplant to the reference soft-
ware simulator. The embedded simulation kernel should also be
able to reach, with relative ease, a higher instruction coverage in
software than in the FPGA-hosted CPU, which reduces the rate of
expensive transplants to the reference software simulator.
Returning to the example in Figure 2, suppose we introduce an
embedded software-based simulation kernel as an intermediate
CPU transplant host with CPI=1000. Further suppose that the
intermediate simulation kernel transplants to the full reference
simulator only once every 10 million instructions. Then, 90% of
the 100 MIPS raw throughput potential would be preserved.

3.2 Interleaved Multiprocessor Simulation
The most important goal in FPGA-accelerated multiprocessor
simulation is to provide simulation performance beyond the capa-
bilities of software-based simulators. It is first important to under-
stand how fast a useful multiprocessor simulator needs to be.

Simulation performance requirement. Interactive software
research can tolerate no more than 100x slowdown. Batched per-
formance simulation studies can tolerate as much as 1000x to
10,000x slowdown. Assuming three simulators with aggregate
simulation throughputs of 10, 100 and 1000 MIPS, respectively,
Figure 4 plots the user perceived simulation slowdown (y-axis) of
the given simulator relative to a real system. As the system size
increases, the aggregate simulation throughput is divided by the
number of processors being simulated (x-axis). We assume a
“real” multiprocessor system consists of 1000-MIPS processors.
Today’s fastest full-system software simulators have less than 100
MIPS aggregate throughput. As seen in Figure 4, a 100-MIPS
simulator represents only a 10x perceived slowdown in a uniproc-
essor simulation, but is only practical for studying up to tens of
processors before the slowdown is no longer acceptable. Figure 4
also suggests that a 1000-MIPS simulator is already adequate for
effective hardware and software research of a 100-way or even
1000-way multiprocessor system.
The straightforward approach to construct a 1000-way multiproc-
essor FPGA-based simulator is to replicate 1000 cores and inte-
grate them together in a large-scale interconnection substrate.
While this meets the requirement of simulating a large-scale sys-
tem, the development effort and required resources would be ex-
cessive or prohibitive and the final aggregate throughput would be
100 to 1000x faster than needed. A performance-driven approach
would trade the excess simulation performance for a more tracta-
ble hardware development effort and cost.

N‐way target system

Memory

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

CPU
Engine

CPU
Engine

Multiple context
processor pool

IFIF IDID EXEX MM WW

CPU
Engine

instr from proc 4 instr from proc 2

instr from proc 1

instr from proc 0

instr from proc 3

Multiple‐context engine

FPGA
platform

Figure 3 Large-scale multiprocessor simulation using a small number of interleaved engines

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256 512 1024
Size of simulated system (# processors)

Sl
ow

do
w

n
re

la
tiv

e
to

 re
al

 s
ys

te
m

10 MIPS simulator 100 MIPS simulator 1000 MIPS simulator

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256 512 1024
Size of simulated system (# processors)

Sl
ow

do
w

n
re

la
tiv

e
to

 re
al

 s
ys

te
m

10 MIPS simulator 100 MIPS simulator 1000 MIPS simulator

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256 512 1024
Size of simulated system (# processors)

Sl
ow

do
w

n
re

la
tiv

e
to

 re
al

 s
ys

te
m

10 MIPS simulator 100 MIPS simulator 1000 MIPS simulator

SW full‐system
functional
simulators

Figure 4 Simulation slowdown versus system size (assuming a
single real processor performs at 1 GIPS)

A performance-driven approach. The PROTOFLEX simulation
architecture advocates virtualizing the simulation of multiple
processor contexts onto a single fast engine through time-
multiplexing. Virtualization decouples the scale of the simulated
system from the required scale of the FPGA platform and the
hardware development effort. The scale of the FPGA platform is
only a function of the desired throughput (i.e., achieved by scal-
ing up the number of engines). For example, Figure 3 illustrates
the high-level block diagram of a large-scale multiprocessor simu-
lator using a small number of interleaved engines. Multiple simu-
lated processors in a large-scale target system are shown mapped
to share a small number of engines.

Multiple-context engine design. Our decision to fulfill the role
of a multiple-context engine using an instruction-interleaved pipe-
line is based on a number of reasons. An instruction-interleaved
pipeline switches a processor context on every fetch cycle, allow-
ing for multiple processor contexts to share a single pipeline.
Such a design enjoys several implementation advantages as ex-
emplified in prior designs such as the CDC Cyber and the HEP
barrel processor. First, stalling and internal forwarding can be
eliminated entirely if only at most 1 instruction from each context
is allowed in the pipeline at any given time. Second, longer pipe-
lines can be used to mitigate critical timing paths, which enables
better overall clock frequency. Third, it is well known that such a
design is highly tolerant to long-latency events such as cache
misses and transplants since additional threads can execute in the
shadow of a long-latency event. Finally, in an implementation
with caches, multiple threads are automatically kept coherent in
shared-memory as they interleave onto a single L1 cache; this
helps to consolidate the number of nodes in a cache coherency
design in larger implementations with multiple engines.

4. THE BLUESPARC SIMULATOR
4.1 Overview
In this section, we describe BlueSPARC, which is our first instan-
tiation of the PROTOFLEX simulation architecture. BlueSPARC is
one of our first steps towards simulating large-scale multiproces-
sor systems and currently models a 16-way symmetric multiproc-
essor (SMP) UltraSPARC III server (Sun Fire 3800). The
BlueSPARC simulator combines Virtutech Simics on a standard
PC as the reference simulator and only a single 16-context inter-
leaved engine on an FPGA for acceleration. The FPGA portion is
hosted on a Berkeley Emulation Engine 2 (BEE2) FPGA platform
[CWB05]. The BlueSPARC simulator embodies the two key con-
cepts of the PROTOFLEX simulation architecture: 1) hybrid simula-
tion to achieve both performance and full-system fidelity with
reasonable effort and 2) decoupling the logical system size from
the physical design complexity. Future work will develop the
cache coherency support needed for combining multiple engines
to support simulation of larger multiprocessor systems.
The BlueSPARC simulator can serve the same functionality cur-
rently provided by simulators such as Simics. In fact, the
BlueSPARC simulator uses the same simulated console as Simics,
so a user can even "interact" with the simulated server. Further-
more, BlueSPARC is fully capable of generating and loading
Simics-compatible checkpoints of the entire simulated system
state.
High-level organization. Figure 5 shows a high-level block dia-
gram of how we map the functionality of the target 16-way SMP
server onto software simulation and hardware hosts. First, the
main memory system is hosted directly by DDR2 DRAM on the

Simics (PC)Xilinx XCV2P70

DDR2
Mem
DDR2
Mem

Interleaved
Pipeline

CPU
context
CPU

context16xCPU

PowerPC

Target Multiprocessor System

Memory

MMU DMA

Graphics NIC SCSI

Terminal

PCI

CPUCPU CPU..
Simulated
I/O devices

CDROM

Figure 5 Allocating components for hybrid simulation in the BlueSPARC simulator

Table 1 BlueSPARC simulator characteristics

Processing
nodes

16 64-bit UltraSPARC III contexts
14-stage interleaved pipeline

Caches
Split L1 I/D, 64KB, 64B, direct-mapped, writeback
Non-blocking loads/stores
16-entry MSHR, 4-entry store buffer

Clock frequency 90MHz

Main memory 4 GB total memory

Resources
(Xilinx V2P70)

33,508 LUTs (50%), 222 BRAMs (67%)
43,206 LUTs (65%), 238 BRAMs (72%)
(+ monitors/stats/debug/assertions)

EDA tools Bluespec System Verilog [Blue06]
Xilinx EDK 9.2i, XST 9.2i

Statistics 25K lines Bluespec, 511 rules, 89 module types

Table 2 Selected partitioning in hybrid simulation
BlueSPARC (FPGA) Micro-transplant (on-chip simulation)
• add/sub/shift/logical
• multiply/divide
• register windows
• 38/103 SPARC ASIs
• interprocessor x-calls
• device interrupts
• I-/D-MMU + tlb miss
• Loads/stores/atomics
• VIS block memory

• 65/103 SPARC ASIs
• VIS I/II multimedia
• FP add/sub/mul/div + traps
• FP/INT conversion
• trap on integer arithmetic
• alignment
• fixed-point arithmetic
• tlb/cache diagnostics
• tlb demap

Transplant (off-chip simulation)
• pci bus
• isp2200 fibre channel
• i21152 pci bridge
• irq bus

• text console
• sbbc pci device
• serengeti IO prom
• cheerio-hme NIC

• fibre channel
SCSI disk
• SCSI cdrom
• SCSI bus

BEE2. Next, all 16 target SPARC processors are mapped onto a
single interleaved engine contained on one Xilinx Virtex-II
XC2VP70 FPGA. The target SPARC processors are transplant-
capable components. In addition to the interleaved engine, the
PPC405 embedded processors serve as an intermediate transplant
host for the target SPARC processors when they encounter unim-
plemented behaviors in the interleaved engine. The reference
Simics simulator running on a PC workstation provides a third
hosting option for the target SPARC processors. Last but not
least, all remaining components of the simulated system are
hosted by the reference Simics simulator. Table 1 summarizes the
high-level characteristics of the BlueSPARC simulator (which we
explain in more detail in the coming pages).

Implementation on BEE2. Figure 6 shows a structural view of
our entire system mapped onto the BEE2 FPGA platform. The
BEE2 board holds five Xilinx V2P70 FPGAs, which are con-
nected to each other using low-latency, high-bandwidth 200MHz
links. The FPGA-portion of the BlueSPARC simulator is hosted
on two FPGAs. The center FPGA is used to host the BlueSPARC
interleaved engine. This pipeline is connected over a high-speed
inter-chip link to another FPGA, which hosts four independent
DDR2 controllers for up to 4GBytes of main memory.
In the center FPGA, the PPC405 interacts with the BlueSPARC
engine over the processor local bus (PLB) for servicing both
transplants and I/O transactions. In addition to serving as an in-
termediate transplant host for the target SPARC processors, the
PPC405 embedded processor also manages external communica-
tion with the simulation PC over Ethernet. The PC and the BEE2
are connected over a standard cross-over cable.

4.2 Hybrid Simulation and Transplanting
The BlueSPARC simulator fully incorporates the idea of hybrid
simulation and transplanting as a methodology to reduce imple-
mentation complexity. The BlueSPARC engine only supports the
minimum subset of the UltraSPARC III ISA required to achieve
acceptable performance. We select instructions for inclusion in
the FPGA following a quantitative profile of selected commercial
and integer benchmarks. A general rule of thumb in the selection

was to implement in FPGA the set of behaviors necessary to limit
the rate of transplants to no more than 5 times in 10,000 instruc-
tions in any of the software workloads. This rule-of-thumb was
determined through estimated initial design parameters and first-
order software simulations of an interleaved pipeline augmented
with transplanting.
In the current BlueSPARC simulator, the embedded software-
based simulation kernel can capture the complete behavior of the
UltraSPARC III processor. The only time execution is trans-
planted to the Simics reference simulation on the PC is when the
CPU interacts with I/O devices. For clarity, we refer to a trans-
plant to the embedded software-based simulation kernel as a mi-
cro-transplant, and we refer to a transplant to the Simics refer-
ence simulation as an I/O-transplant. Table 2 shows a detailed
breakdown of how we partitioned the required behaviors of an
UltraSPARC III processor for direct simulation in FPGA, micro-
transplant, and I/O-transplant.
The BlueSPARC engine must support all of the user-level instruc-
tions as well as a minimal subset of privileged and implementa-
tion-dependent behaviors. A great majority of the time, the fre-
quent behaviors that must be included are also the simple ones—
leaving the most complicated instructions to the embedded soft-
ware-based simulation kernel. It is worth mentioning that some
complex behaviors do occur sufficiently frequently to warrant
implementation in the simulation engine. Despite being a RISC
ISA, the UltraSPARC III superset of SPARCV9 has a large num-
ber of complex implementation-dependent and legacy behaviors
(e.g., SPARC ASIs). The explicitly-defined TLB size also poses
an implementation challenge by consuming a large amount of
BlockRAMs when replicated 16 times for the processor contexts.
However, despite these challenges, we found that our implemen-
tation was still justifiably easier than a full-blown prototype.
Without micro-transplants or I/O transplants, implementing all of
the behaviors in Table 2 in hardware would have required a tre-
mendous amount of development effort.

BEE2

Ethernet crossover cable

BlueSPARC

I‐cache

D‐cache

Transplant

SPARCV9
decoder

Link to Simics

Interchip
Memory
Connector

Ethernet

16x
CPU states

Helper Engine for Transplants

Micro‐
transplant
bare‐C
routines

PowerPC

4GB

DDR2
CTRL

CONTROL FPGA USER FPGA

Simulated UltraSPARC
devices in Simics

Simulated I/O bus for BlueSPARC

Graphics TerminalNIC
SCSI/
DMA

Disks

Processor Local Bus

To User
FPGA

Figure 6 High-level Organization of the BlueSPARC simulator

4.3 Interleaved Pipeline
The BlueSPARC engine is a 14-stage, instruction-interleaved
pipeline that supports the multithreaded execution of up to 16
UltraSPARC III processor contexts (see Figure 7). The maximum
retirement rate of our pipeline is one instruction per cycle, which
in combination with the clock frequency dictates the peak
throughput. The primary goals in developing the BlueSPARC
engine are 1) to ensure correctness, 2) to maximize maintainabil-
ity for future design exploration and 3) to minimize effort. In
many cases we forgo complex performance optimizations in favor
of a simpler, more maintainable design.

Pipeline operation. Figure 7 shows instructions beginning at the
Context Select Unit (left), which is a simple fair scheduler that
issues in round-robin order from different processor contexts. The
scheduler is responsible for ensuring that all processor contexts
make equal progress on average. This requirement is important in
order to avoid unrealistic system behaviors (e.g., a processor
holding a lock indefinitely). After being selected, each issued
instruction is tagged with a unique context identifier used to index
various structures and registers replicated for each processor con-
text throughput the pipeline (see shaded components). Once the
instruction is selected, a subset of its architectural registers (e.g.,
pstate, current window pointer) are scanned from a state register
file and passed into the pipeline. After fetch, the decoding stage
determines whether an instruction requires transplanting. Sup-
ported instructions in the common-case proceed through the pipe-
line stages until reaching the writeback stage. At writeback, the
processor context re-enters the Context Select Unit for the next
round of scheduling. A processor context can only have at most
one instruction in the pipeline at a time, therefore register file
RAW hazards cannot arise.

Micro-transplants and I/O-transplants. In the event a trans-
plant operation is identified by the decoder, the unimplemented
instruction word and the processor context ID are queued into the
Transplant unit (see Figure 7) for service by the embedded
PPC405 processor running a small UltraSPARC III ISA simula-
tion kernel. With 16 processor contexts and 14 pipeline stages,
while one transplanted context is being serviced, the remaining 15
contexts can still keep the pipeline fully utilized. Only one out-

standing micro-transplant and one outstanding I/O-transplant are
currently supported. Any additional I/O- or micro-transplant re-
quests from other contexts are queued in the Transplant unit.
Figure 8 illustrates step-by-step how the interleaved pipeline in-
teracts with the embedded PPC405 during a micro-transplant.
After a detected unimplemented instruction is queued up in the
Transplant unit, the PPC405 is interrupted (1) and begins to read a
minimum amount of state from the requesting context to decode
the unimplemented instruction (2). After decoding, the PPC405
continues to read from the engine the state required to complete
the unimplemented instruction. Reading and writing processor
state (e.g. register file and cache reads) may require issuing syn-
thetic "helper" instructions through the engine. Once the input
state is acquired, the ISA simulation kernel computes the state
updates (3) and writes the changed state values back to the engine
for the requesting context (4)—again with the help of helper in-
structions—before returning the blocked processor context back
to scheduling.
Figure 8 also shows how I/O-transplants are handled. During
simulation, Simics continuously polls the embedded PPC405 to
examine for I/O activity queued in the transplant unit (1)/(2). If an
I/O transaction (e.g., a memory-mapped load or store instruction)
is pending, the PPC405 acquires the necessary state information
from the engine and forwards the state to Simics in response to
the polling (3)/(4). For I/O transplants, Simics simulates the
memory-mapped I/O bus transaction to the target simulated de-
vices (5) and returns the acknowledgement (6)/(7).

Other sources of serialization and latency. In addition to trans-
plants, a variety of long-latency events can deter the progress of
an instruction in the pipeline. The most frequently encountered
example is a cache miss. In our memory system, the caches are
non-blocking, and up to sixteen misses to independent cache sets
are allowed at any given time. Other contexts may continue to
utilize the pipeline while memory accesses are pending. To avoid
conflicts between multiple contexts for cache sets in a transient
state, each cache set is augmented with a pending bit in the tag
array. Any subsequent context that attempts to access a pending
cache set is removed from the pipeline and forced to retry from

RFRF

RFRF RFRF

D‐TLB
512‐entry
(2‐way)
x16

ALU1 ALU2

Transplant
Unit

RFRF

D‐TLB
16‐entry
(fully‐
assoc)
x16

64KB
D‐cache

Writeback
unit

RFRFRegFile
x16

Helper
Engine

1 2, 3 4,5 6 87 9,10,11 12,13 14

Trap
Unit

Interrupt/
X‐call
Unit

Decode

64KB
I‐cache

PC,state
x16

I‐TLB
128‐entry
(2‐way)
x16

Context
Select

PowerPC405 (transplant service processor)

RFRF

I‐TLB
16‐entry
(direct‐
mapped)

x16

Figure 7 The BlueSPARC engine: a 14-stage instruction-interleaved pipeline

the scheduler at a later time. As we show later in Section 5, re-
tries can have a noticeable effect on performance.
To hide store misses, a 4-entry store buffer allows processor con-
texts to retire past a store miss; we currently do not implement
store-to-load forwarding and thus any conflicting loads will stall
until pending stores are drained into memory.
A number of special instructions cannot finish in a single pass
through the pipeline. For example, atomics (e.g., ldstub) require a
load followed by a store. Other examples of multi-pass instruc-
tions are Quad LDDs (atomic load of two doublewords), or block
load/store instructions (64B loads into 8 consecutive registers).
We implement a helper engine (see Figure 7) that issues helper
instructions to facilitate multi-pass instructions. Note that helper
instructions can steal pipeline slots but happen rarely in practice.
As noted earlier, the helper engine also facilitates state access
during micro-transplanting. Lastly, cache flushes and pipeline
“freezes” can also introduce serialization into the pipeline. Be-
cause the i- and d-caches are incoherent, we conservatively flush
the caches on any possibility of staleness in the I-cache. Pipeline
“freezes” occur when the entire pipeline is stalled for a temporar-
ily owned resource (e.g., during TLB replacement).
In Section 5, we quantify how all of these events can affect the
overall pipeline performance. We now discuss strategies used to
validate the BlueSPARC implementation.

4.4 Validation
Our validation methodology involves a combination of Verilog/C
simulation and testing directly on the FPGAs. We rely on Simics
to provide us with a complete and correct reference model for the
UltraSPARC III server, including the pre-validated device mod-
els. In general, all of our testing (either in RTL simulation or run-
ning directly on FPGAs) must pass validation by matching up
exactly with the architectural state that Simics generates. Our
validation test suite comprises a subset of ported diagnostics from
the OpenSPARC framework [VH07], auto-generated stress-test
programs, hand-written test-cases, and real applica-
tions/benchmarks.
We relied on a variety of strategies to validate our design in the
presence of non-determinism on the FPGA. In order to match
architectural state with Simics, we implement a hardware “event
recorder” that records the global commit order of instructions
within the pipeline for each processor context. The event recorder
also captures the timing of asynchronous events during runtime
(e.g., the exact point of delivery of an interrupt). This ordering is
scanned from the FPGA on the BEE2 and replayed in Simics to
attain identical architectural and memory state for comparison.
Another validation strategy we adopted was to implement over
200 synthesizable assertion instances in our design. These asser-
tions were monitored using the Chipscope built-in logic analyzer
and responsible for detecting over 50% of the design bugs. In all,
we have high confidence that BlueSPARC is validated to a level
suitable for active use by end-users. We have successfully passed
all of our test suites and have been able to validate billions of
instructions in all of our workloads using the event recorder. We
also have been able to interact with the hardware using a simu-
lated console in Solaris and have been able to run console applica-
tions correctly without assertions firing or crashes occurring.

5. EVALUATION
This section reports the simulation throughput of the 16-way
BlueSPARC simulator described in Section 4. The performance
evaluation includes a comparison to the Simics simulator. Fur-
thermore, we present a first-order model to understand the per-
formance of multithreaded interleaving.

5.1 Simulation Throughput
Benchmarks. The evaluations in this section are based on simu-
lating a 16-way symmetrical multiprocessing (SMP) UltraSPARC
III server (Sun Fire 3800). The simulated server is running an
unmodified Solaris 8 operating system. We exercise the simu-
lated server using 16-cpu software workloads for saturating the
pipeline. These consist of six SPEC2000 integer benchmarks
(bzip2, crafty, gcc, gzip, parser, vortex) and a TPC-C On-Line
Transaction Processing (OLTP) benchmark. For the SPECint
workloads, 16 independent copies of the benchmark program are
executed concurrently on the simulated 16-way server; we meas-
ure simulation throughput for 100 billion aggregate instructions
(after the program initialization phase). Due to limited physical
memory on our target configuration, it was necessary to run with
test inputs and to omit benchmarks that exhibited excessive disk
paging activity after program initialization (gap, mcf). Other
SPECint benchmarks (eon, perlbmk, twolf, and vpr) were omitted
due to a high presence of FP instructions, which we do not accel-
erate in FPGA. These instructions appear at sufficient rate (>1 in
1000) to incur prohibitive performance overheads if micro-
transplanted. For the OLTP benchmark, the simulated server is
running a commercial multithreaded database server—Oracle 10g

Micro‐
transplant

Micro‐transplant
interrupt request

Get micro‐
transplant info +
operands

PowerPC405Bare‐C program

Simulate instruction
behavior in software

simulate_instruction()
{
……

}

Writeback
results

BlueSPARC Pipeline+state

Helper EngineTransplant unit

I/O‐
transplant

Get
I/O info

PowerPC405

Deliver
I/O ack

BlueSPARC Pipeline+state

Helper EngineTransplant unit

SimicsSimulated I/O devices

I/O ack

I/O req pending

Poll I/O

Poll I/O

Receive I/O

Simulate I/O

Figure 8 Detailed operation of Micro-transplants & I/O-Transplants

Enterprise Database Server—configured with 100 warehouses
(10GB), 16 clients, and 1.4 GB SGA as in [WWF06]. We meas-
ure simulation throughput for 100 billion aggregate instructions in
a steady-state region (where database transactions are committing
steadily). As we will see next, the workload has a large impact on
the simulation throughput of both Simics and BlueSPARC.

Simics performance. When Simics is invoked with the default
“fast” option, it can achieve many tens of MIPS in simulation
throughput. However, the fast mode is a purely black-box sys-
tem—that is it does not support instrumentation (e.g., memory
address tracing) or augmentation of behavior (e.g., adding a new
opcode). There is approximately a factor of 10x reduction in
simulation throughput when Simics is enabled with trace call-
backs for instrumentation (this observation is also noted by
[NFS04]). In Figure 9, the bars labeled Simics-fast and Simics-
trace report our measured Simics simulation throughput (total
simulated instruction per second) for the simulated 16-way SMP
server. Simics simulations were run on a Linux PC with a 2.0
GHz Core 2 Duo and 8 GBytes of memory. The performance
most relevant to architecture research activities is reported in
Simics-trace. Here, an approximately 10× difference in simulation
throughput is seen when Simics is run without the fast-mode.

BlueSPARC performance. The simulation throughput of the
BlueSPARC simulator is reported in the left-most bars in Figure
9. The interleaved engine is clocked at 90MHz. The BlueSPARC
simulator with acceleration from just a single Virtex II XCV2P70
FPGA achieves speed comparable to Simics-fast on the SPECint
and Oracle-TPCC workload. In comparison to the more relevant
Simics-trace performance, the speedup is more dramatic, an aver-
age speedup of 39x and as high as 49x on GCC. As mentioned in
Section 2, fast functional instrumentation is a key capability in
accelerating cycle-accurate simulation sampling activities. Al-
though we do not discuss in detail in this paper, we have success-
fully implemented an FPGA-based functional 16-way CMP cache
simulator that can accept memory reference traces at full rate for
the purposes of fast functional warming in the SIMFLEX project.
In the next section, we present a detailed analysis explaining the
reported performances of BlueSPARC.

5.2 Performance Analysis
The performance model we present is based on a simple account-
ing of pipeline utilization by the interleaved processor contexts.
Under ideal conditions, the instructions from multiple processor
contexts would be issued into the pipeline in round-robin order,
without stall or interference. Let N be the number of interleaved
processor contexts and P be the depth of the interleaved pipeline
(N > P in our design). Suppose I is the average interval between
the instructions issued from one processor context into the pipe-
line (in cycles). The pipeline utilization by one context is then 1/I,

and the total utilization by N contexts is N/I. In the ideal case,
I=N when the pipeline is fully utilized. I can be further decom-
posed into two components in the ideal case, where I=P+S cy-
cles. The first component represents the number of cycles trav-
ersed in a P-stage pipeline (constant). The S component refers to
cycles spent waiting in the scheduler in a fully occupied pipeline.
S=N-P when the pipeline is fully utilized.
Under real conditions, events such as cache misses, micro-
transplants and I/O-transplants increase the average interval I
between the instructions issued from one processor context. We
can express Iavg as

Iavg= P + S + r1L1 + r2L2 + r3L3 + …
where ri is the rate (event per instruction) of a specific long la-
tency event that delays the completion of an instruction by Li
cycles. During long-latency events, the blocked processor context
is removed from the pipeline and does not consume pipeline issue
slots. Thus, a high pipeline utilization can be sustained even in the
presence of these long latency events provided 1) N>P and 2) the
number of ready-to-execute contexts is at least P.
Table 3 gives the rate ri (events per instruction) and average la-
tency Li (in 90MHz cycles) for the event classes that impact Iavg.
All of these statistics are collected using performance counters
built into the interleaved engine. Using the measured data as in-
put, the Iavg model agrees well with wall-clock measurements and
is able to predict pipeline utilizations for all of the workloads
within 1% error. Figure 10 illustrates the measured fractional
contribution of each event class to the overall Iavg. Each percent-
age component from an event class is calculated as (riLi)/Iavg. The
components also include percentage contribution from time spent
in the pipeline (14/Iavg) and time in the scheduler (S/Iavg).
Based on Figure 10, the three most dominant sources of perform-
ance overhead are memory latency, retried instructions, and I/O-
transplant latency. For the majority of the workloads, main mem-

Table 3 Long-latency event rate (ri) and latency (Li). Percentages represent the rate of events per instruction.
Numbers in parenthesis represent the latency per event in terms of 90MHz cycles.

 Micro-tplant I/O-tplant Load miss Fetch miss Scheduler Retry Flushes Multi-pass
Oracle 0.015% (7448) 0.00066% (420354) 2.94% (58) 1.43% (56) 100% (2.16) 3.10% (75) 0.0037% (3352) 0.808% (21)
Bzip2 0.000% (3149) 0.00007% (151695) 8.68% (96) 0.30% (105) 100% (1.2) 11.49% (96) 0.0042% (3256) 0.096% (13)
Crafty 0.000% (3234) 0.00001% (153707) 7.07% (130) 2.49% (133) 100% (0.66) 8.35% (46) 0.0010% (3380) 2.369% (13)
Gcc 0.005% (7784) 0.00007% (149454) 1.92% (114) 0.95% (114) 100% (2.08) 2.49% (118) 0.0057% (3319) 0.077% (30)
Gzip 0.000% (16945) 0.00007% (105389) 6.82% (113) 0.26% (126) 100% (1.32) 8.44% (75) 0.0035% (3284) 0.084% (33)

Parser 0.000% (2690) 0.00008% (149826) 5.33% (122) 2.50% (123) 100% (1.93) 7.83% (99) 0.0091% (3244) 0.471% (52)
Vortex 0.007% (1806) 0.00018% (118308) 8.97% (173) 3.90% (168) 100% (2.02) 15.56% (84) 0.0045% (3294) 0.150% (32)

0
10
20
30
40
50
60
70

or
ac
le

bz
ip
2

cr
af
ty gc
c

gz
ip

pa
rs
er

vo
rt
ex

av
er
ag
e

M
IP
S

BlueSPARC (90mhz)
Simics‐fast (2.0GHz C2Duo)
Simics‐trace

1.18

Figure 9 Performance comparison of BlueSPARC and Simics

ory stalls contribute a significant fraction of the average instruc-
tion interval; this is expected as we interleave 16 processor con-
texts onto single, direct-mapped caches. Vortex and crafty experi-
ence the highest rate of memory misses and are also additionally
penalized by increased queuing latency in the memory system.
Recall that our memory controllers are hosted on a second
FPGA—the interchip link between the two FPGAs limits the rate
at which multiple outstanding memory requests can be serviced.
In all of the workloads, retried instructions (including discarded
computation) contribute a noticeable fraction to the average in-
struction interval. In our measurements, the majority of retries
are caused by conflicting accesses to the L1 data cache sets in a
transient state (e.g., pending cache fill). Due to the direct-
mapping of the caches and a long window of vulnerability (e.g.,
long-latency cache fills), this event occurs frequently enough to
contribute a significant overhead.
As expected, none of the user-dominated SPECint benchmarks
experience any noticeable I/O except for Oracle, which experi-
ences disk activity and queuing for I/O-transplants (note the
higher I/O latency for Oracle in Table 3). One interesting result is
that micro-transplants contribute little if no overhead in almost all
of the workloads. This outcome is due to the fact that we were
conservative in our initial chosen instruction coverage in the
FPGA; these results show that more opportunity exists to omit
even further behaviors from the hardware.
Despite these effects, the interleaved pipeline is still remarkably
fast given the modest implementation in hardware. Future work to
improve the pipeline efficiency will be to reduce latency and in-
crease bandwidth to the DDR2 memory and to optimize the
FPGA-PC link (for I/O-intensive applications). To reduce the rate
of contention in the d-cache (retries), more intelligent scheduling
decisions can be used to schedule conflict-free memory accesses.

6. CONCLUSION
In this paper we presented the PROTOFLEX simulation architecture
for FPGA-accelerated functional full-system multiprocessor simu-
lation. The BlueSPARC simulator is the first instantiation of this
architecture that simulates a 16-way UltraSPARC III SMP server.
The resulting simulator embodies the two key concepts of PRO-
TOFLEX: hybrid simulation with transplanting and multiprocessor
interleaving. Our evaluation of BlueSPARC showed a simulation
throughput as high as 63 MIPS. The evaluation further showed a
significant speedup, 39x on average and 49x best-case, relative to
Simics with instrumentation enabled.
In the long run, we plan to scale up the BlueSPARC simulator to
combine tens of interleaved engines to achieve an aggregate of
1000 MIPS to support the simulations of large (>100-way) multi-
processor systems. To succeed at that scale, we also need to ex-
tend the PROTOFLEX simulation architecture with means to virtu-
alize the required main memory capacity expected of a mul-
tiprocessor system at that scale. We are investigating the feasibil-
ity and performance impact of employing demand-paging against
a larger but slower backing storage (e.g., disk or FLASH mem-
ory) to provide the illusion of the required main memory capacity.
Acknowledgements. Funding for this work was provided in part
by grants from the C2S2 Marco Center, NSF CCR-509356, and
an IBM Faculty Award. We thank Xilinx for their generous
FPGA and tool donations. We also thank Bluespec for their tool

donations and support. We thank our colleagues in the RAMP
[WPO07] and TRUSS projects for their interaction and feedback.

7. REFERENCES
[BE05] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In

Proceedings of USENIX 2005, FREENIX Track, April 2005.
[BDH06] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,

S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems.
IEEE Micro, vol. 26, no. 4, pp. 52-60, July/August, 2006.

[Blue06] Bluespec, Inc. http://www.bluespec.com, 2006.
[CNH07] E. S. Chung, E. Nurvitadhi, J. C. Hoe, K. Mai, B. Falsafi. Proto-

Flex: FPGA-Accelerated Hybrid Functional Simulator. NSF NGS
Workshop at IPDPS, March 2007.

[CSK07] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, E. Johnson, J.
Keefe, and H. Angepat. FPGA-Accelerated Simulation Technolo-
gies (FAST): Fast, Full-System, Cycle-Accurate Simulators. In
Proceedings of the International Symposium on Microarchitecture,
December 2007.

[CWB05] C. Chang, J. Wawrzynek, R. W. Broderson. BEE2: A High-End
Reconfigurable Computing System. IEEE Design and Test of
Computers, March 2005.

[LW95] U. Legedza and W. E. Weihl. Reducing synchronization overhead
in parallel simulation. Workshop on Parallel and Distributed Simu-
lation, May 1996.

[LYK07] S. L. Lu, P. Yiannacouras, R. Kassa, M. Konow, T. Suh. An
FPGA-based Pentium® in a complete desktop system. In Proceed-
ings of the International Symposium on Field Programmable Gate
Arrays, February 2007.

[MCE02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. IEEE Computer,
35(2):50-58, February 2002.

[MSB05] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M.
Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet's general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecture News, September 2005.

[NFS04] F. D. Nussbaum, A. Fedorova, and C. Small. An overview of the
Sam CMT simulator kit, Technical Report TR-2004-133, Sun Mi-
crosystems Research Labs, February 2004.

[OBI95] K. Oner, L. A. Barroso, S. Iman, J. Jeong, K. Ramamurthy, M.
Dubois. The Design of RPM: An FPGA-based Multiprocessor
Emulator. In Proc. of International Symposium on Field Program-
mable Gate Arrays, February 1995.

[PFH06] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. Au-
gust and D. Connors. Exploiting Parallelism and Structure to Ac-
celerate the Simulation of Chip Multi-processors. In Proceedings of
the 12th International Symposium on High-Performance Computer
Architecture, February 2006.

[RHW95] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Fast and
accurate multiprocessor simulation: The SimOS approach. IEEE
Parallel and Distributed Technology, 3(4), Fall 1995.

[VH07] D. Vahia, P. Hartke. OpenSPARC T1 on Xilinx FPGAs - Updates.
Given on 6/14/2007 at RAMP Retreat, June 2007.

[WCN07] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar,
Daxia Ge, Christos Kozyrakis, Kunle Olukotun. A practical FPGA-
based framework for novel CMP research. In Proceedings of the
International Symposium on Field Programmable Gate Arrays,
February 2007.

[WPO07] J. Wawrzynek, D. Patterson, M. Oskin, S. L. Lu, C. Kozyrakis, J.
C. Hoe, D. Chiou, K. Asanovic. RAMP: Research Accelerator for
Multiple Processors. IEEE Micro, 27(2):46-57, March-April 2007.

[WWF06] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B.
Falsafi, and J. C. Hoe. SimFlex: statistical sampling of computer
system simulation. IEEE Micro, 26(4):18-31, Jul-Aug 2006.

0%

20%

40%

60%

80%

100%

or
ac
le

bz
ip
2

cr
af
ty gc
c

gz
ip

pa
rse
r

vo
rte
x%

 a
ve
ra
ge

 in
st
ru
ct
io
n
in
te
rv
al

multi‐pass
flush
retry
i/o‐transplant
micro‐transplant
load stall
fetch stall
scheduler
pipeline

Figure 10 Average contribution of each long-latency event class
to the average instruction interval (Iavg).

