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Abstract—A generic approach is presented to detect and track
people with a network of fixed and omnidirectional cameras
given severely degraded foreground silhouettes. The problem
is formulated as a sparsity constrained inverse problem. A
dictionary made of atoms representing the silhouettes of a person
at a given location is used within the problem formulation. A re-
weighted scheme is considered to better approximate the sparsity
prior.

Although the framework is generic to any scene, the focus
of this paper is to evaluate the performance of the proposed
approach on a basketball game. The main challenges come
from the players’ behavior, their similar appearance, and the
mutual occlusions present in the views. In addition, the extracted
foreground silhouettes are severely degraded due to the polished
floor reflecting the players, and the strong shadow present in the
scene. We present qualitative and quantitative results with the
APIDIS dataset as part of the ICDSC sport challenge.1

Index Terms—Inverse problem, Sparsity, Sport player, Detec-
tion, Tracking.

I. INTRODUCTION

Vision-based sport players detection and tracking has been
of interest to the research community for the past decades, with
previous work on soccer [1][2][3], hockey [4][5], or even vol-
leyball [6]. Game or player analysis, sport summarization, and
statistics gathering rely on an accurate detection and tracking
process. In this work, basketball players are of interest. More
precisely, this paper is dedicated to the challenge program
consisting of detecting and tracking the basketball players
within the APIDIS dataset2.

The APIDIS dataset has the following challenges:
• Basketball players have abrupt changes of behavior, i.e.

they run, jump, crouch, change suddenly their motion
path, etc.

• Players on the same team have the same appearance.
• In some camera views, players greatly occlude each other.
• Some cameras have very similar viewpoints, affecting the

resolution of the ambiguities arising with the occlusion
problem.

• The reflection of the players on the floor and their strong
shadows lead to severely degraded foreground silhouettes.

1This work is submitted to the sport challenge track
2The dataset is publicly available at http://www.apidis.org/Dataset/

Many false positives silhouettes are extracted with a
standard background subtraction algorithm ( e.g. the work
of Stauffer and Grimson [7]).

• Players interact strongly with each other and their spatial
distribution on the ground can be very dense and compact
or spatially scattered.

A novel approach is proposed to cope with all these chal-
lenges. Given a set of severely degraded foreground silhouettes
from a set of calibrated pseudo-synchronized cameras, all
players are detected and tracked in each camera view as well
as in the 3D world. The proposed algorithm is based on a
sparse approximation of players location points on the ground
floor. A dictionary made of atoms representing the presence of
a player at a given location is used within an inverse problem
formulation. The approach is generic to any camera geometry
and sensing modality. The only features extracted from the
cameras are the binary masks representing the pixels belonging
to the foreground of the scene (referred to as the foreground
silhouettes in the paper). Planar and omnidirectional cameras
are naturally merged. The framework scales to any number
of cameras. Although the proposed system is generic to any
scene, this paper is dedicated to quantitatively measure the
performance of our algorithm on a basketball game. No
tuning for this specific basketball environment is performed.
No texture or color information is used for the modeling
of players, background, or ground floor. A basic background
subtraction algorithm ([7]) is used leading to severely degraded
features.

After briefly presenting related works, the problem is for-
mulated in section III as an inverse problem with a sparsity
prior. Basis Pursuit DeNoising (BPDN) is used with a `1
re-weighting scheme to solve the problem. The dictionary
involved in the problem is described in the next section. In
order to reduce the complexity of the problem, section V
presents the steps used to reduce the dimensionality of the
problem. Then, the tracking process is described in section
VI. Quantitative and qualitative results are presented in section
VII. The proposed algorithm is compared with the state of the
art. The paper ends with concluding remarks.



II. RELATED WORK

Porikli in [8] presents a survey on object detection and
tracking methods with a single fixed camera. Given a fixed
camera, objects can be detected by modeling the background
and tracking reduces to computing object correspondence
across frames. Typically, the work of Stauffer and Grimson
[7] can be used to extract the foreground pixels. Each pixel is
modeled as a mixture of Gaussians with an on-line approxi-
mation for the update. Then, inter-frame tracking algorithms
such as the one presented by Avidan in [9] can be used to
track people across frames. He considers the tracking as a
binary classification problem. However, those algorithms are
less efficient to detect players in a basketball game, as players
are not correctly segmented due to their mutual occlusions.

In order to deal with occlusions, the output of several
cameras should be fused to detect the objects of interest.
To be robust to variability in appearance between the views,
coordinates of the detected objects in a common reference
(e.g. ground plane) can be estimated. The unique ’world’
coordinates, i.e. the coordinate of the object on the ground
plane, is given by a planar homography. The planar homog-
raphy is a 3×3 matrix transformation obtained by matching
at least four points from two different coordinates. Most
systems compute the homographies in an initial calibration
step [10]. After projecting all detected objects into a common
reference, Mueller et al. in [10] mark with same label the
nearest object with the same size and center of gravity. Orwell
et al. in [11] and Caspi et al. in [12] match objects by
fusing the estimated trajectories obtained by each camera.
However, such approaches do not take full advantage of the
multi-view infrastructure, as each camera detects the objects
independently without helping each other.

Khan and Shah in [13] present an approach to track people
in crowded scene given multiple cameras. They pay attention
to extract the feet region of the foreground people. Each
point of the foreground likelihood (foreground silhouettes)
from all views is mapped to the ground plane given a planar
homography. Multiplying the mapped points segments the
pixel corresponding to the feet of the people. Their approach
can not be applied to an object viewed by one camera. In
addition, a poor foreground segmentation - people detected
with their shadow or missing foreground pixels - affects the
performance of their system.

Fleuret et al. in [14] take advantage of the multi-view
infrastructure to accurately track people across multiple cam-
eras given degraded foreground silhouettes. They develop
a mathematical framework to estimate the probabilities of
occupancy of the ground plane at each time frame with
a dynamic programming to track people over time. They
approximate the occupancy probabilities as the marginals of
a product law minimizing the Kullback-Leibler divergence
from the true conditional posterior distribution (referred to as
Fixed Point Probability Field algorithm). These probabilities
are combined with a basic color and motion model. As in
[13], their approach can not be applied to an object viewed by

one camera. Their mathematical framework does not explicitly
consider the sparsity of the desired solution. In addition, the
computation cost of their algorithm depends on the number
of ground plane points to be evaluated, leading to a limited
area to be monitored. We will consider their work as the state
of the art since they are able to handle challenging scenarios
given noisy observation.

Reddy et al. in [15] use compressed sensing theory to
track people in a multi-view setup. They use the sparsity
of the observations, i.e. the foreground silhouettes extracted
from the cameras. However, their sparsity constraint depends
on the distance of the objects to the cameras. Objects close
to the cameras will unfortunately generate large foreground
silhouettes with poor sparsity. To accurately estimate the
position of the objects on the ground plane multiple cameras
are needed. No dictionary is used to model the presence of a
person. Also, the complexity cost of their algorithm depends
on the number of ground plane points, the grid size, to be
evaluated.

In [16], we propose a framework to cope with the limitations
of previous works. It scales to any number of cameras. A
single camera can also be used. The proposed algorithm is
based on a sparse approximation of the location points given
an adaptive dictionary constructed on-line. The dictionary is
made of atoms representing the foreground silhouettes of a
player at a given location. The sparsity constraint in this work
is not on the observations but on the desired solution. Even
when a dense crowd of people is present in a scene, they
occupy sparse locations on the ground plane.

In this paper, we quantitatively evaluate its performance
given a basketball game. We compare our approach with the
state of the art. In addition, omnidirectional cameras are also
integrated to the system. The strength of the proposed ap-
proach is quantitatively and qualitatively presented in section
VII.

III. PROBLEM FORMULATION

The objective of this paper is to deduce the ground plane
points (or grid of occupancy) occupied by the players present
in the game given the foreground silhouettes provided by
a set of C calibrated cameras. Mathematically, at a given
time, each camera is the source of a binary silhouette image
yi ∈ {0, 1}Mi , where Mi ∈ N is the number of pixels of each
camera indexed by 1 ≤ c ≤ C. Stacking all these vectors gives
the Multi-Silhouette Vector (MSV) y = (yT

1 , · · · , yT
N )T ∈

{0, 1}M , with M =
∑

i Mi.
Let us discretize the observed ground in N subareas, so that

the grid of occupancy of players on the ground is represented
by the binary vector3 x ∈ {0, 1}N . For simplicity, we assume
that one observed player is exactly supported by one subarea
of this grid.

Assuming that any player is represented by an invariant
volume, it is clear that any configuration of x will correspond

3The grid is of course bidimensional but we represent it as a vector to
simplify the notations.



(a) Camera Views

(b) Degraded foreground silhouettes y

(c) ŷ = Q(Dx)

Fig. 1. Illustration of the atoms modeling the given foreground silhouettes.

to a particular configuration of silhouettes in y. For instance,
if x contains only one non-zero component, all yi will contain
only one silhouette (i.e. a connected area of non-zero pixels)
with size and location related to the particular projective
geometry combining the scene and the cameras.

Our inverse problem is thus to find x from y. The vector
y is binary and does not contain any information about pos-
sible occlusion between persons. In addition, the background
subtracting methods leading to the silhouette definition are
severely degraded. We assume the grid x sparse, i.e. it has
only few non-zero coefficients.

The generative (forward) model that associates to x a
certain configuration of silhouette in y is the quantization of
a linear operator. In other words, we obtain it from the one
bit quantization of a dictionary D ∈ RM×N multiplied by
x. The quantization operator is dealing with the occlusions
of silhouettes. As explained in Section IV, each column (or
atom) of D transforms a non-zero component of x to the
corresponding silhouette generated by a player in the image
plane of the cameras.

The recovery of the grid of occupancy from y should be
solved by the following program:

arg min
x
‖x‖0 s.t. ‖y −Q(Dx)‖2 < ε (1)

with ε is the desired residual error, and Q is the one bit
quantization operator

The `0 norm is the appropriate measure of the sparsity
since it counts the number of non-zero elements. However,
minimizing `0 norm is prohibitive in high dimensions and
is NP-hard. We approximate the `0 norm with a re-weighted
`1 norm where the weights used for the next iteration are
computed from the value of the current solution as introduced

by Candes et al. in [17]:

x(l+1) = arg min
u∈RN

‖W (l)u‖1 s.t. ‖y −Du‖2 < ε, (2)

W (l+1) = diag
(

1

|x(l+1)
1 |+η

, · · · , 1

|x(l+1)
N |+η

)
, (3)

with W 0 = Id.
The parameter η is added to ensure stability and guarantees

that a zero-valued component in x does not strictly prohibit a
nonzero estimate at the next iteration (η = 10−7).

Each weighted iteration of the re-weighted process is solved
by the method of operator splitting and proximal methods
described in [18], [19].

We removed the quantization operator in equation (2) to
keep the problem linear and convex. The residual error is hence
affected by the absence of the quantization operator and the
approximation of the degraded foreground silhouettes.

IV. DICTIONARY

The dictionary D is made of atoms modeling the presence of
a single player at a given location. Each atom of the dictionary
represents the approximated silhouette generated by a single
player in the image plane of each camera, i.e the MSV. The
silhouettes are the atoms of the dictionary approximated with
simple shapes (e.g. rectangular or elliptical shapes). Planar
homographies computed at the calibration step are used to
map 3D points in the world coordinates to the image plane of
each planar camera (see [16]). The camera model presented
in [20] is used to map points from the 3D world to the image
plane of the omnidirectional cameras.

To cope with the various poses and shapes a person can
generate in a camera view, a half-elliptical half-rectangular



shape is used to approximate the ideal silhouette of a per-
son in a planar camera, and an elliptical shape is used for
the omnidirectional cameras. Figure 1 illustrates an example
of severely degraded foreground silhouettes (e.g. shaddows,
player’s reflection, missed regions) and the silhouettes used to
model their presence in the set of planar and omnidirectional
cameras.

The silhouettes associated to the cth camera lead to the
dictionary Dc. The product Dcx corresponds to the synthetic
image ŷc. Each column (atom) of the dictionary Dc is the
image of a single silhouette reshaped as a vector (dictionary
of silhouettes). There are as many columns as ground plane
points. When several cameras are observing a scene, D is
formed by stacking the Dc:

D = (DT
1 , DT

2 , ..., DT
n )T (4)

where n is the number of cameras.
With such a model, there is no constraint on the number

of cameras to use and the type of cameras, i.e. planar or
omnidirectional.

V. DIMENSIONALITY REDUCTION

If many cameras are used, the dimensions of y and x be-
come an issue in equation (2). They define the dimensionality
of D which requires a large memory storage. In addition,
the smaller the dimensions, the faster the algorithm converges
towards an optimal solution.

A. Dimensionality reduction on the observations

The observations y have originally the same dimensions as
the image resolution of all cameras. To reduce the computation
cost, all images are first down scaled to a QVGA resolution
(320 × 240). A background subtraction algorithm extract to
foreground silhouettes on the QVGA resolution. Then the
image plane of each camera view is cropped to the region
where players can occur. Finally, all regions are normalized
to the same size ( 107 × 80). Figure 2 illustrates such basic
preprocessing step.

B. Dimensionality reduction in the search space

The complexity cost depends on the number N of ground
plane points to locate as occupied or not. Previous works
considered a fixed number of points regardless of the geometry
of the scene and the sparsity of the people present in the scene.
In addition, the ground plane points were sampled uniformly
without considering the resolution of the observations. In this
work, the ground plane points are sampled based on the
resolution of the observations.

Two different ground plane points can correspond to the
same pixel in the image plane of a camera. A translation of
one pixel in the image plane can be equivalent to a translation
of a few meters on the ground plane for far away regions,
just as a translation of a few centimeters on the ground plane
can correspond to a shift of several pixels for closer regions,
depending on the resolution of the camera and the distance
of the objects to the camera. Therefore, localization should be

(a) Original observations

(b) Cropped and down scaled observations

Fig. 2. Illustration of the dimensionality reduction on the observations

on a restricted number of ground plane points, called sample
points.

The foreground pixels determines the sampling points to
be used (see Figure 3). Each foreground pixel represents the
potential feet location of the players. Each point is spaced by
the ’just noticeable pixel step’. It represents the pixel accuracy
to detect an object in the image plane. Given the calibration
data, each point of each camera is mapped to a ground plane
point forming x. In order to be certain not to miss a potential
ground point, each foreground pixel is also considered as the
upper limit (the head) of a player. Therefore, missing the feet
region in the foreground likelihood will not affect the sampling
process.

(a) Original observations

(b) Sampled points
used to form x (top
view)

(c) Players’s exact
locations (top view)

Fig. 3. Illustration of the sample points obtained with the given foreground
silhouettes. Isolated points in the observations are sample points obtained from
other cameras.

A further reduction in the obtained sampling points can
be performed. We can keep only the sample points that are
foreground pixels in all the observable cameras. Figure 4
presents the final ground plane points forming x with such
constraint.



(a) Original observations

(b) Sampled points
used to form x (top
view)

(c) Players’s exact
locations (top view)

Fig. 4. Illustration of the sample points corresponding to the foreground
pixels of all observable camera.

VI. TRACKING

A. Prior from previous frame

The final sparse vector x found from previous frame can be
used in the current frame as the initialization of the problem
to minimize. Therefore, the algorithm could converge much
faster to the new optimal solution. One can also reduce the
search space, however, since new players can occur in a
view, it is safer to keep the search space provided by the
foreground silhouettes described in section V-B. In addition,
if false detections occur in some frames, they will not affect
the performance of future frames.

B. Player correspondence

Given the detected players from two consecutive frames, a
correspondence between each player is needed across frames.
Such correspondence is performed in the 3D world. The
coordinates of the players on the ground are used to determine
the correspondence. Their appearance can not be used since
many players have similar appearance.

Any motion model can be applied to the person occupying
a given point. The probability to match two points from two
frames, can be computed by modeling the player behavior.
The work of Antonini et al. in [21] can be used to model
the player behavior. In this work, a simple motion model is
used leaving for further work a more sophisticated modeling.
A point is matched to the one with the shortest distance within
a disk of radius equal to the maximum speed of a player.

VII. PERFORMANCE EVALUATION

A. Experiments

Since this paper is dedicated to the sport track of the
ICDSC challenge4, focus is on the APIDIS dataset. All videos
are scaled to a QVGA resolution with approximately 25
fps. Performance over the left-half of the basketball court
is measured since it is the side where the most number of
cameras are monitoring the game (i.e. camera’s id 1, 2, 4, 5,
and 7).

4http://www.icdsc.org/challenge.html
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Fig. 5. Precision and recall rate for various ε given three cameras monitoring
the scene (camera’s id 2, 4, 5, and 7)

The performance of the detection process is quantitatively
evaluated by computing the precision (i.e. number of true
positives divided by the sum of true positives and false
positives) and recall (i.e. number of true positives divided by
the sum of true positives and false negatives) measures. A true
positive is when a person is correctly located on the ground
plane.

The performance of the tracking process is measured by
counting the number of missed tracked players.

The foreground silhouettes are extracted using the work of
Stauffer and Grimson [7]. The outcome of the background
subtraction algorithm is noisy. The silhouettes are severely
degraded. Only part of the people are extracted, their shadow
is considered, and random false positives are generated.

B. Impact of the residual error

The appropriate value for the residual error ε for the
fidelity term in equation (2) is difficult to determine since the
degradations on the foreground silhouettes and the number of
occlusions are not predictable. Nevertheless, the performance
of the algorithm depends on the chosen desired residual error
in equation (2). Figure 5 presents the performance of the
framework with four cameras for various ε. A high residual
error expresses the severely degraded foreground silhouettes
made of shadows, and missing points. The detection stage
described by Fleuret et al. in [14] referred to as the Probability
Occupancy Map (POM) is also evaluated given the same
foreground silhouettes. We set the maximum of iterations
to 1500 and vary their constant σ. Their approach is quite
sensitive to noise, and detects many false positives. For an
equivalent recall rate, our approach has a much better precision
rate. Nevertheless, they reach a high recall rate with the price
of a very low precision rate. In section VII-E, we present how
we can obtain a recall rate as high as the highest rate reached
with the POM approach with the difference that we also obtain
a high precision rate. The better precision rate that we obtain
can be justified as we explicitly consider the sparsity of our
problem in the mathematical formulation.



C. Impact of tracking

The focus of this work is not on the tracking algorithm.
However, with our simple motion model, players are correctly
tracked across frame regardless their abrupt behavior and
similar appearance. Videos illustrating the performance of our
approach can be found at this address [22]. Note that the bottle
neck of the approach is the detection stage. A missed tracked
player is due to a missed detection. Therefore, the emphasis
is on an accurate detection process.

D. Impact of multi-view

One of the advantages of our framework is that it scales
to any number of cameras. Therefore, we compare the perfor-
mance of the system with various number of cameras. We pick
a camera and measure its performance when other cameras are
monitoring the same scene in Figure 6. A true positive is when
a player is correctly located in the particular view, i.e. when
the overlap region between the proposed and the manually
annotated rectangular bounding boxes represents at least 50%
of the area of both bounding boxes. The performance of the
single camera monitoring the scene is low if other cameras
are not considered: R = 0.57 and P = 0.62. When another
planar camera is used, both rates increase: R = 0.64 and
P = 0.64. If an omnidirectional camera is added instead of a
planar, the performance is considerably increased: R = 0.76
and P = 0.72. Figure 6 shows that adding planar cameras
globally increase the performance. In addition, merging an
omnidirectional camera with other planar cameras have the
best performance. Nevertheless, it is interesting to note that
if the omnidirectional camera is monitoring the scene alone,
a poor detection is achieved due to the severely degraded
foreground silhouette: R = 0.47 and P = 0.55. Most of the
time, the people’s shadow is much bigger than its silhouette
affecting considerably the performance. In addition, in some
areas, people are almost missed by the background subtraction
algorithm since they occupy only few pixels (small surface).
Finally, due to the small bounding box of the people, a small
offset in the detection considerably affects the performance
and leads to a missed person. Figure 8 presents the foreground
silhouettes extracted and the detected people given various
number of cameras.

E. Future Work

Although we propose a framework to efficiently deal with
simple and noisy features (see Figure 7) in a well defined
mathematical formulation, future work can use a less-degraded
foreground extraction in order to improve the detection.

In addition, the proposed inverse problem can be solved
with various strategies. We use BPDN to solve the problem
while other techniques such as Lasso [23] formulation can
also be used. The Lasso formulation bounds the desired
solution instead of the fidelity term. Therefore, the error term
to define becomes the maximum number of players to be
detected, which is more predictable than the degradation of
the foreground silhouettes. Given such formulation, we will
present in a further work the gain in performance.

Fig. 6. Precision and recall rate for various number of cameras monitoring the
scene. The number in each bubble represents the number of cameras used.
First, the sequence of cameras id 5,7,2,4 (omni+planar) is used. Then, the
sequence of cameras id 7,2,4,1 is used (planar only).

VIII. CONCLUSIONS

Formulating the localization of people as a sparse con-
strained inverse problem enables the detection and tracking of
challenging scenarios. The strength of the proposed approach
is quantitatively and qualitatively illustrated on a basketball
game. Players are correctly detected and tracked given very
noisy features. The approach is generic enough to be used with
any calibrated camera. Planar and omnidirectional cameras
are naturally merged. Any number of cameras can be used.
The multi-view infrastructure is fully taken into consideration
during the detection process. Furthermore, detected players are
perfectly matched across cameras so that their reconstruction
from all the views can be performed. Since the coordinates
of the players are computed in the 3D world, each player can
have a flag informing if a clear visualization is available in a
view, i.e. other players are not occluding. Therefore, further
processing such as recognizing its label can be performed.
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Fig. 7. Illustration of the degraded foreground silhouettes extracted.

Fig. 8. Illustration of the detected players with various number of cameras.


