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Abstract

The development of multinary nitrides materials has revolutionised the hard coatings
industry over the last 20 years. Especially important materials systems in this mat-
ter have been TiAlN and CrAlN which shows higher hardness, better oxidation resis-
tance and can perform at higher temperatures as compared to TiN. When synthesised
through physical vapour deposition techniques these system form cubic rock salt struc-
tured Ti1−xAlxN and Cr1−xAlxN solid solutions as a metastable phase over a large part
of the concentration range. One of the main objectives during the optimisation of the
coatings has been to increase the amount of Al in the coating while still keeping the
rock salt structure, avoiding phase separation and the formation of hexagonal wurtzite
AlN. However, in Al-rich TiAlN coatings it was found that isostructural decomposition
within the cubic phase was in fact beneficial for the coatings performance at working
temperatures just below 1000 ◦C. The reason was that the formation of strained coher-
ent c-AlN domains within the grains initiated a age-hardening of the coating. In the
CrAlN coatings it is possible to solve a larger amount of Al in the cubic phase. Possibly
connected to this fact is that no isostructural decomposition and in principle no age
hardening has been observed in rock salt structured Cr1−xAlxN.

Although large series of experimental investigations have been performed on these sys-
tems, no systematic theoretical study has yet been undertaken. This theoretical work
is an attempt by means of first-principles calculations together with thermodynamics
considerations within the framework of alloy theory, to close or decrease the knowledge
gap between experimental observations of cutting performance of various coatings and
the fundamental quantum mechanical and thermodynamics processes that governs it.

We first consider the structural properties of the treated mixed nitride systems. The
concept of atomic misfit or volume difference, which is well known in the community is
studied and the physics that leads to a positive deviation from Vegard’s rule is revealed.
Then the TiAlN and CrAlN systems are studied in detail. A clear connection between
the development of the electronic structure with composition and the mixing enthalpy of
the alloys, and thus the tendency for decomposition, is found for TiAlN. The importance
of magnetic effects on the thermodynamics of mixing in CrAlN is established leading
to a qualitative lower tendency for decomposition. Since the nitrogen composition can
deviate substantially from perfect stoichiometry in these systems, a study of the influence
of nitrogen vacancies on the decomposition pattern of TiAlN in the cubic phase is
performed. The results imply that a presence of nitrogen sub-stoichiometry in Al-rich
TiAlN will enhance the tendency for isostructural decomposition. The achieved results
including those for the systems ScAlN and HfAlN are compared and discussed especially
by considering volume misfit and electronic bandstructure effects as driving forces for
coherent and incoherent decomposition.
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Version abrégée

Le développement des nitrures multi composés a profondément changé l’industrie des
revêtements durs au cours de ces 20 dernières années. Les matériaux les plus im-
portants dans ce domaine ont été en particulier TiAlN et CrAlN qui démontrent une
grande dureté, meilleures résistances à l’oxydation, et qui peuvent supporter plus haute
température du travail que TiN. La déposition par des méthodes PVD assure une phase
cubique à face contrée Ti1−xAlxN et Cr1−xAlxN, qui reste une solution solide métastable
pour un large intervalle de la composition. L’un des objectives principaux dans le
développement de ces revêtements a été d’augmenter la tenure en Al tout en conservant
la structure cubique et empêchant la séparation des phases et formation de l’AlN hexag-
onale würtzite. Cependant, il a été observé que la décomposition iso structurale avait un
effet bénéfique jusqu’à la température du travail d’environ 1000◦C. Ceci a été attribué à
la formation des domaines cohérent c-AlN dans la matrice ternaire due au vieillissement
dynamique des revêtements. Les observations expérimentales ont montré qu’on peut
incorporer plus d’Al dans la phase cubique de CrAlN, probablement due au fait que ni
la décomposition iso structurale et ni le vieillissement dynamique se produisent dans la
phase cubique de ce nitrure.

Malgré une grande nombre des travaux expérimentaux consacrés à ces familles des ni-
trures, aucune étude théorique systématique n’a pas encore été entreprise. Ce travail
théorique est un effort d’utilisation de simulation numérique basé sur des principes
primaires et les considérations thermodynamiques, afin de réduire l’écart de connais-
sance entre les observations expérimentales de la performance de ces revêtements et
les processus thermodynamiques et principes quantum mécaniques qui gouvernent le
comportement de ces matériaux. Nous allons tout d’abord étudier les propriétés struc-
turales de ces nitrures. Le concept de différence volumique et atomique, bien connu
dans la communauté scientifique, sera ensuite considéré et la déviation par rapport à
la loi de Vegard sera expliquée. Ensuite, les systèmes TiAlN et CrAlN seront étudiés.
Une relation directe entre l’évolution de la structure électronique avec la composition,
ainsi que l’enthalpie de mélange autrement dit la tendance à la décomposition sera
proposée pour TiAlN. L’importance de l’effet magnétique sur la thermodynamique de
CrAlN sera établie qui démontrera l’origine de sa faible capacité à la décomposition.
Étant donné que la concentration de l’azote dans ces systèmes peut dévier de la stœ-
chiométrie, le rôle des lacunes de N2 sur la figure de la décomposition dans TiAlN sera
évalué. Les résultats démontrent que le sou stœchiométrie de l’azote dans TiAlN riche
en aluminium, augmente la tendance à la décomposition iso structurale. Les résultats
obtenus pour les systèmes ScAlN et HfAlN seront comparés et discutés en termes de
l’effet de la différence volumique et la structure électronique, considérés comme les forces
motrices de la décomposition.
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Introduction

Since the dawn of mankind the usage of cutting tools has been a prime necessity. The
oldest findings of manufactured cutting tools are dated to 2.5 to 2.6 millions years
before present and since then the development and research on cutting tools materials
has challenged the creativity of more than 100 000 generations of hunters, farmers, metal
workers, craftsmen, industrial workers, and scientists.

Today the most critical challenge for cutting tools performance is no longer cutting
trees, carving in bone or ploughing heavy loam. Instead it is high speed machining
(HSM) of hard metals such as steels and various alloys under dry conditions that puts
the cutting tools to the test. The bulk material of use in present days cutting tools are
mostly WC-Co and TiCN-Co cemented carbides and cermets. Although rather hard
in themselves those bulk materials on their own show unsatisfactory performance in
modern days HSM operations, primary with respect to wear rate.

In the 1970’s the industrial usage of hard protective coatings of the tools began, pri-
mary focusing on materials systems such as TiN, TiC and Al2O3. These hard ceramics
coatings can improve the life time of tools by orders of magnitude in many applications.
The demands from the users however, in terms of tool lifetime and cutting speed are
constantly increasing. The demand on higher cutting speeds are equivalent with higher
temperatures on the rake of the tool during operation and one of the main shortcomings
of TiN hard coatings is their rapid drop in hardness as well as oxidation resistance when
subjected to temperatures above 500 ◦C. Thus the main line of research in this area over
the last 30 years has been the search for more advanced coatings materials system that
are able to withstand such deteriorating conditions. In this effort the combinations of
several elements forming ternary or multinary coatings systems such as Ti-C-N, Ti-Al-N,
Cr-Al-N and Ti-Si-N has been investigated. Especially the addition of Al to transition
metal nitrides has been successfully used in large scale industrial applications.

In the system Ti-Al-N, coatings synthesised with physical vapour depositions techniques
and sufficient access to nitrogen typically form Ti1−xAlxN solid solutions in the cubic
rock salt structure, at least as the majority phase and for x ≤ 0.67. This is somewhat
surprising since TiN and AlN shows extremely limited solubility in bulk even at very
high temperatures indicating that the solid solution phase is only metastable. Extensive
experimental investigations have been conducted on these solid solutions systems and
they have been shown to drastically increase the oxidation resistance of the coatings
as compared to TiN. Furthermore they show higher hardness in the as-deposited state.
More recently it has been demonstrated that such coatings with high Al content show
retained or even enhanced hardness after annealing at for cutting operations relevant
temperatures around 1000 ◦C. This has been suggested to be due to alleged isostructural
spinodal decomposition into cubic AlN and TiN or Ti-rich Ti1−xAlxN. Taken together
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INTRODUCTION

the effect is a drastic increase in tool lifetime and possible maximum working tempera-
ture of TiAlN, as compared to TiN, coated cutting tools. In the related system Cr-Al-N
the solid solutions also form but with the possibility to include a larger amount of Al
in the rock salt phase thus possibly further increasing the oxidation resistance. On the
other hand, no isostructural decomposition has been shown and no age hardening has
been unambiguously observed for the cubic phase domain. These observations clearly
demonstrate the high importance of phase stabilities and instabilities on the mechanical
behavior of the materials.

A certain understanding of these materials systems has been obtained through intense
experimental research. However, experimental investigations have important limita-
tions. First of all the experimentalists are limited to observe phases and processes that
do occur, possible competing phases and processes that are not observed can not be
analysed and thus not the reason why they are not seen. Further more, it is often
difficult or impossible to study the effect of different internal and external conditions
independently. For instance, the influence of Al-content, cubic or hexagonal structures,
configurational pattern in the solid solution and the temperature can not be separated
in the experiments thus limiting the basic understanding of their respectively influence
on materials properties. And knowledge about these factors are indeed of utmost impor-
tance in the attempt to develop new coatings materials systems in which several stable
and metastable phases exist.

An alternative approach to experimental procedures is to apply the basic rules of quan-
tum mechanics and statistical physics and study the systems theoretically from first-
principles. Such an approach allows for the study of both stable, metastable and even
unstable phases, an independent investigation of the role of composition, structure and
configuration, and is able to give important information about the origin of different
experimentally observed phenomena.

The basic equations governing quantum systems were developed in the early and mid
1900’s, but first-principles procedures were for a long time anyway practically impossible
to apply to realistic systems due to the computational costs. But today efficient methods
to solve quantum mechanics problems within the framework of density functional theory
are well established. Owing also to the drastic improvement of computational resources
over the last decades numerous important discoveries within solid state physics have
been made through the application of first-principles calculations.

However, the system of interest in the present study includes several challenges for a first-
principles approach. First of all the treatment of the solid solution phases. These phases
characterised by substitutional disorder has puzzled theoretical physicists for a long time.
The basic problem is that the statistical distribution of atoms brakes the translational
symmetry of the lattice making it impossible to handle the calculations within traditional
unitcell or supercell calculations. Within alloy theory instead a number of different
tools have been developed to handle this situation in terms of both specifically designed
supercells, cluster expansions as well as effective medium approaches. Secondly, the
exact stoichiometry of the materials is often only approximately controlled, at least at
high temperatures and considerable influence on physical properties can be expected
from the presence of point defects e.g. nitrogen vacancies. Further complications arise
when both defects and substitutional disorder are present simultaneously.
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INTRODUCTION

The objectives and structure of this work

Although being well known and widely used in practise, the coatings systems TiAlN
and CrAlN have not before been subject to a systematic theoretical study from first-
principles. Thus the fundamental quantum mechanics and thermodynamics governing
the phase stabilities and experimentally observed transformation processes in these sys-
tems are still largely unknown. This is unsatisfying on the level of fundamental physics
research, but perhaps more importantly also a limitation on the ongoing experimental
development work of new coatings materials. In the absence of a fundamental under-
standing of the processes at work on the atomic scale in the presently used systems, the
choice of new alloying materials and other coating parameters are done more or less at
chance.

The scope of the present work is to use, and if necessary further develop, state of the
art alloy theory and first-principles calculations in a study of a number of important
multinary nitride hard coatings materials systems. The systems studied are transition
metal nitrides alloyed with aluminium nitride, TiAlN, CrAlN, ScAlN, and HfAlN. They
are chosen both on the basis of direct practical importance (TiAlN and CrAlN) as
well as with respect to novelty (ScAlN and HfAlN). ScAlN has not been considered at
all in the literature while only very few experiments have been reported for the HfAlN
system. Furthermore the combination of the four different systems allows for the critical
investigation of different possible explanations for phase stabilities or decomposition
behaviour such as lattice mismatch and electronic band structure effects in this class of
materials systems.

The objective is to reach an understanding of structural and electronic properties of
the solid solution nitride systems, stoichiometric and non-stoichiometric, as well as the
possible driving force for phase separation.

First a scientific background is given (chapter 1) discussing some important physical
concepts as well as a background to the different treated materials systems. Then the
theoretical framework of this thesis in terms of first-principles calculations is presented,
together with some crucial methodological questions regarding the theoretical treatise of
disordered systems (chapter 2). Structural properties and deviation from Vegard’s rule
in the B1 structured systems Ti1−xAlxN, Cr1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN are
studied and compared with experimental results (chapter 3) providing also a test of
the reliability of the theoretical methods. The electronic structure effects and thermo-
dynamics in the systems TiAlN (chapter 4) and CrAlN (chapter 5) are investigated.
The effects of point defects in terms of nitrogen vacancies with focus on nitrogen sub-
stoichiometric Ti1−xAlxN1−y (chapter 6) are presented followed by a general discussion
(chapter 7) and a chapter with conclusions and outlooks (chapter 8).
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Chapter 1

Scientific background

In this chapter a scientific background is given to the topic of the thesis. First the
experimental background to the formation of solid solutions in thin film synthesis is
given followed by a discussion of certain stability concepts, such as metastability, used
throughout this work. It is followed by a discussion about hardness in nitrides materials.
Then a presentation of the most important building blocks of the hard coatings materials
covered in this work is made followed by a more extensive presentation of the experi-
mental research on TiAlN and CrAlN thin films. In the final part, previous theoretical
works aiming to understanding these materials are presented. The research leading up
to this thesis was initiated 2006. The important publications that have appeared since
then, including publications directly related to this thesis, is briefly covered in the final
section: Recent publications. Those works are instead covered and discussed in detail
in the following chapters where the results are presented as well as in the Discussion
chapter.

1.1 Thin film synthezis of materials

The hard coatings materials treated in this work are typically prepared through thin
film growth using physical vapour deposition techniques such as arc evaporation or
reactive magnetron sputtering. These methods are very different from equilibrium bulk
synthesis in the way the materials are formed and thus have dramatic consequences for
the materials properties. The metals are supplied through sputtering or arc evaporation
of elemental or alloy targets while the nitrogen is present as a reactive gas in the chamber
typically together with an inert working gas such as argon. The vaporised and ionised
metal and nitrogen atoms condense and react on the chamber walls and on the substrate
growing the film. In some cases the attraction to the substrate can be increased through
the application of a negative bias. The substrate temperature is rather low, in industrial
applications T ≤ 500◦ C is typical, which in general means that when the atoms from
the plasma impinge on the substrate their mobility due to thermal activity is quite
restricted. Even if the mobility is enhanced by collisions with other energetic ions, this
process does not drive the system towards thermodynamic equilibrium. Instead, if the
kinetic energy of the incoming ions are sufficient, recoil implantation and cascade mixing
of the atoms already present in the film may occur [1]. Thus two simultaneous effects
promotes the formation of high entropy material phases: The limited mobility of the
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CHAPTER 1. SCIENTIFIC BACKGROUND

surface atoms prohibits long range diffusion to form phase separated domains and rather
stochastic impact of high energy ions on the film causes additional phase mixing. These
are the basic reason why many multinary nitrides thin film systems grow in the form of
solid solutions [2].

1.2 Thermodynamics and kinetic stability concepts

One of the main purposes of this work is to investigate the stability of different hard
coatings nitride materials, as well as their tendency for phase separation and decomposi-
tion, using theoretical calculations and analysis. It is therefore necessary to clarify what
is meant with different concepts of stability. First of all, two systems in thermodynamic
equilibrium with each other are characterised by having both temperature, pressure and
chemical potentials equal. Such a state is characterised by the presence of thermodynam-
icaly stable phases. In principle, thin films can hardly be in thermodynamic equilibrium
with bulk substrates at normal temperatures due to the huge entropy gain it would give
to solve the thin film material in the bulk. However, in practise the thin film itself
can often be considered as a bulk material and thermodynamic considerations can be
done fore the thin film alone1. One example of a hard coating system that could be
considered as a thermal equilibrium system is a TiN coating on a WC-Co tool present
in a N2 atmosphere at room temperature.

However, the coating materials being the subject for this thesis are mixed nitrides,
especially transition metal nitrides mixed with AlN. As will be apparent these system
typically do not constitute systems in thermal equilibrium, thus possessing a potential
for phase change. Nevertheless, they are any way created with thin film deposition
techniques and persist under ambient condition for timespans long enough for being
useful in practical applications. The term metastable has been introduced to describe
such systems. The term is not uniquely defined for just one certain situation, instead
it is in general use for all situations matching the combination of one positive and one
negative stability criteria. The system should be stable with respect to a small change in
state parameters while at the same time beeing unstable with respect to a larger change
in parameters. Another way to say it is that the metastable state should constitute a
local energy or free energy minima but not a global minima. This means that there
should exist an energy barrier, or free energy barrier that can confine the system to the
metastable state rather than transforming to the equilibrium.

Such barriers can be of different kinds. Kinetic barriers might lock atoms into certain
crystal positions, constituting local energy minima, during the growth of the thin film
nitride materials. This prevents the atoms to diffuse enough to form separate de-mixed
nitrides domains. Kinetic barriers might also prevent changes of crystal structure such
as the transition from cubic B1 AlN to hexagonal B4 AlN since such a change needs the
overcoming of a rather high energy barrier.

The barriers can also be of thermodynamic rather than kinetic character. This situation
can be illustrated by the following example. Consider a system of a binary A1−xBx alloy

1Of course it is necessary to be aware of the possibility for diffusion of different components to and
from the substrate, and also loss of light elements to the vacuum or reaction with i.e. oxygen from an
atmosphere.
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1.2. Thermodynamics and kinetic stability concepts

where the equilibrium mixing and de-mixing process is governed by the minimisation of
the Gibb’s Free energy,

G = H − TS, (1.1)

of the system under the condition that the global composition x is kept constant. In
Eq. 1.1, G is the Gibbs free energy, H is the enthalpy, T is the absolute temperature, and
S is the entropy of the system. This problem can be solved graphically by calculating
the Gibbs free energy as a function of composition and temperature and then perform
a common tangent construction as is schematically illustrated in Fig. 1.1.

This figure illustrates in the top panel the free energy curves for a hypothetical A1−xBx

alloy, with a strictly positive mixing enthalpy, at different temperatures. As temperature
increases the free energy of the alloy decreases as a consequence of the increased impact
of entropy. The equilibrium phase diagram can be derived through a common tangent
construction at each temperature illustrated for T = T2 in the figure (T = T1 in the
inset). This gives the binodal line shown in solid black in the phase diagram of the
bottom panel. In this case with a positive mixing enthalpy it results in a miscibility
gap. This corresponds to a region in the composition-temperature space where no
mixed single phase configuration can exist in equilibrium. A close investigation of the
figure reveals that two separate regions can be identified within the miscibility gap.
Depending whether the curvature of G(x, T ) is positive or negative, the system either
gains or loses Free energy by a small decomposition into phases of composition x − δ
and x+ δ respectively. The criteria where the second concentration derivative is zero,

d2G(x, T )

dx2
= 0, (1.2)

is defining the boundary between the spinodal (d2G
dx2 < 0) and binodal (d2G

dx2 > 0) do-
mains shown by a dashed red line in the bottom panel of the figure. In the spinodal
region any fluctuation in composition will lower the free energy and the system will
decompose through spinodal decomposition given that there is no kinetic barriers pro-
hibiting diffusion of alloy components. Such decomposition might give raise to very
complicated concentration profiles. One binary alloy system where spinodal decompo-
sition is observed is fcc-AlZn [3]. In the binodal region the system can still decompose
but it requires that a large enough nucleus is formed with a sufficiently large offset
in composition. This means that there exists a thermodynamic barrier in form of an
obstacle for atomic diffusion until the nucleus is formed. It should be noticed that even
though these two concepts might be well defined in the ideal continuum thermodynamic
analysis, in real systems where the discrete lattice set limits for the smallest possible
concentration deviations, the picture is less clear. Especially it is unclear if it is possible
to experimentally distinguish a process of spinodal decomposition from a isostructural
decomposition through nucleation and growth without studying the kinetics of the de-
composition process.

Figs. 1.2 to 1.4 give a schematic illustration of these concepts for the system TiAlN.
Fig. 1.2 illustrates the energy curve in phase space of the TiAlN-system at 0K. The
cubic Ti1−xAlxN solid solution constitutes a local energy maximum and is unstable in
the thermodynamic sense with respect to an isostructural decomposition into c-TiN
and c-AlN. The latter situation in turn being unstable with respect to a phase change

7



CHAPTER 1. SCIENTIFIC BACKGROUND

-0.2

-0.1

0

0.1

0.2

0.3

F
re

e 
E

ne
rg

y
0 0.2

0

0.02

0.04

0 0.2 0.4 0.6 0.8 1
x in A

1-x
B

x

T
em

pe
ra

tu
re

Solid solution

N
uc

le
at

io
n N

ucleation

d
 2

G/dx
2
=0

Spinodal decomposition

T=0K

T=T
1

T=T
2

T=T
3

Figure 1.1: Schematic illustration of how phase equilibria in a A1−xBx alloy system can
be found by means of common tangent construction of the corresponding Gibb’s free energy
curves. The inset in the top panel shows how the change of sign of the second concentration
derivative decides the position of the spinodal line.

of cubic AlN to hexagonal AlN. However two distinct types of energy barriers called
∆Ek and ∆EB in the figure illustrates the reason why both the solid solution and the
isostructural cubic two-phase situation can be viewed as metastable. If the cubic solid
solution is achieved, diffusion of Ti and Al atoms on the cubic lattice are prohibited
due to kinetic energy barriers ∆Ek which can not be overcome by the atoms without
considerable thermal activity. The cubic isostructural phase separated system can also
be considered as metastable since an energy barrier, ∆EB, prohibits the transformation
of AlN to its thermal equilibrium hexagonal structure.

Fig. 1.3 shows the schematics of the system at a finite temperature. Since the mixed alloy
system has a considerable configurational entropy it will be gradually more favourable,
or less unfavourable, compared to the phase separated systems. On the other hand,
at elevated temperatures atomic diffusion on the lattice is initiated, thus possibly pro-
moting the alloy state to phase separate into almost pure components. For certain
compositions however, the system might be metastable with respect to phase separation
in the thermodynamic sense. This would correspond to a situation where the system
is between the spinodal and the binodal line in the composition-temperature phase di-
agram. Since the formation of stable nucleus might require long range diffusion in the
lattice, the alloy system could possibly still persist for extended time spans and being
considered as metastable. Please notice that the placing of energy (such as the value
of the kinetic barriers) and the free energy on the same axis is strictly speaking not
correct, but it serves an illustrative purpose in this example.
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1.3. Hardening mechanisms in coatings materials

Figure 1.2: Schematic illustrations of the energetics of different phases in the TiAlN system
at T = 0K.

Fig. 1.4 illustrate the situation at an even higher temperature. The cubic solid solution
is now favoured over the isostructural phase separation but still less favourable than a
mixed system consisting of c-TiAlN and h-AlN. Even though the energy barrier ∆E ′

B

might be higher than at lower temperatures consisting of a combination of the thermo-
dynamic barrier to de-mix AlN and the energy barrier to transform c-AlN to h-AlN, in
reality small nuclei of h-AlN can be present in i.e. grain boundaries etc. and are likely
to grow due to the high mobility in the system. A mixed system in the hexagonal struc-
ture is possibly also important but not shown here. The present work is a theoretical
attempt to find, characterise, and quantify the underlying quantum mechanical driving
forces that guide the processes illustrated above.

1.3 Hardening mechanisms in coatings materials

Hardness is a macroscopic property describing the resistance of a material against defor-
mation. Typically in hard coatings materials the most important factor is the resistance
against plastic deformation, a process mediated through dislocation motion through the
grains, but possibly also grain boundary sliding. Since the hardness itself is practically
impossible to directly derive using first principles calculations, one ought to study the
different mechanisms that are the origin of this macroscopic property. Of relevance for
the present work are the mechanisms that can work hardening in nitride coatings ma-
terials. To increase the hardness of a material the resistance against dislocation motion
should be increased. Mechanisms that work in this direction are e.g. grain refinement,
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Figure 1.3: Schematics of the free energy and energy relations in the TiAlN system at a higher
temperature, T1 > 0K.

bond strengthening, solid solution hardening, defects hardening, build-up of residual
stress, and phase boundary creation. In this work the phenomena of phase separation
is studied and this is closely related to the development of the hardness of the subject
material through multiple of the above mechanisms, as will be illustrated below for
Ti1−xAlxN. Solid solution hardening will also be discussed as well as the presence of
point defects in the form of nitrogen vacancies. The phenomena of hardening through
bond strengthening was illustrated for the TiCN system [4] and is briefly described
below.

1.4 The building blocks of nitride coating materials

The by far most investigated transition metal nitride system is titanium nitride. TiN
crystallises in the cubic B1 NaCl (Rock Salt) structure shown in Fig. 1.5. The phase
is stable over a large range of N content ranging from about 30-50 at.% as can be seen
from the phase diagram presented in Fig. 1.6. The usage and development of TiN as
a coating material began in the 1960’s. Due to favourable properties TiN has been
and still is, used as a coating material for wear resistant purposes on cutting tools, as
a diffusion barrier in electronic components [5, 6], for decorative purposes [7] and as a
corrosion resistant material [8].

Although the bulk modulus of TiN is believed to be highest for stoichiometric com-
pounds, an interesting idea was presented by Shin et al. [10]. They found that the
hardness of understoichiometric TiNx increased with decreasing N content. This hap-
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1.4. The building blocks of nitride coating materials

Figure 1.4: Schematic illustrations of the free energy and energy relations in the TiAlN system
at an even higher temperature T2 > T1 > 0K.

pened for TiNx films at the same time as the elastic modulus decreased. This observation
lead the authors to conclude that the presence of point defects in the form of N vacancies
in TiNx caused an increased resistance against dislocation movements on average due
to the increase in bond-strength for some atoms at particular configurations of N and
N vacancies overtaking the softening effect of a slightly lower bond density.

Another important transition metal nitride is chromium nitride. CrN can be grown as
thin films by different deposition techniques and is used in industrial applications in
metal forming and plastic moulding [11, 12]. However, pure CrN is not as hard as TiN
and it starts to lose nitrogen at much lower temperatures making it a less attractive
choice for most hard coatings applications. However, as will be shown below CrN has
also very important properties as an alloying material.

The low temperature ground state structure of CrN is not ideal B1 but an orthorhombic
structure with one of the angles of the underlying B1 lattice being not 90◦, but slightly
smaller 88.23◦. [13]. The reason for this distortion has been explained as a magneto-
structural induced strain due to a double layer antiferromagnetic configuration with a
Néel temperature around room temperature [13,14]. Above this temperature the system
forms a paramagnetic state with the ideal cubic B1 lattice structure. However, it has
been shown that the cubic structure could be stabilised by means of epitaxial strain in
thin films down to at least 20K [15, 16]. In those experiments no signs of a magnetic
phase transition was observed. Moreover, the experiment presented in Ref. [15] showed
that B1 CrN at low temperatures exhibited semiconductor behaviour, beeing explained
as a Mott-type insulator [15]. In subsequent measurements it was concluded that the
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Figure 1.5: The cubic B1 structure of TiN. Ti atoms sit on a fcc-sublattice with the N atoms
octahedrally coordinated forming a second fcc-sublattice

electric conductivity and magnetic properties were very sensitive to off-stoichiometry
and defects [16].

AlN is a wide-bandgap semiconductor that crystallises in the hexagonal Wurtzite struc-
ture, designated B4 under ambient conditions. AlN has a lower hardness compared to
transition metal nitrides and is not used on its own as a hard coating material. About
twenty years ago it was shown by Vollstädt et al. that AlN transformed into the B1
cubic phase under high pressure and temperature [17]. The cubic phase was shown to
be metastable under ambient conditions. Cubic B1 AlN has also been synthezised by
means of pulsed laser deposition [18]. The finding of pure c-AlN actually came several
years after the research on Al inclusion in B1 structure transition metal nitrides began.
Also the tetrahedrally coordinated cubic, zinc blende B3, prototype of AlN has been
synthesised, stabilised by epitaxial forces [19].

12



1.4. The building blocks of nitride coating materials

Figure 1.6: The Ti-N equilibrium phase diagram. Redrawn from Ref. [9].
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1.5 Alloying of transition metal nitrides with AlN

1.5.1 TiAlN

Following a long time of development of TiN coatings, improvements of coating processes
and fine-tuning of coating parameters during the 1970’s the stage was set to go beyond
the binary nitrides and introduce more complicated materials system into the coatings.
During the 1980’s the addition of aluminium into TiN coatings forming Ti-Al-N coatings
was introduced and found to give considerable or in some cases drastic improvement
of cutting performance compared to TiN coated tools [20–24]. This improvement in
performance was manifested as a decrease in flank wear and corresponding life time of
the tool, in drilling and cutting tests in different materials [21, 24].

Structurally it was realised that for low or moderate Al content, the structure of the Ti-
Al-N coatings was predominantly cubic B1 [20]. The gradual change in lattice spacing
indicated that Al was substituting Ti on the metal sublattice of the B1 structure [25].
The formation of these c-Ti1−xAlxN alloys, in spite of the fact that the equlibrium
phase diagram shows no miscibility of TiN and AlN for bulk phases, showed clearly the
potential of thin film deposition techniques such as PVD to explore and make use of
metastable phases. At higher Al content the coatings displayed a mixed structure of the
cubic B1 and hexagonal B4 structure [25]. In most works such mixed phases results in
worse cutting performance compared to single phase cubic TiAlN films [26].

One key property for the performance of cutting tools under normal conditions is the
resistance against oxidation. It was this property for which the addition of Al was first
identified and studied. It was shown in an early stage of the development of TiAlN that
the addition of Al into TiN coating created a superior oxidation resistance and also an
improved maximum working temperature [21, 22, 27]. The oxidation of TiAlN films in
hot air was found to take place through the formation of an almost pure Al2O3 top layer,
followed by an Al-depleted oxy-nitride layer between the oxide and the TiAlN film [28].
The increased oxidation resistance of the Al containing films should thus be attributed
to the formation of such a protective oxide layer. The oxidation experiments above show
the drastic influence on the coatings when heat treated in air for time periods of a few
hours. However, it has not been made clear in these works to what extent the crucial
contact area between the cutting inset and the work piece is exposed to oxygen during
typical cutting operations. Thus although important, the increased resistance of the
coating against oxidation is not the only relevant parameter for the design of coatings
for cutting tools.

Another vital parameter is the development of the hardness of the coating with change
in composition. It has been shown by means of nanoindentation that the addition
of Al increase the hardness of as-deposited coatings [25, 26, 29]. Fig. 1.7 shows the
measured Hardness of thin Ti1−xAlxN films of different compositions for three different
experiments. Please note that the details of the hardness measurements might differ so
a direct comparison of absolute values might be misleading. The hardness increase with
increasing Al-content and reaches a maximum around x=0.60. At higher Al-content, the
hardness drops rather quickly, a phenomena that has been explained by the initiation
of h-AlN formation during growth.

The attempt to increase the Al-content in order to promote oxidation resistance and
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1.5. Alloying of transition metal nitrides with AlN

Figure 1.7: The measured hardness of as-deposited Ti1−xAlxN thin films of various com-
position compared to pure TiN values. Redrawn from Ikeda et al. [25], Hörling et al. [26],
Santana et al. [29], and Ljungcrantz et al. [30].

increased hardness, while at the same time avoiding the nucleation of h-AlN during
growth in Al-rich films has governed a large numbers of studies of the properties of
Al-rich TiAlN films and different deposition techniques relevant for their synthesises. A
recent review of the subject is presented in Ref. [31].

However, more recently a new mechanism was suggested to play a very important role
in TiAlN based hard coatings: age hardening [32]. Since the cutting tool and its coating
is subject to very high temperatures, easily above 800◦C in applications such has high
speed machining, and that the driving force of productivity is to continuously increase
cutting speed and thus temperature, the thermal stability of the hard coating materials
is of crucial interest. The development of the hardness of the coating with temperature
is of special interest. A usual behaviour of TiN hard coatings is a decrease in hardness
upon annealing. This is so since structural defects created during growth, such as
stacking faults and point defects, are annealed away leading to a more relaxed lattice
with less obstacles for dislocation motion. So even though it is possible to achieve
rather high hardness in as-deposited TiN samples such as the one in Ref [26], there
is a sharp drop in hardness of such coatings already at temperatures around 500◦C.
However, in Ti0.34Al0.66N coatings it was shown that the hardness could be retained,
or even increased after annealing for 2 hours at temperatures as high as 950◦C [32]. A
corresponding age hardening was also found in a Ti0.30Al0.70N coating after annealed at
1000◦C [29] for 30 minutes. Similar results, although less extensive, were found in the
same work for Ti0.40Al0.60N coatings, while the hardness of Ti0.60Al0.40N films decreased
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almost in a similar manner as TiN films. Fig. 1.8 shows the hardness of different TiAlN
coatings [26, 29] after annealing at different temperatures as compared to as-deposited
values, shown with open symbols, as well as an illustrative TiN example [33].
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Figure 1.8: The measured hardness of Ti1−xAlxN thin films of various composition, annealed
at different temperatures, as compared to as-deposited values (open symbols) and TiN values.
Redrawn from Hörling et al. [26], Santana et al. [29],and Karlsson et al. [33].

Since the relaxation of defects leading to a softening in TiN should be present also in
these materials, another mechanism counteracting the softening at least partially should
be present in these TiAlN coatings displaying age hardening or at least reduced softening.
Mayrhofer et al. [32] explained their findings of age hardening of Ti0.34Al0.66N thin films
by the formation of coherent domains of c-AlN and TiN in the c-TiAlN matrix through
alleged spinodal decomposition. They identified three qualitatively different stages in the
transformation of the as-deposited samples by means of differential scanning calorimetry
(DSC), x-ray diffraction (XRD) and transmission electron microscopy (TEM) studies.
Fig. 1.9 shows the results of DSC measurements during annealing of Ti0.34Al0.66N and
Ti0.50Al0.50N thin films. Fig. 1.10 shows XRD measurements of the same films after
subject to different temperatures of annealing. The first transformation was initiated at
around 600-700◦C and was supposed to be recovery process of lattice point defects since
it was also visible in pure TiN samples. Around 800-1000◦C another process is visible
resulting in a peak broadening of the XRD-spectrum. This is interpreted as a spinodal
decomposition of the film into first c-AlN and Ti-enriched TiAlN matrix and then also
TiN domains.

The authors actually interpret the experiments by separating this process into two sub-
processes, first the coherent decomposition process which induces strain fields in the
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1.5. Alloying of transition metal nitrides with AlN

Figure 1.9: Differential scanning calorimetry measurements of heat treated Ti0.34Al0.66N and
Ti0.50Al0.50N thin films. Redrawn from Mayrhofer et al. [32].

film leading to hardening (800-950◦C) and then the relaxation of these strained domains
by the introduction of dislocations, leading to softening (above 1000◦C). Finally at
around 1200◦C the c-AlN is transformed into its stable counterpart h-AlN. A schematic
illustration of these ideas together with a TEM-micrograph of a Ti0.34Al0.66N showing
dislocations due to relaxation of coherency strain is displayed in Fig. 1.11 [32].

Hörling extended this work in his PhD-thesis [34], also including a study of Ti0.75Al0.25N
films. For these films thermal annealing by 50◦C per minute increase up to 1050◦C
showed no change of the XRD pattern, and only after the same type of annealing up
to 1400◦ a faint shoulder of the peaks was visible and suggested to be c-AlN. On the
other hand, an exothermic reaction between 500◦C and 1000◦C was identified by DSC
measurements but was not explained.

Santana et al. [29] investigated the thermal stability of Ti1−xAlxN thin films with com-
positions x= 0.40, 0.60, and 0.70. It was found that the hardness of the Ti0.60Al0.40N
films decreased by 7.5 GPa after annealing at 1000◦C for 30 minutes, from 33.2 GPa
to 25.7 GPa. Ti0.40Al0.60N thin films only decreased by 4.9 GPa from 35.9 to 31.0 GPa
while the Ti0.30Al0.70N actually showed age hardening from 29.3 GPa as-deposited to
32.7 GPa after the thermal load. The two films with lower Al content were in cubic
phase while the Ti0.30Al0.70N showed a nano-composite structure of mixed cubic and
hexagonal structure. The low Al sample, Ti0.40Al0.60N showed no phase transitions after
annealing according to the authors, however a minute broadening of the XRD-peaks
visible in the figure in the paper might anyway indicate a redistribution of Ti and Al
atoms within the B1 lattice. The sample with Ti0.40Al0.60N composition showed appar-
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Figure 1.10: X-ray diffraction measurements of Ti0.34Al0.66N and Ti0.50Al0.50N thin films after
beeing subject to annealing at different temperatures. Redrawn from Mayrhofer et al. [32].

ent decomposition into c-AlN and a small amount of h-AlN. The Ti0.30Al0.70N showed
phase changes for both the cubic and hexagonal phases with the appearance of c-AlN
and a change in lattice parameters for the hexagonal phase.

Different individual properties like oxidation resistance and hardness of as-deposited and
thermally treated films can be used to understand their properties on a fundamental
level. However, at the end of the day it is the actual performance in cutting operations
that benchmarks the usability of the coating materials. Fig. 1.12 shows the tool lifetime
as a function of Al content in Ti1−xAlxN coated cutting tools redrawn from [26]. It is
directly obvious that the lifetime increase with increasing Al content up to a threshold
around x=0.66 above which the performance deteriorates, in good agreement with the
discussion above.

In summary there is profound experimental evidence that Ti1−xAlxN thin films when
grown using physical vapour deposition techniques forms a cubic B1 solid solution phase
(when x < 0.67) and a mixed cubic and hexagonal structure when the Al content is
higher. When cubic phase films with medium or high Al-content are heat treated at
temperatures between 800-1000◦C, temperatures where diffusion on the metal sublattice
of the cubic B1 phase is likely to have been initiated, an isostructural decomposition,
possibly spinodal in nature, into c-AlN and Ti-enriched Ti1−xAlxN or even TiN takes
place. Following this decomposition at higher annealing temperatures there is a trans-
formation of c-AlN into its stable h-AlN polymorph. Films with lower Al-content also
shows a tendency for isostructural decomposition. However, it seems to be weaker than
for higher Al-content films. This is manifested through higher activation temperatures
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Figure 1.11: (a) Schematic illustration of the explanation in Ref. [32] for the phenomena of
age hardening in Ti0.34Al0.66N thin films. The strain fields induced by coherent isostructural
decomposition at moderate temperatures are relaxed through introduction of dislocations at
temperatures around 1000◦C. (b) A TEM photograph of such dislocations. Reprinted from
Mayrhofer et al. [32]

for the decomposition, weaker signs of decomposed phases in XRD and also absence of
age hardening behaviour.
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Figure 1.12: Tool lifetime for a TiAlN coated drill as a function of Al-content. Redrawn from
Hörling et al. [26].
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1.5.2 CrAlN

Following the success of adding Al to TiN coatings, the corresponding alloying between
AlN and other transition metal nitrides has been explored. Due to the increased oxi-
dation resistance with increasing AlN content in the film, the amount of AlN that can
be incorporated into the coating while still keeping the single phase B1 structure has
become one of the key issues of cutting tool coating design. One of the absolutely most
promising systems in this respect is Cr1−xAlxN [35–38] where single cubic phase or al-
most single cubic phase was synthesised with an AlN content higher than 0.70. The solid
solution between CrN and AlN was first synthesized in the very end of the 1980’s [39,40]
following on the recent development of TiAlN based coatings discussed above. Also in
Cr1−xAlxN solid solutions the lattice spacing decreased with inclusion of AlN compared
to CrN indicating a substitutional disorder on the metal sublattice [39].

The general trend in the Cr1−xAlxN system as compared to Ti1−xAlxN is that the hard-
ness is somewhat lower for corresponding values of Al-content. The oxidation resistance
on the other hand is better compared to Ti1−xAlxN. This can be attributed to two rea-
sons. Primarily the possibility to solve a larger amount of Al in the cubic phase but
also due to a better oxidation resistance in CrN where oxidation initiates between 700
and 800◦C [37, 41] compared to TiN coatings where oxidation is initiated already at
600◦C [22].

The isostructural decomposition within the B1 phase which was discussed above for
Ti1−xAlxN has this far not been observed in the system Cr1−xAlxN [37,38]. This absence
might actually be a prerequisite for the possibility to create cubic Cr1−xAlxN phases
with x higher than 0.7 or possibly even as high as 0.81 [42]. The absence of isostructural
decomposition in the cubic phase would suggest that the age hardening present in the
TiAlN system at temperatures between 600 and 950◦C would be absent in CrAlN. This
is also what is seen experimentally. However, instead a series of phase transformations
including several phases related to nitrogen deficiency occurs at temperatures above
900-1000◦C. Such transformations might also induce a hardening of the film. Fig. 1.13
shows a schematic diagram illustrating which phases appear when CrAlN coatings of
different compositions are annealed to different temperatures [37].

Reiter et al. performed an extensive study of the structural, thermal, and mechanical
properties of CrAlN coatings [37]. One result that is striking and also different from the
TiAlN system is the low temperatures at which the system starts to lose nitrogen to the
vacuum or atmosphere. This is manifested in Al-free CrN (x=0) coatings through the
formation of the nitrogen poor hexagonal Cr2N phase already at temperatures around
800◦C followed by further nitrogen loss and appearance of bcc-Cr at temperatures of
1000◦C. When Al is added to the system this temperature is pushed upwards being
interpreted as a strengthening of the Cr-N bonds by inclusion of Al. Cr0.79Al0.21N coat-
ings begins to lose nitrogen and transform into Cr2N phase at 900◦C while Cr0.54Al0.46N
and Cr0.29Al0.71N films remains in a single B1 phase up to 1000◦C where they start to
transform. In the Al-containing films the onset of Cr2N formation is accompanied by
the appearance of the hexagonal AlN phase, possibly with a solved amount of Cr [37].

Fig. 1.14 shows the measurement of the hardness of different Cr1−xAlxN thin films after
annealing up to different temperatures as measured in Ref. [37]. The hardness of as-
deposited Cr1−xAlxN thin films was found [37] to raise with increasing Al content from
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Figure 1.13: A schematic illustration of how the phases of CrAlN coatings of various composi-
tions develop following annealing at different temperatures. Reprinted from Reiter et al. [37].

21 GPa for x=0.00, CrN to 38.8 GPa to x=0.46. The value for x=0.71 films was almost
as high, 38.4 GPa. The Cr0.17Al0.83N film which shows a hexagonal structure, has a
lower hardness, 21.2 GPa. Pure AlN films, has a hardness of 29 GPa.

The hardness of the pure CrN films shows an interesting development with annealing
temperatures. The phase transformation from B1 CrN to hexagonal Cr2N phases in-
creases hardness from 15.2 GPa in the relaxed CrN film to 22.4 GPa in the film annealed
to 900◦C. This is attributed to the fact that the hexagonal Cr2N phase in it self is harder
compared to the cubic CrN phase [43]. This value is then more or less stable during the
continued nitrogen losing process up to temperatures around 1200◦C.

The Cr0.79Al0.21N and Cr54Al0.46N coatings show a more expected gradual decrease in
hardness without any positive effects of the phase transformations initiated at 900 and
1000◦C respectively. With the exception of one data point the Cr0.29Al0.71N coatings
show similar behaviour although with a slower decrease in hardness compared to the
coatings with lower Al content. The hexagonal Cr0.17Al0.83N film on the other hand
shows a steady increase in hardness starting from annealing temperatures of 900◦C.
This could suggest a good performance of such coatings in applications connected with
very high temperatures.

As was discussed for Ti1−xAlxN based coatings above, hardness and oxidation resistance,
although extremely important, are only two out of many factors influencing the usability
of the coatings. A real benchmarking test for tool lifetime was also done in Ref. [37] and
the result is redrawn in Fig. 1.15. This test showed a superior lifetime for tools with
the Cr0.29Al0.71N coating. They displayed an almost six-fold increase in tool lifetime
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Figure 1.14: The measured hardness of Cr1−xAlxN thin films of various composition, annealed
at different temperatures, as compared to as-deposited values. Redrawn from Reiter et al. [37].

as compared to tools coated with CrN and almost the double lifetime compared to
Cr0.54Al0.46N and Cr0.17Al0.83N coated tools. Interestingly, also tools coated with pure
AlN showed reasonable tool life.

The electronic properties of various Cr1−xAlxN thin films were measured at room tem-
perature by Sanjines et al. [16] using x-ray photo-emission spectroscopy (XPS). Fig. 1.16
shows a redrawing of their valance band measurements. For pure CrN it is in general
agreement with the measurement of Gall et al. When Al is added to the system the Cr
d-state signatures naturally decreases in intensity but also an increased localisation of
Cr states are observed.

Is summary, CrAlN coatings in the form of B1 Cr1−xAlxN solid solutions show as high
or higher potential than TiAlN for serving as a hard coatings materials on cutting tools.
Especially its high thermal stability and oxidation resistance is outstanding. However
in certain applications they are inferior compared to TiAlN and the suitable coating
material should be chosen with respect to each cutting purpose.
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Figure 1.15: The measured lifetime of Cr1−xAlxN coated tools in drilling tests in steel as a
function of the AlN-content x. Redrawn from Reiter et al. [37].

Figure 1.16: The XPS valence band spectra for different Cr1−xAlxN thin films. Redrawn
from Sanjinés et al. [16].
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1.5.3 Other MAlN systems

Besides TiAlN and CrAlN, several other transition metals have been alloyed with AlN for
hard coatings purposes. ZrAlN [44,45] as well as HfAlN [2,46] coatings have been synthe-
sised and investigated. Naturally also multi-component combinations of different tran-
sitions metals and aluminium nitride have been investigated such as the TiAlZrN [21],
TiAlVN [21,47], and TiCrAlN [48] systems.

Hf and Zr are isovalent to Ti and especially HfN is a promising hard coatings material
since it has the highest known melting point of all transition metal nitrides, 3310◦C [49].
ZrN melts at slightly lower tempertures, 2930-2980◦C similar to TiN, 2930-2950◦C [49],
although these melting temperatures are rather uncertain as can be realised from ex-
amining the value given in Fig. 1.6. Further more the alloying of HfN or ZrN with AlN
forming HfAlN and ZrAlN coatings offers the possibility to study the effect of a large
size mismatch between the alloying components. The downside with HfN is of course
the high cost of Hf on the market.

Sanjinés et al. studied the thermal stability of Zr0.65Al0.35N and Zr0.57Al0.43N coatings
and found that the metastable films started to decompose into Al-poor Zr1−xAlxN and
AlN domains at temperatures above 600◦C leading to age hardening. The initial part
of this process was interpreted in terms of bulk spinodal decomposition.

Howe et al. investigated magnetron sputtered Hf1−xAlxN thin films with 0 ≤ x ≤
0.50 [46]. They observed single phase B1 structure although an onset of spinodal de-
composition was traced in the samples with high AlN content. The hardness of the films
increased with addition of AlN by ∼30% from 24.7 ±0.8 GPa in HfN to 32.4 ±0.7 GPa
in Hf0.71Al0.29N above which the hardness of the samples was more or less stable with
composition.

Only just recently thin films of the solid solution between ScN and AlN has been syn-
thesised by reactive magnetron sputtering, partly motivated by the present theoretical
work [50]. These thin films open the possibility to achieve semiconducting coatings with
wear properties possibly similar to the metallic TiAlN coatings.

A large number of different mixed nitride systems based on the alloying of transition
metal nitrides with aluminium nitride have thus been synthesised. The control of the
phase separation process in these systems is one of the key issues in their usage in hard
coatings applications since it can result in both age hardening and film failure. It is
clear that a fundamental understanding of the physical origins of these decomposition
processes is desireable in order to accelerate the development of new and better hard
coatings materials. This is a strong motivation for the present work.

In the current research of hard protective coatings, the synthesis of nano-composites of
nitrides materials is perhaps the most hot topic. By refining the grain size of e.q. TiN,
TiAlN, or CrAlN phases embedded in e.g. a SiNx tissue phase, extreme hardness as well
as thermal stability has been reported [51, 52]. The understanding of these phenomena
naturally demands that the physics of the constituting phases like TiAlN or CrAlN are
first resolved.
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1.6 Insights from theory

1.6.1 Why first-principles?

Solid state physics as well as material science are at the end of the day experimental
sciences. The work of a theoretical scientist in this field must be governed by the simple
fact that what actually counts is the properties of the materials that can be synthe-
sised. With this perspective in mind it might seem a bit odd to perform a theoretical
study from first-principles of hard coatings materials. However, the ideology of the first-
principles approach is not to disregard experimental results, only to avoid fitting of any
input parameters to experimental values. This gives the calculations that are done using
first-principles an extraordinary capability to explain and predict material properties,
including phase stabilities, structural, electronic, and magnetic properties independently
of previous existing experiments. By comparing such results with the experimentally
observed values a confidence about interpretations and conclusions can be reached that
would not have been possible with experimental research alone. Furthermore, in calcu-
lations using first-principles the effect of different external and internal conditions, such
as structure, composition, disorder and pressure can be studied independently, some-
thing that is not always the case for the experimentalist. When carried out properly
and in close contact with the experimental community, first-principles calculations have
the ability to predict new materials guiding the experimental work that must follow.

1.6.2 The bonding picture in transition metal nitrides and car-

bides

The electronic structure, guiding the bondings of transition metal nitrides and carbides,
has been studied for more than 25 years using first-principles approaches [53,54]. In the
cubic B1 structure, shown in Fig. 1.5, Ti-atoms form a face centred cubic (fcc) sublattice
while the nitrogen or carbon atoms form another fcc-sublattice with an offset of half
the cubic lattice parameter along the axis’s placing them in an octahedral coordination
to Ti. The electronic structure for this atomic arrangement has been presented in
Ref.s [54–57] and several later publications. In Fig. 1.17 the valence electronic density
of states calculated using a KKR-ASA scheme, described further bellow, is presented.
It is very similar to the structure shown in i.e. Ref. [56]. The main features consists of
the following: A N 2s semicore state at about 15 eV bellow the Fermi energy (EF ). At
about 7-3 eV below EF a state is present consisting of N-2p and Ti-3d electrons with eg

symmetry as well as a small in-mixture of Ti-4s states. This state is called the bonding
state since it is the result of the hybridisation between nearest neighbouring Ti and N
atoms. Since N has a higher electronegativity than Ti, these bonding states are mostly
of N-character. Slightly above EF , but with a low energy shoulder overlapping with
the bonding states are the so called non-bonding states consisting of Ti-3d electrons
with t2g symmetry which can only hybridise weakly with N 2p states but instead also
with next-nearest neighbouring Ti-states with the same symmetry. These states also
overlap slightly with the anti-bonding states mostly of Ti-3d eg character. This picture
is generally accepted in the literature although Häglund et al. [55] suggested that anti-
bonding and bonding states should be in reversed order, a picture not supported by
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Figure 1.17: The electronic density of states in TiN. Shown are both total DOS and site and
orbital projected DOS.

earlier or later works.

1.6.3 The connection between electronic structure and hard-

ness in TiC1−xNx

One example of how first-principles calculations might be used to understand the prop-
erties of hard coatings materials is the work by Jhi et al. [4] explaining the observed
hardness maximum at intermediate C/N composition in TiC1−xNx by means of band-
filling arguments. In the case of TiC the splitting of bonding and non-bonding states
are smaller compared to TiN. TiC also has one less valence electron giving a number
of 6 (not counting C-2s semicore states) exactly matching the number of states in the
bonding states. Due to the overlap between bonding and non-bonding states, TiC has
a substantial part of the bonding states unoccupied. Upon alloying with N, and fol-
lowing a rigid band argument, gradually the high energy tail of the bonding states are
filled leading to stronger Ti-C and Ti-N bonds which tends to oppose shear of the cell.
However, simultaneously the low energy tail of the non-bonding states are gradually
more occupied. These states tends to favour shear of the cell. Thus Jhi et al. showed
by means of first-principles calculations that the elastic modulus c44 of TiC1−xNx alloys
reaches a maximum at a composition around TiC0.60N0.40 in approximative agreement
with hardness experiments [4].
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1.6.4 AlN

The electronic structure [58–60], as well as structural [61, 62], and vibrational [63, 64]
properties of the different prototypes of AlN has been investigated by means of first
principles calculations. In general and with the exception of band gap values the results
are in god agreement with the experimental measurements.

1.6.5 Alloys of III-V nitride semiconductors

Although semiconductor alloys for electronic applications are far from the main topic of
this work, the huge amount of theoretical efforts laid down in this field must be acknowl-
edged due to the role it has played in developing the alloy theory for multicomponent
systems, not the least for group III-V nitrides [65]. The group led by A. Zunger has used
cluster expansion techniques for predicting and ”designing” band gaps, lattice spacing
etc. from first-principles [66]. What is striking in this type of material is the central
role played by volume misfit of the components and the connected strain relations in
the thermodynamics relations of the systems [67].

1.6.6 Early theoretical work on mixed transition metal nitride

materials

It is now almost exactly 20 years since the appearance of the first publication of elec-
tronic structure calculations of the TiAlN system [68]. However the bands structure cal-
culation was performed non-selfconsistently and no attempts to discuss any properties
depending on the total energy was done. In a following work, Vogtenhuber et al. per-
formed self-consistent calculations of the band structure of small ordered Ti0.75Al0.25N
and Ti0.50Al0.50N systems [69]. Some interesting conclusions were reached regarding a
strengthening of Ti-N and Ti-Ti bonds upon Al addition. However, the consequences
were not discussed and no total energies were presented. The bandstructure of these
compositions was also analysed using the CPA [70]. Ivanovsky et al. calculated a series
of different systems based on Ti-Al-Si-C-N [71] and concluded, among other things, that
it could be ruled out that Al could substitute N instead of Ti. In a more recent study
Hugosson et al. studied the effect of metal and non-metal substitutions on the relative
phase stabilities of the rock salt and wurtzite phases in Ti1−xAlxN. The explicit aim
of the study was to come up with substitution suggestions that could make it possible
to include more Al in the cubic phase. Unfortunately, the conclusions that higher va-
lent metal substitutions and different non-metal substitutions might be usefull [72], are
questionable due to the usage of small ordered structures in the calculations, the neglect
of the possibility of isostructural decomposition as well as the non-magnetic treatment
of Cr and Mn substitutions.

1.6.7 Recent publications

In this section the theoretical work published during the period of this thesis work is
briefly presented. It will be discussed in detail in connection to the relevant parts of the
results and in the discussion part later in this thesis.
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Following the experimental findings of alleged spinodal decomposition and age hardening
in Al-rich TiAlN thin films, Mayrhofer et al. used first-principles calculations to predict
the isostructural binodal and spinodal lines of the B1 cubic Ti1−xAlxN system [73] as well
as other structural properties of the system [74]. Although going beyond the use of small
ordered structures such as the ones used in i.e. [72], the method for treating the solid
solution can anyway be questioned, as is describe below. Furthermore an unfortunate
unit mistake was done leading to an underestimation of all temperatures in the phase
diagram by a factor of 2 [75]. Another attempt to connect a few ab initio calculations
with thermodynamics modelling of the Ti1−xAlxN system was made by Zhang et al. [76].
Alling et al. showed that both a supercell and an effective medium approach could be
used to calculate mixing enthalpies as well as related properties for Ti1−xAlxN in a
manner consistent with state of the art alloy theory [77]. In that work conclusions
were made connecting the thermodynamics behaviour of the mixed system with the
development of the electronic structure with composition. Mayrhofer et al. combined
the first-principles analyses with thermodynamics and continuum mechanics simulations
to predict growth kinetics of AlN and TiN nuclei in TiAlN [78]. The CrAlN system was
investigated by Alling et al. [79], showing the importance of taking magnetism into
consideration when calculating thermodynamic and other properties of the system also
above the Neél temperature, a result later supported by calculations of Mayrhofer et
al. in contrast to Zhang et al. who argued that such considerations was unnecessary and
performed nonmagnetic calculations [80].

Sheng et al. used ab initio calculations of small ordered compounds as input to ther-
modynamics simulations of the system Zr1−xAlxN [81]. However the large error that
could arrise from approximating a solid solution with ordered compounds was clearly
demonstrated by Alling et al. for the case of c-Ti1−xAlxN together with a general analy-
sis of the effects of electronic structure variations with AlN content in several M1−xAlxN
systems [82].

In common for all these work are that they consider the nitrogen sublattice in the
B1 structure as completely occupied. However the B1 phase of TiN is well known
to be stable also with considerable amounts of nitrogen vacancies as is indicated in
Fig. 1.6. Tsetseris et al. considered point defects in TiN, ZrN and HfN, both N vacancies,
metal vacancies and different configurations of N and metal interstitials theoretically and
found intriguing relations between repulsion and attraction among them [83, 84]. The
coupling between composition on the metal sublattice and N sublattice occupation in
Ti1−xAlxN1−y was studied by Alling et al. [85]. A coupling was established leading to
an increased tendency for decomposition in the nitride in the presence of a small amount
of nitrogen vacancies.
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Chapter 2

Calculational methods

In this chapter the theoretical foundation of this work is presented. The basic equa-
tions from quantum mechanics are introduced together with the framework used in
this and most present day simulations of the electronic structure of solid state systems,
the density functional theory (DFT). In the second part of the chapter the problems
and challenges related to simulations of disordered systems such as solid solutions are
discussed.

2.1 A Quantum Mechanics description of solids

The understanding of the behaviour of systems at the atomic scale was developed within
the framework of quantum mechanics during the beginning of the 20th century. It
was manifested through the presentation of the Schrödinger equation, governing non-
relativistic quantum systems of particles, and the Dirac equation being the relativistic
counterpart for fermionic systems. The calculations performed in this work are based on
the scalar form of the relativistic Dirac equation but for simplicity and without loosing
any of the key features of the theory, the formalism is presented below based on the
Schrödinger equation.

The motion of the particles of a non-relativistic quantum mechanical system is governed
by the time-dependent Schrödinger equation

i~
∂Ψ

∂t
= HΨ (2.1)

where Ψ is the many-body wave function and H is the Hamiltonian of the system. In
the case of normal matter consisting of atomic nuclei and electrons, the wave function

Ψ = Ψ(r1, r2, ..., rn,R1,R2, ...,RN , t) = Ψ(r̄, R̄, t) (2.2)

depends on the coordinates of all n electrons (spin is assumed to be included in the
coordinates ri and Ri), all N nuclei, and the time. In the absence of any external
perturbation like a magnetic or electric field, the Hamiltonian is given by1

1Neglecting the weak gravitational interaction between particles and considering the nuclei as single
particles.
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where the first term on the right hand side is the kinetic energy for the n electrons, the
second term is the kinetic energy of the N nuclei, the third term is the coulomb interac-
tion between electrons and nuclei, the fourth term is the electron-electron interaction,
and the fifth term is the nuclei-nuclei interaction.

Due to the three potential energy terms in Eq. 2.3 the degrees of freedom connected to
the position of all electrons and all nuclei becomes coupled and one readily realises that
to solve Eq. 2.1 directly is impossible for systems with more than just a few particles and
definitely for macroscopic systems containing in the order of 1023 nuclei and an additional
order of magnitude number of electrons. The first approximation that can be done to
simplify the problem is the separation of the motion of the electrons from the motion
of the nuclei. One can argue that the mass of the electrons are so small in comparison
with the mass of the nuclei so that their acceleration in response to changes in the
system are orders of magnitude larger. This would mean that the electrons effectively
move in the potential field from fixed nuclei resulting in a so called electronic structure
problem. Furthermore if the motion of the nuclei is of interest their equation of motion
can be solved iteratively for each step resolving the electronic structure resulting in a
new potential surface for the nuclei. This is the famous Born-Openheimer approximation
which has been shown to be extremely accurate in most systems of relevance for this
work. The rest of this section will treat the electronic structure problem considering the
potential from the nuclei as a fixed external potential. The problem regarding specific
distributions of atoms and thus different potentials will be discussed in the next part.

It is easily shown that in the absence of an explicit time dependence of the Hamiltonian
the wave function can be separated into a product of time and space dependent functions

Ψ(r̄, t) = Φ(r̄)χ(t) (2.4)

where the space part satisfy the time independent Schrödinger equation

HΦ(r̄) = EΦ(r̄) (2.5)

which is an eigenvalue problem with the solutions, the eigenfunctions or eigenstates
φn(r̄) being the standing waves corresponding to their respectively energy eigenvalue
En. Since electrons are fermionic particles their wave function must be antisymmetric
with respect to change of any two coordinates.

In solid state systems the atoms typically form crystals with a periodic repetition of
atomic positions in space2. This translation symmetry also gives rise to a periodicity of
the external potential felt by the electrons. According to Bloch’s theorem [86] a wave-
function solving the Schrödinger equation in such a periodic potential can be expressed
as

2Neglecting for the time displacements due to thermal vibration, defects and disorder.
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φnk(r̄) = eik·runk(r̄) (2.6)

where k is a reciprocal vector, eik·r is a plane wave and unk(r̄) is a function with the
periodicity of the lattice. This implies that we only have to solve the problem of the
wave function in the crystal for one unit cell, corresponding in reciprocal space to the
first Brillouin zone.

Even though simplified the task of solving Eq. 2.5 for real materials systems is still
unmanageable due to the coupling of the electrons through the Coulomb repulsion term
in the Hamiltonian. Different approximative methods are in use to handle this prob-
lem but in materials modelling of today, one method, the density functional theory is
completely dominating.

2.2 Density Functional Theory

The basic ideas behind density functional theory (DFT) is to move away from the terribly
complicated many-body wave function Φ(r̄) depending on all 3n variables (not counting
spin) of the included electrons and consider instead the electron density n(r) depending
on only 3. Attempts with density functional theories are almost as old as quantum
mechanics itself with important examples such as the Thomas-Fermi theory [87, 88].
However it was only with the publication of the Hohenberg-Kohn theorems [89] in 1964
and the development of the Kohn-Sham approach [90] the year after that the theory
reached a level where quantitative predictions of materials properties came within reach.

2.2.1 The Hohenberg-Kohn theorem

Hohenberg and Kohn presented the cornerstones of exact DFT in two important theo-
rems. The first theorem states that for any system of interacting particles in an external
potential Vext(r), the potential is uniquely determined up to a constant by the ground
state particle density n0(r).

This statement might not be completely intuitive since the normal procedure in solving
the Schrödinger equation is to start with the external potential, solve the equation to
obtain all eigenstates, find the eigenstate with the lowest energy (the ground state), and
from this construct the ground state density. However the theorem is easily proven with
contradiction [89]. Following directly from this first theorem is the fact that since the
external potential is determined, all properties, ground state and excited state proeprties
alike, are also determined.

The second theorem states that there exists a universal functional for the energy, E[n(r)]
that is valid for any external potential which has its global minima, equal to the exact
ground state energy, for the exact ground state density n0(r).

These theorems clearly show that a density functional approach has the potential for
success, however the problem is that the functional E[n] is not known.
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2.2.2 The Kohn-Sham equations

The year after the publication of the Hohenberg-Kohn theorems, Kohn and Sham pub-
lished a paper [90] where they suggested a practical approach to this problem. They
proposed that the properties of the real many-body problem could be obtained by cal-
culations of an auxiliary system of independent particles moving in an effective external
potential Vs, chosen in such a way that the density of the auxiliary system equals that of
the real system. This turned out to be a great improvement on earlier density functional
approaches that tried to directly find approximate functionals for the energy using for
instance a local density functional approximation for the kinetic energy.

Instead in the Kohn-Sham approach the independ particles are the solutions to Schrödinger-
like equations

(

−~
2

2me
∇2 + Vs(r)

)

ϕi = ǫiϕi (2.7)

where the effective potential is given by

Vs(r) = Vext + e2
∫

n(r′)

|r − r′|
dr′ +

δExc[n(r)]

δn(r)
(2.8)

Where Exc[n(r)] is the exchange-correlation energy to be discussed below. The total
energy of the Kohn-Sham system is given by the functional

EKS = Ts[n] +

∫

d(r)Vext(r)n(r) + EHartree[n] + Exc[nr] + EII (2.9)

Where the first term on the right hand side is the kinetic energy of the non-interacting
system
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(2.10)

the second term is the interaction with the external potential, the third term is the
classical electrostatic or Hartree-term

EHartree[n] =
1

2

∫

drdr′
n(r)n(r′)

|r − r′|
(2.11)

the forth is the exchange-correlation energy and the fifth is the nuclear-nuclear repulsion
energy. The latter only adds a energy constant but is of course essential to include if
optimal nuclei coordinates are searched for.

2.2.3 The exchange and correlation energies

The only term in Eq. 2.9 which can not be exactly calculated is the exchange-correlation
energy term Exc[n(r)]. In this term all the delicate physics of the many-body effects
originating from the Schrödinger equation is included and good approximations have to
be applied in order to achieve reasonable results from the Kohn-Sham procedure. Before

34



2.2. Density Functional Theory

going into this details we note that one, although definitely not the only, reason why
the Kohn-Sham ansatz turns out to work very well is that an approximative treatment
is used only for a term in Eq. 2.9 which is rather small as compared to the other terms.
In Fig. 2.1 the energy terms of the TiN system as calculated with the Local Density
Approximation (LDA) and the Koringa-Kohn-Rostocker (KKR) framework within the
atomic sphere approximation (ASA) to be described below are shown. One realises,
although the numbers would not be exactly the same, that one of the main reasons for
the failure of the earlier Thomas-Fermi theory was that it attempted to approximate also
the much larger kinetic energy term within the a local approximation for the density.
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Figure 2.1: The calculated different energies of the TiN system using KKR-ASA method and
the Local Density Approximation. The kinetic energy of the electrons, the potential energy due
to electron-ion attraction, electron-electron repulsion as well as exchange-correlation energy is
shown together with the total energy.

However, the exchange-correlation energy is anyway large enough to be of utmost im-
portance for the energy scale governing bonding, mixing, structural stability and other
important properties of solid state matter.

The local density approximation

Already in their 1965 paper Kohn and Sham proposed the Local Density Approximation
(LDA) for treating the exchange-correlation energy functional. However, the subsequent
success of that particular approximation was probably surprising for them. In the LDA
the exchange-correlation energy is given by
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ELDA
xc [n] =

∫

ǫhom
xc (n(r))n(r)dr (2.12)

where ǫhom
xc (n(r)) stands for the exchange-correlation energy per unit charge in a ho-

mogenous electron gas with the same density as the considered point in space in the
system. The exchange-correlation energy of the homogeneous electron gas has been
calculated with extreme accuracy using quantum Monte Carlo simulations [91] for dif-
ferent densities and is implemented in most electronic structure codes using reasonable
parametrisations [92, 93]. It is not completely obvious why the LDA gives such reason-
able reasults for a large number of properties and materials. In real atomic systems the
density is far from homogeneous and it is not even specifically slowly varying. However,
in the region of space far from the nuclei in crystals, the region mainly responsible for
the bonding, the gradients of the density are not so large. Furthermore, it turns out
that what enters into the exchange-correlation energy is the system-average, spherical-
average of the so called exchange-correlation hole, (in general) depletion in the charge
density around an electron. Or more correctly the interaction between the charge den-
sity and the exchange-correlation hole. Even though the detailed behaviour of this hole
can be rather different for real systems as compared to the homogeneous electron gas,
the averaged values are not. This is so since all exchange correlation holes of real elec-
tronic Hamiltonians, including the one corresponding to the homogeneous electron gas,
obeys certain limiting condition such as sum rules, which heavily reduces the possible
differences in averaged values [94].

The Generalized Gradient Approximation

Nevertheless the LDA has certain limitations especially when treating atoms and molecules
naturally showing quite substantial density gradients. Also in the case of 3d transition
metals and their alloys, the LDA underestimates the volume quite substantially. The
latter problem can give rise to rather profound errors in prediction, for instance Fe
is predicted to be of fcc rather than bcc crystal structure. A natural attempt to im-
prove on the LDA is to include the effect of density gradients. However it turns out
that it is not an easy task to construct a functional which systematically improves the
LDA results. The reason is that when different gradient correction schemes, such as
for instance the gradient expansion approximation (GEA) also suggested by Kohn and
Sham [90], is introduced, the functional does not any longer have the foundation of
a real electron Hamiltonian. The results are that certain limiting conditions for the
exchange-correlation hole may no longer be fulfilled leading to unphysical behaviour for
some situations. An approach that has proven to be very useful is the class of func-
tionals named generalised gradient approximations (GGA). In these functionals, some
limiting values of the exchange-correlation hole are fixed by hand so that the down side
of the GEA are corrected. A number of different GGA’s have been proposed [95,96], the
one used most frequently throughout this work is the functional according to Perdew,
Burke, and Enzerhof (PBE) from 1996 [97].

The GGA functionals are usually formulated based on an enhancement factor of the
LDA exchange energy
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EGGA
xc [n] =

∫

drǫhom
x (n(r))Fxc(n(r), s(r)) (2.13)

where s(r) = |∇n(r)|
2kF n(r)

is the reduced gradient and Fxc(n(r), s(r)) is an enhancement factor
regulating both correlation and gradient dependent terms.
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Figure 2.2: The calculated electronic density of states for TiN at the experimental lattice
spacing of 4.24 Å , using both LDA and the PBE-96 GGA approximations for exchange and
correlation effects. For clarity the area under the GGA curve has been shaded. Note that the
two approximations gives almost identical results for the valence states. For the N 2s semicore
states where the density gradients are somewhat larger, a difference can be seen.

The main reason why GGA outperforms the LDA in many systems based on 3d elements
is the improved results for equilibrium volumes and lattice parameters. However, this
result is not mainly due to a improved description of the valence states as one would
believe. Fig. 2.2 shows the calculated valence density of states for TiN using both LDA
and GGA-PBE96 for a fixed lattice spacing corresponding to the experimental value
4.24 Å. For clarity the GGA curve has been shaded. It is clear that for the valence
band, the difference is very small. Instead, for the N 2s semi-core state where density
gradients are larger, an effect can be seen. This indicates that given that the volume
is treated correctly, the LDA-based and GGA-based calculation of physical properties
of solid state systems are likely to give similar results [98]. It should be noted that
both the LDA and the GGA functionals can easily be generalized to account for spin
polarisation, i.e. magnetism.
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Strong electron correlation beyond the LDA and GGA

There are other situations where the LDA shows qualitative errors which are in principle
not improved at all by the GGA. One such error is the well known underestimation of
band gaps in semiconductors. The main reason for this problem is that the self interac-
tion of the charge density through the Hartree-term is only approximately cancelled by
the exchange-correlation energy in non homogeneous systems. This leads to a shift to
higher energies for occupied states thus decreasing band gaps. This is not necessarily
a problem if only relative energy differences of ground state structures are of interest
since the total energy only depends on the occupied states. It might be a problem if
disturbances in the system, such as defect introduced states, are predicted to be above
the conduction band edge due to the band gap underestimation.

Another problem is the treatise of systems where strongly localised states are present
together with delocalised states. Examples of such systems are f-electron systems with
partially filled f-bands as well as 3d-metal oxides. In these systems the LDA is likely to
get a result where also the f- and d-states are itinerant. The research on this type of
systems with strong correlation effects is actually one of the most hot topics in electronic
structure theory of today.

A rather blunt but still quite successful approach to strong correlation is the so called
LDA+U approach. It is based on the idea that the on-site, intra-band electron-electron
interaction of localised states in the LDA should be substituted with a Hubbard type
Hamiltonian. Assuming that the total coulomb energy of these states are given correctly
by the LDA and substracting this term to avoid double counting one arrives, using the
rotationally invariant scheme according to Dudarev et al. [99] in the formula:

ELDA+U = ELDA +
U − J
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∑
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i,i

)

−

(

∑

i

∑

j

ρσ
i,jρ
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j,i
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(2.14)

where ρσ is the density matrix of the correlated states, U and J are the screened averaged
Coulumb and exchange parameters. The two latter parameters could in principle be
calculated using e.g. constrained LDA calculations but could also be used as fitting
parameters to experimental data. Note that in Eq. 2.14 there is only one free parameter
in terms of the difference U − J . The effective result of this approach is that occupied
states are shifted down while unoccupied states are shifted up in energy.

Of relevance for the present work is the realisation that band gaps in e.g. B1 AlN are
probably underestimated by the calculations. However, this is not likely to influence the
total energy calculations of the alloys and are not crucial. In the case of CrN it seems
possible that strong correlations play some role and an investigation using the LDA+U
approach is performed.

2.2.4 Solving the equations

When the Kohn-Sham equations are to be solved two qualitatively different classes of
methods exist. The first one relies on the direct treatment of the Hamiltonian and works
with wave functions. The other class is based on multiple scattering theory and has the
electron Greens-function as the central property. In this work both classes of methods
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have been applied. To do calculations for ordinary supercells mainly a wave function
based method, the projector augmented wave method (PAW) has been applied while two
different approaches to Green’s-functions formalism have been applied to treat disorder
in an analytical way.

2.2.5 The Projector Augmented Wave method

To solve the electronic structure problem numerically one needs to expand the indepen-
dent particle wave functions in a basis set.

ϕnk(r) =
∑

i

cnk,iψnk,i(r) (2.15)

where ψnk,i(r̄) are the basis functions and cnk,i are the expansion coefficients. Due to
the periodicity of the lattice (unit cell or supercell) and the corresponding periodicity
of the wave functions, Eq. 2.6, a practical approach in many aspects is to use plane
waves as the basis set. This is a nice set of functions from a computational point of view
due to the numerical machinery for treating this kind of problems such as fast Fourier
transforms.

The periodic function in Eq. 2.6 can then be expressed

unk(r) =
∑

G

cnk,Ge
i(G·r) (2.16)

and thus

φnk(r) =
∑

G

cnk,Ge
i(k+G)·r (2.17)

where the problem now is to find the Fourier coefficients cnk,G. In practise one has
to use a finite set of plane waves so an energy cut-off is applied including in Eq. 2.17
only plane waves with kinetic energy ~

2

2me
|k + G|2 < Ecut. The problem with a plane

wave expansion of the wave functions is the treatment of the core region where electrons
have high kinetic energy due to the strong Coulomb interaction from the nucleus and
the Pauli principle. An alternative to include huge numbers of plane waves in the
expansion is to use so called pseudopotentials. The pseudopotential method aims to
replace the potential of the core region, including the effect of the nucleus and core
electrons, with an effective smooth potential. This pseudopotential is constructed in
such a way that the valence electron wave functions as well as the potential, although
being replaced by smooth pseudo wavefunctions and potentials inside a specified radius
from the nucleus, are still identical to those in a real all-electron problem outside this
radius [94, 100, 101]. An extension to this method is the projector augmented wave
method (PAW) introduced by Blöchl [102]. This method keeps the wave function of the
core electrons in the calculations but applies the frozen-core approximation where they
are unaffected by the behaviour of the valence states. In this work an implementation of
the PAW method in the Vienna ab-initio simulation package (VASP) [103,104] is used.
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2.2.6 Green’s-function methods

The alternative to the Hamiltonian approach to the Kohn-Sham equations is the Green’s-
function formalism. This formalism is computationally slower when doing calculations
for ordered systems but, as we will see, has a big advantage when it comes to treating
systems with disorder.

The one-particle Green’s-function describes the propagation of a particle of energy E
from point r to another point r′. It solves the Schrödinger-like equation of energy E

(

−
~

2

2me

∇2 + Vs(r) −E

)

G(r, r′, E) = −δ(r − r′). (2.18)

The natural formalism for the electron Green’s function is the multiple scattering theory
in the Korringa-Kohn-Rostocker method [105,106]. Considering non-overlapping muffin-
tin spheres centred at each nuclei position as scattering centres and solving the scattering
problem the Green’s-function can be obtained as

G(r + Ri, r
′ + Rj, E) =

∑

LL′

Ril(r, E)gij
LL′(E)Rjl′(r

′, E)

−δij
∑

L

Ril(r, E)Hjl(r
′, E)

(2.19)

where the coordinates r and r′ are inside the spheres centred at Ri and Rj respectively,
E is the energy relative the potential in between the spheres, L is the combination of
angular-momentum quantum numbers, and Rjl′(r

′, E) andHjl′(r
′, E) are the regular and

irregular solutions to the Schrödinger like equation in the sphere i for orbital angular-
momentum l and energy E.

The central object is the scattering path operator gij
LL′(E) which in a simple monoatomic

case it is given by

gij
LL′(E) =

1

VBZ

∫

BZ

dk [m(E) − B(k, E)]−1
LL′ e

ik(Ri−Rj) (2.20)

where m(E) is the potential function and B(k, E) is the Fourier transformed structure
constant matrix. This separation of the atomic part and structural part is general for
multiple scattering methods and a great advantage when one is to develop schemes for
treating disordered system as will be shown below. In this work two different Green’s
function methods, the Korringa-Kohn-Rostocker-atomic sphere approximation (KKR-
ASA) [107–110] as implemented in the bulk Green’s-function method (BGFM) [111] and
in the order-N locally self-consistent green’s-function method (LSGF) [112,113], as well
as the exact muffin-tin orbitals method (EMTO) [114, 115] were used. They differ in
the particular representation of the potentials as well as wave functions with the latter
in principle giving a possible accuracy in level with full-potential methods.

2.3 The treatment of disordered systems

The objective of this work is to study materials systems which display disordered phases.
In condensed matter there are two distinct types of disorder. First there are topologically
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2.3. The treatment of disordered systems

disordered systems, where atomic positions can not be associated with a lattice i.e.
liquid and amorphous materials. Then there are random alloys. In the latter case,
which is treated here, the positions of the atoms are connected to lattice points but the
distribution of atomic species over them is stochastic. The fact that the atoms in an
alloy in general show a non-periodic displacement from the ideal lattice points due to
thermal vibration and local lattice relaxations do not change the analysis. Point defects,
such as vacancies, can also be counted to this kind of disordered system.

The perfect random alloy, where the distribution of components is completely stochastic
and uncorrected is of course an idealisation for equilibrium systems. In principle this
would be the situation when V/T → 0 where V corresponds to the strongest effective
interaction in the system. In principle this argument is true also for non-equilibrium
systems such as thin films synthesised using PVD. Instead the materials are likely to
show some degree of short ranged tendencies towards either ordering or clustering, also in
the alleged random alloy state. Nevertheless, the ideal random state is a good starting
point for a theoretical analysis, especially when the tendencies are unknown. In any
case the systems are non-periodic and the calculations of properties of such systems
from first-principles are not trivial.

The atomic configuration on a lattice can be described by occupation numbers

ci:p =

{

1 if component p occupies site i,

0 otherwise.
(2.21)

For a quasi-binary alloy such as Ti and Al on the metal sublattice of Ti1−xAlxN, there is
only one independent occupation number. The set of all occupation numbers uniquely
determines the configuration of the whole crystal but gives large amount of excessive
information. Instead a statistical representation is of interest. Such a representation are
occupation correlation functions which can be defined as

ζ
(n)−pq...r
f = 〈ci;pcj;q ... ck;r〉 − cpcq ... cr (2.22)

where 〈...〉f is the ensemble average over all n-site clusters of type f that are equivalent
due to the symmetry of the crystal. cp is the concentrations of component p in the
alloy. It is easily seen that in the ideally random alloy with uncorrelated distribution,
ζ

(n)−pq...r
f = 0. A usual way to describe the correlation function for pair clusters is the

Warren-Cowley short range order (SRO) parameters defined for a binary alloy as

αAB
n = −

ζ
(2)−AB
n

cAcB
(2.23)

where n gives the coordination shell. The values of these parameters can be measured by
e.g. diffuse neutron scattering experiments. A schematic 2D representation of A0.5B0.5

square lattice systems with different values of short range order can be seen in Fig. 2.3.
In panel (a) a supercell is presented that is strongly clustered, well on its way to complete
phase separation (which would correspond to αAB

i = 1 for all coordination shells). In
panel (b) a cell is shown where there is short range clustering present with a value of
αAB

1 = 0.4. Panel (c) shows a cell which actually is a very good representation of an
ideal random situation for this 2D square lattice. The value of αAB

i is very close to 0 for
the first 6 coordination shells. Panel (d) shows instead the opposite trend with a short
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range order of αAB
1 = −0.4. Panel (d) and (e) shows two different types of order with

different values of the SRO-parameters.

From this schematics and especially the panel (c) in Fig. 2.3 it seems plausible that i.e.
the total energy of any configuration, including ideally random distribution, could be
calculated using a large enough supercell. At least this is the case as long as effective
interactions in the system are not infinitely ranged. However, it is not clear how large the
supercell needs to be, or how it should look. The answer can be found through a cluster
expansion of the alloy energetics. The foundation for this theoretical framework, briefly
described below for the case of a binary alloy, was worked out by Sanchez, Ducastelle,
and Gratias [116] and was recently reviewed in Ref. [98].

An alternative to the occupation numbers introduced above is the so called spin variables
σi which is +1 if site i is occupied by atom A and −1 if it is occupied by atom B. Then
for a crystal with N sites a characteristic function

Φ
(n)
d (σ̄) =

∏

i∈d

σi. (2.24)

can be defined for every cluster d of order n in the crystal, where σ̄ is the N -dimensional
vector describing the configuration of the crystal. It was shown that, applying the
proper inner product [116], these functions form a complete orthonormal set for any
given crystal and thus can be used as basis functions to expand any property G(σ̄)
which is a function of the configuration:

G(σ̄) =
∑

d

g
(n)
d Φ

(n)
d (σ̄) (2.25)

The expansion coefficients are simply the projections

g
(n)
d = 〈G(σ̄),Φ

(n)
d (σ̄)〉, (2.26)

and when the alloy total energy is the function of interest the coefficients are the so
called effective cluster interactions,

V
(n)
d = 〈Etot(σ̄),Φ

(n)
d (σ̄)〉 (2.27)

which plays a central role in the alloy theory. Due to the symmetry of the lattice, all
V

(n)
d of clusters connected through symmetry operations to the same figure d ∈ f must

be the same and if they are known one can easily and quickly calculate the total energy
of any configuration as

Etot(σ̄) =
∑

f

V
(n)
f m

(n)
f ξ

(n)
f (σ̄) (2.28)

where the sum now runs over all distinct figures f of the lattice and ξ
(n)
f (σ̄) is the

correlation function for the figure f , the average value of the corresponding characteristic
functions, ξ

(n)
f (σ̄) = 〈Φ

(n)
d∈f 〉, m

(n)
f is just the weight factor for the figure f on the lattice.

For instance, on the fcc-lattice each atom has 12 nearest neighbours but only 6 next-
nearest neighbours which is manifested through different values of m

(n)
f .
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(a) Clustering, α1 = 0.8 (b) Short-range clustering, α1 = 0.4

(c) Random, α1,2,...,6 = 0.0 (d) Short-range order, α1 = −0.4

(e) Order 1, α1 = 0.0, α2 = −1.0 (f) Order 2, α1 = −1.0, α2 = 1.0
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Figure 2.3: Schematic illustration of systems with different short range order parameters.
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Inspecting Eq. 2.28 one can see that if a supercell is to represent the energy of a random
alloy, with or without any degree of short range order, the supercell must be constructed
in such a manner to mimic the correlation functions ξ

(n)
f (σ̄) above for all figures f where

the effective interactions V
(n)
f are non-negligeble.3 This is obviously a non-trivial task.

2.3.1 The Special Quasi-random Structures method

The method in use in this work to model solid solution systems using supercells is the
so called special quasirandom structure (SQS) method. The method was introduced by
Zunger et al. [117] as a reaction on attempts to create random like supercells by random
number generated configurations. They noted the general qualitative situation that
short ranged pair interactions was the most important interactions in alloys. Building
on this idea rather small supercells were created in order to resemble the correlation
functions of the random alloy for the first couple of nearest neighbour pairs. Of course,
the larger the supercell, the more correlation functions can be made to mimic the random
alloy [118].

In this work SQS supercells were designed for the fcc-structure (corresponding to the
rock salt B1 structure if the nitrogen sublattice is kept ideally completely occupied) and
the hcp-structure (corresponding to the wurtzite B3 structure) for A1−xBx(N) systems
with composition x= 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, and 0.875. The accuracy of
the SQS method must be weighted against the computational time associated with large
supercells with low symmetry. The fcc SQS structures has 24 metal sites (x=0.25, 0.50,
0.75) and 32 metal sites (x=0.125, 0.375, 0.625, 0.875) while the hcp SQS structures all
has 64 metal sites.

The Warren-Cowley SRO-parameters for the seven nearest neighbour shells of pairs on
the metal sublattice of the fcc based structures are shown in Tab. 2.1.

Table 2.1: Short-range order (SRO) parameters for the supercells used to model different
compositions of Al on the metal sublattice of the B1 structure. The SRO parameters
are given for the metallic coordination shells.

shell
composition x 1 2 3 4 5 6 7
0.125, 0.875 0.00 -0.04 -0.04 0.04 0.00 0.14 -0.04
0.25, 0.75 0.00 -0.03 -0.03 0.00 0.00 0.05 -0.04
0.375, 0.625 0.00 -0.02 -0.02 0.02 0.00 0.06 -0.02
0.50 0.00 0.00 0.00 0.00 -0.05 0.00 0.00

The creation of ”good” SQS supercells are not a completely trivial task even in the sense
expressed in Ref. [117]. Although codes using a Monte Carlo-like simulated annealing
algorithm can be used [119] to optimise the atomic configurations on the lattice, e. g. the
finding of an optimal supercell geometry often takes a certain amount of trial-and-error.

The large uncertainty with the method is however the fact that the values of the effective
cluster interactions V

(n)
f of Eq. 2.27 can not be known a priori and thus, the effect of the

3Although it could happen by chance that the effect of deviations for several figures could cancel.

44



2.3. The treatment of disordered systems

interactions corresponding to the uncontrolled correlation functions of the supercells are
not known. Of course the values of the ECI are completely system specific although the
judgement made in Ref. [117] about the prime importance of the closer pair interactions
is generally true. In order to illustrate the SQS method, a series of calculations of
mixing energies in the B1 Ti0.25Al0.75N system is performed using gradually larger SQS
supercells and shown in Fig. 2.4. All supercells are created trying to approach SRO
values as close as possible to 0 for increasingly numbers of shells. As a comparison the
values of calculations for random number generated supercells with the same geometries
are shown as well as the value using the CPA+ISM method to be described below.

Figure 2.4: The calculated mixing energy for different Ti0.25Al0.75N supercells as a function
of the number of Ti+Al atoms in the cells. Both random number generated structures and
structures obtained with the SQS philosophy is presented. The CPA-ISM value is shown with
a dotted line for comparison.

One can see in the figure that the mixing energy of this particular system tends towards
a value around 0.2 eV/f.u. when the SQS method is applied. From the usage of 24-site
(48 atoms in the supercell including N) and larger SQS the value does not change much.
For the random number method on the other hand, the convergence is much slower.
It seems likely that an accurate description of the energetics of the Ti1−xAlxN system
can be given by the SQS method. However, one should realise that this example corre-
sponds to a concentration where the creation of random-like SQS cells are particularly
manageable. For less ”symmetric” compositions, that could be for instance x=0.67, the
task is much more delicate. Further more, if the second concentration derivative of the
mixing energetics is of interest, for instance in a discussion about spinodal decomposi-
tion, even the small fluctuations between the 24 and 64 metal-site SQS in Fig. 2.4 can
be of importance. Thus the SQS method can with favour be complemented with other
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treatments of the disordered systems.

2.3.2 The Coherent Potential Approximation

A completely alternative to the supercell based approach above is the coherent poten-
tial approximation (CPA) first suggested by Soven [120] and developed for the KKR-
framework by Györffy [121]. The CPA is the most promising out of many effective
medium approaches which aim at replacing the real problem of stochasticaly distributed
atoms on a lattice with a homogeneous effective medium. The main idea of the CPA
is to create this effective medium so that it has the same scattering properties as the
real random alloy. This is done through a self-consistent derivation where the effective
medium is designed to have the averaged scattering properties of the components em-
bedded in this effective medium. The effective medium within the CPA is given by a
coherent potential function m̃ and the on-site coherent path operator is given by

g̃(E) =
1

VBZ

∫

BZ

dk

m̃(E) − B(k, E)
(2.29)

which in a A1−xBx alloy according to the above condition should fullfill

g̃(E) = (1 − x)gA(E) + xgB(E) (2.30)

where the on-site path operators of the i:th component is derived self-consistently
through a single-site Dyson equation

gi(E) =
g̃(E)

1 + g̃(E)[mi(E) − m̃(E)]
. (2.31)

With the path operators of the components known, one can easily calculate the physical
properties of the system according to the equations of the multiple scattering theory.

An interesting application of the CPA theory is the so called disordered local moments
(DLM) method suggested by Györffy [122]. This is a method aimed at describing a
magnetically disordered system with finite magnetic moments. This is a quite usual
situation in nature in magnetic materials above the critical magnetic ordering temper-
ature. One example is CrN which is of importance for this work. In the DLM method
such a system is modelled using the CPA as a Cr↑0.5Cr↓0.5N alloy between spin up and
down magnetic components.

There are also problems with the CPA. The most striking challenges for the successful
application of CPA to real systems are all directly related to the fact that the CPA is a
single-site theory:

Firstly the electronic structure of the CPA is not including local environment effects
which are present also in random alloys without any short-range order. One drastic
example is the spin-flip phenomena of Fe magnetic moments on lattice sites heavily
surrounded by other Fe atoms in fcc-FeNi alloys demonstrated to be of importance for
the invar-effect [123]

Secondly electrostatics is not correctly described since the effective medium surrounding
the components is forced to be electro-neutral while in real systems, charge transfer
between components leads to non-negligeble electrostatic interactions.
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Thirdly local lattice relaxations can not be directly included since the framework assumes
translational symmetry of the lattice sites and besides the environment of all atoms are
the same effective medium supressing any displacements.

The first of these three problem is something one has to live with within the single site
CPA. If such effects are thought to be of importance, and in a wide range of systems
they are not, one has to go beyond this approximation, either to supercells or so called
non-local CPA calculations. The second of the problems, the electrostatics, has been
intensively discussed but today an efficient scheme of accounting for this effect within
the so called screened impurity model [124,125] exists, relying on only a few additional
supercell calculations. The third issue, the local lattice relaxations, are a somewhat
larger problem but different models exist for treating also this problem as an additional
contribution to the energy upon the value from the ideal lattice CPA calculations, for in-
stance the effective tetrahedron model (ETM) designed for the fcc and bcc lattices [126].
For the structure of primary interest in this work, the rock salt B1 structure with two
separate sublattices, a new model, the independent sublattice model (ISM) [77], needed
to be designed.

The independent sublattice model

The local lattice relaxation energy is defined as

Erel(x1, x2, ...) = Etot(x1, x2, ...) − Eunrel(x1, x2, ...) (2.32)

where Etot(x1, x2, ...) is the total energy for a system with the concentrations x1, x2

etc. of the different alloy components and with fully relaxed ionic positions while
Eunrel(x1, x2, ...) is the total energy calculated for the same system when all atoms are
placed on ideal lattice positions.

In the ETM model for e.g. fcc-systems, one considers the effect of a local volume
relaxation of small clusters of different composition in the alloy. In the B1-case however,
one needs to consider the additional effect of the relaxation of the nitrogen and metal
atoms relative to each other. For this purpose, the independent sublattice model is
proposed.

In order to understand the mechanism behind the local relaxations in for instance c-
Ti1−xAlxN we note that it is only one of the two sublattices, the metal sublattice, that
shows a random distribution of atoms. This is true as long as the nitrogen sublattice
is considered as completely homogeneous. The treatise of nitrogen vacancies will be
covered below. This means that the metal atoms all have chemically equivalent nearest
neighbor nitrogen atoms, while the latter have different nearest neighbor environments.
For this reason, nitrogen atoms are more likely to show considerable displacement from
their ideal B1 positions than the metal atoms. We therefore divide the relaxation energy
into two parts, corresponding to independent relaxations of the two sublattices in the
B1 structure:

EISM
rel (x1, x2, ...) = EN rel(x1, x2, ...) + Emetal rel(x1, x2, ...). (2.33)

where EN rel(x1, x2, ...) is the energy gained by relaxing the positions of the nitrogen
atoms in the alloy with concentration x1 of the first metal component, x2 of the second,
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etc., assuming that the metal atoms occupy ideal fcc lattice positions. The second term,
Emetal rel(x1, x2, ...), is the energy that the system gains by relaxing the positions of the
metal atoms, which can be calculated following the ETM scheme [126].

Let us consider the first term on the right-hand side of Eq. (2.33). The nitrogen atoms
occupy octahedral positions and have two metal atoms in opposite directions along the
x, y and z axes (see Fig. 1.5). If one assumes that the relaxation of N atoms are only
effected by their nearest neighbors one can show by spring model arguments that in a
random alloy with moderate dicplacements

EN rel(x1, x2, ...) = 3
∑

i=M1,M2,...

∑

j=M1,M2,...

vijpij(xi, xj). (2.34)

The factor 3 comes from the three dimensions in which the atom can move. The sums are
taken over the different metallic alloy components (denoted as M1, M2 above), which
can occupy the two metal-sites neighboring N in each direction, so that all possible
Metal-N-Metal triplets present in the alloy are included in the summation. vij is the
relaxation energy gained by shifting an N-atom positioned between one metal atom of
sort i and one of sort j, while pij(xi, xj) denotes the probability that the neighboring
metal on one side of the nitrogen atom is of sort i and the metal on the opposing side
is of sort j. Due to the symmetry of the B1 crystal lattice vii = 0 and vij = vji in
the nearest neighbor approximation. Of course pij(xi, xj) = pji(xi, xj). In the case of a
ternary alloy with two metal components like c-Ti1−xAlxN, equation (2.34) is simplified
to

EN rel(x) = 6v1 2x(1 − x). (2.35)

The energies vij can be calculated by considering relaxation energies in an ordered struc-
ture on the underlying B1 lattice. In this work we used the structure shown in Fig. 2.5.
In this structure metal atoms occupy positions corresponding to a “double L10”, allso
called Z2, structure. The relaxation energy can be calculated by the PAW method, as
is done in this work, or with any method that allows for the geometry optimization. Of
course the method used for the geometry optimization should be consistent with the
method in which the CPA is implemented. This is the case with EMTO and PAW as
will be shown in the next chapter.

When EN rel(x1, x2, ...) and Emetal rel(x1, x2, ...) have been calculated one can easily obtain
the total relaxation energy by Eq. 2.33 , and then calculate the total energy of the alloy
as:

Etot(x1, x2, ...) = Eunrel(x1, x2, ...) + EISM
rel (x1, x2, ...) (2.36)

In this work this model has been investigated and used for the c-Ti1−xAlxN-system
and also applied to the c-Cr1−xAlxN system and with slight modification to the c-
Ti1−xAlxN1−y system.

Locally self-consistent Green’s-function method

The CPA approximation has also been implemented as a part in a combined CPA+supercell
methodology to treat random alloys using the order-N scaling locally self-consistent
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Figure 2.5: The structure used to calculate the parameters of the independent sublattice
model vij , Eqs. (2.34) and (2.35 ), in the case of c-Ti1−xAlxN. It is an ordered structure
on the B1 underlying crystal lattice, in which the metal atoms in the [001]-planes follow the
ordered sequence Ti-Ti-Al-Al-Ti-Ti-Al-Al etc. The (exaggerated) displacement of a nitrogen
atom by vector u from its ideal B1-position is also shown.

Green’s function (LSGF)-method [112, 113] where a very large supercell, created us-
ing the SQS (or in another way) method is treated with the following calculational
framework: For each lattice site the exact atomic distribution in a certain number of
neighbouring shells is fully considered, the so called local interaction zone (LIZ), while
the distribution outside this zone is considered using the CPA. In this way short range
order effects can also be included. The LSGF code is used in this work to calculate the
system c-Ti1−xAlxN1−y where two sublattices are simultaneously disordered.

The screened generalized perturbation method

The CPA framework is not only an efficient way to calculate properties of the random
alloy. It is also a suitable reference frame for deriving the effective cluster interactions,
V n

f discussed above. This can for instance be done within the framework of the screened
generalised perturbation method [118,127,128]. By a close inspection of the meaning of
V n

f in Eq. 2.27, and noting that the spin product Φ(σ̄) takes on the value +1 if there is
an even number of B-atoms in the cluster and -1 if there is an odd number of B-atoms
in the cluster, one can see that it corresponds to

V n
f = EB−even − EB−odd (2.37)
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but the way how to calculate these energies is not obvious. Using the CPA as an effective
medium one can however derive the one-electron part of those terms by considering the
change in integrated density of states caused by the embedding of the clusters in the
effective medium. The electrostatic contribution for the effective cluster interactions
can also be calculated, e.g. with a method consistent with Ref. [124]. The SGPM
method was recently reviewed by Ruban and Abrikosov [98]. In this work the SGPM
method together with the ISM method for local relaxations are used to derive ECI for
th c-Ti1−xAlxN system.
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Chapter 3

Structural properties of M1−xAlxN

systems

In this chapter the initial results for the structural properties of the pure transition metal
nitrides (MN) systems TiN, CrN, ScN and HfN are presented together with the different
polymorphs of AlN as well as the mixed c-M1−xAlxN systems. The calculated lattice
parameters are presented and compared with the experimentally measured values. This
procedure indicates, if agreement is found, that the theoretical methods are accurate
and give reliable descriptions of the studied systems. This means that even the results
for the pure nitride systems are of interest, although the results of similar calculations
have been presented many times before. Furthermore, since volume or lattice mismatch
is a widely known limiting factor for alloy formation, the famous first Hume-Rothery
rule, and since it has been used to explain segregation in mixed semiconductor nitride
systems [67], a detailed discussion of the lattice spacings and volumes of the mixed
M1−xAlxN systems is presented and compared to Vegard’s rule. Thereafter the results
for bulk modulus as well as formation energies for the binary nitrides are given.

3.1 Volumes and lattice spacings

3.1.1 The polymorphs of AlN

Aluminium reacts with nitrogen to form a stoichiometric AlN semiconductor. The
ground state crystal structure of this system is the hexagonal wurtzite structure, B4.
However, under pressures of 14.5-16 GPa and temperatures of about 1100 K the cubic
rock salt structure, B1, is formed [17]. The B1 structure is also metastable under
ambient conditions. Also the tetrahedraly coordinated cubic zinc-blende structure, B3,
has been synthesised, stabilised by epitaxial forces [19].

Figure 3.1 shows the calculated equation of states (the term is used for the energy-volume
curve in this work) for wurtzite, zincblende and rock Salt AlN.

The theoretical calculations shown in Fig. 3.1 are in good agreement with previous first-
principles calculations using the LDA functional and the pseudopotential mehod [64].
The equilibrium volume per formula unit of h-AlN is calculated to 21.3 Å3/f.u. to be
compared to the experimental value of 20.86 Å3/f.u. [129].
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Figure 3.1: The binding energy curve of the three known polymorphs of AlN: The ground
state hexagonal wurtzite structure (B4) together with the cubic zincblende (B3) and cubic
rock salt (B1) structures which both are metastable at ambient conditions.

3.1.2 Pure nitrides with B1 structure

The calculated lattice parameters of the B1 structure of TiN, CrN, ScN, HfN, and c-
AlN are presented in Table 3.1 together with experimental data. All calculations are
done within the DFT framework using the GGA-PBE96 [97] functional for exchange-
correlation effects. Three different schemes to describe the one-electron wave func-
tions and to expand the density have been used: the Projector Augmented Wave
(PAW) method, the Exact Muffin-Tin Orbitals (EMTO) method and the Korringa-
Kohn-Rostocker Atomic Sphere Approximation (KKR-ASA). These are all explained in
more details in chapter 2.

From Table 3.1 one can see that all the methods reproduce the experimental lattice
spacings well. The small systematic overestimation of about 1% or below is usual for
the usage of the GGA functional. This agreement is a necessary condition if the re-
sults for more intricate properties such as mixing enthalpies are to be trustworthy on a
quantitative scale.

Since the main topic discussed in this work is the mixing of the transition metal nitrides
with aluminium nitride in the cubic phase, it is of interest to study differences in lat-
tice spacing between the transition metal nitrides and aluminium nitride and how these
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Table 3.1: Calculated lattice spacing for transition metal nitrides and c-AlN compared
with experimental values. All calculations are performed using the GGA-PBE96 [97]
functional for exchange-correlation effects.

System calculated a0 [Å] meassured a0 [Å] deviation
TiN 4.255PAW, 4.29EMTO 4.239 [130] +0.4%, +1.1%
CrN 4.196KKR−ASA 4.162 [15] +0.8%
ScN 4.521PAW 4.50 [131] +0.5%
HfN 4.535PAW 4.519 [46] +0.4%
c-AlN 4.068PAW, 4.10EMTO, 4.094KKR−ASA 4.045 [17] +0.6%, +1.4%, +1.2%

differences are described by the theoretical calculations. In Table 3.2 the relative differ-
ences in lattice parameters and volumes (per formula unit) between the four different
transition metal nitrides and cubic AlN are presented and compared with experimen-
tal values. CrN shows the smallest lattice mismatch with c-AlN of the considered MN
systems. The difference in lattice parameters between these two systems is only 2.5%
(calc.) or 2.9% (expt.). This corresponds to a difference in volume per formula unit
of 7.7% (calc.) or 9% (expt.). TiN has a slightly larger difference in lattice spacing
compared to CrN, 4.6% (calc.) or 4.8% (expt.), corresponding to 14% (calc.) or 15%
(expt.) differences in volume. The situation is different when considering the systems
ScN and HfN which have considerably larger differences in lattice spacing and volumes.
The difference is 11.1% (calc.) or 11.2% (expt.) in lattice spacing for ScN corresponding
to a 37.1% (calc.) or 37.7% (expt.) difference in volumes. For HfN the values are 11.5
% (calc.) or 11.7% (expt.) for difference in lattice spacing and 38.6% (calc.) or 39.4%
(expt.) difference in volume per formula unit.

Table 3.2: Differences in lattice parameters and volumes between transition metal ni-
trides and c-AlN.

Systems ∆acalc [%] ∆V calc [%] ∆aexpt [%] ∆V expt [%]
TiN-AlN 4.6PAW, 4.6EMTO 14PAW, 14EMTO 4.8 15
CrN-AlN 2.5KKR−ASA 7.7KKR−ASA 2.9 9
ScN-AlN 11.1PAW 37.1PAW 11.2 37.7
HfN-AlN 11.5PAW 38.6PAW 11.7 39.4

The results show that the error in differences of the calculated lattice spacings and
volumes between MN and c-AlN with respect to experimental values are even lower
than the absolute errors discussed above. Thus one can expect that the change in
lattice spacing as a function of concentration in the mixed systems should be very well
described by the present methods, even if there is a small systematic overestimation of
the absolute values.

3.1.3 Lattice spacings of c-M1−xAlxN alloy systems

We now turn to the results of lattice parameters for the mixed c-M1−xAlxN systems.
Fig. 3.2 shows the lattice parameter values obtained for the B1 structure using the PAW-
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Figure 3.2: The calculated lattice parameters of the conventional cubic cell of the B1 phase of
Ti1−xAlxN, Cr1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN. Experimental thin film values are shown
by solid symbols: Ti1−xAlxN [132,133], Cr1−xAlxN [16,134], Sc1−xAlxN [50], Hf1−xAlxN [46].
The Cr1−xAlxN system is calculated for the disordered magnetic phase using the KKR-ASA-
CPA framework while the other three systems are calculated using a PAW-SQS framework.

SQS method for the systems Ti1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN taking local lattice
relaxation into full account, and KKR-ASA-CPA method for the disordered magnetic
configuration of Cr1−xAlxN. Note that the usage of two different methods leads to a
small but finite difference in lattice spacing for pure c-AlN (x=1.00). The reason why
the KKR-ASA method is needed for the Cr1−xAlxN system is that it can be used to
model a disordered magnetic state as is described in chapter 2 and to be discussed in
depth in chapter 5. The figure also shows experimental thin film results with solid
symbols: Ti1−xAlxN [132,133], Cr1−xAlxN [16,134], Sc1−xAlxN [50], Hf1−xAlxN [46]. In
general, the theoretical calculations reproduce the experimental findings well for the
systems Ti1−xAlxN and Cr1−xAlxN although there is a small systematic overestimation
in the case of Cr1−xAlxN, most likely due to the slightly lower accuracy of the KKR-
ASA method as compared to PAW calculations. For the Sc1−xAlxN system there is
a good agreement for the compositions with x ≤ 0.50 while the experimental data
point for x = 0.73 differs considerably. This is explained in Ref. [50] by the presence
of a AlN-rich phase in the film, possibly pure AlN, with grain size so small that it is
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practically invisible in XRD. The precence of such a phase would indicate that the global
composition of x=0.73 do not correspond to the local composition in the cubic phase
for which the measurement is done. Instead, this cubic phase might have a composition
close to x=0.60 [50].

In the Hf1−xAlxN system the experimental data points show somewhat less good agree-
ment with the calculated values. This can be attributed mainly to two reasons. Firstly
the experimental films show a small but finite overstoichiometry of nitrogen: N/(Hf+Al)
=1.05±0.05 while the calculations consider structures with a perfect 1:1 metal to ni-
trogen stoichiometry. Secondly the experimental analysis indicates an onset of decom-
position already during film growth for samples with AlN content x≥0.29 [46]. The
result of such a process might very well be that the XRD measurement gives lattice
spacings for regions slightly richer in Hf compared to the global concentration. However
further studies are needed to fully understand the lattice spacing and related issues in
the Hf1−xAlxN system.

Figure 3.3: The calculated lattice parameters for c-Ti1−xAlxN alloys using the EMTO-CPA
and PAW-SQS method together with two experimental thin films series grown on MgO [132]
and SiO2 [133]. Also shown are the two different reported values of the lattice spacing of c-AlN,
4.12 Å [135] and 4.045 Å [17]. SQS calculations using ideal B1-lattice spacings are shown with
open circles while calculations of fully relaxed supercells are shown with small solid circles.

The Ti1−xAlxN system has been analysed using two different calculational schemes, the
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EMTO-CPA method and the PAW-SQS method. It is therefore important that both
frameworks give an accurate description of the equilibrium lattice parameters of the
system. Fig. 3.3 shows the results for lattice spacings of the two methods together with
experimental values. The EMTO calculations, which assume an ideal B1 lattice also for
the alloys, consistently overestimate the lattice spacing with about 0.7% as compared
to PAW-calculations of the unrelaxed structures. This is the case both for pure compo-
nents and alloys. The inclusion of the effect of local lattice relaxation in the PAW-SQS
calculations further decreases the calculated lattice spacing slightly, about 0.2% at the
maximum at x=0.50, bringing the calculations very close to the experimentally mea-
sured values. This latter minute effect, the coupling between local lattice relaxations
and the equilibrium lattice spacing, is not likely to influence calculated physical prop-
erties significantly. Instead, if there is any effects of the differences in lattice spacing it
should originate in the constant slight shift to larger values for the EMTO-calculations.
From these calculations it is also possible to conclude that the value of the equilibrium
lattice spacing of c-AlN are more likely to be in accordance with the value in Ref. [17],
4.045 Å, rather than the larger value in Ref. [135]. There is no reason to believe that
the calculations using the GGA functional, which shows a slight overestimation of the
experimentally measured value for all other considered nitride systems should instead
underestimate the value of c-AlN.

The composition dependence of lattice spacing or volumes are often discussed in com-
parison with Vegard’s rule [136]. This rule simply predicts that the lattice spacings of
alloys follows the line decided by the compositional weighted arithmetic average of the
lattice spacing of the pure components. There is of course no reason why any alloy
system should strictly obey this rule, but a distinct deviation is anyway often discussed
in terms of changes in the electronic bonding of the system. The systems studied in this
work turn out to show a systematic positive deviation from Vegard’s rule, at least in the
theoretical calculations. Fig. 3.4 shows the deviation from Vegard’s rule for the calcu-
lated lattice spacings of the four systems treated here. For comparison the experimental
deviation from Vegard’s rule are also shown with solid or semi-solid symbols calculated
with respect to each series own value for the transition metal nitride and from the ex-
perimental reference values of the pure c-AlN in Tab. 3.1. For Ti1−xAlxN, the maximum
deviation from Vegard’s rule is about 0.018 Å at a composition of about x=0.55. The
results of the experiment in Ref. [133] shown with solid circles, have slightly larger devi-
ations from Vegard’s rule while the experiments by [132], shown with semi-solid circles,
are in rather good agreement with the calculated deviation. The previous interpretation
in several works, that the lattice spacing of Ti1−xAlxN follows Vegard’s rule [133] can
be attributed to the choice of the larger reference value (4.12 Å) for lattice spacing of
pure c-AlN and to the fact that Ti1−xAlxN thin films can be prepared only with x≤0.67
where the curvature of the lattice parameter curve is less distinct.

In the case of Cr1−xAlxN, the calculated deviation is also about 0.018 Å at its maximum
at about x=0.45. In the case of this system, the two experiments in Ref.s [16, 134] give
different results. While Kimura et al. meassures deviations from Vegard’s rule similar
to the calculations, Sanjines et al. gets a very small or even negative deviation from the
rule. Possibly this difference might be connected to the usage of two different substrates
in those two experiments, WC in [134] and SiO2 in [16], or to other differences in
deposition conditions. The error bars for the experimental points given in Ref. [16] but
not shown in the figure corresponds to about ±0.005 Å.
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Figure 3.4: The deviation from Vegard’s rule for the four systems Ti1−xAlxN, Cr1−xAlxN,
Sc1−xAlxN, and Hf1−xAlxN. The calculated values are shown with open symbols while exper-
iments are marked with solid and semi-solid symbols: Ti1−xAlxN: solid [133], semi-solid [132],
Cr1−xAlxN: solid [16], semi-solid [134], Sc1−xAlxN [50], Hf1−xAlxN [46]. Please note the dif-
ferent scales in the top and bottom panels.

In the lower panel of Fig. 3.4 the deviations from Vegard’s rule for the systems Sc1−xAlxN
and Hf1−xAlxN are shown. The scale on the y-axis in this panel is larger compared to the
upper panel. Sc1−xAlxN shows a positive deviation from Vegard’s rule that is somewhat
larger as compared to the Ti1−xAlxN and Cr1−xAlxN system with a maximum deviation
of 0.025 Å for the composition x=0.50. The deviation curve is symmetric with respect
to equiatomic compositions. The experimental values from Ref. [50] are shown with
solid diamonds. As was discussed above the results for composition with x≤0.50 is in
very good agreement with the predicted curve while the data point for x=0.73 has a
substantial positive deviation likely due to the offset in composition for the measured
cubic phase as compared to the global composition in that sample.

In the Hf1−xAlxN case the calculated deviation from Vegard’s rule is the largest among
the studied systems. The maximum deviation is about 0.05 Å which is reached at a
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composition of about x=0.55. The experimental points show a much stronger positive
deviation, up to three times as large compared to the calculations, which however is
not surprising considering the discussion above about the experimental situation with
off-stoichiometry and initiated decomposition.
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Figure 3.5: Left panel: The calculated and normalised equations of state for TiN , c-AlN as
well as for Ti0.5Al0.5N. The EOS average of the curves of TiN and c-AlN is also shown. Right
panel: Same but for the ScAlN system.

Even though there is a certain spread in experimental values, the overall picture and the
definite results from the calculations are that there exists a systematic positive deviation
from Vegard’s rule in these c-M1−xAlxN systems. In order to understand this behaviour
one should first note that unlike binary metallic alloys, where the A-B nearest neighbour
bonds are present in the mixed A1−xBx alloy, but not present in the pure components,
the nearest neighbour bonds in a M1−xAlxN system are still the M-N and Al-N bonds
present in the binary nitrides. Since these strong M-N and Al-N nearest neighbour
bonds are likely to govern the equation of states of the system to a large extent, this
fact suggests that an insight to the systematic positive deviation from Vegard’s rule can
be gained from a rather simple analysis of the included binary systems.

Let us first make the crude assumption that the equation of states for both pure transi-
tion metal nitrides and AlN as well as the alloys between them is completely determined
by the nearest neighbour M-N and Al-N bonds and their length. Let us then make an-
other crude approximation that the components of the alloys are fixed on an ideal B1
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3.1. Volumes and lattice spacings

lattice with one common bond length. In such a situation the equation of states of
the alloys would be nothing else but the concentration weighted arithmetic average of
the equation of states of the binary nitrides. Whether the equlibrium lattice spacing of
such a hypothetical system is larger or smaller compared to the Vegard’s rule depends
on the particular properties of each equation of states of the constituents. One might
for instance think that the equilibrium parameter would tend in the direction of the
stiffest of the included systems, the system with the highest bulk modulus. However,
the bulk modulus describes only the second derivative of the EOS at the equilibrium.
A common behaviour of the binding energy curves of all types of electronic bonds is the
anharmonicity favouring expansion rather than compression when a substantial devia-
tion is made from the equilibrium. This is a property which would indicate a tendency
for larger lattice spacings compared to Vegard’s rule.

To investigate these properties for the systems studied in this work Fig. 3.5 shows the
situation for Ti0.5Al0.5N and Sc0.5Al0.5N. Shown in the left panel of the figure are the
EOS for pure TiN and pure c-AlN, normalised to E=0 at their equilibrium. Furthermore
the EOS average calculated as

Eaverage(a) =
ET iN

norm.(a) + Ec−AlN
norm. (a)

2
(3.1)

is shown with a dotted line. The self consistent fully relaxed EOS for the real Ti0.5Al0.5N
alloy as modelled with a SQS structure is shown with dash-dotted line (also normalised
to the mixing energy by substracting the proper amount of equilibrium TiN and c-
AlN energies). Vertical lines show the Vegard’s rules value, the equilibrium of the
EOS average curve, and with a dash-dotted line, the equilibrium of the self-consistent
calculations. It is obvious that the EOS average curve has its minimum value at a lattice
spacing considerably above the Vegard’s rule value as a consequence of the fact that it is
more easy to extend the Al-N bonds in c-AlN compared to compressing the Ti-N bonds in
TiN. In fact, despite the crude approximations made in this model, it reproduces almost
exactly the value of the equilibrium lattice spacing for the self-consistent calculations
of the c-Ti0.5Al0.5N alloy. It is likely that this agreement is due to a cancelation of
the effects of the two main approximations made, the effect of local lattice relaxations
leading to a smaller lattice spacing compared to fixed lattice, while the inclusion of real
electronic structure effects in the alloy tends to increase lattice spacing in this system.

The right panel of Fig. 3.5 shows the same construction for the Sc0.5Al0.5N system. In
this system the difference in lattice spacing is larger between the constituting binary
nitrides but the results are qualitatively the same with the EOS average giving a better
estimate of the true lattice spacing compared to Vegard’s law. In fact the usage of the
EOS averaging method might be considered as a modified Vegard’s rule.

In summary the calculations show that all the four treated c-M1−xAlxN alloy systems
show a systematic positive deviation from Vegard’s rule. This can be qualitatively
explained by the anharmonicity of the M-N and Al-N nearest neighbour bonds making
it more easy to extend the Al-N bonds then to compress the M-N bonds. The somewhat
surprising accuracy of the proposed modified Vegard’s rule approximation to equilibrium
lattice spacing, at least in the case of Ti1−xAlxN and Sc1−xAlxN, is likely due to the
fact that, opposite to the binary metallic alloy case, no new types of nearest neighbour
bonds appear in these alloyed systems compared to the pure binary nitrides and to
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smaller degree to a cancellation of errors from the approximations made. That the
physics of the real mixed systems are much more complicated will be apparent in the
following chapters.

The experimental thin films picture is somewhat more complicated due to various rea-
sons. Epitaxial strain from substrates, internal stress, compositional uncertainty and
off-stoichiometry as well as incomplete mixing or even phase separation makes the judge-
ment of the reliability of the calculations based on a direct comparison with the experi-
mental results impossible. On the other hand, it appears that a qualitative disagreement
between the theoretical prediction and the experimental values of lattice parameters can
be used as an indication that some sort of phase change process driving the system away
from ideal B1 solid solution has appeared in the experimental samples. This is valuable
knowledge in its own right and can be exemplified with the experimental deviation from
theoretical result for the Sc0.27Al0.73N sample in Ref. [50].

3.2 Bulk modulus

We now turn to the calculated bulk modulus of the transition metal nitrides, aluminium
nitride and their alloys. The bulk modulus defined as

B = V
d2E

dV 2
(3.2)

has been calculated numerically by fitting a modified Morse function [137] to the cal-
culated energy values. The values for pure nitrides as well as for the equiatomic alloys,
c-M0.5Al0.5N are presented in Tab. 3.3. Since the bulk modulus depends on the second
derivative of the energy the value of this quantity is much more sensitive to numerical
noise as compared to i.e. total energies or equilibrium lattice spacing. This makes it
difficult to obtain perfectly converged values, with respect to i.e. number of k-points
in the Brillion zone sampling or even configurational distribution of atoms, of the bulk
modulus for the large SQS calculations. The results presented here are converged to an
accuracy of 0.1GPa for the binary nitrides and 0.5 GPa for the alloys with respect to
k-points.

The bulk modulus is a measure of the resistance of a material against isotropic com-
pression. As such it gives a certain although limited insight in the bonding strength of
the material. It must be stressed that although hard materials often have a high bulk
modulus, diamond is one example, there is no direct relation between the bulk modulus
and the hardness of a system.

The calculated values of the bulk modulus for the pure nitrides are in good agreement
with previous DFT calculations using the GGA functional as well as with experimental
values where such are present, see for instance Ref. [140] and references therein. One
important exception is CrN. Non-magnetic calculations, such as the one in Ref. [140]
give considerably higher values of the Bulk modulus, around 320 GPa, compared to
value presented here 237.5 GPA resulting from a calculation of the disordered magnetic
state. The latter is as expected closer to the value in Ref. [141], 245 GPa obtained
for antiferromagnetic calculations using the PAW method. One can expect that the
values of bulk modulus calculated using the more approximate KKR-ASA method are
somewhat lower compared to PAW values connected to the fact that the lattice spacings
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Table 3.3: Calculated bulk modulus in GPa for transition metal nitrides, c-AlN, as
well as c-M0.5Al0.5N alloys. All calculations are performed using the GGA-PBE96 [97]
functional for exchange-correlation effects.

System B [GPa] Alloy B [GPa] System B [GPa]

TiN 292.7PAW, Ti0.5Al0.5N 262.1PAW c-AlN 255.5PAW

318expt. [138]
ScN 198.8PAW Sc0.5Al0.5N 207.5PAW

-expt.

HfN 285.5PAW Hf0.5Al0.5N 243PAW

306expt. [139]
CrN 237.5KKR−ASA Cr0.5Al0.5N 239.8KKR−ASA 242.0KKR−ASA

-expt.

achieved are slightly higher. This is illustrated in Table 3.3 with the two values for
c-AlN: 255.5 GPa (PAW) and 242 GPa (KKR-ASA). For the three systems Ti1−xAlxN,
Sc1−xAlxN, and Hf1−xAlxN the calculated bulk moduli for the equiatomic alloys are
below the arithmetic mean value of the MN and c-AlN. This is connected to the positive
deviation from Vegard’s rule discussed above since the bulk modulus in general depends
heavily on the volume. The Cr1−xAlxN system seem to have a bulk modulus that is
almost concentration independent.

3.3 Formation energies

Finally we report the formation energies of the pure binary nitrides. The formation
energies calculated as

EXN
f = E(XN) −E(X) −

1

2
E(N2) (3.3)

where X is Sc, Ti, Cr, Hf, and Al respectively are shown in Tab. 3.4. Since the value
of the nitrogen chemical potential is difficult to obtain within the KKR-ASA or EMTO
framework, also the CrN system is calculated with the PAW method using the 001
antiferromagnetic configuration. As reference state for the metal chemical potential,
hcp-Sc, hcp-Ti, 001-antiferromagnetic bcc-Cr, hcp-Hf, and fcc-Al is used. For the ni-
trogen chemical potential, a N2 molecule is used. It should be noted that the GGA (or
even more LDA) are not as exact in treating molecular systems as compared to solid
state systems thus introducing an uncertainty in the predictions of absolute formation
energies for these systems. However, when comparisons are made between the different
nitrides, this error of course cancels.

Since the nitrogen chemical potential is the same for all systems, the difference in forma-
tion energies between the systems are governed by the difference between the cohesive
energies of the nitrides and pure metal systems respectively. One can se that ScN has
the largest (negative) formation energy, -3.861 eV/f.u., showing the strong chemical
driving force of metal Sc to react with nitrogen. Adding one more valence electron to
the system, HfN, -3.589 eV/f.u., and TiN, -3.383 eV/f.u., show lower formation energies
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compared to ScN. Hf with 5d instead of 3d valence electrons has a higher affinity for N
compared to Ti. The AlN phases has still lower formation energies than TiN, h-AlN has
-2.851eV/f.u. and c-AlN has -2.513 eV/f.u., while the CrN phase has the lowest forma-
tion energy, only -0.856 eV/f.u. Similar calculations using the LDA approximation was
presented by Hugosson et al. [72]. In comparison to the present results the LDA results
was lower (more negative) in formation energy, most likely due to the better treatment
of the N2 molecule in the GGA approximation used here. However comparing the values
for CrN with TiN in Ref. [72] giving a considerably larger difference, 3.094 eV/f.u. one
can see the impact of the magnetic treatment of CrN (and bcc-Cr) present in this work
but neglected in [72]. The difference presented here is 2.527 eV/f.u. The reason for the
difference in formation energies will be discussed in the following chapters.

Table 3.4: Calculated formation energies of the pure nitrides.

Systems EXN
f [eV/f.u.]

ScN -3.861
HfN -3.589
TiN -3.383
h-AlN -2.851
c-AlN -2.513
CrN -0.856

It has been showed in this chapter that the calculational frameworks used throughout
this thesis give reliable results in terms of lattice spacing, bulk moduli for pure nitrides
as well as the evolution of the lattice parameter with composition. Further more an
understanding of the background to the general property of positive deviation from
Vegard’s rule displayed in the systems has been given in terms of a modified Vegard’s
rule. We now turn to the more intricate properties related to electronic structure and
thermodynamics.
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Chapter 4

Mixing and decomposition

thermodynamics of Ti1−xAlxN

In this chapter the important hard coating material system TiAlN is studied in depth.
First the calculated mixing enthalpies for the competing cubic and hexagonal phases
of the random Ti1−xAlxN alloys are presented. The results of this study motivates
together with experimental reports the focus on the cubic phase in the rest of the
chapter. Then the effects of local lattice relaxations in c-Ti1−xAlxN are investigated,
both in terms of energetics and static atomic displacements. The former is directly
coupled with the possibility to use the CPA based approach to describe the random
alloy using the independent sublattice model for lattice relaxations, and the latter is
discussed in relation to bond strength and the concept of solid solution hardening. The
electronic structure of the system is investigated with focus on the evolution of the Ti
d-states with composition. This is followed by the thermodynamics chapter. The mixing
enthalpy and its second concentration derivative is calculated and compared to different
ordered structures. The mean-field phase diagram is constructed and the initial results
of thermodynamic simulations beyond the mean-field are presented.

4.1 Mixing enthalpies of competing phases in Ti1−xAlxN

It was discussed above that the thin films deposition techniques of relevance for hard
coatings materials has an inherent tendency to favour the formation of high entropy
solid soloutions. In a system such as Ti1−xAlxN, where the pure binary nitrides have
different ground state structures one should consider the possibility of the formation of
solid solutions in both these phases [2] 1.

However, the experimental evidence points in the direction that the cubic phase wins
the competition over the hexagonal phase over the major part of the composition range.
While there are plenty of evidence of the formation of cubic Ti1−xAlxN phases with x as
high as 0.67 there are only a few reports of hexagonal B4-based Ti1−xAlxN phases [29,

1In principle also possible but not considered in this work, yet other structures could form either as
solid solutions or ordered phases. One example is CuZn which can form bcc-based solid solutions or
B2 ordered compounds at intermediate compositions while Cu crystallises in the fcc structure and Zn
in the hcp structure.
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Figure 4.1: Mixing enthalpy for cubic B1 and two different hexagonal wurtsite B4 structures
for Ti1−xAlxN.

134, 142, 143]. Since the main focus of the vast majority of the experimental studies of
this system have been on the cubic phase, it is also difficult to know to what extent
the h-AlN phases often reported in the literature have in fact a small amount of Ti
solved into it. In order to investigate the competition between cubic and hexagonal
phases the calculated mixing enthalpy with respect to c-TiN and h-AlN is presented in
Fig. 4.1 for the B1 phase as well as for two prototypes of hexagonal phases. The first B4
phase is based on the h-AlN cell parameters, and is shown with squares in the figure.
The second is based on the hexagonal ScN phase predicted as metastable by Farrer and
Bellaiche [144] here called B4’ shown by diamonds.

While both these phases are based on the same unit cell, their cell-parameters in terms
of their c/a-ratio and internal parameter u, are rather different. While the B4 phase of
AlN has a calculated c/a-ratio of 1.614, the B4’-phase of TiN has a c/a-ratio of 1.20. Of
course, the cell parameters are relaxed for each concentration x in h-Ti1−xAlxN, and the
c/a-ratio of the B4 phase does decrease with inclusion of Ti, but there is still a significant
difference between the two phases. Furthermore, the B4’ phase has a considerably lower
volume as compared to the B4 phase, at least for comparable compositions. For two
compositions, x=0.625 and x=0.75 they are in fact separated by an energy barrier
with respect to both c/a-ratio and volume. For other compositions no such barriers
exist and one of the phases transforms into the other upon simple static relaxations.
Fig. 4.1 shows however that the cubic phase is the most favourable, or rather least
unfavourable, solid solution for compositions as high as about x≤0.71. This is close to
the values predicted by Hugosson et al. [72] and Mayrhofer et al. [74]. The B4’ phase
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is never found below both the B1 and B4 phases in mixing enthalpy. Furthermore,
no calculations investigating the dynamical stability of the Ti-rich B4’-phase has been
performed. This means that no conclusions regarding the possibility of existence of
this phase can be drawn from these results. However, taking also into account this
phase, which has been neglected in previous attempts [72, 74], further strengthen the
conclusion of the importance of the study of the cubic phase and cubic isostructural
phase transformations.

The energy or enthalpy relations between the different alloy phases might be one part
of the explanation why certain phases are or are not formed during thin film growth.
However also other factors are very important. For instance pure AlN has been shown
to be possible to grow in the cubic phase under certain deposition conditions suggesting
that the kinetic mechanism of growth itself can favour the cubic phase [18]. If the growth
is epitaxial, the substrate structure, acting as a template is also likely to influence the
phase balance. Taken together the experimental reports and these calculations clearly
indicate that for the compositional range 0≤x≤0.67 the cubic phase should be the main
object of study when as-deposited related properties are of interest. Of course, upon
heat treatment during annealing or cutting tool operations the system will start to
transform towards thermodynamic equilibrium. Hexagonal AlN should be included in
such considerations but since the starting material in most cases have the cubic structure
the isostructural cubic decomposition, if present, is likely to be activated first. This is
also in line with the experimental observations discussed in Chapter 1. The rest of this
chapter is devoted to the study of isostructural phenomena in c-Ti1−xAlxN.

4.2 Local lattice relaxations

As has been described above, in a solid solution the translational and other symme-
try operations are only valid on average due to the different chemical environment of
each atom. One consequence of this fact is that the atoms do not sit on ideal lattice
points of the underlying lattice. Instead they relax locally in a manner that lowers
the energy of the system. This effect, although present in all alloys, is typically more
important in systems with a considerable size mismatch between the alloy components
such as Cu1−xAux [126] while it is very small in some size-matched systems such as
Ag1−xAux [145]. Due to the moderate size mismatch in the c-Ti1−xAlxN system, 4.6%
in lattice parameter compared to more than 11 % in Cu1−xAux, one would expect that
the effect in this system would be rather small. However, the situation turns out to be
much more complicated in these nitride cases.

Fig. 4.2 shows the isostructural mixing enthalpy at zero pressure of c-Ti1−xAlxN calcu-
lated with respect to c-TiN and c-AlN,

H(x) = E(c−T i1−xAlxN) − (1 − x)E(c−T iN) − xE(c−AlN), (4.1)

using the PAW method and SQS supercells and with the EMTO-CPA method, for
both cases where the atoms are placed at ideal B1 lattice positions and when local
relaxations are considered. In the case of EMTO-CPA calculations, the local lattice
relaxations are considered using the independent sublattice model as described in the
chapter Calculational methods. The relaxation energies themselves are also shown.
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Figure 4.2: The isostructural mixing enthalpy of c-Ti1−xAlxN as calculated with the PAW-
SQS method (open symbols) and the EMTO-CPA method (solid symbols). Results are shown
both for ideal B1 lattice positions (squares) and including local relaxation (triangles). The
relaxation values themselves are shown with circles.

One can clearly see in Fig. 4.2 that including local relaxations lowers the mixing en-
thalpies by up to one third or about 0.1 eV/f.u. for the x=0.50 composition. Thus, it
is obvious from an energetics point of view that one can not approximate substitutional
disorder in this system by considering random occupation at sites of an ideal underlay-
ing B1 lattice. In order to anyway be able to use the fast and accurate CPA framework
for the treatment of disorder, the Independent Sublattice Model (ISM) as described in
the Calculational methods chapter is used.

The parameter vT iAl in eq. 4.1 is calculated to 0.060 eV/f.u. For the alloy with x = 0.5,
this gives EN rel(0.5)= 0.090 eV/f.u. Using the Effective Tetrahedron Model (ETM) for
the local cluster volume relaxation energy of the metal sublattice we get Emetal rel(0.5)
=0.01 eV/f.u. which adds up to EISM

rel (x) = 0.10 eV/f.u. in excellent agreement with
the supercell value for this concentration, 0.098 eV/f.u. As can be seen in Fig. 4.2 the
ISM model for local relaxations works extremely well for all concentrations where the
supercell energies have been calculated.

In Fig. 4.3 the displacement of the atoms from the ideal B1 positions in the fully
relaxed supercell which models Ti0.75Al0.25N alloy are shown. We show the values of the
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Figure 4.3: Relaxation pattern in the x direction for the atoms in the Ti0.75Al0.25N supercell.
Ti atoms are marked with circles (position 1-18), Al atoms with triangles (position 19-24).
N atoms surrounded by one Al and one Ti atom along the x direction are marked with solid
squares while N atoms surrounded by two chemically equivalent metal atoms are marked with
open squares

displacements projected in the x-direction. One can clearly see that N-atoms that are
surrounded along the x-axis by two metallic atoms of different kinds (solid green squares
in Fig. 4.3) show the largest displacements, 1-2 % of the average lattice parameter.
Note that the values are in agreement with the displacements of the N-atom in the
pseudo Z2 ordered compound used for the determination of the parameters of the ISM
(shown by the dotted lines in Fig. 4.3). At the same time, the N-atoms that are
surrounded along the x direction by two chemically equivalent atoms show negligible
displacements (0.1 - 0.3 % of the average lattice parameter). The metal atoms themselves
show small displacements that are consistent with the small values of local cluster volume
relaxations obtained within our ETM calculations.

From these considerations, it is obvious that the approximations made in deriving the
ISM model above are justified and that the model itself captures the relevant physics be-
hind the local relaxation phenomenon in this system very well. The relaxation energies
for all concentrations are in good quantitative agreement with the supercell calcula-
tions and the actual relaxation patterns are qualitatively captured. It can therefore be
expected that this is the case also in other metal nitrides with the B1-structure.

The pattern of relaxations in the c-Ti0.5Al0.5N and c-Ti0.25Al0.75N systems shown in
Figs. 4.4 and 4.5 are qualitatively similar to the c-Ti0.75Al0.25N case although especially
the c-Ti0.5Al0.5N system shows larger displacements of the metal atoms.
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Figure 4.4: Relaxation pattern in the x direction for the atoms in the Ti0.5Al0.5N supercell.
Ti atoms are marked with circles (position 1-12), Al atoms with triangles (position 13-24).
N atoms surrounded by one Al and one Ti atom along the x direction are marked with solid
squares while N atoms surrounded by two chemically equivalent metal atoms are marked with
open squares

The consequences for the nearest neighbour bond lengths can be seen in Fig. 4.6. The
tree panels show the fraction of nearest neighbour Ti-N (up) and Al-N (down) bonds
as a function of bond length for the tree compositions x=0.25, 0.50, and 0.75. The
bars show the fraction rounded to each 0.01 Å. One can see that there is a substantial
spread in the NN Al-N and even more drastically Ti-N distances. Interestingly and
perhaps unexpected there are Ti-N bonds that become both longer than in pure TiN,
and although very rare also shorter than c-AlN distances. The same phenomena can be
seen for the Al-N distances although to a lesser extent. The spread in NN bond lengths
are to a large extent due to the relaxation of the nitrogen atoms surrounded by different
metal atoms along the cartesian axis’ as shown above but also the relaxation of metal
atoms contribute to this spread especially for the composition x=0.50.

This spread in the bond length of nearest neighbour atoms are likely to have a certain
impact on various properties of the material and can be discussed in terms of solid
solution hardening: The spread corresponding to more than 10% of the average near-
est neighbour bond length is a clear indication that the local environment affects the
strength of the bonds considerably. Further more, the offset in position itself might in-
fluence some aspects of the bond strength. Although these atomic positions correspond
to a stress-free state in the sense that the net forces acting on all atoms are zero, the
resistance of the material against plastic deformation is most likely affected. This is
so since such plastic deformations require the breaking of a number of bonds through
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Figure 4.5: Relaxation pattern in the x direction for the atoms in the Ti0.25Al0.75N supercell.
Ti atoms are marked with circles (position 1-6), Al atoms with triangles (position 7-24). N
atoms surrounded by one Al and one Ti atom along the x direction are marked with solid
squares while N atoms surrounded by two chemically equivalent metal atoms are marked with
open squares

cation (or cation vacancy) hopping during for instance dislocation nucleation or mo-
tion throughout grains. Although the explicit individual bond strength with respect
to different deformation processes are not directly extractable from these results, it is
very likely that at least some of these bonds that differ so much in bond length are
considerably more resistant against atomic displacements compared to the situation in
pure TiN and c-AlN where all bonds are equal in length and strength. This will create
a higher maximum value of the energy potential (Ek) to overcome for cations during
migrating. At the same time many of the bonds are likely to be weaker. However since
the probability of migration is proportional to e−Ek/kBT the motion of dislocations are to
a large extent limited by the highest values of Ek and not the average value. This would
lead to a slower dislocation movement in the alloyed samples and might in fact be one
part of the explanation to the phenomena of solid solution hardening attributed to Al
addition to TiN in c-Ti1−xAlxN with x≤0.60 [25,26,29] as shown in Fig. 1.7. A similar
discussion was made for the case of nitrogen vacancies in TiNx in Ref. [10] although in
that case electronic redistribution rather than change in bond length was the main point
for hardening effects. It should be stressed again that the spread in bond lengths can
be seen more as an evidence that the bonds really do have different strengths, rather
than being the main reason behind the differences.
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Figure 4.6: The distribution of nearest neighbour Ti-N (bars up) and Al-N (bars down) bond
lengths in the relaxed c-Ti1−xAlxN, x=0.25, 0.50, 0.75, supercells. The bars show the fraction
of NN-bonds that are rounded to each 0.01 Åwhile the lines are the running average over 0.03
Å. Note the considerable spread in bond lengths, especially in the Ti0.5Al0.5N composition.
The bond length in pure c-AlN is shown with a dashed vertical line and the value for pure
TiN is shown with a solid vertical line.

4.3 Electronic structure

It is well established that the bonding in TiN as well as in the related compound TiC
has a mixed character of both covalent, ionic, and metallic bonds [53–55,57]. N 2p-Ti 3d
hybridization leads to the formation of covalent bonding and anti-bonding states. The
following discussion is illustrated in Figs. 1.17 and 4.7. However, the symmetry of the
B1-structure only allows Ti 3d -states with eg symmetry to hybridize with the N 2p-states
while the d-states with t2g symmetry form so called non-bonding states and account for
weak hybridization between next-nearest neighbor Ti atoms [55]. Even though the
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extent of overlap between Ti-d -states for the next-nearest neighboring Ti-atoms have
been shown to be small for states below the Fermi level [57] this hybridization broadens
the non-bonding state to form a shoulder at the DOS curve [56] that in TiN is occupied.
Due to the difference in electronegativities a large charge transfer occurs from Ti to N
leading to an ionic admixture to the bonding.

In cubic AlN on the other hand the ionic bonds have been shown to dominate [146].
This is different to the case of wurtzite AlN where covalent bonding is also present [146].

Due to the differences between TiN and c-AlN one can expect that the electronic struc-
ture effects will give strong variation of the properties of metastable c-Ti1−xAlxN as a
function of composition. In Fig. 4.7 we show the EMTO-CPA calculated density of
states for the system Ti1−xAlxN as a function of energy (in eV relative to the Fermi
energy EF ) and fraction of AlN, x. In the case of pure TiN one can clearly see the
peaks corresponding to the bonding (-8 to -3 eV) and non-bonding (-2 to 2 eV) states
separated by a pseudo-gap. The N 2s-states at about -15 eV are clearly separated from
the rest of the valence band and play no significant role in the bonding for this system.
Since the bonding states can only accommodate 6 valence electrons and there are to-
tally 7 present (4 Ti + 3 N ) in the unit cell (not counting N-2s) one electron has to
occupy the non-bonding states and the Fermi level is shifted above the minimum of the
pseudo-gap.

In the case of pure c-AlN, the semiconducting character is clearly visible. The calcu-
lated bandgap is 3.42 eV while no experimental value has been found in the literature. It
should be noted that bandgaps in semiconductors are generally underestimated within
GGA (and LDA) calculations, mainly due to the fact that self-interaction is not per-
fectly cancelled by these exchange correlation functionals pushing all occupied states
to higher values in contrast to unoccupied states. It should also be considered that
the measurement of band gap energies correspond to a dynamical process not exactly
described by differences of the one-electron eigenvalues of the Kohn-Sham Hamiltonian.
For comparison, the calculated value of the band gap of h-AlN using the PAW-method is
4.01 eV as compared to the experimental value 6.2 eV [147]. When gradually increasing
the Al content in Ti1−xAlxN one can see that up to x=0.50 there is a gradual, smooth
change in the DOS. However, for the composition x=0.75 one can see that the DOS
shows clear similarities with the one for pure AlN, but with an isolated Ti state within
the band gap. This result can be explained by the fact that substitution of Ti by Al is
destroying the hybridization between next-nearest neighbor metal atoms, as there are
no Al d-states which could participate in the bonding. This localizes the non-bonding
Ti d-states in the band gap of the material with predominantly ionic bonds. Since Ti
has one valence electron more than can be accommodated by the AlN valence band, the
impurity state at EF becomes populated.

In Fig. 4.8 the Ti-site projected DOS at EF (in states per eV) is plotted as a function
of fraction of AlN. It is obvious that above x=0.50 the decrease of Ti-Ti hybridization
leads to a dramatic increase of the local DOS at the Fermi level at the Ti-sites. The
destabilizing effect of a high DOS at the Fermi level is well known [148] and the in-
crease of Ti-site projected DOS at EF is an indication of increased tendency towards
decomposition in the Ti1−xAlxN system.

The above results also underline the importance of local environment effects, as is illus-
trated in Fig. 4.9. The figure shows the Ti-site PDOS (in states per eV and unit cell)
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Figure 4.7: The total electronic density of states of c-Ti1−xAlxN as calculated with the
EMTO-CPA method. The DOS are shown for different fractions x of AlN: 0.00, 0.25, 0.50,
0.75, and 1.00 and are presented as a function of energy with respect to the Fermi energy.
Note the band gap present in the semiconductor c-AlN.

calculated for the the supercell with x=0.50. The PDOS at two different Ti-atoms with
different local environments are shown together with the Ti PDOS in pure TiN. One of
the Ti atoms has next-nearest neighbors consisting of 3 Al atoms and 9 Ti atoms (thick
solid line) while the other atom has 9 Al and 3 Ti atoms (dashed line). There are clear
differences, in particular the increase of the PDOS at EF for the Ti-atom in the Al-rich
environment.

Considering these results and the relatively small lattice mismatch discussed in the
previous chapter, we suggest that electronic structure effects are responsible for both
the high mixing enthalpy as such and its strongly asymmetric concentration dependence,
c.f. Fig. 4.2.

4.4 Thermodynamics of c-Ti1−xAlxN

4.4.1 Mixing enthalpy

Using the EMTO-method we have calculated the total energy with composition intervals
of 5% as seen in Fig. 4.2. This gives a fine mesh in terms of alloy concentration that
makes it possible to calculate accurately the second derivative of the mixing enthalpy
with respect to composition. This is important in order to obtain information about
alloy compositions that are likely to show spinodal decomposition.
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Figure 4.8: The Ti site projected electronic density of states of Ti1−xAlxN at the Fermi level
as a function of AlN content as calculated using the EMTO-CPA method.

In order to avoid numerical noise in the evaluation of the second concentration derivative,
Eq. 1.2, a fifth order polynomial fit to H(x) was used in the derivation. A convergence
test with respect to polynomial order was performed and the fifth order of the polyno-
mial fit was found to give a relatively accurate description of the second concentration
derivative. However, if a polynomial fit with lower order is used, such as the third order
used in Ref. [73], some important structure of the second derivative is lost. In Fig. 4.10
the mixing enthalpy and its second concentration derivative is shown together with the
enthalpy of four different ordered Ti0.5Al0.5N compounds.

The mixing enthalpy of Ti1−xAlxN is found to be positive for all values of x. The curve
is not symmetric, but has its highest value, 0.24 eV/f.u., at about x=0.68. This shows
that the energy needed to solve a small amount of AlN in TiN is smaller than the energy
required to solve an equal amount of TiN in c-AlN. This is a clear manifestation of the
complex evolution of the electronic structure as discussed in the previous section.

d2H(x)/dx2 has a strong concentration dependence. It is only for low AlN content,
whith x < 0.15 , that the spinodal condition is not fullfilled at 0 K. It should be pointed
out that the value of d2H(x)/dx2 at very low x is difficult to derive numerically and the
true value might actually be very close to 0 or just below. In any case since the value
is small, at finite temperature the entropy contribution with positive second derivative
(large in this region) will rule out spinodal decomposition in this concentration regime.

At large x the second derivative goes to very large negative numbers. This is a con-
sequence of the non-symmetric shape of the mixing enthalpy curve which at 0K is the
same as the free energy and indicates an extreme instability towards decomposition at
high fractions of AlN. The plateau of d2H(x)/dx2 at intermediate concentrations on the
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other hand indicates that there might be a quite limited temperature intervall where a
large part of the concentration range is moved out of the spinodal regime.

The four ordered Ti0.5Al0.5N compounds shown in Fig. 4.10 are the B1 counterparts to
the fcc based structures L10, L11, double layer L10 and double layer L11. L10 consist
of a fcc lattice where 001-planes are alternativly occupied by the two alloy components.
L11 is similar but with the alternating planes stacked in the 111-direction. The double
layered L10 is the structure shown in Fig. 2.5 while the double layered L11 has 111-planes
of the same alloy component in the sequence A-A-B-B. In our B1 case it means that the
metal sublattice is ordered acording to the corresponding fcc based structure while the
nitrogen sublattice is kept homogenous. The large dispersion in mixing enthalpy of these
different ordered compounds, despite the fact that they have the same composition and
underlaying lattice, shows that there are strong local interactions in the system. This
shows the importance of treating the substitutional disordered solid solution in a correct
way if properties of the random state is to be calculated. It should be stressed that
there exist ordered compounds that, even though they have positive mixing enthalpy,
are considerably below the disordered phase in total energy. Their existence are likely to
effect the decomposition thermodynamics and kinetics of the system and will be further
analysed below.
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4.4.2 Mean field phase diagram of c-Ti1−xAlxN

In order to perform a first simulation of the effect of increasing temperature on the
thermodynamic stability of the mixed c-Ti1−xAlxN state we estimate the free energy
per formula unit

G(x, T ) = H(x) − TS(x) (4.2)

where H(x) is the mixing enthalpy per formula unit and T is the absolute temperature
within the mean-field approximation for the entropy

Smf (x) = −kB[xln(x) + (1 − x)ln(1 − x)] (4.3)

where x is the fraction of AlN. In our case the mixing takes place only on one of the two
sublattices and the contribution to the entropy from the ordered nitrogen sublattice is
equal to zero. The use of common tangent analysis of the free energy curves and the
sign of the second concentration derivatives of the free energy allows us to estimate the
phase diagram which is shown in Fig. 4.11.

This formula in Eq. 4.3 is a drastic simplification of the real finite temperature situation
and is used only to get a first idea of the relevant temperature scales for the thermo-
dynamics of this system and as a guideline for further experiments or more realistic
theoretical calculations. Especially in a system with strong local interactions like the
one in the present study we expect the mean field approximation to give an overestima-
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Figure 4.11: The mean-field estimate of the composition-temperature phase diagram of c-
Ti1−xAlxN The binodal is shown with circles and the spinodal with squares.

tion of transition temperatures. Indeed short range order (or clustering) lowers the free
energy for the solid solution phase. The latter is neglected in the mean field approach.

Vibrational entropy is also neglected. This simplification is probably of less importance
than the configurational one at relevant temperatures since the difference in lattice
parameter between the phases is so small. On the other hand further investigations
would be welcome since the spread of nearest neighbour bond lengths in the alloys
shown above raises some doubts.

The mean field phase diagram suggests that c-Ti1−xAlxN possesses a miscibility gap
up to very high temperatures, around 6000 K for equiatomic composition and above
8000 K for compositions around x=0.80. In this context one can note that the melting
temperature is around 3000 K for TiN and 2500 K for h-AlN. Further more, the phase
diagram predicts that solid solutions should be subject to spinodal decomposition over
a large range of the concentrations. At temperatures around 1273K, often used in
annealing experiments the spinodal region goes from about x=0.25 to x=0.99.

Even though the phenomena of age hardening have been experimentally reported only for
AlN fractions higher than 50 percent, there are weak signs of isostructural decomposition
in experiments with AlN content as low as 40 and even 25 percent [29,34], however the
mechanism of this decomposition is not characterised and can, at least in the case of
Ref. [34] be nucleation and growth.

Our results differ significantly from the mean-field phase diagram in Ref. [73]. We
attribute the major part of this difference to the fact that in Ref. [73] the entropy con-
tribution was originally overestimated leading to a corresponding underestimation of
transition temperatures with a factor of 2 [75]. However also our mixing enthalpies are
different and we believe that this is because of the inconsistent treatment of substitu-
tional disorder in Ref. [73] as will be apparent below. Also the usage of a low order
polynomial fit of the enthalpy values influences the results in Ref. [73].
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4.4.3 Thermodynamics beyond the mean field approximation

In the results above the mechanism behind the decomposition has been discovered and
a first simulation of the phase diagram has been performed by means of the mean-field
approximation to configurational entropy. However, in order to be more confident in the
actual quantitative values of temperatures in the phase diagram one can not be satisfied
by the mean-field treatment. The crucial point neglected in the MF-approximation is
the fact that the short range order of the distribution of metal atoms on the correspond-
ing sublattice of the system could considerably influence the transition temperature of
the Ti1−xAlxN system from solid solution (with short range clustering) to phase separa-
tion. This is so since the short range clustered system above the transition temperature
decreases the configurational energy with respect to ideal random solid solution much
more than the corresponding decrease in entropy thus lowering the free energy.

In order to go beyond the mean field approximation one would like to apply a Monte
Carlo scheme for the thermodynamics simulations for the c-Ti1−xAlxN system. However
the number of energy evaluations and the size of the simulation box needed to perform
such a simulation makes direct first-principles calculations impossible, at least within
a reasonable time frame. Instead the coarse-graining procedure in terms of a cluster
expansion of the configurational energetics has been performed within the Screened
Generalized Pertubation Method (SGPM) in conjunction with the Independent Sublat-
tice Model (ISM) for local lattice relaxations as described in Chapter 2. This procedure
reduces the computational costs for the energy evaluation by several orders of magnitude
and makes the Monte Carlo simulation possible.

The concentration dependent effective cluster interactions (ECI) of the configurational
Hamiltonian in Eq. 2.28 has been calculated for concentration steps of ∆x = 0.10.
Effective 2-site (pairs), 3-site, and 4-site interactions have been considered. It turns out
that the most important terms are the pair interactions on the first two fcc-shells of the
metallic sublattice. Fig. 4.12 shows the value of these two interactions as a function of
the AlN content x. As an inset the first 10 pair interactions of the Ti0.50Al0.50N system
are shown.

The pair interactions of the Hamiltonian can be written as the energy relation

V 2
ij = E(T ii, T ij) + E(Ali, Alj) − 2E(T ii, Alj) (4.4)

in line with Eq. 2.37.

Thus the sign of the potential parameter V determines if the system has a tendency
towards ordering (positive) or clustering (negative) on that certain coordination shell.
In our system the first interaction is strong and negative showing a clear impact of
the electronic structure effect described above as Ti-atoms strive to neighbour other Ti
atoms and similar for Al atoms on the first coordination shell. On the other hand the
second nearest neighbour interaction is positive, with the exception of x ≥ 0.80. This is
the result of the local lattice relaxation of N atoms situated in between Ti-Al and Al-Ti
pairs. If bare SGPM-interactions on a fixed B1-lattice were considered, this interaction
would also be negative, although smaller as compared to the first coordination shell.
Longer ranged pair interactions, 15 shells are considered here, show alternating signs
and gradually decreasing intensities as can be seen from the inset of Fig. 4.12. The 3 and
4-site interactions on the first couples of coordination shells are relatively less important
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Figure 4.12: The first two pair interactions as a function of concentration calculated using the
SGPM method and including the ISM-relaxation effect. Inset: the first ten pair interactions
in Ti0.5Al0.5N.

but should be included for quantitative predictions. The leading 3-site interactions
favours the formation of pure c-AlN domains rather than pure TiN domains.

The leading two pair-interactions has a profound non-linear concentration dependence.
For Ti-rich compositions there is a linear gradual decrease of both V 2

1 and V 2
2 but for

compositions with x ≥ 0.50 the decrease accelerates. For the composition x=0.90 the
magnitude of V 2

1 is five times larger compared to x=0.10. This development is directly
related to change in electronic structure with composition as is described in a previous
section. Especially remaining Ti-Ti nearest neighbour bonds become gradually stronger
as they become fewer as Ti is substituted by Al.

When the ECI’s of the system are known one can perform a Monte Carlo simulation
to achieve thermodynamic properties such as i.e. specific heat, which can be used to
determine critical temperatures for phase separation.

The concentration dependent ECI obtained with the SGPM-method describe the chemi-
cal interactions as perturbations on the solid solution state with a specific concentration.
As such they are most likely describing very well the first few steps of redistribution of
atoms when a frozen-in solid solution are subjected to temperatures where diffusion is
allowed or the short range order at very high temperatures (hypothetical in the present
case). However in phase separating systems such as Ti1−xAlxN, a profound problem
is present when one tries to simulate the critical phase separating temperatures. The
reason is that in order for such a simulation to be accurate, the set of ECI used must
accurately describe the energetics of the systems on both sides of the critical temper-
ature. The high temperature disordered phase is rather well described while the low

78



4.4. Thermodynamics of c-Ti1−xAlxN

temperature clustered phase is much more problematic. The reason can be understood
by first considering the mean-field phase digram in Fig. 4.11. If we start with a solid
solution Ti0.5Al0.5N system at very high temperatures and decrease it the binodal phase
separation line is hit at about T=6000K, but might in reality be lower. If the equilibrium
phase separated system below this point had consisted of a mixture of Ti0.5+δAl0.5−δN
and Ti0.5−δAl0.5+δN the usage of concentration dependent interactions would probably
be acceptable. However, as can be seen in Fig. 4.11 the resulting compositions right
below the critical temperature are closer to Ti0.5+δAl0.5−δN and pure c-AlN. This means
that the ECI derived at x=0.50 are not sufficient to accurately describe all parts of the
Monte Carlo simuation box. Instead all compositions 0.50 ≤ x ≤ 1.00 needs to be ac-
curately described in this case. Due to the strong concentration dependence, especially
in the AlN-rich side of the composition space, the use of fixed ECI derived from x=0.50
will not yield a reliable result.

Fig. 4.13 shows the resulting atomic configurations of simulated isothermal annealing of
the initially random Ti1−xAlxN systems with different compositions and 108000 metal
atoms in each simulation box derived using the method discussed above. Ti atoms are
shown light grey while Al atoms are shown in red. N atoms are not shown and are
actually only present in this part of the simulation through their fundamental effect on
the ECI’s. A Monte Carlo scheme where only nearest neighbouring atoms are allowed
to change places has been used to qualitatively simulate distribution pattern possibly
developing in real systems. In each simulation at least 10000 atomic swaps per metal
atom in the cell is tested, Ti-Ti and Al-Al ”swaps” are not counted. No qualitative
difference in appearance is visible in the simulation boxes during the last 1000 steps
per metal atom meaning that the pattern are either equilibrium or effectively frozen-in.
The latter effect is not due to kinetic energy barriers stopping diffusion, because such
barriers are neglected in this simulation, but rather due to local thermodynamic barriers
effectively hindering for instance Ti atoms to migrate through large c-AlN clusters at
low temperatures. This is a phenomenon that should also be present in real systems
but possibly being dominated as limiting factor of the kinetic energy barriers connected
to vacancy hopping guided atomic diffusion.

The effects of both temperature and concentration dependence of the ECI’s can readily
be seen in Fig. 4.13. For instance, this simulation predicts that Ti0.60Al0.40N forms a
disordered state although with a certain short range clustering tendency at 1100 K while
at the same temperature Ti0.40Al0.60N forms a clearly phase separated state with large
homogenous areas of almost pure c-AlN. This prediction could be in line with reality but
an example of the problem of using concentration dependent ECI’s for phase separating
systems can be seen when studying the compositions x=0.50, 0.60, and 0.70 at T=1100
K. All three compositions are clearly within a two-phase region and having the same
temperature, the composition of the two respective phases should be the same, only
differing in the relative amount. However, this is not the case which is easily seen as more
Al is solved in the Ti-rich phase in Ti0.50Al0.50N as compared to Ti0.30Al0.70N. Another
interesting result can be seen in the Ti-rich compositions at lower temperatures. The
resulting ground state structures are predicted to be not completely phase separated but
rather a form of superstructure ordering, built of alternating Ti-Ti and Al-Al bi-layers
along the 111-direction also considered and called ”dL11” above. This is the result of the
competing interactions on the first two coordination shell that have different signs. The
finding of such structures as the equilibrium phase is a result of the simulations where
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AlN-rich phases are poorly described with the used ECI’s. However their appearance
show that this type of ordering is low in energy and configurational patterns related to
them could be considered as possible metastable states since they can be formed from a
disordered matrix with only short range diffusion of atoms. In contrast, the formation of
homogenous c-AlN clusters requires long range diffusion of a large amount of Al atoms.

In order to investigate the possibility of super-structure formation we have calculated
the total energy of multi-layered superstructures ordered both in the [111] and [001] crys-
tallographic directions with different numbers of layers, the results shown in Fig. 4.14.
Two conclusions can be drawn from these results. Firstly, [111] oriented structures
are energetically favoured over [001] oriented structures. Secondly, the double layer
[111]-structure reduces the mixing enthalpy by more than 60% compared to a random
distribution modelled with a SQS-structure, but thicker multi-layers changes the energy
only slightly, -13 meV/f.u. from double to quadruple layers. This indicates that if such
layered superstructures would be formed, the driving force for complete phase separa-
tion would be significantly weakened and a large amount of long range atomic diffusion
with limited energetic driving force would be required to perform it.

Thus this kind of structural pattern might be considered as metastable, especially in
large coherent grains where incomplete volume relaxation limits the energy gain by
complete phase separation. At the end of the day also completely phase separated
Ti(Al)N+c-AlN systems are only metastable with respect to formation of h-AlN.

What is interesting is to know if a certain configuration or phase can be reached through
any synthesis route, and if there are specific experimental conditions under which they
can persist. From the present results one is led to the conclusion that such superstruc-
tures should be looked for in samples with low to medium AlN content, rather large
grains and that has been subject only to a short post-growth annealing at a tempera-
ture just enough for the onset of bulk diffusion.

With these preliminary results and with certain important questions raised rather than
answered we turn to another important hard coatings material system.
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Figure 4.13: The resulting atomic configurations after a a simulated annealing at different
temperatures of c-Ti1−xAlxN systems (x=0.30, 0.40, 0.50, 0.60, and 0.70 on the x-axis) using
a Monte Carlo procedure and the effective cluster interactions derived with the SGPM-ISM
method.
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Figure 4.14: Total energy of layered superstructures in Ti0.5Al0.5N. Shown is the energy of
[111] and [001]-stacking sequences as a function of the number of sequential Ti(Al) layers. The
energy of fully relaxed, phase separated TiN and c-AlN is shown for comparison.
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Chapter 5

Cr1−xAlxN - the effect of magnetism

In this chapter the Cr1−xAlxN system is investigated theoretically using the KKR-ASA-
CPA-ISM method as described above. Similar topics as in the previous Ti1−xAlxN chap-
ter are covered such as the electronic structure and mixing enthalpies. However an
important difference between Cr1−xAlxN and Ti1−xAlxN is that the former displays a
magnetic behaviour. This chapter starts with an investigation of the magnetic structure
of Cr1−xAlxN, continues with a discussion of the electronic structure and mixing enthalpy
and ends with a discussion about the possible effects of strong electron correlation on
the properties of the system.

5.1 Magnetic structure of Cr1−xAlxN

The magnetic ground state of ortorombic CrN with α= 88.23◦ has a double-layer an-
tiferromagnetic configuration. However, since the main purpose of this work is to in-
vestigate materials of relevance for operations at room temperature and above, the B1
phase present above TN is studied. This structure has also been shown to be possible to
stabilise epitaxially at lower temperatures [15,16]. We are not aware of any experiments
which show the magnetic ordering transition for epitaxially stabilised B1 structure CrN.
In Ref. [149] DFT calculations carried out for B1 CrN found the single layer [110]- ori-
ented antiferromagnet to be lower in energy than both the double layer [110], single
layer [111] and the ferromagnetic configuration. The single layer [110] ordering in the
B1 structure is equivalent to the [001] layered antiferromagnet considered in this work.
Also considered here is the ferromagnetic state, the non-magnetic state as well as a
disordered magnetic state modelled with the disordered local moments (DLM) method
as described Chapter 2.3.2.

The calculated equations of state (EOS) curves for the four different configurations of
pure CrN considered are shown in Fig. 5.1. Since the main subject of this work is to
describe the properties of Cr1−xAlxN at elevated temperatures above the Neél tempera-
ture, the electronic structure in those cases must be calculated for a disordered magnetic
structure. It has been proven [150, 151] that the DLM model, rather than an ordered
magnetic configuration, should be used to accurately calculate thermodynamic proper-
ties of magnetic materials with finite local moments above the ordering temperature. It
was suggested that CrN has localized moments on the Cr sites [149]. It will be apparent
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CHAPTER 5. Cr1−xAlxN - THE EFFECT OF MAGNETISM

from this work that the magnetic degree of freedom, also above the ordering temper-
ature, is crucial to understand the thermodynamics of chemical mixing in Cr1−xAlxN.
The DLM approximation uses the CPA to model a system with randomly oriented local
magnetic moments. Thus it is a model which allows one to simulate the alloy energetics
in the paramagnetic state.

Fig. 5.1 shows that the antiferromagnetic configuration is the lowest in energy among
those considered in this work. This result is in agreement with previous calculations on
the CrN system [149]. The calculated lattice parameter is 4.196 Å, in good agreement
with the experimental one 4.162 Å [15]. While the ferromagnetic and the non-magnetic
configurations are considerably above the antiferromagnetic configuration in energy, the
DLM solution is only 15 meV per Cr atom higher than the latter. This indicates a
stability of the local magnetic moments at the Cr-sites while the ordering between them
is rather weak. The local moments at Cr-sites are 2.20 µB, 2.32 µB and 2.19 µB in the
antiferromagnetic, DLM and ferromagnetic cases respectively.

Before considering the development of the magnetic properties with concentration, we
note that the local relaxation energies in the Cr1−xAlxN system are considerably smaller
than in the system Ti1−xAlxN reflecting the smaller difference in equilibrium metal-
nitrogen bond length between the components but possibly also a difference in electronic
structure to be considered below. In DLM Cr0.50Al0.50N the local relaxation energy is
0.022 eV/f.u. compared to 0.100 eV/f.u. in Ti0.50Al0.50N as discussed above.

Fig. 5.2 shows the magnetization energy as a function of AlN content. The figure shows
the difference in energy between the three different magnetic configurations and the
non-magnetic solution expressed in eV per Cr atom. The inset shows a magnification
of the energy difference between the [001] ordered antiferromagnetic configuration and
the DLM solution (in eV per Cr-atom). Since cubic AlN is a non-magnetic semiconduc-
tor the energy differences per formula unit goes to zero as x in Cr1−xAlxN approaches
1, i.e. when the Cr atoms are more and more diluted. However, to understand ther-
modynamic properties, such as mixing enthalpy or magnetic ordering energies, it is
important to consider magnetisation energies per Cr-atom as is shown in the main plot
of Fig. 5.2. One can see that the driving force for magnetisation of the Cr atoms in-
creases with increasing Al content. At the same time, as can be seen in the inset, the
difference between the antiferromagnetic and the DLM configuration decreases. At the
AlN-concentration of 20% the DLM solution becomes lower in energy than the [001]-
oriented antiferromagnetic configuration. This indicates that there should exist another
antiferromagnetic-configuration that becomes the ground state at higher AlN content.
However in systems with chemical disorder such as Cr1−xAlxN one can expect strong ef-
fects of the local environment on the orientation of the local magnetic moments [152,153].
A complete ground-state search for the low-temperature magnetic order in Cr1−xAlxN
is beyond the subject of this work since it is focused on high temperature applications.
In the Cr-poor regime, where the Cr-atoms are quite far away from each other, the
different magnetic configurations, including the ferromagnetic one, approach each other
in terms of magnetization energy per Cr-atom. At the same time the magnitude of
the magnetisation energy increases rapidly. It is obvious that the system, regardless of
AlN-content (except the endpoint x=1) needs to be treated within a framework that
allows for the spin polarisation of the Cr-atoms. From this point forward, the results of
the calculations carried out for the DLM model are reported except when otherwise is
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explicitly specified.

Figure 5.1: Equation of states for four different magnetic configurations of B1 CrN. A [001]-
stacked antiferromagnetic configuration (triangles), a configuration with disordered local mo-
ments (diamonds), a ferromagnetic configuration (squares), and a nonmagnetic solution (cir-
cles) are shown. Energies are given relative to the minimum energy for the nonmagnetic
solution ENM

0 . The experimental lattice parameter [15] is shown by a vertical line.

5.2 Electronic structure

Fig. 5.3 shows the Cr1−xAlxN total density of states (DOS) for the valence band at five
different compositions, x= 0.00, 0.25, 0.50, 0.75, 1.00, as a function of energy relative to
the Fermi level. For clarity the curves of composition x= 0.25, 0.50, 0.75 and 1.00 are
shifted by 1.5, 3.0, 4.5 and 6.0 states/eV respectively. Total DOS for the spin up and
spin down channels are the same since the magnetic moments are randomly distributed
up and down with equal probability. It should be noted that even though the spin
channels are globally degenerate this does not mean that there is no magnetism in the
system, since there is a local magnetic splitting of spin up and down electrons at each
Cr-atom. The latter effect is shown in Fig. 5.4.

The DOS of pure CrN, i.e. x= 0.00, is shown as the bottom plot in Fig. 5.3. The
state positioned at about -15 eV is the N-2s semi-core state that does not participate
significantly in the bonding in the system. From about -8 eV to about -3 eV there is a
two-peak bonding state which is formed due to the hybridization between the 3d and
2p states of nearest neighbor Cr and N atoms, respectively. A pseudo-gap separates
the bonding states from the so called non-bonding states. They consist of Cr 3d states
with t2g symmetry that, opposite to the 3d states with eg symmetry cannot hybridise
strongly with the N-2p states. However, they form a weak hybridisation with next-
nearest neighbouring Cr states of the same symmetry. If we do not count the N-2s
electrons there are nine valence electrons per unit cell in CrN (3 N + 6 Cr). Six
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Figure 5.2: The magnetization energy E-ENM
0 per Cr atom (in eV per Cr atom) as a function

of AlN content in Cr1−xAlxN. As the content of AlN increases, the magnitude of the mag-
netization energy of the Cr atoms increases which underlines the importance of a magnetic
treatment also in the Cr-poor regime. Inset: The total energy difference per Cr atom between
the antiferromagnetic [001] ordered state and the disordered local moments solution (in eV
per Cr atom).

electrons can be fitted in the bonding Cr-N states while the remaining three have to be
accommodated in the non-bonding Cr-states that could hold six electrons in total. If
there had been no magnetism in the system, the Fermi level should be located almost at
the maximum of the non-bonding peak. This indicates that the Stoner criteria is fulfilled,
resulting in a magnetic splitting. One can clearly see this effect in Fig. 5.4 where the
density of states at the Cr-site is shown for pure CrN (solid line) and Cr0.25Al0.75N
(dashed line). The Cr majority spin (in the local magnetic framework) non-bonding
states are almost entirely filled (-2 to 0 eV) and there is only a small overlap with
minority spin non-bonding and majority spin antibonding (0 to 2 eV) states. The hump
at about 4 eV corresponds to minority spin antibonding states. The bonding states (-8
to -3 eV) show a negligible magnetic split.

The obvious effect when Al is added to the system is that the Cr-states gradually
decrease in intensity. The hybridization between Cr 3d and N-2p states is reduced and
the ionic bonding between Al-3p and N-2p becomes more dominant. More interestingly
the Cr-Cr next-nearest neighbor hybridization is weakened, resulting in a transformation
of the non-bonding Cr-3d states into atomic-like impurity states which can be seen both
in Fig. 5.3 and Fig. 5.4.

However, in contrast to the system Ti1−xAlxN, where the formation of such a sharp state
leads to a drastic increase of the Ti site-projected DOS at the Fermi level as seen in the
previous chapter, the opposite effect happens in Cr1−xAlxN. The magnetic splitting of
the non-bonding state leads to a situation where the non-bonding spin up state becomes
more and more occupied approaching the maximum of three electrons while the spin
down counterpart is pushed above the Fermi level. Thus the Fermi level is shifted
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down the slope of the majority spin state as Cr-Cr hybridisation decreases and with
high enough Al content the system shows semiconducting behaviour. In the Ti1−xAlxN-
case the system stays non-magnetic over the whole concentration range, possibly with
the exception of a minimal splitting in the extreme case of a single Ti-impurity in
semiconducting AlN. This is so since in Ti1−xAlxN there is only one electron per Ti-atom
that needs to be accommodated by the non-bonding states. Regardless if this state is
magnetically split or not, the Fermi level falls onto the peak, minimising the energy which
could be gained due to magnetization. Pure B1 AlN is predicted within the KKR-ASA
framework to be a semiconductor with a band gap of about 3 eV. Both concentration
dependent trends and the relative intensity of different peaks of the calculated DOS
of Cr1−xAlxN show reasonable agreement with the X-ray photoelectron spectroscopy
experiments in Ref. [16].

In summary, the electronic structure effects, that destabilise AlN rich Ti1−xAlxN is
absent in the case of Cr1−xAlxN due to the magnetic split of the non-bonding Cr-3d
states. The consequences for the mixing enthalpies will be apparent in the next section.

Figure 5.3: The total density of states for five different compositions of Cr1−xAlxN calculated
within the disordered local moment model. For clarity the curves, x=0.25, 0.50, 0.75, and
1.00, are shifted up by 1.5, 3.0, 4.5, and 6.0 states/eV, respectively. The magnetic split of the
Cr 3d non-bonding state is clearly seen at the Fermi level.

5.3 Thermodynamics

The isostructural mixing enthalpy

H(x) = E(Cr1−xAlxN) − (1 − x)E(CrN) − xE(c-AlN), (5.1)
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Figure 5.4: The spin polarized site projected DOS at the Cr site for CrN (solid line) and
Cr0.25Al0.75N (dashed line), calculated whithin the DLM model.

has been calculated for Cr1−xAlxN with concentration steps of x= 0.05. The energies
are taken for the calculated equilibrium volume for each specific concentration, thus
setting the PV-term of the enthalpies to zero. This gives a total of 21 points on the
mixing enthalpy curve. The magnetic state relevant for thin film growth and applica-
tions at elevated temperatures is the DLM state as has been shown in the first section
of this chapter. It has been shown [150, 151] that the mixing enthalpies calculated for
the ordered and disordered magnetic states can differ qualitatively. However, also a
non-magnetic calculation gives qualitatively different results compared to the DLM de-
scription of the paramagnetic phase of Cr1−xAlxN as can be seen in Fig. 5.5. The figure
shows the mixing enthalpy calculated for the DLM state and the non-magnetic state of
Cr1−xAlxN in eV per formula unit as a function of AlN content. The mixing enthalpy
calculated for the DLM state is very symmetric with respect to equiatomic composition
with its maximum 0.074 eV/f.u. at about x=0.50. On the other hand, the mixing en-
thalpy of the non-magnetic system shows a non-symmetric curve shifted to the AlN-rich
side and with a maximum of 0.130 eV/f.u. The difference underlines that only a model
that allows for disordered magnetism, like the DLM, could be used to accurately cal-
culate the thermodynamic properties of Cr1−xAlxN at relevant temperatures. It should
be noted again that the ground state structure of AlN is wurtzite. The structural en-
ergy difference between B1 (cubic rock-salt) and B4 (hexagonal Wurtzite) AlN is 0.338
eV/f.u. This indicates that at almost all temperatures and fractions of AlN, the cubic
mixture can at the most be metastable, which however is sufficient for a succesful use
of Cr1−xAlxN in hard coatings applications.

Fig. 5.6 shows a comparison between the mixing enthalpies of Cr1−xAlxN (bold dashed
line) and Ti1−xAlxN (bold solid line) as well as their second concentration derivatives

88



5.3. Thermodynamics

Figure 5.5: The isostructural mixing enthalpy of Cr1−xAlxNcalculated for a non-magnetic
(squares) and disordered magnetic (circles) state.

(Cr1−xAlxN: thin dashed line, Ti1−xAlxN: thin solid line). As seen in Fig. 5.6 there are
both striking qualitative and quantitative differences between the mixing enthalpies of
the Cr1−xAlxN and the Ti1−xAlxN systems. Firstly the mixing enthalpy of Ti1−xAlxN is
about two to three times larger than that of Cr1−xAlxN for all concentrations except for
the regime with very low fraction of AlN. Secondly the shape of the Ti1−xAlxN enthalpy
curve is highly asymmetric in contrast to Cr1−xAlxN which shows a very symmetric
behaviour with respect to equal fractions of CrN and AlN. This difference becomes
more striking when considering the second concentration derivative. While the second
derivative of the Cr1−xAlxN-curve shows a smooth parabola, the second derivative of
Ti1−xAlxN-curve goes to very large negative numbers as the content of AlN increases
above x=0.50. The latter is a direct result of the electronic structure variations with
alloy composition, as described above. Indeed an atomic like Ti-d state is formed at
the Fermi level at high AlN-content while there is no such counterpart in the Cr-case
due to the magnetic splitting. Since the second concentration derivative of the free
energy is directly related to the tendency for a mixture to decompose through the
spontaneous spinodal mechanism, the results shown in Fig. 5.6 can bee used to predict
the hypothetical 0 K limit of regions of metastability and instability in the systems.
More importantly it is the starting-point for finite temperature predictions.

A first approximation for the entropy contribution to the alloy free energy is the mean
field approximation used above for Ti1−xAlxN. If the same approximation is applied to
the Cr1−xAlxN system the spinodal region at 1000 ◦C would be from x= 0.23 to x= 0.70.
However those numbers should be taken as an upper limit of the extent of the spinodal
region since the mean field approximation is known to generally overestimate transition
temperatures and that vibrational entropy and strain effects are not considered. In
any case, coatings with medium or high AlN content, which have large potential for
industrial applications, are predicted to show much weaker tendency towards decom-
position in Cr1−xAlxN compared to Ti1−xAlxN. The unusual effect in Ti1−xAlxN, that
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Figure 5.6: The spin polarized site projected DOS at the Cr site for CrN (solid line) and
Cr0.25Al0.75N (dashed line), calculated whithin the DLM model.

the endpoint of the isostructural decomposition are samples with regions of almost pure
c-AlN, is absent in the case of Cr1−xAlxN. If isostructural decomposition anyway do
occur in the latter system it should end with regions of Cr- or Al-enriched Cr1−xAlxN.
Since the composition difference between such domains would be smaller and since the
concentration dependence of the lattice parameter is rather week, see Fig. 3.2, the strain
fields induced by iso-structural decomposition in Cr1−xAlxN are expected to be much
weaker than in the Ti1−xAlxN-system. Since such strains are thought to be the reason
for the age hardening in the Ti containing system [32] we expect no, or a minimal, age
hardening effect for the B1 structure of Cr1−xAlxN. On the other hand, at even higher
temperatures where the strained domains of Ti1−xAlxN are relaxed by the introduction
of dislocations the loss of coherency leads to a drastic loss in hardness. In Cr1−xAlxN
coherency in the material should be able to survive higher temperatures.

Experimentally the thermal stability of the Cr1−xAlxN has been explored in Refs. [37,38].
It was found that the single phase cubic B1 structure is obtained for samples with
x≤0.71. Pure CrN starts to lose nitrogen already at 750 ◦C but this process is shifted
to higher temperatures, between 900 and 1000 ◦C, with AlN fraction of 0.46 and 0.71.
This is likely to be connected to the larger affinity for Al to form nitrides as compared
to Cr as was shown in calculations of the formation energies in chapter 3. However,
even more relevant are the nitrogen vacancy formation energies that will be considered
below. Above the nitrogen release temperature a series of phase transformations take
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place, resulting in the formation of Cr2N, bcc-Cr and hcp-Al(Cr)N. Below the nitrogen
release temperature the B1 cubic phase is totally dominating, but in the coating with x=
0.71 small amounts of hexagonal AlN nucleates already at temperatures below 800 ◦C.

For the matter of comparison with the present study, the XRD-evidence of isostructural
decomposition within the cubic phase present in the Ti1−xAlxN system at temperatures
between 600 and 950 ◦C [26, 32], is absent in the case of Cr1−xAlxN. Also the age
hardening effect seen at temperatures between 600 and 950 ◦C in the Ti1−xAlxN films
is not seen in the B1 structured Cr-based coatings [37, 38] with the exception of one
unexplained observation point in [37]. Instead it was suggested that nucleation and
growth of h-AlN in grain boundaries at high temperatures as well as transformation
from CrN to h-Cr2N which is harder might have positive effects on the coatings during
operation at high temperature [37, 38].

5.4 Beyond the LDA and GGA: Effects of strong

electron correlation

Although the LDA and GGA approximations turn out to work very well for a large
number of solid state systems there are also well known cases where they work less
well. Such systems are typically transition metal oxides and f-electron systems, both
with considerably localised states. Such bands are not very well described within the
LDA since this approximation over-emphasises the minimisation of the kinetic energy
and underestimates the on-site Coulumb interaction. Transition metal nitrides should
in general be more weakly correlated and consequently better described by LDA and
GGA calculations, which also were shown above c.f. Chapter 3. However, CrN is
a border case with its half-filled non-bonding 3d-state. Epitaxial stabilised B1 CrN
has been experimentally shown to be a semiconductor at low temperatures [15]. Zero
temperature first-principles calculations of the ordered AFM magnetic state on the other
hand shows an overlap of the spin up non-bonding and the combined spin down non-
bonding and spin up anti-bonding states leading to a metallic behaviour [149], similar
to the disordered situation discussed above. This discrepancy seems to be due to the
result that the GGA calculations put the spin up non-bonding states at to high energies
creating a small overlap with the spin down non-bonding states. For instance the DLM-
calculations above put the peak of the spin up state at about -0.3 eV with respect
to EF while both the experiments in Ref. [15] and [16] measures this peak at about
-1.0 eV. The reason for this discrepancy might be due to strong correlation effects
for the rather localised non-bonding 3d-states in Cr. In order to test this hypothesis
and explore possible influence of such effects on thermodynamic properties, calculations
using the LDA+U and GGA+U frameworks are presented below. The LDA+U, and
similarly GGA+U, are based on the method to replace the LDA (GGA) on-site electron-
electron interaction of electrons in a state which is believed to be rather localised with
a term described by a Hubbard type Hamiltonian as described in Chapter 2.2.3. One
problem with this approach is that the parameter U can be seen as a fitting parameter
to experimental values thus moving away from the first-principles idea. However such
a procedure can be motivated in order to study qualitative effects before making the
effort to deduce the U-value from complex theoretical schemes which is also possible in
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principle. Note that in the following discussion the term U is used for the combined
(U-J) term in Eq. 2.14.

First the effect of different choises of the value of the Hubbard-U parameter on the lattice
spacing and electronic structure of CrN is presented, followed by calculations of magnetic
energy differences and magnetic moments in this system. It is followed by the calculation
of mixing enthalpies of two ordered CrAlN-compounds. The PAW method is used in
this investigation and the magnetic state is modelled with antiferomagnetic ordered
magnetic moments. This is so since the LDA+U method is currently not implemented
in the available KKR-ASA-CPA and EMTO-CPA codes where the DLM magnetic state
can be addressed. Further more the calculation of two ordered Cr0.5Al0.5N compounds
are not an attempt to model the energy of the random state. However this test is likely
to revile if there are qualitative effects on the mixing energetics of the system when
strong correlation is considered.

5.4.1 Lattice spacing

The value of the U-parameter influences the calculalated equilibrium lattice spacing for
AFM CrN as can be seen in Fig. 5.7. The experimental value of the so called relaxed
lattice spacing of epitaxial B1 films of CrN at room temperature1 4.162 Å, is shown
with a horizontal line. This is most likely slightly but not much higher, due to thermal
expansion, as compared to the 0 K value of relevance for a direct comparison with the
calculations. If the value of U was to chosen in order to reproduce this value, a U
between 4 and 5 eV should be chosen in a LDA+U calculation and between 0 and 1 eV
in a GGA+U calculation. However, since on-site interactions are not the only reason
why lattice spacings are slightly of target in GGA and LDA calculations, this would
be an unsafe procedure. Instead, one can compare the calculated valence density of
states with available experiments to see the effect of the U-parameter on the electronic
structure directly.

5.4.2 Electronic structure

In Fig. 5.8 the calculated electronic DOS of CrN using the LDA+U framework is pre-
sented. The chosen lattice spacing is the experimental value 4.162 Å. The calculations
are performed for a series of values of U ranging from U=0 (pure LDA) to 6 eV. Also
present in all pictures is the experimental valence band of CrN redrawn from Ref. [16].
Please note that this experimental values show a small gradual offset with decreasing
energy and that they are given in arbitrary units. Comparison between the calculations
and the experiments should be made with respect to peak positions rather than absolute
intensities. In the case of U=0, that is pure LDA calculations, one can se that the calcu-
lation puts the spin up Cr-3d non-bonding state very close to the Fermi level. Actually
even closer as compared to the GGA calculations at a slightly larger lattice spacing and
using a disordered magnetic state shown in Fig. 5.3. The experimental value for this
peak is about -1.0 eV in line also with the value in Ref. [15]. The bonding states pre-
senting peaks at about -5 and -6.5 eV are better describing the experimental situation.
As the value of U is increased the spin up Cr-3d non-bonding state is shifted down while

1Room temperature is assumed since no other information of the XRD measurement is given in [15].
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Figure 5.7: The calculated equilibrium lattice spacing of B1 001-AFM CrN using the LDA+U
and GGA+U methods respectively. The horizontal line is the experimental results from
Ref. [15].

the (largely) non-occupied spin down counterpart is shifted up above EF . There is also a
small shift upwards in energy relative EF of the bonding states. At a value of U=2-3 the
calculated DOS seems to be best describing the experimental values. At higher values
of U the spin up non-bonding peak is present at to low values while the bonding states
are to high. From this analysis it seems reasonable to perform calculations using the
experimental lattice spacing together with the LDA+U method with the U parameter
around 2-3. One can note that the calculations using U=3 still presents a non-zero but
very small DOS at EF while U=4 gives semiconducting behaviour in line with Ref. [15].

5.4.3 Magnetism

The tendency for ordering of the Cr local moments in CrN is rather weak as shown by
the quite low Neél temperature around 0◦C [13]. Further more, in the epitaxially sta-
bilised B1 structure no magnetic ordering has been observed at all [15,16]. The tendency
for magnetic ordering can qualitatively be related to the energy difference between anti-
ferromagnetic configurations and the ferromagnetic configuration of Cr moments. The
left panel of Fig. 5.9 shows the energy difference between the AFM [001] order and the
FM order calculated using LDA+U and the experimental lattice constant 4.162 Å for
different values of U. The right panel shows the size of the total and local Cr-moments
in FM and local Cr-moments in AFM CrN as function of U. The 001-oriented AFM
state is lower in energy as compared to the FM state regardless of U-value. With the
introduction of a small value of U the energy difference first increases from -0.11 eV/Cr-
atom to -0.16 eV/Cr-atom, but then it decreases again and at U=3 it is back at about
-0.11 eV/f.u. At higher values of U the difference decrease further. This behaviour
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can be understood by consideration of the size of the magnetic moments and the elec-
tronic structure. The magnetic moments increase with increasing U since the gradual
localisation of the Cr-3d states makes the spin up non-bonding state more and more
occupied on expense of the spin down non-bonding state. Larger absolute values of the
spin polarisation is a definite factor in strengthening magnetic interactions. However,
this localisation also gradually decrease the overlap of next nearest-neigbour Cr-atoms
thus diminishing the coupling between Cr-moments. These competing processes leads
to the energetic behaviour seen in the left panel of Fig. 5.9.

5.4.4 Mixing energy of ordered CrAlN compounds

Finally, to get an insight in whether or not strong electron correlations beyond LDA
and GGA can influence the configurational thermodynamics of Cr1−xAlxN the mixing
energy of two ordered Cr0.5Al0.5N phases, the L10 and L11 structures have been calcu-
lated in antiferromagnetic states corresponding to alternating up and down spins within
the Cr planes (001 for L10 and 111 for L11). These calculations are done with the lat-
tice spacing of 4.11 Å, which corresponds to a linear regression fit of the experimental
Cr1−xAlxN values in Ref.s. [16, 134]. As reference states the 001 ordered antiferromag-
netic CrN and c-AlN at their respectively experimental lattice parameters have been
used. The results of LDA+U and GGA+U calculations as a function of the U-parameter
are presented in Fig. 5.10. The value of the mixing energy of these ordered structures
decreases with increasing U. The mixing energy of the L10 phase, which is higher than
the L11-phase for all values of U decreases from 0.125 eV/f.u. in the LDA calculation
(0.09 eV/f.u. with GGA) to about 0.05 eV/f.u. (0.055 eV/f.u. with GGA+U) at the
value U=3 eV concluded to be reasonable above. Interestingly, the mixing energy of
the L11-structure goes to negative values although with a small magnitude when U is
above 1 eV both with LDA+U and GGA+U calculations. The latter fact is also true
if all calculations are instead performed at the calculated equilbrium GGA+U lattice
spacings. This analysis indicates, although no direct quantitative conclusions regarding
the magnetically and chemically disordered phases can be done, that the inclusion of
strong electron correlation into the picture slightly decreases the mixing enthalpies in
the cubic Cr1−xAlxN system.

The reason for this effect, as well as the effect on the energy differences between AFM and
FM magnetic ordering in pure CrN described above, can be understood from the develop-
ment of the electronic structure when strong correlation is taken into account. A certain
part of the rather weak isostructural decomposition tendency in the c-Cr1−xAlxN system
in the GGA calculations above arises from the cutting of the Cr-Cr next nearest neigh-
bouring bonds when Al is introduced in the system. However, when the non-bonding
states are further localised as U increases, this bond becomes weaker and weaker giving
a lower effect on mixing properties.

Thus the important effect of magnetism observed above is likely to be further enhanced
when the theoretical analysis goes beyond the LDA and GGA approximations for ex-
change and correlation effects, possibly leading to a situation where c-Cr1−xAlxN alloys
could have a very weak tendency towards short range order rather than clustering.
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Figure 5.8: The electronic density of states of 001-orriented antiferromagnetic CrN as calcu-
lated with the LDA+U method for different values of U in eV (solid line). The experimental
lattice spacing is used. For comparison the room temperature XPS-value redrawn from Ref. [16]
is shown (dashed line).
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CHAPTER 5. Cr1−xAlxN - THE EFFECT OF MAGNETISM

Figure 5.9: Left panel: The energy difference between 001-oriented AFM CrN and FM CrN
as a function of U in the LDA+U framework. Right panel: The magnetic moments of FM and
AFM CrN as a function of U. Both total moment and local Cr-moments are shown for the FM
configuration. Experimental value of the lattice spacing is used.

Figure 5.10: Calculated mixing energies of two ordered and antiferromagnetic Cr0.5Al0.5N
compounds with respect to antiferromagnetic CrN and c-AlN as a function of the value of U
in the LDA+U and GGA+U approach. Experimental lattice parameters are used.
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Chapter 6

Point defects and off-stoichiometry

In the previous chapters the investigation of various properties of M1−xAlxN systems
revealed the effects of choosing different transition metal nitrides as alloying material
with AlN. In all calculations a perfect 1:1 stoichiometry between transition metal + alu-
minium and nitrogen has been assumed, as well as vacancy free sublattices. Although
being a very reasonable starting point in those systems, since most experimental mea-
surements indicates a metal to nitrogen ratio rather close to one, the possibility for a
considerable deviation from this value, as well as the presence of vacancies and other
point defects should be kept in mind. For instance, pure TiNx is thermodynamically
stable in the B1 structure for a substantial amount of nitrogen vacancies (VN) up to a
composition of TiN0.67

1 at temperatures just above 1000 ◦C as can be seen in the phase
diagram of Fig. 1.6. In non-equilibrium systems such as thin films the possible deviations
from stoichiometry are likely to be larger compared to equilibrium situations. Further
more the accuracy of the measurements of light element compositions using Rutherford
backscattering spectroscopy (RBS) or elastic recoil detection analysis (ERDA) are often
in the order of a few percent of the sublattice occupancy [15, 16, 46, 50] giving a small
uncertainty to this degree of freedom in all experiments. Finally, even though it might
be possible in principle to synthesize B1 structures with very close to 1:1 stoichiome-
try, it could be of interest to deliberately introduce off-stoichiometry, for instance by
reducing the nitrogen pressure in the deposition champber, in order to achieve certain
effects. For instance nitrogen vacancies was suggested to increase hardness in Ref. [10].
In this chapter the energetics of nitrogen sub-stoichiometry is investigated. First the
formation energies of nitrogen vacancies in the TiN, ScN, HfN, CrN and c-AlN binaries
are studied. Then an investigation of the effect of local environment on the VN energies
in c-Ti0.5Al0.5N is performed followed by a systematic study of the coupling between ni-
trogen sublattice occupancy and the tendency for isostructural coherent decomposition
in the c-Ti1−xAlxN1−y system.

6.1 Vacancy formation energies in binary nitrides

The formation energy of a single nitrogen vacancy was calculated using the formula

1This is the resulting sublattice occupation if the composition of 0.6 atomic parts Ti is balanced
only with nitrogen vacancies which it is believed to be in this system.
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EVN

f = Edef − Eideal +
1

2
EN2 (6.1)

where Edef is the energy of the supercell containing the defect, Eideal is the supercell
without defect and EN2 is the energy of a nitrogen molecule in vacuum. The vacancy
formation energy in the nitrides was calculated for the five binary nitrides TiN, ScN, HfN,
c-AlN, and CrN using the PAW method. In the first four cases a supercell consisting of
3x3x3 conventional unitcells with 108 metal atoms and 107 nitrogen atoms was used. In
the case of CrN, due to the increased computational cost due to magnetism, a supercell
consisting of 2x2x2 conventional unit cells with 32 metal atoms and 31 nitrogen atoms
was used. The effect of using a smaller supercell in this case is not expected to be large.
In the case of the four other nitrides, the largest difference in EVN

f between using a 215
atoms and a 63 atoms supercell was 0.28 eV (ScN). The values of the formation energies
are tabulated in Tab. 6.1. The semiconductor c-AlN shows the clearly highest formation
energy, 6.39 eV showing the high energy cost for braking the balance of valence in this
system. It should be noted that charged defects, often present in semiconductors are
not considered in this work. EVN

f in HfN is calculated to 3.21 eV which is similar but
not identical to the value in Ref. [84], 3.51 eV. The formation energies given in Ref. [84]
are calculated using a less dense k-mesh and stated to be converged only to about 0.1
eV which possibly contributes to the difference with the present result. The value for
ScN is lower, 2.87 eV. ScN is a zero bandgap semiconductor in the present calculations.
In experiments the bandgap is measured to be larger 1.3 eV [154]. It is not clear if the
formation energies of the nitrogen vacancies would change if a calculational procedure
where used where the bandgap was reproduced correctly. However, it seems clear that
the presence of unoccupied 3d non-bonding states at least reduces the formation energy
of VN in ScN with respect to the wide-bandgap semiconductor c-AlN.

In TiN EVN

f is calculated to 2.41 eV which is identical to the value in Ref. [84]. EVN

f

in CrN, as calculated within the 001-oriented AFM magnetic state and the GGA equi-
librium lattice parameter 4.14 Å, is considerably lower than in all the other systems,
only 1.10 eV. If instead the calculation is done for the room temperature experimental
lattice spacing 4.162 the value is not changed more than slightly: 1.17 eV. This is a clear
indication that out of the systems considered in this work, CrN is the by far most likely
candidate to start to lose nitrogen to the atmosphere or vacuum upon heat treatment.
One should realise that the equation 6.1 is considering the 0K situation and that the gas
phase will be much more favourable relative to the solid phase at finite temperatures
due to entropy considerations. This prediction is clearly in line with the experimental
reports of initiated nitrogen loss of CrN thin films and subsequent phase transformation
to nitrogen poor phases, at temperatures around 800 ◦C [37]. Further more, by just
comparing the values for EVN

f in the binary nitrides in table 6.1 one can realise that the
substitution of a part of the Cr atoms with Al forming CrAlN coatings is very likely to
reduce this tendency, also in line with experimental reports [37].

All four transition metal nitrides considered here show a certain outward relaxation of
the metal atoms neighbouring the vacancy. This is in line with was has been reporter
previosly for TiN, ZrN and HfN [84]. In ScN, the Sc atoms closest to the vacancy position
increase the distance from 2.26 Å, to 2.37 Å. In CrN the relaxations are smaller, the Cr
atoms coordinating the vacancy increase their distance from this position from 2.07 Å to
2.09 Å. Once again, the small value is not due to the use of a smaller supercell since the
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6.2. Local environment effects for VN in Ti0.5Al0.5N

relaxation around the vacancy in ScN is very similar when calculated with the smaller
cell. In c-AlN on the other hand, the introduction of a vacancy does not give rise to any
considerable distortions in the lattice. The Al atoms closest to the vacancy only moves
about 0.001 Å in the direction of the vacancy.

Table 6.1: Calculated formation energies of an uncharged nitrogen vacancy in pure
nitrides.

Systems EVN

f [eV/f.u.]

c-AlN 6.39
HfN 3.21
ScN 2.87
TiN 2.42
CrN (AFM) 1.10

6.2 Local environment effects for VN in Ti0.5Al0.5N

In the pure binary nitrides, the formation energy of a nitrogen vacancy, at least in the
dilute regime, is unique. However, in the case of a solid solution ternary system such
as Ti1−xAlxN this is not the case. Instead the vacancy formation energy will depend
on the local chemical environment of each potentially vacant site. We have already
seen above in Fig. 4.6 that the nearest neighbour M-N and Al-N bond lengths show a
considerable spread in Ti0.75Al0.25N, Ti0.5Al0.5N, and Ti0.25Al0.75N. It is likely that there
is a corresponding spread in formation energies for the vacancies.

In order to investigate this we have calculated the formation energies of one VN defect
in a Ti0.5Al0.5N SQS supercell with the 2x2x2 conventional unit cell format. This is
different from the SQS supercells used above for calculation mixing enthalpies and is
actually not a convenient geometry for optimising short range order between Ti and
Al. However for this 16+16+32 atom supercell and this particular composition it is
still possible to generate short range order parameters close to zero for the first seven
coordination shells. The reason for using this geometry is that it is desirable to increase
the shortest vacancy-vacancy distance in order to minimise the vacancy self-interaction.
As was stated above the change in vacancy formation energies when increasing the cell
further is rather small. In the case of c-AlN it is 0.16 eV and in the case of TiN it is 0.05
eV. In this supercell all possible 32 nitrogen vacancies were considered and the resulting
EVN

f are plotted in Fig. 6.1 as a function of the number of nearest neighbouring Al atoms
coordinating the vacancy. It is seen that the substitution of half of the Ti with Al is
shifting the formation energies to higher values, the value for pure TiN is shown with
a filled square for reference. However there is still a huge difference up to the value of
c-AlN, shown with a filled triangle.

There is as expected a considerable spread in formation energies of the vacancies. Inter-
estingly both the maximum value (3.73 eV) and minimum value (2.93 eV) is calculated
for nitrogen sites with the same number of Al nearest neighbours (2). Even though one
might trace a weak tendency for lower formation energies for the nitrogen sites with
more Ti neighbours, one might need to look for other and more complicated configura-
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tional patterns in order to clarify the reason behind the rather large difference in EVN

f

for different nitrogen sites in Ti0.5Al0.5N.

The spread in formation energies have consequences. First of all the formation energy
in the thermodynamic sense becomes temperature dependent. This is so since for low
temperatures only the lowest energy states could be populated, while at increasing tem-
perature also states with higher energy could. Thus it is slightly complicated to give an
exact value for EVN

f in Ti0.5Al0.5N to be compared with the values in Tab. 6.1. It is clear
however that the addition of Al into TiN increases the formation energy of nitrogen
vacancies, decreasing the tendency for sub-stoichiometry given that all other relevant
parameters could be kept constant. Alternatively one could say that a forced introduc-
tion of vacancies would give an additional driving force for decomposition into TiN and
c-AlN since the vacancy formation energy would be smaller in the phase separated case,
given that they tend to TiN of course. This point will be investigated in details in the
next section.
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Figure 6.1: The calculated formation energies of nitrogen vacancies in Ti0.5Al0.5N as a function
of the number of nearest neighbouring Al atoms coordinating the vacancy. For comparison
the formation energy in TiN (solid square) and c-AlN (solid triangle) is shown.

Secondly the spread in formation energies also influences diffusion of VN in the lattice. If
a nitrogen site corresponding to a low vacancy formation energy is empty, the additional
barrier due to the spread in formation energies might prevent neighbouring nitrogen
atoms to fill it. This could slow down diffusion of nitrogen or non-metal impurities like
oxygen possibly present on the nitrogen sublattice. The very slow oxygen diffusion in
TiAlN as compared to both TiN and AlN [27] might in fact be due not only to the
formation of a protective Al2O3 layer but also due to decreased nitrogen and possibly
oxygen diffusion rates within the nitride phase due to the results found above.
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6.3. Nitrogen sub-stoichiometry in c-Ti1−xAlxN1−y

6.3 Nitrogen sub-stoichiometry in c-Ti1−xAlxN1−y

We now turn to study if a possible nitrogen sub-stoichiometry influences the tendency
for phase separation on the metal sublattice as was seen in Chapter 4.

We have calculated the total energy of the random solid solution c-Ti1−xAlxN1−y for the
whole range 0≤x, y≤1 with steps of ∆x, y = 0.125 giving a mesh of 81 different composi-
tions. Even though such solutions in the NaCl structure are thermodynamically unstable
over a wide range of compositions, e.g. ground state AlN has the wurtzite structure and
pure Ti crystalizes in the hcp structure, the scope is relevant for two reasons. Firstly,
thin film deposition techniques can be employed to synthesize metastable systems far
away from thermodynamic equilibrium and allow studies of coherent isostructural de-
composition. Secondly, general trends might be observed which are useful for better
physical understanding of the TiAlN system including in a common framework, impor-
tant materials systems such as Ti1−xAlxN, MAX-phases [155] and Ti-Al intermetallics.

We have used the Order-N, Locally-self-consistent Green’s function method (LSGF) [112,
113] described above, together with the Generalized Gradient Approximation (GGA) [97]
for the exchange-correlation functional to solve the electronic structure problem for the
solid solutions. The local interaction zone for the LSGF calculations included two nearest
neighbour shells. Local relaxation of the N atoms were considered using the independent
sublattice model while the small relaxation of the metal atoms were neglected. Each
supercell, consisting of 648 metal atom sites and 648 nitrogen/VN sites, were created
in order to mimick a completely random distribution in the solution phase [77]. The
calculations of formation energies for the entire concentration grid was performed with
respect to fcc-Al, fcc-Ti and N2 molecules 2.

Panel (a) of Fig. 6.2 shows the calculated mixing enthalpies of Ti1−xAlxN1−y with respect
to TiN1−y and AlN1−y (Ti-Al mixing) at fixed levels of VN . Panel (b) shows the mixing
enthalpies with respect to Ti1−xAlxN and Ti1−xAlx(N-VN mixing) at different fixed
Ti-to-Al ratios. The mixing enthalpy of stoichiometric Ti1−xAlxN is in quantitative
agreement with the calculations using EMTO-CPA-ISM presented above. The N-free,
Ti-Al mixing enthalpy is in qualitative agreement with calculations for the fcc-Ti-Al
mixing enthalpies in Ref. [156]. Our value at equiatomic concentrations, -0.211 eV/f.u.
is ≈ 0.08 eV/f.u. less negative. The enthalpy of a relaxed fcc-Ti0.5Al0.5 SQS supercell
used for comparison, -0.276 eV/f.u., lies in between the LSGF values and the ones in
Ref. [156]. The difference between our LSGF and our PAW calculation is believed to
be due to the neglect, in the former case, of local relaxations of metal atoms and the
presence of an empty nitrogen sublattice which gives a slight artificial decrease in metal-
metal interactions. The errors due to both those two sources are largest on the nitrogen
free border and we thus have an estimate of their maximum value, and they are not
believed to interfere with the conclusions made in this chapter.

Panel (a) of Fig. 6.2 shows a transition from large positive mixing enthalpies for the ni-
tride system towards large negative mixing enthalpies for the transition metal alloy. In
the nitride case, the positive mixing enthalpy and its non-symmetric shape is explained
by the electronic mismatch between TiN and AlN leading to an unfavourable localisa-
tion of Ti non-bonding states described above. When the N is removed, the physics is

2A combination of the LSGF values for the energy of TiN and fcc Ti was used together with the
PAW formation energy of TiN to get the value of E(N2).
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gradually changing to the metallic bonding situation of the Ti-Al intermetallics which
forms stable compounds. Panel (b) shows a transition from negative mixing enthalpies
in TiN1−y towards the large positive mixing enthalpies in AlN1−y. TiN is a very stable
compound due to the N p-Ti d hybridization. However, the system is tolerant for off
stoichiometry due to flexibility of the metallic states around the Fermi level to incorpo-
rate VN states, leading to a negative mixing enthalpy. The B1 AlN considered in this
work is a semiconductor and any VN will disturb the balance of valance and cost energy,
leading to a high mixing enthalpy in line with the discussion of nitrogen vacancies above.

Knowing the shape of the ”pseudo-binary” mixing enthalpy curves is, however, not
enough to determine preferred decomposition patterns in the two dimensional compo-
sition space of Ti1−xAlxN1−y. One has to consider also the possibility for an inter-
sublattice coupling. We have thus considered our total energies as a function of two
independent concentration variables x and y.
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Figure 6.2: (a) Mixing enthalpy of Ti1−xAlxN1−y as a function of Al content x for different
fixed fractions of N between y= 0 and y=1, relative to TiN1−y and AlN1−y. (b) Mixing
enthalpy of Ti1−xAlxN1−y as a function of N content (1-y) for different fixed Ti-to-Al ratios,
relative to Ti1−xAlxN1 and Ti1−xAlx.

In Fig. 6.3 the formation energy of Ti1−xAlxN1−y is shown as a function of x and y. It
reveals that a simultaneous consideration of the x and y degrees of compositional freedom
gives rise to a complicated curvature of the energy surface. The energy gain or loss per
concentration change unit by any spontaneous fluctuation in composition separating the
system into two subsystems with compositions x+∆x, y+∆y and x−∆x, y−∆y (where
∆x and ∆y can be both negative and positive independent of each other) can be written
as:
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∆E =
E(x+∆x, y+∆y)+E(x−∆x, y−∆y)−2E(x, y)

2(|∆x| + |∆y|)
. (6.2)

We have calculated this quantity numerically using for each (x, y) point the values from
the eight points (x ± 0.125, y), (x, y ± 0.125) and (x ± 0.125, y ± 0.125) surrounding
it (except for at the perimeters where only one dimension of separation is possible)
thus giving a measure on the energy gained by a small fluctuation in four different
directions (x̂, ŷ, x̂+ŷ and x̂-ŷ). Other directions, e.g. 2x̂+ŷ, were not studied since
their numerical derivation would involve a larger compositional offset. Note that our
purpose is to find the driving force for spontaneous decomposition, without nucleation
processes. We identify that this driving force is strongest in the direction in which ∆E
has the largest negative value. Fig. 6.4 shows the results where the arrows point in the
preferred decomposition direction and their length is proportinal to ∆E. At 0 K, the
solid solution is unstable towards small fluctuations in the concentration over almost
the entire range of x and y values. The transition metal line and the TiN1−y line are
the two exceptions. However, three major regimes of different preferred decomposition
directions can be identified.

1) Close to the stoichiometric nitride case and particularly at the medium and high
Al content, the VN are acumulated in Ti-rich regions while N sticks to Al. This ten-
dency can be explained following the argument above that formations of VN in AlN
is unfavourable due to the semiconducting character of its bonding, while TiN can ac-
commodate them, as experimentally observed [10]. We predict that this effect works
together with the decomposition mechanism of stoichiometric Ti1−xAlxN and should
enhance the tendency for coherent isostructural decomposition. This is indicated by the
fact that the arrows on the row of compositions y=0.125 are longer than those in the
stoichiometric case y=0.00. Decreasing the N content can thus not be used as a way of
stabilizing solid solution Ti1−xAlxN at high Al-content. It would instead be a way to
enhance the decomposition tendency in situations where such behavior is desired.

2) In the N-poor, Ti-rich region N sticks to Ti while Al is accumulated in the VN -rich
regions eventually forming metallic Al or an Al-Ti alloy. The chemical driving force for
this separation is strong even if one compares it with the nitride case of the same Ti-to-
Al ratio. The fact that Ti binds stronger to nitrogen than Al under N-poor conditions
is connected with the discussion of the nitride case: Al can form stoichiometric AlN
but between such compounds and metallic Al, all compositions are unfavourable due
to the drastic incompatibility of the electronic structure of free-electron like Al and the
semiconducting structure of AlN. This suggests a partial reinterpretation of the findings
in Ref. [157] where epitaxial thin film samples of the composition Ti0.66Al0.34N0.49

3 were
found to decompose into what was inferred to be TiNy′ and AlNy′′ . We propose that
these phases more likely have compositions close to TiN0.82 and Ti0.18Al0.82, the later pos-
sibly with an ordering tendency towards the Ti0.25Al0.75 DO22 compound. Even though
complex ordering is not included in this analysis one can se that the decomposition trend
goes in the same direction regarding neighbour coordination as the ordered compounds
of the cubic Ti3AlN perovskite and the hexagonal Ti2AlN and Ti4AlN3 MAX-phases.
Also in these systems nitrogen neighbours only Ti atoms while Al has a N-free nearest

3This is the composition given separately for each sublattice (cmp. Ti1N1) assuming no metal site
vacancies, the total composition given in Ref. [157] is Ti0.44Al0.23N0.33.
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Figure 6.3: The calculated formation energy of c-Ti1−xAlxN1−y as a function of Al content x
and nitrogen content (1-y). Values are given relative to fcc-Al, fcc-Ti and N2 molecules at 0K.

neighbour environment. The competition between for instance ordering in line with the
Ti3AlN perovskite and isostructural decomposition for situations like in the experiment
above, deserves further analysis.

3) In between the N-rich and the N-poor/Ti-rich regimes, at high Al content, there is a
region where the tendency for separation along the N-VN direction is dominating. This
region corresponds to the energetically most unstable compositions where no reports of
synthesized stable or metastable phases exist.

In summary it has been shown that there exists a clear coupling between the compo-
sition and configuration of the metal sublattice with the nitrogen composition and the
possibility of nitrogen vacancies on the nitrogen sublattice of cubic M1−xAlxN1−y sys-
tems. This coupling can explain both the increase of the onset temperature of nitrogen
loss in Cr1−xAlxN upon Al addition [37], and the decomposition pattern observed for
heavily sub-stoichiometric Ti0.66Al0.34N0.49 [157]. The diffusion of nitrogen or non-metal
impurities on the nitrogen sublattice should be slower in Ti0.5Al0.5N as compared to TiN
due to local environment effects that create traps for vacancies. Further more a slight
nitrogen sub-stoichiometry is likely to have an enhancing influence on the driving force
for isostructural decomposition in Ti1−xAlxN coatings.
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Chapter 7

Discussion

Following the presentation of the results of this theoretical study in the chapters 3-6, a
discussion is presented in this chapter focusing on two key issues. First a discussion about
the methodological framework is performed. In the light of the previously presented
results, especially for the Ti1−xAlxN system, the strengths and the weaknesses of the
different methods used can be analysed and a discussion on this topic is presented.
Secondly the generality of the observed mixing and decomposition tendencies in different
ternary M1−xAlxN systems is discussed focusing on how the choice of transition metal
influences the underlying driving force for and the process of decomposition.

7.1 Methodological discussion

The problem of treating the solid solution phases in M1−xAlxN systems has been solved
using two complementary methods, the special quasirandom structures (SQS) method
and the coherent potential approximation (CPA). The SQS structures have been con-
structed for a series of compositions for the cubic B1 structure as well as for the hexago-
nal B4 structure in order to minimise the magnitude of the Warren-Cowley short range
order parameters on the first seven nearest neighbour shells. This corresponds to de-
signing the supercells so that they resemble the real solid solution system with respect
to configurational correlation function parameters (Eq. 2.22) in the range where they
are strongest. The price for this achievement, with comparison to e.g. random number
generated structures, is of course that correlation functions for the longer ranged inter-
actions are in worse agreement with the random state. In an alternative approach, the
CPA method has been complemented by the introduction of the independent sublatice
model (ISM) to treat the energetic effect of local lattice relaxations. The simultaneous
application of two different methods, each with its own strengths and weaknesses allows
a confidence in the results that could not have been reached with either of them alone.

This is illustrated in Fig. 7.1 where the results of calculations of the isostructural mixing
enthalpy of c-Ti1−xAlxN calculated with the SQS and CPA-ISM methods are reiter-
ated together with the results from methods used in two previous attempts [72, 73] to
describe the mixing enthalpies of this system. Please note that in order to perform a
completely fair comparison the enthalpies of the small ordered structures are recalcu-
lated with the GGA functional and are not the original LDA values from [72] which
however are very similar. It is obvious that the state-of-the-art methods SQS and CPA-
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Figure 7.1: The calculated mixing enthalpy of c-Ti1−xAlxN using the SQS-method, the CPA-
ISM method, ad-hoc supercells and small ordered structures.

ISM give results in very good agreement with each other while the previously used
methods significantly overestimate the enthalpies. This comparison clearly proves the
absolute necessity to accurately consider the atomic configurational state when conclu-
sions about physical properties of ternary nitrides hard coatings materials are to be
drawn from first-principles calculations.

At this point one might object that perhaps the perfect random solid solution is not
the correct system to analyse when trying to understand experimental thin films re-
sults. This is partly true in principle, in systems with a tendency for phase separation
such as Ti1−xAlxN, one would expect some degree of short-range clustering also within
as-deposited solid solutions. But the perfect random solid solution is the excellent start-
ing point for any such analysis since it corresponds to, although ideal, well known and
specified physical conditions. Further more, with the random distribution as starting
point one can derive the driving forces in terms of mixing enthalpies or effective cluster
interactions which will work towards a separation in the system for instance during cut-
ting tools operations. Such an approach, for instance further developing the procedure
in section 4.5, can then predict the amount of clustering tendency at a given temper-
ature. However, if the exact distribution of atoms in as-deposited thin films materials
is desired from pure first-principles calculations, one has to perform a study involving
surface mobility and bulk-surface interactions. Such an interesting and comprehensive
study would require the knowledge of the bulk processes taking place within the grains.
On the other hand, if short ranged clustered structures are chosen ad-hoc one gets once
again uncontrolled results which can not be directly compared for different compositions
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or structures, pretty much like the problematic approach in Ref. [73], although those
supercells, judging from the energetics, are likely to show short-range order rather than
clustering. If however information is desired regarding some properties of a material in
a specific experiment where SRO-parameters have been obtained experimentally, one
should create SQS supercells corresponding to those known parameters. But that is an
objective quite far from the one of this work.

The supercell based SQS method has some obvious benifits. When the problems of the
creation of the structures, random-like or with SRO, have been solved, normal fast par-
allelised supercell methods can be used to derive total energies, geometry optimisation,
electronic structure and other physical properties within a single framework without
having to include any additional models or corrections.

The main disadvantage with the SQS method is that it is not a priori known which
effective interactions in Eq. 2.27 that are strong enough to give a non-negligible contri-
bution to the total energy. Although it is generally true that the strongest interactions
are short-ranged pair interactions the number needed for quantitative predictions are
system dependent. The problem of obtaining extremely high accuracy of the total en-
ergy is illustrated in Fig. 2.4. In some systems also larger sized cluster interactions, like
three and four-sites clusters, are important. However, in principle and using big enough
supercells, also multi-site correlation functions can be controlled in the SQS creation
procedure. The ongoing development of increasing computational resources also works
in favour of the SQS method which after all can be considered as an intelligent ”brute
force”-method.

The CPA method also has its benefits. First of all, it gives by its very nature a direct ac-
cess to the physics of the ideally random alloy state. No worries are needed for artificial
effects originating from supercell periodicity or uncontrolled correlation functions. Phys-
ical properties e.g. the total energy of any particular alloy composition can be calculated
with equal ease and with identical accuracy making it possible to derive concentration
derivatives of them. It also allows the study of effects that might be connected to deli-
cate concentration dependent bandstructure effects of which the present work has a clear
example in Fig. 4.8. The implementation of the disordered local moments method allows
for the treatment of magnetically disordered phases like Cr1−xAlxN. Further more the
single site nature of the method typically reduces computational cost as compared to the
calculation of big supercells. Especially if multi-component alloys are to be considered
such as c-Ti1−x−yCrxAlyN, the supercells needed to accurately describe relevant correla-
tion functions becomes huge while the CPA works almost as fast as for two component
calculations. The SGPM method relying on the CPA effective medium can be used to
derive effective interactions. Although it was shown in section 4.5.3 that the usage of
concentration dependent interactions for the study of phase separation temperatures are
very problematic, such parameters can be directly used as control of which correlation
functions that needs to be close to zero in a design of SQS supercells. This was in fact
done already for the case of c-Ti1−xAlxN in Ref. [77] which verified the presently used
B1 SQS-structures for that system.

Of course there are problems with the CPA approach. Of highest relevance for the
systems treated in this work is the problem with local lattice relaxations. In the system
c-Ti1−xAlxN, the relaxation energies corresponds to roughly one third of the total mixing
enthalpies as can be seen in Fig. 4.2. Without the usage of an accurate model for
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the additional treatment of local lattice relaxations, the CPA would not be useful for
energetic properties of Ti1−xAlxN. The independent sublattice model as introduced in
chapter 2 and succefully tested and applied in chapter 4 is an important improvment
on previous models for lattice relaxations e.g. the effective tetrahedron model [126],
since it points at a scheme for treating lattice relaxations in systems with more than
one sublattice. Although most likely rather accurate also for other systems with the B1
structure, it remains to be seen if it could work also for the wurtzite structure in e.g.
h-Ti1−xAlxN. In that structure there are three independent lattice parameters already
in the pure nitrides, a, c/a and u, to compare to the single one in the B1 structure
which might give rise to problems. Further more one should be aware that even if the
model works well for the energy, it does not capture coupling between local relaxations
and other properties such as electronic structure or bulk modulus if they should be of
interest.

The results of this work taken together clearly shows the potential of a simultaneous
usage of the SQS and the CPA frameworks for studying disordered systems. With the
knowledge of respective methods strengths and weaknesses, or even explicit combina-
tions of them such as the LSGF-investigation in chapter 6, one can performe theoretical
studies able to explain and even predict a long range of different properties of relevance
for hard coatings materials.

Finally, a few words of a method that has not been used, the Connolly-Williams
method [158]. This method, in which the energies of a series of ordered structures
with known correlation functions are mapped to the effective cluster interactions of
Eq. 2.27, is in fact the basis of a majority of alloy theory works these days, for instance
in Ref. [67]. The choice of not using this methodological framework was done partly
because the direct access to the electronic structure, as well as other properties, of the
random alloys was desired without the need for a separate cluster expansion for every
property. Further more, it was shown in Ref. [98] that even an excellent description
of the energies of ordered structures does not guarantee that the description of high
temperature disordered phases are accurate. Finally the consideration of a magneti-
cally disordered state like the Cr1−xAlxN case is problematic within the present day
implementations of the Connolly-Williams scheme. However, considering the problems
encountered in Chapter 4.4.3, one should not exclude the option to use this method to
derive concentration independent effective cluster interactions in the Ti1−xAlxN system.
In such a case, the knowledge gained in the present study, in terms of energetics of
disordered phases as well as the physical origin and range of effective cluster interac-
tions, would be invaluable to accurately describe the disordered parts of phase space
as well as the asymetric concentration dependence of the mixing and decomposition
thermodynamics.

7.2 The effects of alloying elements

In this work four different ternary M1−xAlxN solid solution systems have been consid-
ered: Ti1−xAlxN, Cr1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN. The reason for the choice of
four different system has been to be able to reveal the general underlying physics gov-
erning these related but different systems. Especially the four transition metal nitrides
TiN, CrN, ScN, and HfN differ in terms of valence electron number, lattice parameters,
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and formation energies. The large lattice spacing difference between ScN and HfN on
one hand and c-AlN on the other was demonstrated in chapter 3 together with the
consequences for deviation from Vegard’s rule and bulk modulus. The importance of an
electronic bandstructure effect in the Ti1−xAlxN system was clearly shown in chapter 4.
In order to relate and compare these two effects Fig. 7.2 shows the calculated isostruc-
tural mixing enthalpies, derived analogous to Eq. 4.1 for the B1 systems Ti1−xAlxN,
Cr1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN.
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Figure 7.2: The calculated mixing enthalpy of c-Ti1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN using
the SQS-method and for c-Cr1−xAlxN using the CPA-ISM method. The legends indicate which
system that has a large volume mismatch (∆V ) between the components and which systems
that show an impact of electronic structure mismatch (∆Ψ).

Considering the big volume mismatch between HfN and c-AlN seen in e.g. Fig. 3.3, it
is not surprising that Hf1−xAlxN shows a huge mixing enthalpy. However, in the system
Sc1−xAlxN, where the volume mismatch is almost as big, the enthalpies are much lower,
more comparable to the values of Ti1−xAlxN. The picture becomes more clear when
also the electronic structure is considered. In Fig. 7.3 the electronic density of states
for the transition metal site is shown both for pure MN and in M0.25Al0.75N for all the
four systems under consideration. The calculations are done with the KKR-ASA-CPA
method. The Ti1−xAlxN system (top left panel) shows the now familiar sharpening
of the 3d non-bonding state and the disappearance of the low energy shoulder in the
Ti0.25Al0.75N alloy. In the case of Cr1−xAlxN (top right panel) the magnetic split of
the non-bonding 3d state can be seen right at the Fermi level but the sharpening of
the non-bonding states are also visible. In Sc1−xAlxN (lower left panel), having one
less valence electron per transition metal as compared to Ti1−xAlxN, the non-bonding
3d-state is above the Fermi level already in pure ScN. However, as Al is added the
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qualitatively same development as in Ti1−xAlxN can be seen for the non-bonding state
but now above the Fermi level. The calculations for Hf1−xAlxN is shown in the lower
right panel. For this system the very sharp and localised 4f-states are visible at about
12 eV below the Fermi level, but they are not taking any relevant part in the bonding
in the system. Another difference from the three other systems is that the 5d valence
states of Hf are considerably broader as compared to the 3d states of Sc, Ti, and Cr.
When AlN is added to HfN the trend is similar as Ti1−xAlxN. The low energy shoulder
of the 5d non-bonding state is removed in Hf0.25Al0.75N and the Fermi level is forced up
onto a sharper state. It is worth noting that in the cases Sc1−xAlxN and Hf1−xAlxN,
the sharpening of the non-bonding state is partially countered by the broadening that
is the result of the decreased lattice spacing in AlN-rich samples.
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Figure 7.3: The calculated site projected density of states for the different transition metals
in both pure MN and in a M0.25Al0.75N alloy. The calculations are done using the KKR-ASA-
CPA method.

Thus one can conclude that the development of the non-bonding d-state is similar for
all treated systems when AlN is added. However the valence electron concentration
and the consequent position of the Fermi level decides whether or not this development
affects the energetics and mixing enthalpies. In the case Sc1−xAlxN it has no effect and
it is instead the large volume mismatch between ScN and c-AlN that gives rise to a
large and symmetric mixing enthalpy. In Ti1−xAlxN it is the electronic structure effect
that is dominating giving rise to a strongly asymmetric shape of the enthalpy curve. In
Hf1−xAlxN both effects are present giving rise to a very high mixing enthalpy and thus
a huge energetic driving force for decomposition. In Cr1−xAlxN the difference in volume
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is very small and the magnetic splitting of the Cr non-bonding 3d state disarms the
electronic structure mismatch. Thus the latter system shows a small mixing enthalpy
in comparison with the other systems. In the legends of Fig. 7.2 an X indicates which
systems that show an impact from respectively effects.

The electronic mismatch is not only affecting the mixing enthalpy. There is also an
impact on the bond length distribution. This can be seen from the comparison of
the nearest-neighbour bond length distributions in the two systems Sc0.5Al0.5N and
Hf0.5Al0.5N shown in Fig. 7.4.
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Figure 7.4: The calculated nearest neighbour distance (M-N and Al-N) for the two systems
Hf0.5Al0.5N and Sc0.5Al0.5N. The bars shows the fraction of bonds that are rounded to each
0.01 Å while the lines are running averages over 0.03 Å.

Since the volume difference between the components are similar in these two alloy sys-
tems, one could expect that the bond-length distributions would look similar. However,
as can be seen, this is not the case. The top panel, showing the distribution in the
Sc0.5Al0.5N system, is close to what one could expect. The Al-N bonds are stretched
while the Sc-N bonds are compressed without a huge spread in values. In the Hf0.5Al0.5N
case shown in the lower panel on the other hand, the spread is huge. The Al-N bonds
are not as stretched in average as in the previous system but the spread in values is
huge. The Hf-N bonds are both stretched and compressed. This is an indication that
solid solution hardening can depend on electronic structure effects as much as on lattice
mismatch.
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This work has revealed an electronic band structure effect which has as large an impact
on the mixing enthalpies in Ti1−xAlxN and Hf1−xAlxN as the effect of a volume dif-
ference in a heavily mismatched systems such as Sc1−xAlxN. The question if these two
different driving forces for decomposition are likely to give rise to similar or different de-
composition behaviour. In order to answer this question, one should keep in mind that
the mixing enthalpies are calculated for the equilibrium volume for each composition,
including the pure binary nitrides. This is important to consider if one is interested
in the situation in coherent grains of mixed nitrides. In such a situation a phase sep-
aration would not result in pure nitrides at their respectively optimal lattice spacing,
but rather domains that are strained to match each other on the phase boundary. In
such a situation the decomposition relying on volume mismatch as driving force would
be considerably hampered. This was demonstrated clearly in the semiconductor nitride
system B3 (Ga,In)N [67] where decomposition temperatures for coherent bulk situations
was decreased by a factor of 3 as compared to the incoherent situation actually resulting
in a superstructure ordering rather than clustering. In our case the system Sc1−xAlxN is
likely to show a similar behaviour. On the other hand, in AlN-rich Ti1−xAlxN systems
where the main driving force for decomposition is the electronic mismatch, the impact
of coherency strain would be weak in this aspect. One can conclude that it is the
electronic mismatch that is the key for obtaining coherent isostructural decomposition,
such as spinodal decomposition, in the typical polycrystalline phases of multinary ni-
trides hard coatings materials. A volume mismatch between the components will instead
promote nucleation and growth of either isostructural or non-isostructural phases. A
schematic illustration of this discussion is made in Fig. 7.5.
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Figure 7.5: A schematic illustration of the effects of electronic structure mismatch and volume
mismatch when metastable M1−xAlxN solid solution coatings are subject to high temperatures.
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Conclusions

In this work a systematic theoretical investigation from first-principles has been per-
formed on four important multinary nitrides hard coatings materials systems: TiAlN,
CrAlN, ScAlN, and HfAlN. The study has been focused on the properties of disordered
metastable solid solution phases in the cubic B1 structure which has also been the major
focus of experimental research and industrial applications. The study, aimed at reducing
the knowledge gap between the observed performance of different coatings in cutting
tools applications and the fundamental quantum mechanic and thermodynamic physics
governing this behaviour, has resulted in a number of important conclusions.

• First of all it was found that the simultaneous usage of both the special quasiran-
dom structures (SQS) method, and the coherent potential approximation (CPA)
method to treat the disordered phases made it possible to calculate a long range of
properties with an accuracy and confidence that wold not have been possible with
either of the methods alone. The suggested independent sublattice model for local
lattice relaxations was found to work well as a complement to CPA calculations
in mixed nitrides with the B1 structure.

• All four studied systems, B1 Ti1−xAlxN, Cr1−xAlxN, Sc1−xAlxN, and Hf1−xAlxN,
have been shown to have lattice parameters exhibiting a systematic positive de-
viation from Vegard’s rule as a function of composition. This behaviour is the
consequence of the fact that no new nearest neighbour bonds are introduced in
the alloys as compared to the M-N and Al-N bonds in the binary nitrides. In-
stead it is the anharmonic behaviour of these bonds, making it more favourable
to extend the Al-N bonds as compared to compress the M-N bonds, that gives a
positive deviation. A modified Vegard’s rule where proposed taking these results
into consideration, predicting that the lattice parameter of an alloy is equal to
the minimum point of the concentration weighted average of the whole equation
of states of the included components. The possible deviations of real systems
from this prediction is more likely to indicate a change in the bonding picture as
compared to a deviations from the original Vegard’s rule.

• In the system Ti1−xAlxN, it was shown that the cubic B1 structure is lower in
energy as compared to the hexagonal B4 structure for x ≤ 0.71. The hypothetical
hexagonal B4’ phase with a small c/a value, was shown to have higher energy as
compared to either the B1 (x ≤ 0.71) or B4 (x ≥ 0.71) phases. These energy
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relations are parts of the explanation of why the cubic phase is preferably formed
during PVD synthesis over a large range of compositions in this system, however
also growth parameters and the structure of the substrate are likely to influence
the structure of as-deposited samples.

• In the B1 c-Ti1−xAlxN system, a peculiar development of the electronic struc-
ture was found to occur with increasing AlN content. Especially, the non-bonding
3d state of Ti developed into an atomic like sharp state at the Fermi level in
AlN-rich samples. This band structure effect was shown to have a direct im-
pact on the mixing enthalpy and thus on the driving force for decomposition in
this system. Especially in samples with high AlN-content the driving force for
isostructural decomposition was found to be huge. The tendency for isostructural
decomposition is highly likely to be the limiting factor in attempts to solve high
amounts of AlN in the cubic phase of Ti1−xAlxN. The isostructural phase diagram
of c-Ti1−xAlxN was derived using the mean field approximation for temperature ef-
fects. It showed through the asymmetric shape of the miscibility gap as well as the
spinodal region a clear impact of the electronic structure effect reported above. At
1000◦C the spinodal region was predicted to be 0.25 ≤ x ≤ 0.99. The experimental
observation of isostructural spinodal decomposition in AlN-rich c-Ti1−xAlxN has
thus been explained. In order to go beyond the mean field approximation effective
cluster interactions (ECI) for the configurational Hamiltonian was derived using
the screened generalized perturbation method (SGPM). Important knowledge re-
garding the range of ECIs and the local configurational impact of the electronic
structure was gained. Specifically a prediction was done of a possible metastable
phase consisting of alternating (111) bi-layers of AlN and TiN in Ti-rich samples,
especially under conditions of limited bulk diffusion.

• In Cr1−xAlxN the utmost importance of allowing for magnetisation of Cr atoms
in the theoretical description also above the Neél temperature, was demonstrated.
Due to the magnetic split of the Cr 3d non-bonding states for all compositions
in Cr1−xAlxN, the electronic structure discussed above for Ti1−xAlxN, gives only
a weak or possibly no effect on the mixing energetics of the Cr1−xAlxN system
which shows in comparison small positive values of the mixing enthalpy. This
explains the experimentally observed possibility to solve higher amounts of AlN
in the metastable cubic phase of Cr1−xAlxN as compared to Ti1−xAlxN. If strong
electron correlation, which might have a certain importance in this particular
nitride system, is taken into account, the tendency for isostructural decomposition
in the Cr1−xAlxN system is further diminished.

• The formation energy of nitrogen vacancies was calculated for the cubic binary
nitrides TiN, HfN, ScN, CrN, and c-AlN. These calculations revealed that vacan-
cies are readily formed in CrN, explaining the experimental observation of onset
of decomposition through nitrogen loss of CrN thin films at rather low temper-
atures. In contrast, c-AlN shows a huge formation energy for vacancies. The
combination of these two results explains the shift to higher onset temperatures of
nitrogen loss in Cr1−xAlxN samples upon AlN addition. Nitrogen vacancies in the
Ti1−xAlxN system were studied in detail and two main conclusions were drawn:
If a small amount of nitrogen vacancies are present in Ti1−xAlxN samples they
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enhances the tendency for isostructural decomposition as they cluster in Ti-rich
regions while AlN-rich regions tends to be vacancy free. On the other hand in
heavily substoichiometric composition nitrogen tends to Ti-rich regions while Al
forms nitrogen free AlTi alloys.

• In order to compare the effects of electronic mismatch and volume mismatch on
the driving force for decomposition, the mixing enthalpies of the Sc1−xAlxN and
Hf1−xAlxN systems were also studied. It was found that the large lattice misfit,
between ScN and HfN on one hand and c-AlN on the other, gave rise to a large and
symmetric contribution to the mixing enthalpies in these systems. Hf1−xAlxN dis-
played also the impact of electronic mismatch while Sc1−xAlxN did not. It was
concluded that due to the resulting strain in decomposed but coherent samples,
the volume mismatch is not an optimal driving force for coherent decomposition.
The electronic structure mismatch on the other hand is the key property to look
for when isostructural coherent decomposition, such as spinodal decomposition is
desired.

• The study of disordered phases revealed some important features related to the
fact that different atoms have different chemical environments. The bond strengths
within the mixed systems differs substantially manifesting itself through a spread
in equilibrium bond lengths in e.g. Ti1−xAlxN and Hf1−xAlxN. This gives rise
to solid solution hardening. It was shown that electronic structure mismatch
gave at least as large impact on this spread as compared to volume mismatch.
Further more the vacancy formation energies in Ti1−xAlxN depends on the local
environment of the vacant site. This creates traps for vacancies and are likely to
slow down diffusion of nitrogen or oxygen impurities on the nitrogen sublattice in
this system.

Perspectives

All studies are limited in extent and so is this one. However, certain questions remains
to be solved and some new ones has been raised during these years. Here follow some
suggestions of possible continuations of the present work.

• First of all the bulk thermodynamics of the Ti1−xAlxN system is not yet fully
understood. The problem origins in the fact that the effective cluster interactions
as derived from the random alloy as reference state are strongly concentration
dependent. At the same time, standard thermodynamic simulation methods do
not take into account that in clustering systems, the local concentration changes
during the simulation. To solve this problem one needs to either map the con-
centration dependence of the ECIs onto multi-body interactions of concentration
independent ECIs or develop a Monte Carlo scheme which uses a local definition
of the concentration and updates the ECIs accordingly.

• The thermodynamics relations are only one part of the story in metastable thin
films materials. The kinetics relations are in many cases as important in order
to explain physical properties. Thus an extension of the present work including
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kinetic barriers for bulk and surface diffusion in multinary nitrides followed by a
kinetic Monte Carlo simulation would be of extreme importance.

• Since the development within hard coatings applications is going in the direction of
nanocomposites such as TiN/SiNx and Cr1−xAlxN/SiNy the interactions between
the materials system studied in this work and SiNx phases at interfaces would be
of interest. Also of interest would be a theoretical study of the process of oxidation
of mixed nitirides.

• This is just a few examples of possible tracks of further theoretical studies in
the field of multinary nitrides hard coatings materials. It would also be of great
importance if certain experimental investigations where performed in order to
try to confirm or falsify the predictions of this work, for example detailed XPS
measurements of the development of Ti 3d states as a function of AlN content in
Ti1−xAlxN.
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ties and machining performance of Ti1−xAlxN-coated cutting tools. Surface and
Coatings Technology, 191:384, 2005.

120



BIBLIOGRAPHY

[27] D. McIntyre, J. E. Greene, G. H̊akansson, J. E. Sundgren, and W.-D. Münz.
Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics
and mechanisms. Journal of Applied Physics, 67:1542, 1990.

[28] S. Hofmann and H. A. Jehn. Selective oxidation and chemical state of Al and Ti
in (Ti,Al)N coatings. Surface and Interface Analysis, 12:329–333, 1988.

[29] A. E. Santana, A. Karimi, V. H. Derflinger, and A. Schutze. Thermal treatment
effects on microstructure and mechanical properties of TiAlN thin films. Tribology
Letters, 17:689, 2004.

[30] H. Ljungcrantz, M. Odén, L. Hultman, J. E. Greene, and J.-E. Sundgren. Nanoin-
dentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on
MgO. Journal of Applied Physics, 80:6725, 1996.

[31] S. PalDey and S.C. Deevi. Single layer and multilayer wear resistant coatings of
(Ti,Al)N: a review. Materials Science and Engineering A, 342:58–79, 2003.

[32] P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, and
L. Hultman. Self-organized nanostructures in the Ti-Al-N system. Applied Physics
Letters, 83:2049, 2003.

[33] L. Karlsson, A. Hörling, M. P. Johansson, L. Hultman, and G. Ramanath. The in-
fluence of thermal annealing on residual stresses and mechanical properties of arc-
evaporated TiCxN1−x (x= 0, 0.15 and 0.45) thin films. Acta Materialia, 50:5103–
5114, 2002.

[34] A. Hörling. Thermal Stability and Age Hardening of TiN-based Thin Films. PhD
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[38] H. Willmann, P. H. Mayrhofer, P.O.Å. Persson, A. E. Reiter, L. Hultman, and
C. Mitterer. Thermal stability of Al-Cr-N hard coatings. Scripta Materialia,
54:1847, 2006.

[39] O. Knotek, M. Atzor, A. Barimani, and F. Jungblut. Development of low temper-
ature ternary coatings for high wear resistance. Surface and Coatings Technology,
42:21–28, 1990.
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