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ABSTRACT
We address the problem of phase transitions in random
site graphs. Such graphs were recently proposed as more
useful abstractions of proteins and their network of in-
teractions than standard graphs. A set of binding reac-
tions between proteins give rise to the stochastic assem-
bly of protein complexes. We use a rule-based language
to represent and simulate such systems. Based on meth-
ods from statistical physics we investigate the dependency
of the asymptotic size distribution of such complexes with
respect to the site configuration and binding affinities of
and between proteins, respectively. In particular we dis-
cuss a liquidity index of such abstract protein networks
and apply it to the problem of chemoreceptor clustering in
E. coli.

1. INTRODUCTION

High-throughput methods for measuring the binding of
one protein to another, such as the yeast two-hybrid sys-
tem have lead to a characterization of a large number of
protein-protein interactions (PPI) in various model organ-
isms. The availability of such interaction networks trig-
gered a series of purely graph-theoretical analyses of such
networks [1]. Recently it became clear however [2] that
the incorporation of protein domain information into such
analysis may affect the conclusions drawn in those previ-
ous studies. With respect to simple graphs a more appro-
priate abstraction for PPI networks with domain informa-
tion are site graphs [3, 4]. Nodes of site graphs comprise
domains or sites at which the graph’s edges emerge or ter-
minate.

Here we are interested in a description of the observed
clustering of the chemoreceptors in E. coli. See [5] for the
experimental evidence using cryo-electron tomography of
such cluster or patch formation in chemotactic E. coli
cells. Those tomography experiments shows patches that
are generally ellipsoidal shapes of varying size with an av-
erage diameter of around 250 nm. The corresponding area
of around 50 nm2 for such a patch could host around 6500
receptors [5].

The involved chemoreceptors are transmembrane re-
ceptors and belong to the superfamily of methyl-accepting
chemotaxis proteins (MCP) [6]. The residuals in the cyto-
plasmic part of the receptors that can be methylated were
shown to be responsible for the adaptation of the signaling
system and modulate the ligand affinity of the receptors.
They are also supposed to be related to structural, con-
formational changes of receptors, i.e., whether their long

cytoplasmic part is more stiff or more flexible. The two
predominant receptor types are those for aspartate (Tar)
and serine (Tsr), with several thousands of molecules per
cell. Less abundant are receptors for dipetides (Tap), ri-
bose and galatose (Trg) and redox potential (Aer) with a
few hundreds per cell. Receptors of different type were
shown to form hetero-trimers [6].

The function of clustering for chemotactic signal trans-
duction is not entirely clear yet. However the extraor-
dinary 50-fold amplification of the signaling cascade of
ligand-concentration change to the flagella motor-bias change
is partially attributed to some mechanism related to the
clustering of the receptors [6]. One hyphothesis is that
conformational change upon ligand binding of a receptor
can spread to neighboring non-ligand bound receptors [7].
In a series of papers (see [7] and the references therein)
Bray and co-workers devised an Ising-like lattice model
for this conformational spread. Under this hypothesis the
chemotactic system would have to maintain a delicate bal-
ance between sensitivity and dynamic range.

2. RANDOM SITE-GRAPHS

Inspired by the framework of [3] for colored degree-
driven random graphs, we define an ensemble of site
graphs that comply with an abstract notion of proteins
and their interaction over binding domains [4]. We de-
fine a static random graph with sites G as the tuple G ≡
(N,D, p(X),T), with N the number of vertices, D the
set of domain types, T the symmetric |D| × |D| domain
preference matrix. The domain configuration of a partic-
ular vertex is represented by the vector x ∈ X ⊆ N|D|0 .
Accordingly we denote p : X → [0, 1] as the colored
degree distribution p(x) of G. Fig. 1 shows an example
of a site graph. The graph G defines an ensemble of static
graphs and does not account for the growth of such graphs.
To connect this notion with the dynamic assembly of pro-
teins into aggregates we next consider the asymptotic state
that such an stochastic assembly process reaches. The
asymptotic state associates a probability over the number
of bindings for any domain pair. It thus induces a distri-
bution over an ensemble of randomly assembled graphs.

We define the dynamics of assembling a member of G
through a set of rules [8]. Rules can be thought of reac-
tions with the important difference that rules can act on
partially defined chemical species. A single rule can thus
account for many reactions. In this work we focus on the
unconditional binding rules, i.e., the probability of a bond



c
a

a a

b
c

a

c
a

a a

b

c
a

aa

b
c

a

b

a

a a

c

Figure 1. Example of site graph with domain set D =
{a, b, c}.

between two domain does not depend on conditions other
than that the two domains must be unbound. Classical
chemical kinetics for such an assembly process is inap-
propriate as it leads to a combinatorial number of chem-
ical species. Instead we describe the process through the
abundance of the |B| distinct bond types, with B ⊂ D2 the
set of unique domain pairs, between which a bond can be
formed (this can immediately be read off from the contact
map of a rule-set, e.g. Fig. 2). Let us declare the random
variable Zij(t) for the number of bonds between domain
(i, j) ∈ B at time t. Let us further denote dj , j ∈ D
as the total number of domains of type j in the assembly.
The bond number Zij(t) is then bounded from above by
Mij = min(di, dj). We assume in the following that dj is
an invariant of the ensemble of random graphs for every
type j ∈ D. Detailed balance of probabilities gives

P [Z(t+ τ) = z] =
{1− P [Z(t+ τ) ∈ E(z) |Z(t) = z]}P [Z(t) = z]

+
∑

y∈I(z)

P [Z(t+ τ) = z |Z(t) = y]P [Z(t) = y],

where the first summands accounts for not leaving, within
the interval [t, t + τ), the state Z(t) = z to the exit states
E(z) of the transition graph underlying the discrete-state
continuous-time Markov chain. In turn, the second term
gives the probability to reach the state Z(t) = z from
input states I(z) within the interval [t, t + τ). Here we
assume all reactions to be reversible and thus E(z) =
I(z) ≡ U(z) for all z with

U(z) =
{
y | ∀(i, j) ∈ B,y = z + eieTj if zij < Mij

}
∪
{
y | ∀(i, j) ∈ B,y = z− eieTj if zij > 0

}
,

where we introduced ei as the i-th unit vector of a |D|-
dimensional basis. Relying on mass-action kinetics the
master equation reads

dP (Z(t) = z)
dt

=
∑

(i,j)∈B

γ−ij (zij + 1)P [Z(t) = z + eieTj ]

+
∑

(i,j)∈B

γ+
ij(νi + 1)(νj + 1)P [Z(t) = z− eieTj ]

−
∑

(i,j)∈B

(γ−ijzij + γ+
ijνiνj)P [Z(t) = z],

(1)

with the number of free type i sites νi = di −
∑|D|
j=1 zij

and the kinetic on and off-rates γ+
ij and γ−ij , respectively.

Equation (1) is of a differential-difference type and not
solvable analytically, in general. It can be solved how-
ever, for the particular case of non-competitive binding in
the asymptotic case [9]. That is, every domain-type can
only be bound to exactly one other domain-type. We fo-
cus on this subsequently because the presented receptor
clustering model exhibits this feature. After appropriate
permutation, the corresponding matrix T obeys the block-
diagonal form with 2×2 anti-diagonal blocks (we exclude
self-binding). This pattern is shared with the matrices of
on and off kinetic rates. The probability of an admissible
unbinding or binding of an edge between two particular
domain types is depending on the number of established
edges of this type and on the number of free domains of
proper type, respectively. The number of free domains
is now however not depending on edges of other type.
In other words the joint density of bond counts becomes
P (Z(t) = z) =

∏
(i,j)∈D2 P (Zij(t) = zij). Thus the

problems decouples into |B| independent subproblems. In
this case it is convienient to work with the number of a free
domains of a particular type νi = di − zij , where domain
j is now the unique partner for domain i. For the asymp-
totic Ḡ(ωi) ≡ limt→∞G(ωi, t) of the moment generating
function G(ωi, t) =

∑
νi∈N0

P (νi, t)ωνi
i , |ωi| < 1 we ob-

tain from (1) the scalar second-order ordinary differential
equation

0 =ωi
d2

dω2
i

Ḡ(ωi) + (di − dj + 1 + Γijωi)
d

dωi
Ḡ(ωi)

− ΓijdiḠ(ωi)
(2)

with the equilibrium dissociation constant Γij ≡ γ−ij/γ
+
ij .

The solution of this equation is the confluent hypergeo-
metric function Ḡ(ωi) = α 1F1(−dj , di−dj+1;−Γijωi),
for di ≥ dj , where α is a scaling factor that can be deter-
mined through the requirement Ḡ(1) = 1. A series repre-
sentation for this function reads

1F1(a, b;ω) =
∞∑
n=0

(a)nωn

(b)nn!
=

(−a)!(b− 1)!
(b− a− 1)!

Lb−1
−a (ω)

where (a)n the denotes the rising factorial (a)n ≡ a(a +
1)(a + 2) · · · (a + n − 1). The function can also be ex-
pressed by Laguerre functions Lb−1

−a (ω) with a < 0 and
b ≥ 1. The asymptotic expected number of free sites of
type i is then obtained by differentiating Ḡ(ωi) and sub-
sequent evaluation at ωi = 1

〈νi〉 = Γij
dj

di − dj + 1
1F1(−dj + 1, di − dj + 2;−Γij)

1F1(−dj , di − dj + 1;−Γij)
(3)

where we incorporated the appropriate normalization. As
we assumed the total number of domains of a particu-
lar type to be an invariant of our random ensemble, the
expected number of corresponding bonds computes to
〈zij〉 = di − 〈νi〉.

3. SIMPLE CLUSTERING MODEL

There is experimental evidence that the basic functional
unit of the receptors is a trimer of receptor dimer and that



the tips of the cytoplasmic end of those three receptors
dimers can bind, independent of the presence of CheW or
CheA.

In [7] Bray and co-workers proposed an interesting
model for receptor clustering. First, some facts about the
involved agents. The adaptor CheW is a small monomeric
protein and is supposed to bind the receptor tip as well
as to CheA. CheA forms dimers, whereas a single CheA
monomer has five domains, i.e., P1 phoshorylation do-
main, P2 the CheY and CheB binding site, P3 the dimer-
ization domain, P4 catalytic domain, P5 regulatory do-
main, that allows to couple CheA to the receptor and to
CheW. Analyzing the 3D protein structure Shimizu et al.
[7] argue that CheW fits well into the groove between two
receptor homodimers. Their proposal is that 3 CheW bind
the three grooves in a trimer of dimer receptor-bundle and
that at each CheW one part of the CheA dimer is bound
on its P5 domain.

The above observations allow us to construct a simple
rule-based model [8] for the cluster formation. In par-
ticular, we want to determine whether a set of dissocia-
tion rates corresponding to the rule set can give rise to a
lattice the size of which scales with the size of the pro-
tein ensemble. We assume that the basic receptor unit
of a trimer of receptor homo-dimers has formed and we
spend three binding sites for such a trimer to bind three
adaptors CheW, i.e., trimeric receptor agent Tar(a, a, a)
(where we allow the interface of an agent to be a multi-
set of domains). We assume for the monomeric adaptor
protein CheW two binding sites, i.e., agent CheW(b, c).
Following the experimental evidence we spend two bind-
ing sites (the P5 domains) for the dimer CheA, i.e., agent
CheA(d, d). We start with the reversible recruitment of the
adaptor proteins to the receptor.

Tar(a), CheW(b)
γ+

ab−−⇀↽−−
γ−ab

Tar(a1), CheW(b1) (4)

According to the syntax of the deployed language [8], the
rules encode that binding of CheW to the receptor trimer
is independent of the binding status of neighboring sites of
the receptor. Next, we represent the binding of the kinase
CheA to the adaptor CheW, where we do not require that
the adaptor has already bound the receptor.

CheW(c), CheA(d)
γ+

cd−−⇀↽−−
γ−cd

CheW(c1), CheA(d1) (5)

For a regular hexagonal structure the two sites of a CheA
agent should connect to two different receptor trimers.
This is not enforced in this rule-set and CheA can loop
back and bind at another CheW on the same receptor
trimer. However it is questionable whether in nature such
back looping is prohibited. It may well be that the re-
sulting array is not a perfect hexagonal lattice. Further-
more, in simulation studies the frequency of such loops
was very low. Here we chose the population size accord-
ing to the assumed stochiometry and therewith allow for
total pairing of the agents, i.e., in the ratio 2×Tar(a, a, a),
6 × CheW(b, c) and 3 × CheA(d, d). The contact map [8]
corresponding to this rule-set is depicted in Fig. 2
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Figure 2. Contact map for the simple receptor clustering
model.

4. RESULTS

With the model definition in Section 3 and the expression
for the expected number of bond for every (i, j) ∈ B at
equilibrium (3) we have the ingredients in place to deter-
mine the constituents of G = (N,D, p(X),T). Based on
this, we will here soley focus on the percolation threshold
or liquidity index for such a random site graph. Namely
we know from [4, 3] that this threshold corresponds to the
condition that the largest eigenvalue (in absolute value)
of the matrix TE approaches one. The matrix E consti-
tutes the matrix of second-order moments of the colored
degree distribution p(X), i.e., Eij = 〈xixj〉 − δij〈xi〉. A
graph above this threshold (supercritical) features a sin-
gle connected component that comprises the major part of
the vertices, whereas the remaining components account
for log(N)-order of vertices. The size of that giant com-
ponent increases with increasing graph size N . Graphs
below that threshold are said to be subcritical.

The degree distribution function p(X) for an ensem-
ble of proteins is predetermined through their respective
copy numbers and their domain configurations. For our
model we have four domain-typesD = {a, b, c, d} and the
only domain configuration with non-zero probability are
xT = (3, 0, 0, 0), xW = (0, 1, 1, 0) and xA = (0, 0, 0, 2)
for the receptor trimer, the adaptor CheW and the autoki-
nase CheA, respectively (refer to Fig. 2). The distribution
p(X = x) denotes the probability that a randomly picked
vertex has domain configuration x. If we assume that the
copy numbers of our emsemble obeys the stoichiometric
ratio, we obtain p(X = xT ) = 2

11 , p(X = xW ) = 6
11 and

p(X = xA) = 3
11 . This ratio allows for total pairing of

domains, thus 〈xi〉 = 6
11 for all i ∈ D. The second-order

moments then read

E =
6
11

2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (6)

As we deal with non-competitive binding the domain-
preference matrix exhibits the discussed block-diagonal
structure

T =

 0 Tab 0 0
Tba 0 0 0
0 0 0 Tcd
0 0 Tdc 0

 . (7)

The relation between T and expected number of bonds
at equilibrium 〈zij〉 is as follows. The probability that
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Figure 3. Phase diagram showing the partitioning into a
subcritical and supercritical region; reported pair of disso-
ciation constants [10] indicated as solid dot.

an randomly picked domain-pair (i, j) is bond to each
other computes asymptotically to the relative frequency
of present (i, j) bonds 〈zij〉 with respect to all possible
bonds, i.e.,

〈zij〉
N2〈xi〉〈xj〉

≡ Tij
N
,

that establishes the relation between the domain prefer-
ence and the equilibrium number of expected bonds. In
order to compute 〈zij〉 for the receptor cluster model we
need to determine the dissociation constants Γij . Accord-
ing to direct pull-down assays in [10] the receptor - CheW
adaptor dissociation constant amounts to Γab = 10.8±0.7
µM, while the CheW - CheA dissociation constant was
measured to be Γcd = 6.0± 0.2 µM. With a reported cell
volume of 1.4×10−15 L for E. coli we obtain Γab = 9100
and Γcd = 5060 molecules per cell. With an estimated to-
tal [11] of 17± 2 µM (14330 per cell) Tsr and Tar recep-
tors and the assumption on the stochiometric ratio we can
determine the two nonzero entries of T. The largest eigen-
value in absolute terms of TE turns out to be λ = 0.79.
Although close to the percolation threshold the model is
subcritical for this set of dissociation constants. We next
sample over these constants in order to determine the per-
colation boundary. In Fig. 3 we show the phase plane that
is partitioned into a subcritical and supercritical phase.

5. CONCLUSION

We connected the framework of random site-graphs with a
notion of abstract protein interaction networks by looking
at the asymptotic probability distribution of such a net-
work. For unconditional and non-competitive binding the
mean occupancy level of sites is given analytically. With
this level and the domain configuration of the involved
proteins the percolation threshold or liquidity index for the
network can be determined. Based on recent experimen-
tal evidence we devised a model for chemoreceptor clus-
tering in E. coli and analyze its criticality. The model’s
subcriticality for constants in [10] gives rise to interesting

questions. Is there another stoichiometry between recep-
tor, CheW and CheA? May the in vivo dissociation con-
stants be different from the ones in [10]?
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