Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation

The adsorption of terephthalic acid [C6H4(COOH)(2), TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis indicates that the 1D phase consists of intact TPA chains stabilized by a dimerization of the self-complementary carboxyl groups, whereas in the 2D phase, consisting of deprotonated entities, the molecules form lateral ionic hydrogen bonds. The supramolecular growth dynamics and the resulting structures are explained by a self-limiting deprotonation process mediated by the catalytic activity of the Pd surface. Our models for the molecular ordering are supported by molecular mechanics calculations and a simulation of high resolution STM images.


Published in:
Journal of Chemical Physics, 125, 18
Year:
2006
ISSN:
0021-9606
ISBN:
0021-9606
Keywords:
Laboratories:




 Record created 2009-04-14, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)