
Novelty of Behaviour as a Basis for the Neuro-evolution of
Operant Reward Learning

Andrea Soltoggio
Laboratory of Intelligent Systems

EPFL
Lausanne, Switzerland

andrea.soltoggio@epfl.ch

Ben Jones
School of Computer Science

University of Birmingham
Birmingham, B15 2TT, UK

b.h.jones@cs.bham.ac.uk

ABSTRACT

An agent that deviates from a usual or previous course of
action can be said to display novel or varying behaviour.
Novelty of behaviour can be seen as the result of real or ap-
parent randomness in decision making, which prevents an
agent from repeating exactly past choices. In this paper,
novelty of behaviour is considered as an evolutionary pre-
cursor of the exploring skill in reward learning, and conser-
vative behaviour as the precursor of exploitation. Novelty of
behaviour in neural control is hypothesised to be an impor-
tant factor in the neuro-evolution of operant reward learn-
ing. Agents capable of varying behaviour, as opposed to con-
servative, when exposed to reward stimuli appear to acquire
on a faster evolutionary scale the meaning and use of such
reward information. The hypothesis is validated by compar-
ing the performance during evolution in two environments
that either favour or are neutral to novelty. Following these
findings, we suggest that neuro-evolution of operant reward
learning is fostered by environments where behavioural nov-
elty is intrinsically beneficial, i.e. where varying or exploring
behaviour is associated with low risk.

Categories and Subject Descriptors

I.2.6 [Learning]: [Connectionism and Neural Nets]

General Terms

Algorithms
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1. INTRODUCTION
The actions of a neuro-controlled agent, either simulated

or robotic, are driven by the outputs of a neural network [17,
11]. The outputs serve to control wheels, legs or other actu-
ators whose movements result in certain actions within the
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environment. Although optimality in control is a coveted
feature, there are situations where optimal control policies
are not defined, for example in a new environment, or when
the outcome of certain actions cannot be known in advance
[10]. When facing an uncertain or new situation, an agent
can either apply a default action, or alternatively perform
a random action: both strategy are potentially equivalent.
Situations of this kind are not infrequent: even in simple
navigation tasks, the encounter of an obstacle presents a
robot with different possibilities like passing the obstacle on
the left side, or on the right side, but other options might
also exist. If an agent performs constantly the same action,
it can be said to display little novelty of behaviour; on the
contrary, an agent that changes its pattern of actions can
be said to display novelty of behaviour. When an obstacle
is encountered for the first time, it is generally not known
which sequence of actions would be more beneficial: a ran-
dom or novel action would be on average as good as a fixed
policy. Therefore the notion of novelty of behaviour [9] is
not related to any measure of performance.

A different case is when a certain condition repeats itself—
for example a robot returns to walk a previously encoun-
tered path. The outcome of the actions performed pre-
viously could be taken into account and used to improve
the current performance, therefore displaying a learning be-
haviour. For example, a mechanism could reinforce bene-
ficial actions, thereby making them more probable in the
future, or making harmful actions less probable. The ability
of adjusting behaviour according to the environmental feed-
back is a fundamental aspect of animal learning [8, 5]. Such
skill is named instrumental or operant conditioning, and can
be observed when an animal in a previously observed envi-
ronment repeats with higher probability those actions that
led to a reward, whereas those actions that led to punish-
ment are progressively abandoned. Mathematical models of
operant reward learning1 have become popular in machine
learning under the name of reinforcement learning [16]. In
such frameworks, the task of an agent is to maximise the
total reward collected in a lifetime. To do so, the agent may
first adopt a predominantly exploratory behaviour, observ-
ing the rewards that derive from different actions. Over time
the agent adjusts its strategy to perform those actions that
have been discovered to lead to higher reward. In reward-
based environments where decision making influences future
reward, an important parameter is the trade-off between ex-
ploration and exploitation. Successful strategies, including

1Another terminology to indicate operant or instrumental
conditioning.



human decision making [4, 6], are based on a compromise
between exploitation (to collect a safe, known amount of re-
ward) and exploration (to sample the outcome of other ac-
tions). In some cases, for example in the presence of a new
environment, or in developmental and learning phases in an-
imals, a higher level of exploration can be adopted initially
and then decreased with maturation. The balance between
exploration and exploitation also depends on the speed of
the change in environmental conditions.

In the interpretation of the authors, novelty of behaviour
in an open-loop fashion2, as outlined in the first paragraph,
does not coincide with exploratory behaviour in the context
of operant reward learning. This is because maintaining
or changing a certain course of action—without considering
feedback from the environment—are policies that do not in-
volve learning or environmental adaptation. According to
a common language definition, exploration is ”the action
of travelling in or through an unfamiliar area in order to
learn about it” [1], which is more than novelty of behaviour.
In this sense, learning is the driving reason of exploratory
behaviour. Similarly, exploitation means to ”make full use
of and derive benefit from a resource” [1], therefore imply-
ing that the memorised value of a resource causes it to be
exploited. It transpires that both terms exploration and
exploitation imply the existence of reward and evaluative
feedback as driving principles. It follows that exploration
can be seen as the combination of novelty plus learning, and
exploitation as conservative behaviour plus memory. In al-
lowing for such a scheme, a reasonable assumption is that
operant reward learning is built from components such as the
ability to vary the pattern of actions (when exploring), pre-
serving the pattern of actions (when exploiting), and finally
alternating between both according to learnt and memorised
reward cues. Thus, in the framework of neuro-evolution, op-
erant reward learning is achieved if all those components can
be evolved into a neural controller. In reinforcement learn-
ing algorithms, it is often assumed that a set of actions is
available to an agent, and that the agent is capable of per-
forming either exploration, by selecting random actions, or
exploitation, as pre-built ‘given’ skills. Such is not the case
in neural control where the skills of maintaining or chang-
ing the course of actions requires certain neural structures.
Thus, a question is to what extent the evolution of oper-
ant reward learning depends on the underlying skills of pre-
serving or changing the current behaviour. The hypothesis
tested in this study is that novelty of behaviour and the
environments where novelty is beneficial constitute an ad-
vantageous basis for the neuro-evolution of operant reward
learning.

In an initial phase, two versions of a T-maze environment
[3] are used to evolve either conservative or novel behaviours.
Operant reward learning is evolved in a second phase by in-
troducing reward items in the environments. The findings
indicate that novelty of behaviour is a fundamental skill that
increases the speed in neuro-evolution of operant reward
learning. The agents that are capable of novel behaviour,
despite being initially non-sensitive to reward stimuli, and
despite being as exposed to reward stimuli as the conser-
vative agents, display a significant evolutionary advantage
when suddenly immersed in reward-based dynamic environ-
ments. From these findings, we conclude that the capabil-

2I.e. when the behaviour does not adjust according to
reward-feedback from the environment.
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Figure 1: A double T-maze. The position S is Start,
E are the locations where the maze-ends. Each
turning point where a decision needs to be taken
is marked by a circle.

ity of displaying novel behaviour, even when not related to
learning, is an advantageous basis for the subsequent evolu-
tion of sensitivity to, and meaningful use of, reward.

The rest of the paper is organised as follows. In section 2,
the environments where novel and conservative behaviours
were initially evolved are described. It is then explained how
reward items are introduced in the second phase. Section 3
illustrates the evolutionary settings for the evolution of the
neuro-controllers. In section 4, the results show that evo-
lution of reward-seeking behaviour for the novelty agents is
faster than for the conservative agents. Section 5 concludes
the paper outlining the main message of this research.

2. ENVIRONMENTS
A T-maze environment is described hereafter. Different

fitness functions described in the following subsections are
employed to evolve different behaviours and analyse the per-
formance during evolution.

2.1 Navigation in T-mazes: Neutral and
Novelty-Advantageous Environments

In a T-maze environment, an agent navigates a corridor,
at the end of which is a T-turn that splits the corridor into
two branches, one going to the left and one going to the right.
At the T-turn, an agent needs to decide whether to turn left
or right. More T-turns can be presented in sequence, thereby
generating an n-branched T-maze. Figure 1 illustrates a
double T-maze that includes two sequential turning points
and four possible maze-ends. In a simple scenario, an agent
leaves the start location (S) and navigates the maze until it
reaches any of the maze-ends (E). Subsequently, the agent is
re-positioned at the start location and commences another
trial for a number of times. The sensory-motor signals con-
sidered for this navigation task were devised as the minimal
set required to express the decision making processes that
need to be undertaken during navigation. Graphical repre-
sentations of input-output sensors and signals are given in
Figures 2 and 3. The agent can move only forwards, and
can perform three actions: turn left, go straight, or turn
right. Corridors require forward motion: turns performed
along corridors result in the agent crashing. Similarly, turn-
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Figure 2: Inputs and output of the neural controller.
The Turn signal is high (value 1) at turning points,
and low otherwise (value 0). The Start signal is high
(value 1) when the agent is at the start location, low
otherwise (value 0). The End signal is high when
the agent reaches a maze-end in the maze, low oth-
erwise. The activation of one output neuron, in the
range (-1,1), determines the navigation direction: if
the output is greater than 1/3, the agent turns left
or right according to the sign. If the activation of
the output neuron is less than 1/3 in absolute value,
the agent proceeds in a straight direction. The in-
put signals, output signal and hidden-neuron signals
are affected by 4% uniform random noise.

ing points require either a left or a right turn; straight mo-
tion at a turning point results in a crash. Such a simple
representation was devised to avoid hidden, emergent mem-
ory features from the interaction between the agent and the
environment.

The lifetime of an agent is based on a fixed number of
departures (200) from the starting point. Each departure is
called a trial. Two hundred trials were given to an agent’s
lifetime. The fitness function counted the number of times
the agent reached a maze-end without crashing, collecting a
fitness of 0.2 each time a maze-end was reached. In the case
of a crash, the agent is re-positioned at the starting point.
The fitness was maximised when a correct navigation with-
out any crashing was achieved, and it was independent of
any specific turning direction taken by the agent. Therefore
the fitness is not affected if the agent continues to visit the
same maze-end or changes it from trial to trial. In this re-
spect, the fitness is neutral to both novel and conservative
behaviours. Let us call this case the novelty-neutral case
(NOV-NE).

In a second case, a novelty-advantageous environment, in-
spired by the concept of novelty search in [9], is created by
introducing a depletion mechanism for the bonus collected
at the maze-end. Immediately after a visit to a maze-end,
the bonus associated with it is depleted by a certain amount.
A number of trials are required to recharge it. Considering
a maze-end k, the bonus bk(t) at trial t is given according
to the rule
8
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bk(t) = MaxBonus − dk(t)
dk(0) = 0
dk(t + 1) = 0.5 · dk(t) if ending point is not visited
dk(t + 1) = 0.5 · MaxBonus if ending point is visited

where dk(t) is a depletion quantity that is assigned 0.5 ·

MaxBonus when an agent visits the maze-end k, and de-
creases exponentially, therefore regenerating the bonus when
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Figure 3: Example of Input/Output signals for a
correct navigation of the agent. The output signal
remains less than 0.33 in absolute value when nav-
igating the corridors, and indicates a right or left
turn when the turn signal is high.

the agent visits another maze-end. MaxBonus was set to
0.2. Accordingly, when the maze-end k is visited for the first
time, the agent receives a bonus of 0.2, but in consequence
of that visit, the bonus drops to 0.1. Each trial in which
the ending k remains unexploited, the bonus regenerates to
0.15, then to 0.175, and so on approaching MaxBonus.

Agents having the tendency to change their navigation
patterns will gain on average a higher fitness than those that
visit the same maze-end. In this way, novelty of behaviour
is elicited by the fitness function. Let us call this case the
novelty-advantageous environment (NOV-AD).

To summarise, in the neutral (NOV-NE) environment, the
visiting of different maze-end is risk-free, but it does not
elicit any advantage either. Agents collect the same fitness
provided that they navigate correctly to a maze-end with-
out crashing. On the contrary, in the NOV-AD scenario,
a changing navigation pattern provides an advantage in fit-
ness. The purpose of these two environments is to evolve
agents that display predominantly changing navigation pat-
terns (in NOV-AD), or that display no bias towards stable
or variable navigation patterns (in NOV-NE).

2.2 Introducing Reward Items
In more complex, reward-based scenarios, agents are ex-

posed to reward stimuli, such as food items, the locations of
which change with time. In these problems, it is assumed
that the total number of reward items collected needs to be
maximised [10]. The T-maze described above can be mod-
ified to contain reward items. These will be located at the
maze-ends (E) in the maze. One high reward item (value
1) is located at one of the maze-ends, and low reward items
(value 0.2) are placed in the remaining three maze-ends.
The agents are now equipped with an additional ‘reward’
sensor that returns the amount of reward collected when
reaching a maze-end. The fitness of each agent now cor-
responds to the total amount of reward collected during a
lifetime; therefore, the agents undergo selection pressure to
maximise the total reward intake. In this new condition,
the optimal strategy involves an initial search phase (or ex-
plorative phase) to identify the location of the high reward,
and an exploiting phase, when the location of the high re-



ward has been identified, consisting of a repeated navigation
to the known maze-end. This capability of modifying a be-
havioural response according to reward information in the
environment manifests itself as observable operant reward
learning. At the behavioural level, operant reward learning
represents a skill that makes a profitable use of exploratory
and exploiting behaviours.

An important environmental feature also introduced here
is that the location of the high reward is not kept fixed,
but is varied from time to time, and precisely every 50±15
trials. If the location of the reward was kept fixed, such in-
formation would be encoded into the genotype throughout
the generations, and the agents would adopt a fixed strategy.
Instead, the high reward can be initially placed at random
at any of the maze-ends, and after a certain number of trials
moved to another random maze-end. In this dynamic en-
vironment, an agent maximises the reward intake only if is
capable of detecting reward items, and alternates between
exploration and exploitation according to this information,
exploring when the high reward cannot be found, and ex-
ploiting a specific maze-end once the high reward has been
found. Let us call this a reward-based dynamic environment
(RBD). It is important to note that in this environment, a
random sequence of choices results in the same fitness as a
fixed sequence: therefore the RBD environment is novelty-
neutral and can also be labelled NOV-NE-RBD.

3. NEURO-EVOLUTION

OF CONTROLLERS

3.1 The Neural Model
For the experiments in this paper, a simple discrete time

neural model was used, where the activation value ai of a
neuron i at time t is given by:

ai(t) =
X

“

wji · oj(t − 1)
”

+ a
b
i , (1)

where ab
i is a bias value, wji is the connection weight from

neuron j to i, and oj is the output of a neuron j given by

oj(t) = tanh(aj(t)) + n , (2)

where n is a uniform 4% noise. Equations 1 and 2 were
applied for three steps for each update of the inputs and
output to allow the input signals to propagate through the
network. At the end of the three steps, the output of the
network was sampled to observe an action as explained in
Figures 2 and 3. Each maze location, i.e. start, corridors,
maze-end, was presented to the agent for one input-output
step.

With this model, learning and memory, as required by the
environment above (Section 2.2), can be implemented by
means of recurrent connections that allow for certain nodes
in the network to retain information about prior activations.
Adaptation and memory can also be implemented by using
plasticity mechanisms that change the connection weights
among nodes. Which approach leads to better evolution of
adaptive behaviour is still debated [7, 15]. Here, networks
are endowed with the possibility of enabling, by means of
evolution, a general plasticity rule given by [14]:

∆wji = η · [Aojoi + Boj + Coi + D] , (3)

where A,B,C,D and η are evolvable parameters. This plas-
ticity rule combines a correlation mechanism (term A), a

presynaptic mechanism (term B), a postsynaptic mechanism
(C) and a decay term (D). By tuning these parameters, it
is possible to select a plasticity rule from a large variety
of mechanisms. This rule has been used in a number of
studies on plasticity mechanisms for the neuro-evolution of
learning and memory in simple problems [10, 14, 13]. With
the above settings, neural controllers can implement learn-
ing and memory by means of recurrent connections, plastic
weights or a combination of the two. A certain combination
is likely to emerge if it has a selective advantages.

3.2 The Evolutionary Algorithm
A basic Evolution Strategy [2] was employed here to evolve

neural networks with unconstrained topologies, i.e. with
an arbitrary number of neurons and arbitrary connections
among themselves. A matrix (n + l, n) of real values, where
n was the number of neurons and l the number of inputs,
encoded the network weights. The parameters for the plas-
ticity rule A, B, C, D and η were evolved in the range [-1,1]
for A-D, and [-100,100] for η. Genes, expressed in the range
[-1,1], were transformed into phenotypical values with a cu-
bic function, and then multiplied by 10 to produce weight
values in the range [-10,10]: this produced an initial bias to-
wards small values, which can then increase under selection
pressure. A Gaussian noise with standard deviation 0.5%
on all genes was applied when mapping the genotype into
the phenotype to increase the robustness of the solutions.
A threshold value of 0.1 and 0.01 was applied respectively
to the weights and the parameters in Equation 3: this fea-
ture is important to evolve partially connected networks,
and to enable or disable terms in the plasticity rule. Inser-
tion and deletion of neurons were applied with probability
0.02, and were implemented by adding or removing a row
and a column from the weight matrix: with this feature, the
algorithm was able to search neural topologies of networks
having a variable number of neurons. A maximum number
of neurons was set to 12.

Mutation was performed on all individuals at each gener-
ation by applying to all genes a value m = ±exp(−200 · u),
where u is a random number drawn from a uniform distri-
bution in [0,1] [12]. Crossover was not applied.

A spatial tournament selection mechanism was used: the
population was placed sequentially on an array, which was
divided at each generation into adjacent segments of size 4
(with random offset at each generation). The tournament
winner then replaced the neighbours. Given this selection
mechanism, individuals spread their genes only linearly over
successive generations. This had the effect of preserving the
population diversity thereby facilitating the evolution of di-
verse topological structures. A population of 800 individuals
was employed in all experiments.

4. RESULTS
The whole simulation setup was implemented in C++.

Multiple parallel runs with different seeds for the random
number generator were executed to provide statistical sig-
nificance.

4.1 Evolving Novelty of Behaviour
Two separate sets of runs were carried out for the two

environments NOV-NE and NOV-AD (see section 2.1). For
each set, 30 independent runs were executed. Each fitness
evaluation was composed of 4 agent’s lives. Figure 4 shows
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Figure 4: Evolution of navigation skills in the NOV-
NE and NOV-AD environments. With the NOV-
NE conditions, the maximum fitness is reached im-
mediately, whereas in the NOV-AD environment,
the additional requirement of novelty of behaviour
resulted in a slower progress in performance. The
fitness in NOV-AD does not reach the level in NOV-
NE because the bonuses do not recharge completely.

the progress of the best and average fitness values, computed
as the median over all 30 independent runs. In the NOV-
NE environment, the maximum fitness is reached from the
start, whilst the average fitness increases rapidly, indicating
that evolution is scarcely necessary because optimal solu-
tions are found in the first random generation. In the NOV-
AD environment, evolutionary progress is evident from the
progressive increment of both the best and average fitness
over successive generations.

The analysis of the solutions indicated that in the NOV-
NE environment, one connection weight from the turn input
to the output is sufficient to reach optimal performance. A
negative connection weight means that the agent turns al-
ways left, whilst a positive connection weight results in the
agent always turning right. This appears to be the success-
ful network topology. It is interesting to note that although
changing the turning direction would not decrease the fit-
ness, such solutions were possibly more complex; the sim-
plest solution of having a single connection prevailed. In the
NOV-AD environment, a varying turning instruction from
the output neuron must be part of the skill-set in order to
maximise the fitness. This appears more difficult to evolve:
upon inspection, the solutions reveal that the plasticity rules
acted on the weights in order to alter the sign of the signal
that propagates from the turn input to the output. In a
well-performing network, the turn signal always reaches the
output neuron with enough intensity to achieve an output
signal higher than 0.33 (in absolute value) in order to per-
form a turn (see Figures 2 and 3). Evolution in the NOV-
AD environment indicated that a mechanism for achieving
novel or random behaviour is more complex to evolve than
the structure for a reactive, stable behaviour.

Why did evolution not use neural noise to implement ran-
domness in the decision processes? In theory this could be
achieved. However, the requirement for the output value
states that at turning points the output must be higher than
0.33 in absolute value, lest the robot crashes. A neural noise
of 4% is insufficient to achieve this value and impose a turn-
ing direction. On ther other hand, it is possible to imagine a
workaround with a neural structure that amplifies the neural

Figure 5: Examples of two networks having conser-
vative behaviour (left) and novel behaviour (right).
The values A,B,C,D, and η that determine the plas-
ticity rule of Equation (3) were evolved. The sole
weight in the network on the left does not change
over time due to the low value of η. In this partic-
ular example (left drawing), a fixed positive weight
results in this network to turn always right. On the
contrary, in the network on the right, the change of
weights over time causes a varying behaviour and
the alternation of the maze-end visited at each trial.
The weight-change over time of these networks is
shown in Figure 6.
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Figure 6: Activities and weights in NOV-NE and
NOV-AD networks: Row 1 is the Ending point sig-
nal that is high when a maze-end is reached. Row
2 is Turn, the signal that becomes high when a turn
is encountered. Row 3 is the weight Turn − Out in
the network of Figure 5(top). This weight does not
change over time, and the agent turns right at all
times. Row 4 is the weight Turn − Out for the net-
work in Figure 5(bottom). The weight-change over
time results in the agent to choose different turning
directions from trial to trial.

noise to reach the threshold of 0.33. However, this possible
solution appears to be difficult to implement or evolve. Fig-
ure 5 shows examples of two networks, one evolved in the
NOV-NE environment and the other evolved in the NOV-
AD environment for 100 generations. The network from the
NOV-AD environment has plastic weights that change dur-
ing execution as shown in Figure 6. With respect to this
model, the evolutionary runs indicated that oscillatory dy-
namics, changing the weights from the turn input to the out-
put, are suitable solutions to achieve novelty of behaviour in
the NOV-AD environment.

4.2 Evolution of Learning
The populations that evolved in the NOV-NE and NOV-

AD environments as described in the previous section con-
tinued the evolution in a reward-based dynamic environment
(RBD). This new environment, as described in section 2.2,
presents dynamic reward items that change their location
during an agent’s lifetime. In this environment the agents
are required to change their navigation patterns in order
to visit all four maze-ends in a double T-maze, but at the
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Figure 7: Evolution of operant reward learning for
the agents coming from the NOV-NE and NOV-AD
environments placed (after generation 100) into the
RBD environment. The line represents the median
value of the best fitness of 30 independent runs.
Once the reward items are introduced at generation
100, and the fitness becomes the total value of re-
ward collected during a lifetime, the agents coming
from the NOV-AD environment appeared faster in
evolving reward learning skills.

same time they should be able to persist in visiting a given
maze-end when that yields a high reward item. A new re-
ward input was made available to the networks: initially
it was not connected to any inner neurons, and evolution
had the task of inserting appropriate connection-weights to
reach reward learning. Only by retrieving the signal from
the reward input, and using it appropriately, it was possible
to maximise the fitness value. Given the four maze-ends,
the high reward was placed randomly at one maze-end, and
switched to another random location each 50±15 trials. This
allowed the placement of the high reward in all four maze-
ends across the whole number of 200 trials. Three maze-ends
had a low reward of 0.2. The purpose was to evolve agents
capable of pursuing the high reward by a combination of
exploration and exploitation, therefore manifesting operant
reward learning.

Figure 7 shows the fitness progress for the best and aver-
age fitness, for the agents coming from the NOV-NE and
NOV-AD environments. The two populations were now
evolving in identical environments. From the fitness graph,
we observe that the agents that were previously trained to
perform novelty of behaviour appear to evolve operant re-
ward learning on a faster evolutionary scale than those that
were evolved in the NOV-NE environment.

4.3 Eliciting Novelty in a Reward-Based
Environment

In the previous experiments, the RBD environment was
novelty-neutral. This is a feature that appears sound in an
artificial evolutionary environment: if an agent has not ac-
quired any learning skill yet, why would a random action
be better than a default, fixed one? Contrary to intuition,
and following the results in the previous section, we are en-
couraged to introduce a novelty advantage into the RBD
environment. Accordingly, a random or changing behaviour
should be better than a fixed behaviour among those agents
that are not capable of learning yet. Whilst the previous
RBD environment had high and low reward items with fixed
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Figure 8: The fitness values of all the 30 runs are
shown for agents evolving in the RBD environment
(top) and NOV-AD-RBD (bottom). In NOV-AD-
RBD (bottom), a reward depletion mechanism was
introduced to elicit novelty of behaviour: due to
this the fitness for the first hundred generations is
lower. Nevertheless, in this second environment, the
agents manifest a better evolution of learning as can
be observed by a higher number of fitness curves
(runs) reaching higher values. In NOV-AD-RBD,
the amount of the high reward item is subject to
depletion during exploitation, therefore, the amount
of the high reward in this environment was set to 1.1
instead of 1.0 to have equal maximum fitness as in
RBD.

values of 1.0 and 0.2, the newer environment now had a de-
pletion mechanism imposed upon the rewards according to
the rule described in section 2.1. Depletion of reward items
can also be seen as depletion of food resources in nature
when those are continuously exploited.

In an RBD environment with reward depletion, a novelty-
inclined agent, which continuously changes the maze-end
visited, collects on average more fitness than a conservative
agent. However, this is true only when learning has not yet
been evolved. Once the agents evolve operant reward learn-
ing and are capable of identifying the location of the high
reward, the gain derived by exploiting the high reward (val-
ued 1.0 versus 0.2 of the low reward) is much higher than the
loss of 0.1 due to depletion caused by continuous exploita-
tion of the high-rewarding source. The RBD environment,
when enriched with reward depletion, was named novelty ad-
vantageous reward-based dynamic environment (NOV-AD-
RBD). The RBD and the NOV-AD-RBD environments can
be seen as similar environments where the gain in changing
behaviour is increased in the NOV-AD-RBD: yet, changing
without learning is less advantageous than learning.

Progression of the evolutionary runs for the two environ-
ments are shown in Figure 8. The fitness progress over 30
runs indicates that the operant reward learning evolves bet-
ter in the NOV-AD-RBD environment, where novelty of be-
haviour is advantageous. However, it is important to note
that an optimal controller performs very limited exploration:
over a lifetime of 200 trials, the location of the high reward
is changed three times, and it is therefore unknown to the
agent on four occasions: at the beginning of a lifetime, and
and on three subsequent occasions. Given the four maze-
ends, the average optimal number of trials to identify the
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Figure 9: Evolution of operant reward learning in
the RBD and NOV-AD-RBD environments when
modulatory dynamics are employed. With the en-
hanced model, a better evolution can be observed
with respect to the previous experiments. Despite
the better evolution with the enhanced model, the
NOV-AD-RBD environment—where reward deple-
tion elicit novelty of behaviour—appeared to facili-
tate the evolution of operant reward learning.

high reward is 2.5: accordingly, an optimal behaviour, given
4 conditions of unknown reward, spends on average 10 trials
out of the 200 to explore, and 190 to exploit the discov-
ered location of the high reward. It would appear then that
exploitation is a considerably more important feature than
exploration because an optimal agent deploys exploration
for a much smaller percentage of its lifetime. Nevertheless,
during the evolutionary phases, the NOV-AD-RBD environ-
ment appeared to be more favourable for the evolution of
fully-fledged operant reward learning.

4.4 Evolution of Learning
with Neuromodulation

The evolutionary runs depicted in Figures 7 and 8 showed
that optimal controllers able to reach the maximum fitness
of 195.23 are difficult to evolve. Despite the introduction
of the reward depletion mechanism, and the consequent im-
provement in speed of evolution, the problem proves diffi-
cult to solve with the given neural model and search algo-
rithm. A further evolutionary experiment was performed
here with the introduction of modulatory neural dynamics
as in [14]. The enhanced algorithm has the possibility of
inserting into the neural networks modulatory neurons that
have the function of modulating the intensity of the plas-
ticity of Equation 3. The weight-change is the value given
by Equation 3 times the hyperbolic tangent of the modu-
latory signals received by a neuron, i.e. ∆w = δ · mod,
where δ is the weight-change from Equation 3 and mod is
the modulatory signal received by the postsynaptic neuron.
Modulatory neurons can be inserted randomly into evolving
networks, as standard neurons do, and can connect to any
neuron, therefore affecting the plasticity rates of the target
neurons. Such model proved to be remarkably effective in
the solution of reward-based dynamic problems [14]. Thus,
it is possible to hypothesise that the effectiveness of neuro-

3According to the number of trials spent to find the high
reward, the loss in reward is 0, 0.8, 1.6 or 2.4. On average the
loss is 1.2 for each optimal exploration. Over 4 exploratory
phases in a lifetime, the loss is 4.8.

modulation could cancel or decrease the advantage of nov-
elty of behaviour in the evolution of operant reward learning.
To cast light on this point, we reproduced the experiments of
the previous section with the environments RBD and NOV-
AD-RBD, and evolved networks enhanced with modulatory
dynamics. The median fitness over 30 runs for the two cases
is shown in Figure 9. From the fitness progress it is evident
that the enhanced model allows for a much faster and bet-
ter evolution of control networks. Nevertheless, the presence
of reward-depletion in the NOV-AD-RBD environment be-
stows the evolving agents with a significant advantage over
those agents evolving in the neutral environment.

5. CONCLUSION
Behaviour-maintaining and behaviour-changing capabil-

ities of an agent, here named conservative and novel be-
haviours, have been suggested to be predecessors of the more
advanced exploiting and exploratory behaviours. Whereas
both conservative and novel behaviours are seen as non-
learning and open-loop behaviours, exploitation and explo-
ration demand the presence of evaluative feedback. It was
outlined that neural controllers, in order to perform operant
reward learning, need non-trivial mechanisms to maintain
a certain sequence of actions during exploitation, and to
change that during exploration. Traditionally, these neural
mechanisms are not a major subject of investigation in rein-
forcement learning algorithms where neural implementation
of exploration and exploitation are not often discussed.

This paper introduced environments that favour novelty of
behaviour in order to investigate its effect in the evolution
of reward learning, or operant reward learning. Interest-
ingly, the notion of behavioural novelty has been introduced
recently in [9], where novelty of behaviour was used as a
surrogate of fitness, and was applied to a population of so-
lutions to evolve diverse behaviour: diversity of behaviour
resulted in better performance than a fitness-driven evolu-
tionary search in ill-behaved fitness landscapes. That study
outlined that the search for novelty resulted in a better cov-
erage of a number of possible behaviours, some of which were
indeed good under the fitness criterion. Here novelty of be-
haviour was measured not among the members of a popula-
tion, but for one agent capable of varying its behaviour over
time. The hypothesis was that an agent capable of novelty
of behaviour was more likely to evolve sensitivity to reward
and achieve operant reward learning on a faster evolutionary
scale.

An initial experiment outlined that novelty of behaviour is
less immediate to evolve than unchanging behaviour because
it requires more complex dynamics. Starting from those
solutions, the evolutionary process continued in a reward-
based environment: here the networks that were capable of
novelty of behaviour had an advantage in evolving evaluative
reward learning, or operant reward learning. This indicated
that the capability of varying behaviour, although initially
performed without feedback from the environment, is a ben-
eficial skill to evolve learning and acquire the meaning and
use of reward stimuli.

It is important to note that the two initial environments
(NOV-NE and NOV-AD) do not have reward items: there-
fore both of them are equally similar to (or dissimilar from)
the maze where the fitness is based on reward collection.
Moreover, both conservative and novelty agents were ex-
posed to reward stimuli in equal amount once immersed in



the reward-based dynamic environment (RBD). If a compar-
ison of similarity is attempted at the behavioural level, the
RBD environment would possibly look more similar to the
novelty neutral environment (NOV-NE) because exploration
is required for very limited amount of time (about 5%). It
is therefore surprising that the agents that change continu-
ously their navigation patterns (those from NOV-AD) evolve
back to mostly conservative behaviour (required in RBD) on
a faster scale than the conservative agents from NOV-NE
evolve to perform a small percentage of exploration. A pos-
sible explanation is that the RBD environment, although
novelty-neutral, requires the capability of turning both to
the left and to the right, as in the NOV-AD precursory envi-
ronment, whereas agents in the NOV-NE can evolve to per-
form only one action. Therefore, one can conclude that the
difficulty is to evolve the essential skill of performing differ-
ent actions, even on a random basis, and that this skill must
be encouraged to facilitate the evolution of reward learning.

A mechanism that favoured novelty of behaviour was then
introduced into a reward-based environment. This was done
by allowing a depletion of reward-items in proportion to the
level at which they were exploited. It must be noted that
the advantage that derived from changing reward-source was
considerably less than the advantage that derived from ex-
ploiting the high-rewarding maze-end. In other words, re-
ward learning was more advantageous than open-loop novel
behaviour. Surprisingly, by introducing this contrasting ob-
jective in the fitness function, the experiments showed better
performance on the evolutionary scale for those agents evolv-
ing in a novelty advantageous environment. Such advantage
was observed in two cases with different neural models: a
model with a traditional plasticity rule, and a more advanced
model with neuromodulated plasticity, therefore supporting
the generality of the conclusion. Both environments where
novelty was advantageous appeared to increase the speed of
evolution of learning.

The experimental findings in this study suggest that the
neuro-evolution of reward-based learning benefits from en-
vironments where on average exploration has low risk, or
it is advantageous. Before a reward-driven behaviour can
proliferate in evolving solutions, the disposition to manifest
varying behaviour in an open-loop, non-learning fashion, ap-
peared a beneficial factor. This conclusion opens new per-
spectives on the role of random or novel behaviour in the
neuro-evolution of reward-based learning skills.
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