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1 Introduction

In the present chapter we will discuss the creation of surface supported metal
clusters through nucleation and growth in Molecular Beam Epitaxy (MBE).
MBE is commonly used to grow thin epitaxial films from the vapor phase
onto single crystal substrates under ultra-high vacuum (UHV) conditions [1].
In thin film growth the nucleation of stable clusters is the preliminary step
to the immobilization and further condensation of film atoms or molecules.
If one is close to thermodynamic equilibrium it is irrelevant how and where
this nucleation takes place and the film topography is given by the balance
of the free energies of film surface, substrate surface, and the interface be-
tween the two [2]. However, the prerequisite to the growth is to be away from
thermodynamic equilibrium, at least to some extent, since detailed balance
arguments require that in equilibrium all processes appear with equal rates,
including condensation and desorption. Therefore, the entire growth system
hardly adopts equilibrium and is thus in a state always influenced to a certain
extent by kinetics. The history of when and where the film atoms were added
begins to matter and the film morphology is determined by the microscopic
pathway taken by the system. This pathway comprises the interplay of only
a few elementary processes, such as terrace diffusion of single adatoms, clus-
ter formation and diffusion, as well as aggregation and interlayer diffusion.
All diffusion events take place on a time scale set by the coverage divided
by the deposition flux. The importance of kinetics in thin film growth was
realized early on, leading to the development of mean-field nucleation the-
ory which relates the cluster density to monomer and cluster diffusion rates
and to cluster dissociation rates [3-5]. Continued interest in the elementary
processes of epitaxial growth has led to the quantification of energy barriers
for the most important of these processes. On the experimental side tech-
niques such as Field Ion Microscopy (FIM) [6-9] and by Variable Tempera-
ture Scanning Tunneling Microscopy (VT-STM) [10] have been used. On the
theoretical side the barriers for these processes were evaluated using approx-
imative methods such as the Embedded Atom Method (EAM) or Effective
Medium Theory (EMT) and ab initio theoretical concepts based on Density
Functional Theory (DFT). The study of the elementary processes involved in
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epitaxial growth and their relation to cluster and film morphology are topics
of ongoing interest.

The knowledge gained from such surface science studies can be employed
to grow clusters at surfaces with well defined size, shape and even regular
spacing. The idea of assembling supported clusters from adatoms might ap-
pear unusual to readers belonging to the cluster community, as typically in
cluster physics, clusters are condensed, cooled and mass selected in the gas
phase before they eventually become (soft-) landed onto the support. The aim
of the present chapter is to convince the reader of the high degree of control
on cluster size, shape and spacing that can be achieved in the MBE growth
of clusters at single crystal surfaces. Of course, the attempt to grow well de-
fined structures at specific sites is a struggle against the statistics inherent in
deposition and in the Brownian character of thermally activated adatom dif-
fusion. The statistics of both processes expresses itself in the clusters’ spatial
and size distributions. These distributions are coupled to each other and their
width and shape are given by well known scaling laws of nucleation [11-14].
However, we will show below that there are means to overcome statistical
limitations and, to some extent, to create order out of randomness.

The chapter is organized as follows. We will start with an introduction
to the elementary processes of epitaxial growth. In the following Sects. 3-5
we discuss cluster growth on isotropic metal surfaces. First we give a brief
outline of the basic results of nucleation theory in its simplest form of stable
and immobile dimers. We show experiments that confirm the theory for that
case and permit a direct link between nucleation densities and terrace diffu-
sion parameters. In Sect. 4 we discuss the transitions from fractal to various
compact clusters tracing back the cluster shape to the atomic processes of
aggregation. The last section on isotropic substrates is devoted to Ostwald
ripening as a means of preparing compact two-dimensional (2D) clusters with
a narrow size distribution centered at almost any desired value. Section 6 dis-
cusses cluster growth on anisotropic metal substrates where diffusion and/or
sticking anisotropy give rise to the formation of elongated clusters, and in the
extreme case to 1D atomic chains. In the following section we turn to sur-
faces with dislocation networks or Moiré patterns. Such substrates provide
inhomogeneous potential energy surfaces that may guide diffusing monomers
to singular sites where they nucleate clusters. The result is a periodic clus-
ter array, the regularity in spacing being accompanied by narrow cluster size
distributions. The nucleation of metal clusters on single crystal oxides and
sulfides is discussed in Sect. 8. We will end this chapter with a brief conclusion
and outlook.

2 The Elementary Processes of MBE Growth

In molecular beam epitaxy, film atoms are deposited onto the substrate with
thermal energy (~ 0.1 eV) and flux F' (expressed in atoms per lattice site,
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equivalent to monolayers (ML), per second). Typically, the energy gained in
the adsorbate—substrate bond formation is effectively dissipated into the lat-
tice, so that adatoms are brought into thermal equilibrium with the substrate
already at their site of impact [15]. This can be inferred for instance from
experiments at low temperatures revealing cluster sizes in agreement with
the predictions of statistical growth, allowing no diffusion at all [10,16-18].
Therefore transient jumps are the exception, if they exist at all for metal
on metal adsorption. (In contrast, there is evidence for transient motion for
the dissociative chemisorption of molecules on metals [19,20].) Transient non-
thermal motion has to be distinguished from thermal motion with small en-
ergy barriers towards next nearest neighbors [21] and clusters [22,23]. For
certain combinations of elements the adsorption energy might be used to
trigger transient exchange processes, even at low T [24]. However, in the ab-
sence of exchange and sufficiently far away from clusters or adatoms, the film
atoms generally adsorb where they land from the vapor phase. From there
on, adatom diffusion sets in.

The diffusion processes participating in epitaxial growth are thermally
activated jumps mostly in the form of straight adatom movements between
adjacent lattice sites. However, concerted motion of several atoms may also
be involved. Transition State Theory (TST) [25] assumes that the atoms
stay between two subsequent jumps long enough in their adsorption wells to
thermally equilibrate, in addition, recrossing of the barrier is assumed to be
negligible. These assumptions are justified if the energy barrier separating
the binding from the transition site satisfies F < kgT. The jump rate of
a diffusion process of type n is then given by Boltzmann statistics as v,, =
vonexp(—E, /kpT), with the attempt frequency vy, typically being in the
range 10'2 — 10'® Hz of Debye frequencies.

Terrace migration of single adatoms (F,, in Fig. 1) is the most funda-
mental of these diffusion processes. It gives rise to nucleation of islands on
substrate terraces or to step flow growth at elevated temperatures. Depend-
ing on the density of simultaneously diffusing particles, one distinguishes the
collective diffusion coefficient (also known as chemical or Fickian diffusion
coefficient) of an ensemble of mutually interacting particles from the tracer
(or intrinsic) diffusion coefficient describing the mean square displacement of
one isolated random walker per unit time [26]. For typical growth rates the
density of diffusing particles is rather small (the monomer density n; < 1073
adatoms per adsorption site). The mean inter particle distance is therefore
large compared to typical interaction ranges for metal adatoms on metal
substrates [27,28] and cluster densities are determined by the tracer diffusion
coefficient D defined as

1
D = Doexp(—En/ksT) , with Dy = 170 (1)

where D is expressed in substrate unit cells per second. The factor of 1/4 in
Dy is valid for 2D diffusion, whilst in one dimension this factor is 1/2.
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Fig. 1. The elementary diffusion processes of MBE growth

Diffusion across the terrace ends when the adatoms collide with one or
more of their own (for sake of simplicity structural and chemical defects are
not considered). Depending on the lateral bond energy (E} in Fig. 1) and
the number of neighbors, the formed cluster remains stable or decays again.
A stable nucleus is a cluster that is large enough to grow more rapidly than
it decays on the time-scale of deposition. One defines the critical cluster size
7 by the number of atoms in the smallest stable nucleus minus one, i.e.,
attachment of one atom turns a critical cluster into a stable one.

The two-dimensional cluster shape is determined by the mobility of aggre-
gating adatoms along the cluster edge (barrier F, in Fig. 1), more specifically
along straight steps and around kinks and corners, in the case of trigonal sub-
strates also from 1-fold coordinated corner to 2-fold coordinated step sites.
Low mobility leads to ramified clusters with fractal dimension, similar to
Diffusion Limited Aggregation (DLA) scenarios [29-31]. Anisotropic terrace
diffusion imposed by the substrate symmetry, in conjunction with anisotropic
sticking to the edges, can lead to the formation of 1D monoatomic wires. Com-
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pact 2D clusters are created if edge diffusion is fast compared to the cluster
growth rate. The thermodynamic 2D equilibrium shape forms when corner
and kink crossing become activated.

The rate of adatom descent at cluster steps determines whether or not
adatoms deposited onto the cluster top are able to descend to the substrate
level before other adatoms become deposited onto the cluster top. In the
latter case a stable nucleus forms on top of the cluster giving rise to the
kinetic growth of 3D clusters, whereas in the first case clusters remain 2D
until they coalesce. An adatom approaching a descending step encounters
a barrier Ey for descent which is typically larger than Ey,. The extra dif-
fusion barrier to overcome atomic steps was experimentally discovered [32]
and theoretically conjectured [33] long ago. It is caused by the strongly re-
duced coordination of the adatom to the substrate in the transition state,
or in the case of exchange interlayer diffusion, by the reduced coordination
of the complex transition state configuration. Ab initio calculations give in-
sight into why exchange diffusion is preferred for specific step orientations
and combinations of metallic elements whereas for other step orientations
and systems interlayer diffusion is a simple roll down process. The values for
E; derived from such calculations [34-36] can be compared to results from
FIM experiments [15,37]. Experiment and theory agree that the mechanism
of interlayer diffusion is strongly system specific. Complementary to direct
FIM inspection there are also various indirect ways to infer experimental es-
timates on Fy from layer occupation numbers [38,39], from the nucleation
probability on cluster tops [40], from island decay in suitable geometries [41],
or from step densities [42,43] and slopes of mounds evolving through kinetic
roughening [44,45]. The values of E; derived from such observations of the
film morphology are all effective barriers for interlayer diffusion. Despite their
relevance for predicting the epitaxial growth morphology and cluster dimen-
sion, association to a particular microscopic interlayer diffusion process is
often not unambiguously possible. For sake of simplicity the following discus-
sion of metal on metal systems will be restricted to 2D islands only, i.e., the
STM images below show monolayer high islands. For kinetically caused 3D
island growth the reader is referred to the references given in this paragraph.

3 Nucleation

We will now address the relationship between cluster density and terrace
diffusion coefficient, cluster binding energy and deposition flux. For simplicity
we discuss the case of 2D islands in the irreversible growth regime where the
critical cluster is a monomer, i.e., i = 1, and a dimer is stable and immobile.
For an extension of this discussion to more complicated cases of larger critical
cluster sizes, 3D clusters, incomplete condensation, or cluster diffusion, we
refer to [4,46-48].
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The simplest MBE growth scenario has monomers as the only mobile
species and dimers represent stable nuclei. In the initial phase of deposition
the adatoms arriving from the gas phase with rate F' diffuse with rate D on
the substrate terraces until they meet a second diffusing adatom and create
a dimer. As deposition proceeds, the number of dimers will increase linearly
until their density no becomes comparable to the monomer density n;. From
there on, the probabilities that a diffusing monomer encounters one of its
own or a dimer become comparable and the growth of stable clusters starts
to compete with the nucleation of new ones. As a consequence, the increase in
density of stable nuclei n, (z standing for any size that is stable, x > 2) levels
off until n, saturates at a coverage of typically s, ~ 0.15 ML. When the
saturation island density is reached, the mean free path of diffusing adatoms
is equal to the mean island separation and any further deposition will exclu-
sively lead to island growth since all adatoms reach and attach themselves
to existing islands. At coverages beyond 0.2 ML the 2D clusters start to co-
alesce until the monolayer film percolates at typically § = 0.5 ML. For metal
on metal growth this scenario was experimentally verified for Ag/Pt(111) by
means of VT-STM [49]. The STM observations ranged from the pure nucle-
ation phase with its linear increase of n, and an average cluster size of 2-3
atoms up to saturation and finally coalescence. Figure 2 shows the 2D Ag
clusters formed at three deposition temperatures in the irreversible growth
regime. To avoid coarsening of the metastable clusters they have been imaged
at the deposition temperature.

Mean-field nucleation theory relates the saturation cluster density n, to
the ratio of diffusion D to deposition rate F' and to the cluster binding en-
ergy E; by the following expression for complete condensation and 2D clus-
ters [4,50]

~(D\ X E; . )

From (2) it becomes clear that the most direct link between n, and D is
obtained at low temperatures where ¢ = 1. Then the cluster binding energy
is by definition E; = 0, and (2) reduces to

Ng = 77(97 1)(D/F)_1/3 ’ (3>

with n(6,1) = 0.25 in the coverage range of saturation [4,18]. At higher
temperature the cluster binding energy FE; can for instance be expressed in
a pair binding model involving multiples of the energy per bond E}, [46] (for
dimers E; = Fy,, see Fig. 1).

The Arrhenius plot of n, in Fig. 2d shows a roughly linear regime in
the range of 10° < D/F < 10°, in accordance with (3). The application of
this equation to n.(T) data inferred from STM has proven to yield valid
numbers for the barrier and attempt frequency of terrace diffusion [51,52,49].
It was pointed out that the accuracy of these numbers can be considerably
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Fig. 2. Variation of saturation island density with temperature for deposition of
6 = 0.12 ML Ag onto a Pt(111) surface. (a)—(c), Common length scale VT-STM
images taken at the respective deposition temperatures. (d) Arrhenius plot of the
saturation island densities in the temperature regime where dimers are stable nuclei
(for the applied deposition flux of F = 1.1x10™% ML/s). Experimental island densi-
ties for Ag/Pt(111) are compared with results from integrating rate equations from
mean-field nucleation theory using self-consistent calculations for capture numbers
(solid line) [18]

increased in analyzing cluster densities down to lower temperatures [18,53].
There (D/F < 10°), however, (3) no longer holds since monomers are dif-
fusing too slowly to reach each other and create all nuclei during deposition.
Therefore monomers are stable nuclei (¢ = 0) in the sense that many of them
remain monomers during deposition. However, they continue to diffuse af-
ter deposition. This post-deposition mobility gives rise to cluster growth and
cluster nucleation in the time between deposition and imaging with STM. It
is clearly visible in Fig. 2d that this leads to a reduced slope ending with a
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plateau where all islands are created after deposition and thus n, becomes
independent from the deposition temperature [49,54]. Post-deposition mobil-
ity can be accounted for in rate equations using mean-field nucleation theory.
These equations have been integrated using self-consistent solutions to the
capture numbers derived by Bales et al. [55]. As a result, the experimental
data for Ag/Pt(111) could be fitted over a range of almost 10 orders of mag-
nitude in D/F yielding E,, = 168 £ 5 meV and vy = 7 x 1013%0:3 s—1 [18].
Similar precision was obtained by Bott et al. for Pt(111) self-diffusion [53].

The experiments studying n,(T") in the irreversible growth regime (i = 1)
yield a precision for Ey, close to that of state-of-the-art FIM studies, which up
to now presented our most precise source of information on atomic diffusion
barriers. In contrast to FIM, however, the nucleation method is not limited
to highly refractive elements and therefore enables the study of monomer dif-
fusion for a wide range of metal and semiconductor systems. In the past, the
influence of isotropic strain on diffusion on fcc(111) surfaces was studied [56].
This inspired ab initio calculations revealing that the binding energy of the
bridge site becomes less affected by strain than that of the three-fold hollow
site, leading to the observed strong effect of strain on FE,, which is the dif-
ference of both energies [57,41]. Also systems with extremely small diffusion
barriers which were formerly inaccessible by experiment, such as Al/Al(111)
and Al/Au(111)-(v/3 x 22) could be addressed [10,58,59]. However, the nu-
cleation studies revealing extremely small diffusion barriers (Ey, < 100 meV)
systematically yielded prefactors smaller by several orders of magnitude than
the universal one discussed above. This may be due to a breakdown of tran-
sition state theory, since F,, becomes of the order of kgT" and the adatoms
no longer thermally equilibrate between jumps. The low apparent prefactors
might equally well indicate the limit of applicability of the nucleation method,
i.e., of (3). Since the E,, values are small, the cross-sections of cluster for-
mation get sensitive to small variations in the binding energy of an adatom
approaching one of its own. Such variations can be substrate-mediated in-
teractions [60] which in the case of surface sates can be of extremely long
range. If these interactions were repulsive over several lattice constants, clus-
ter formation would be delayed with the result of larger cluster densities than
expected from (3). Application of this equation would then lead to smaller
apparent prefactors.

Apart from this extreme case of exceptionally small E,, values, Egs. (2)
and (3) have been subjected to extensive experimental tests and to tests
with Kinetic Monte Carlo (KMC) simulations, all showing that for the gen-
eral case these equations unambiguously relate D/F to n,. Therefore the
cluster density at terraces can be tuned for each system to the desired value
by choosing an adequate substrate temperature and/or deposition flux. The
average cluster size is then adjusted by the coverage.

The cluster size distributions obtained by nucleation on homogeneous
substrates all fall onto common curves that depend only on the critical clus-



Growth of Metal Clusters at Surfaces 9

ter size ¢ [61-64,12]. The scaling law is obtained when the size distributions
are plotted as ny x (N)2/6 vs. N/(N), where N and (N) are the size and
its mean value, and ny is the density of N-sized clusters. The shape of the
size distributions is Gaussian with a Half Width at Half Maximum (HWHM)
of 0 ~ 0.55 in the case of ¢ = 1 [12]. We will discuss below several meth-
ods for significantly narrowing down the size distributions. For the prospect
of growing small clusters the low temperature plateau of constant cluster
densities shown in Fig. 2d is of interest, since through post-nucleation, expo-
nentially decreasing island size distributions with mostly dimers and trimers
are formed.

4 Aggregation

The similarity of patterns formed in non-equilibrium growth processes in
physics, chemistry and biology is conspicuous, and many attempts have been
made to discover common mechanisms underlying their formation [65,66].
The most prominent examples are snowflakes. The correlation of their shape
with meteorological crystal growth conditions leads to valuable conclusions
concerning the meteorology in the upper atmosphere [67]. The manifold
growth patterns in nature commonly evolve from non-equilibrium growth at
an interface with material transport via diffusion being the rate limiting pro-
cess. Exactly these conditions govern aggregation of clusters at single crystal
surfaces held at low temperatures. Aggregation of submonolayer coverages of
metal atoms is often two-dimensional and therefore easier to understand than
many more complex growth patterns. Nevertheless, it bears enough complex-
ity that knowledge gained in 2D may be transferred to the understanding of
more complicated 3D patterns appearing in nature. This makes low tempera-
ture metal aggregation an ideal model system for tracing back mechanisms by
which single diffusion events of atoms along a growing interface translate can
determine an overall pattern. STM opened access to the structure of mono-
layer high 2D aggregates formed by atoms at surfaces [68]; and its extension
to variable low temperatures enabled the investigation of the kinetics under-
lying the formation of such patterns down to temperatures where irreversible
growth occurs [69-72]. The knowledge gained from microscopic studies in
turn provides control over the shape of MBE grown surface-supported clus-
ters. In this section we discuss ramified clusters with fractal dimension, and
various compact island shapes formed on isotropic single crystal metal sur-
faces. For the sake of controlled cluster growth we focus on the link between
cluster shape and system parameters and growth conditions.

Let us assume we perform an MBE experiment on an isotropic substrate
at low temperature. If adatoms would irreversibly stick to the site where they
hit the growing aggregate (i = 1), and if edge diffusion were entirely frozen,
then so-called Diffusion Limited Aggregation (DLA) -clusters [29,30] would
form with monoatomic branches spreading out into random directions. The
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formation of branches is caused by low mobility along the edge leading to the
so-called tip- or Saffman—Taylor instability [73]. This instability is due to the
fact that protrusions at the edge resulting from statistical fluctuations cap-
ture more adatoms from the terrace diffusion field than straight or concave
step sections. If these atoms cannot be transported away sufficiently fast, the
protrusions grow out as a branch with a width related to the step edge diffu-
sion barrier [74-77]. With increasing length the branch tip becomes exposed
to an increased solid angle of aggregating adatoms causing ramification into
more branches. The continued ramification leads to the self-similarity of the
DLA patterns and a fractal Hausdorff [66] dimension of 1.7, i.e., the cluster
area increases as A = 17, with r being the radius.

Fig. 3. Dendritic patterns formed for low temperature metal deposition onto
hexagonal close-packed substrates. (a) Pt(111) homoepitaxy at 180 K (0 =
0.094 ML) [78]. (b) Pt heteroepitaxy on Ru(0001) at 300 K (# = 0.1 ML) [79]

However, the classical DLA clusters have so far never been observed in
MBE growth on single crystal surfaces and there are strong indications that,
if ever observed, DLA growth will be the exception for these systems. Depend-
ing on the surface symmetry there are different reasons for the observed lack
of DLA clusters. On square lattices there are only one-fold coordinated step
sites and therefore edge diffusion has a barrier comparable to that of terrace
diffusion [80-82]. As soon as terrace diffusion (the process needed for cluster
formation) gets thermally activated, diffusion along the cluster edge is also
activates. This generally leads to compact square clusters at any deposition
temperature [83,84,54,85-88]. An exception is the formation of non-compact
islands observed for Cu/Ni(100), thought to be due to the strain induced in-
crease of step length [89]. On hexagonally close-packed surfaces, there are cor-
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ner sites with 1-fold lateral coordination and sites at straight (110)-oriented
edges with 2-fold coordination. Atoms bound to the two-fold edge sites have
high E, values and thus low mobility and this can indeed generate branched
clusters (see Figs. 2a—c and 3). However, in contrast to DLA clusters these
clusters have trigonal symmetry and their branches are at least 2-3 atoms
wide. Nevertheless their fractal dimension is close to the DLA value of 1.7.
These islands have been called dendrites by analogy with other patterns in
nature revealing preferred growth directions [70]. The three preferred growth
directions lead to Y-shapes for small cluster sizes (see Figs. 2a, b and 3b -
due to the absence of further branching these Y’s have a Hausdorff dimension
of 1) and to a triangular envelope for larger dendrites (see Figs. 2c and 4c).
Note that in the case of Pt/Ru(0001) shown in Fig. 3b the substrate has hep
stacking leading to a rotation of the dendrites by 60° from terrace to terrace.

The reason for the slightly larger than monoatomic branch width in den-
drites is connected with the relaxation of 1-fold corner atoms to 2-fold step
sites. This relaxation is asymmetric being one of the reasons for the preferred
growth directions [72,78]. The diffusion asymmetry from corner to edge sites
can be inferred from the ball model in Fig. 4a. It shows that there are two
different micro-facets A ({100}-facet) and B ({111}-facet) formed by the
(110)-oriented edges of any pseudomorphic cluster placed on a hexagonal
substrate. Diffusion from a 1-fold corner-site (C) to an A-step involves an
hcp-site at just the right distance from the corner, whereas diffusion to the
B-step has either an on top site or the hcp-site very close to the island as
transition state. From these geometric considerations one would generally ex-
pect that corner to A-step diffusion has a lower barrier than diffusion from
a corner to a B-step. This picture is confirmed by EMT [90,80] calculations
for a number of metal/metal combinations for which dendritic growth per-
pendicular to A-steps is observed [10]. Fig. 4b shows the case of Ag/Pt(111).
Diffusion from a corner site to an A-step has a barrier as low as E,,,, whereas
diffusion to a B-step costs 5 times as much activation energy. KMC simula-
tions (see Fig. 4d) have demonstrated that the asymmetric corner relaxation
leads to a preferred population of A-steps over B-steps and thus to the three
preferred growth directions. The experimentally observed cluster shapes for
Ag/Pt(111) (see Fig. 4c) are very well reproduced by these simulations [72].

For some systems such as Cu and Pt/Pt(111), however, EMT calculations
show the corner-to-edge diffusion asymmetry to be the other way around [10].
For Pt/Pt(111) this result is confirmed by a recent ab initio calculation [91].
Pt reveals a large tensile stress leading to a strong inward relaxation of the
island edge. This can facilitate diffusion towards B-steps as it renders the hcp-
site located between corner and B-step more attractive as a transition state;
in the absence of strain this site is located too close to the island (see 4a).
Despite this inversion of the corner to A- and B-step diffusion asymmetry,
Pt/Pt(111) shows dendritic growth with the same preferred growth direction
as Ag/Pt(111) and Ag/Ag(111), i.e., perpendicular to A-steps (see Fig. 3a).
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Fig. 4. (a) Ball model of a heptamer on a hexagonal lattice revealing the existence of
A- and B-steps. (b) The EMT calculation for Ag/Pt(111) shows that this geometric
difference implies different corner diffusion barriers. (c) Experiment for Ag/Pt(111)
at 130 K (main figure) and 80 K (inset). (d) The KMC simulations identify the
difference in corner diffusion as the origin of dendritic growth; they reproduce the
dendrites found in experiment (scale bar common to (c) and (d)) [72]

Apart from the aspect of diffusion along the island edge treated so far it
was pointed out that the different diffusion paths of atoms from the terrace
towards the two kinds of steps give rise to a second asymmetry favoring
population of A-steps [72]. Considering the different diffusion paths from
second-neighbor fcc sites via hcp sites towards a heptamer one readily finds
that there is a strong statistical preference of 3/6 vs. 1/6 for attachment
to A- vs. B-steps, whereas corners are visited with a probability of only
2/6 [10]. The attachment asymmetry is more general than corner diffusion
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asymmetry. Both effects have to be considered in conjunction to understand
and predict cluster morphology. If corner diffusion is faster towards B-steps, it
could counterbalance attachment and random growth may result. For systems
with faster diffusion towards A-steps, both effects push towards exclusive
population of A-steps resulting in dendritic growth perpendicular to these
steps. For Pt/Pt(111) there is a slightly smaller barrier for diffusion from
corners to B-steps. This anisotropy is too weak to fully counterbalance the
preferred attachment to A-steps, leading to dendrites with preferred growth
perpendicular to these steps. In agreement with this weak preference, the
trigonal symmetry is less pronounced for that system (see Fig. 3a).

The growth of dendrites with trigonal symmetry can be considered as un-
derstood. This growth morphology is generally expected for low temperature
(i = 1) 2D cluster aggregation on hexagonal metal surfaces. Dendritic clusters
undergo several mutations upon increasing the temperature and/or reducing
the flux, i.e., when going to ¢ > 1 conditions. For some systems the branches
begin to grow into random directions, lifting the trigonal symmetry of the low
temperature dendrites [70]; in addition the branches become wider. Despite
a considerable effort, the shape transition from dendritic to random isotropic
growth patterns [68,77,92] is not yet fully understood. Also a quantitative
understanding of the relationship between the degree of edge diffusion and
the branch width is presently lacking. We briefly review the present under-
standing of isotropic fractal clusters. Similar to the dendrites, these patterns
reveal the fractal dimension 1.7 of classical DLA aggregate [68].

Examples of this species are shown in Fig. 5. The Au clusters formed
at room temperature on Ru(0001) have branches 60 atoms wide and the
Ag aggregate grown at 220 K on Pt(111) has an average branch width of
20+ 2 atoms [77]. The cluster branches spread out and meander into random
directions. Formation of partial surface dislocations between fcc- and hep-
stacking has been suggested to understand the loss of directional growth [10].
This was motivated by the fact that both systems shown in Fig. 5 reveal
considerable misfit possibly leading to partial dislocations where strain is
relieved. Each stacking variation from hcp to fcc alters the orientation of
A- and B-steps and thus the branches’ preferred growth directions. Regular
stacking faults could thus explain the observed random isotropic growth.
Partial surface dislocations have been observed for Ag/Pt(111) upon a critical
island size [93], which is however beyond the branch width for which the
onset of random growth is observed. It was thus proposed that partials were
generated by kinetics, and a KMC model showed that the transition from
dendritic to random fractal clusters can be generated that way [10]. A second
possible origin for the loss of directional growth is the detachment from 1-fold
coordinated corner sites since ¢ > 1. The arguments of corner diffusion and
diffusion paths for attachment to the different step types given above have to
be re-examined under reversible growth. This might well lead to the finding
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that frequent detachment of one-fold atoms leads to the observed random
growth directions.

200 A

Fig. 5. Examples for random fractals typically following dendrites at elevated tem-
peratures. (a) STM image of Au islands grown on Ru(0001) at room temperature
(F =3.3x1073 ML/s, § = 0.30 ML) [68]. The aggregate’s branches spread out into
random directions. Although the branches are significantly wider than those of the
DLA clusters, the aggregate’s fractal dimension is the DLA value of 1.72. (b) STM
image of a Ag fractal grown on Pt(111) at 220 K similarly showing wide branches
that frequently alter their growth direction (F = 1.1 x 1072 ML/s, = 0.12 M) [94]

The branch width was related to edge diffusion, both by analytic mod-
els [88,76,74] and through KMC simulations [95]. The basic idea underlying
these studies is that the lateral impingement rate I competes with the rate
for an adatom to scan the edge of a compact seed particle. The seed particle
stays compact until the edges reach a critical width w where both rates be-
come comparable. At that point nucleation of protrusions at the edge can no
longer be flattened out and the aggregate becomes unstable upon ramification
through the Mullins—Sekerka instability introduced above. This instability ar-
gument defines the critical cluster size for ramification and equally the mean
branch width taken on by the cluster after ramification. However, the models
presented in the literature disagree on the exact dependence of w on D,/I,
where I = F/n,, and D, is the 1D diffusion rate at the edge. Therefore these
models give contradicting results for the attempt frequencies and barriers for
edge diffusion when experimental data of w(T) (available for Ag/Ag(111)
and Ag/Pt(111) [77]) are analyzed. Realistic models have to incorporate a
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set of parameters where diffusion barriers are attributed to step atoms de-
pending on their coordination and the step orientation. Evidently this leads
to the well known problem of models invoking too many parameters to allow
a sensible comparison with experiment. This problem is encountered also in
recent papers dealing with cluster diffusion, a similarly complex issue [96].
Ways out are either to simplify the model, or to use additional input from
calculations to ascribe reasonable values to the barriers. The first attempt
has been made by disregarding the difference between A- and B-steps with
a view to extracting an effective F, value and its attempt frequency for dif-
fusion between 2-fold coordinated sites along straight steps [10]. The result
(E. = 370 meV and vy = 1 x 10'® Hz) is more realistic than the values ob-
tained from the former analysis [77]. The second attempt will certainly follow
in the near future. Ab initio calculations become feasible for larger systems
allowing the calculation of various energy barriers for adatom displacement
along cluster edges [97,81,98,91], thus generating valuable input parameters
for KMC simulations. Random fractal islands with wide branches will cer-
tainly be of ongoing interest until we can answer the open question of how
they evolve from dendrites and how their branch width is linked to the edge
diffusion barrier.

With increasing deposition temperature various compact clusters form
on hexagonal substrates. These polygonal clusters are first triangles, whose
orientation is set by the trigonal symmetry of the dendrites preceding them at
low temperatures. Examples for triangular clusters with preferred orientation
are Co/Ru(0001) [92,99,100], Co/Pt(111) [101], and Fe/Au(111) [102,103].
The triangles are followed at larger deposition temperature by hexagons,
which can mutate back into triangles before reaching the thermodynamic
equilibrium shape, by further increasing the deposition temperature or by
annealing. The equilibrium shape of a 2D cluster on a trigonal substrate is a
hexagon where, according to the Wulff construction, the different surface free
energies of A- and B-steps are reflected in the lengths of these facets [104].
Since interlayer diffusion generally has different barriers for both step types
their respective length, or in the case of triangles their orientation, can be
decisive for 2D versus 3D growth.

The sequence of the various polygonal compact clusters has been reported
for Pt/Pt(111) [105], and is reproduced in Fig. 6. At 400 K triangles bound by
A-steps were observed, at 455 K hexagons, and deposition at 640 K yielded
again triangles, this time bound by B-steps. Finally the clusters attained the
quasi-hexagonal equilibrium shape, which was proven to be independent of
cluster history (compare Figs. 6d1 and d2).

Inversion of triangle orientation with increasing deposition temperature
was a puzzle for theorists [107-109,81] until it recently became solved by
a repetition of the experiments under extremely clean evaporation condi-
tions [106]. Taking up the Pt/Pt(111) experiments once more was motivated
by a discrepancy between results on island orientation and interlayer dif-
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Fig.6. The formation of various polygonal islands during Pt(111) homoepi-
taxy [105,106]. The deposition temperatures are as follows. (a) T = 400 K
(6 = 0.08 ML, 1300 x 1900 A?), (b) T = 455 K (# = 0.14 ML, 770 x 1100 A?),
(¢) T =640 K (9 = 0.15 ML, 2300 x 3300 A?), (d1) T = 710 K (§ = 0.08 ML,
1540 x 1100 A?), (d2) deposition at T' = 455 K as in (b) and subsequent anneal-
ing to 710 K for 1 min (# = 0.08 ML, 630 x 900 A?). Common deposition flux
F=1x10"2? ML/s

fusion, and ab initio calculations [36]. The experiments led to the impor-
tant conclusion that minute amounts of impurities (CO) were responsible
for inversion of triangle orientation. Depositing at extremely low CO partial
pressure (pco < 5 x 107!2 mbar, see Fig. 7) the island shape evolves from
dendrites via fractals with large branches to triangles only bound by B-steps;
the triangles increase in size with increasing temperature but they keep their
orientation [106].

Before we go into the details specific to the system Pt/Pt(111), let us
discuss the mechanism generally responsible for triangular cluster shapes on
trigonal substrates. In the kinetic regime, the cluster shape is determined
by the growth rate perpendicular to A and B steps, i.e., by the rate with
which adatoms accumulate at both steps. The slowly growing facets prevail
in the final crystal shape whereas the faster ones disappear during growth, as
is generally the case in crystal growth. There are two temperature regimes,
in each of which the step progression rate is determined by different atomic
processes. At temperatures where diffusion around corners is frozen, and thus
material exchange between both step types inhibited, the diffusion rates along
the two edges will determine the cluster shape. The step type with fast edge
diffusion grows smoothly with few kinks, whereas at the other step edge diffu-
sion is slow and growth involves many kinks. Hence, the first step propagates
only slowly whereas the latter progresses rapidly [105,109]. We note, however,
that this first case can be artificial since barriers for corner crossing are of-
ten quite close to those for edge diffusion [98,91]. Therefore the temperature
regime where corner crossing is frozen but edge diffusion active is small, if it
exists at all. Much more important is the case where corner crossing becomes
activated. The diffusion bias around the corners between A and B-steps, and
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the progression of the respective steps, is given by the difference in their
adatom binding energies, AEA_g=Fa_ .. — Ec_ A —E._.B+ Ep_ (c
denotes the one-fold corner site) [110]. Thus the shape of compact islands, in
the kinetic regime, depends on a small difference of large activation energies.
If both edges bind adatoms equally well compact irregular spherical islands
form, if there is a small energy difference triangles form, their orientation
being given by the sign of the binding energy difference.

Fig. 7. Island morphology for 0.17 ML Pt/Pt(111) under extremely clean evapora-
tion conditions (during evaporation pior < 2.0 x 10" mbar) [111]. The deposition
temperatures are as follows. (a) 7' = 200 K, (b) T'= 300 K, (c) T' = 400 K, (d)
T =500 K, () T = 600 K (630 x 900 A?), image sizes (a-d) 670 x 1340 A%, (e)
1340 x 1340 A?

Accordingly, the triangles with B-steps shown in Figs. 7c—e are due to
better binding to A-steps. Note that this is in contradiction with recent
results from theory [91]. The binding energy difference obtained in these
calculations is weak, but it favors population of B-steps, and this is not
in agreement with their prevalence. Triangles with the inverse orientation,
however, are due to minor amounts of CO present during deposition. The
effect of CO adsorption on the energetics and kinetics of edge diffusion has
not yet been explored theoretically.

The example of Pt(111) homoepitaxy shows that the island shape is a
sensitive indicator for small energy differences which can therefore be rather
useful to test ab initio calculations. It is clear that the binding energy dif-
ference between the two step types is a thermodynamic argument, however,
it also determines the diffusion bias around corners in the kinetic regime. In
thermodynamic equilibrium the step formation energy comes into play. The
total step length is then reduced by the formation of quasi hexagons. The
example of Pt(111) homoepitaxy also shows that the effect of defects does not
belong to the past even in careful UHV experiments. Chemically influenced
diffusion is now being systematically addressed for a number of metal/metal
systems [112,113].
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5 Coarsening

Coarsening by Ostwald ripening is a means of preparing compact surface
supported 2D clusters with narrow size distributions and average sizes (N)
adjustable from 3 to 10® atoms [69]. This is of particular importance, since
currently much experimental and theoretical effort focuses on exploring the
evolution of chemical and physical properties of small agglomerations of mat-
ter as a function of the number of atoms they contain [114].

800 A

Fig. 8. STM images showing Ostwald ripening in two dimensions as a way to create
compact 2D islands with their size (N) being well defined by the annealing tem-
perature [69]. The starting population of mostly dimers and trimers was produced
via deposition of 0.1 ML Ag onto Pt(111) at 50 K
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Ostwald ripening [115-117] is caused by a more rapid dissociation of
smaller islands in favor of larger ones. Through the availability of surface
microscopy at the atomic level this phenomenon has received considerable
attention in two dimensions [69,118,119].

The starting point for the preparation method is a large density of small
clusters, mostly dimers, prepared by deposition of ~ 0.1 ML at a temperature
chosen such that there is little mobility in the time of deposition (D/F < 103).
In this post-nucleation regime (see Sect. 3) monomers diffuse towards each
other mostly after deposition leading to a mean cluster size of (N) ~ 3
atoms. The same result is obtained when depositing at temperatures where
diffusion is frozen and subsequently gently annealing the surface to activate
diffusion [54,18]. After preparation of the small clusters, their densities and
thus their average sizes (since 6 is a known constant) are monitored by STM
as a function of annealing temperature. The Ag clusters on Pt(111) shown in
Fig. 8 are compact spherical until they adopt a quasi-hexagonal shape with
different lengths of the A- and B-facets. This shape can be considered as
the equilibrium shape of a 2D cluster for that system since further annealing
leads to island decay. This is believed to be promoted by the compressive
strain inherent in the clusters [120,121].
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Fig. 9. Investigation of 2D Ostwald ripening for Ag/Pt(111) by means of STM [10].
(a) The mean island size (N) stays constant until it exhibits an exponential increase
due to Ostwald ripening for annealing temperatures T, > 100 K. (b) Scaled island
size distributions for Ostwald ripening (data from Fig. 8, solid line serves as guide
to the eye) are significantly more narrow as compared to nucleation (dashed line
theoretical ¢ = 1 scaling curve [12])



20 Harald Brune

The evolution of the mean island size while annealing shows a plateau
followed by an exponential increase characteristic of Ostwald ripening (see
Fig. 9a). The constant regime implies that the most fragile objects in the pop-
ulation, namely the dimers (and on square lattices also the trimers), neither
dissociate nor diffuse, since both would lead to coarsening. The temperature
threshold for the onset of 2D Ostwald ripening thus defines the ¢ = 1 regime
and yields the dimer dissociation barrier, which contains the dimer bond en-
ergy E}, via Egiss ~ Fm + Ep (Ep = 150 £ 20 meV has been inferred in this
way for Ag/Pt(111) [18]).

As an advantage to island nucleation, the size distributions obtained from
Ostwald ripening, starting from the exponentially decreasing size distribu-
tions of post-nucleation [54], are significantly sharper. This becomes evident
from inspection of the STM images in Fig. 8 and from the size distributions
shown in Fig. 9b. The half width at half maximum decreases from o = 0.55
for regular ¢« = 1 nucleation to o = 0.3 for coarsening . Similar to nucle-
ation, the island size distributions obtained from Ostwald ripening at various
temperatures become congruent when scaled the same way as for nucleation.

6 Anisotropic Surfaces

Anisotropic substrates show directional dependence of adatom diffusion rates
and/or of lateral sticking coefficients of adatoms to clusters. Both effects lead
to the creation of elongated clusters, in the extreme case of one-dimensional
chains of atoms (see Figs. 10a and 11a). The 1D structures can be consid-
ered as quantum wires, the physical properties of which are of considerable
scientific interest. Their fabrication with high abundance by MBE growth is
thus highly appreciated.

There are various ways to grow quasi-1D clusters at surfaces. One is step
decoration [122-124] that has advanced as far as the controlled row-by-row
growth at steps of vicinal surfaces [125-127]. We focus our present discus-
sion, however, on clusters formed amid substrate terraces. The desired 1D or
elongated structures imply the use of anisotropic substrates. Candidates for
metal substrates with diffusion anisotropy are the hex-reconstructed fcc(100)
surfaces of Au, Pt and Ir [128,129]. The clusters formed on these surfaces are
rectangles elongated along the direction of fast diffusion [130-133]. However,
pure 1D structures do not form since sticking to clusters is isotropic on these
surfaces. In addition, cluster formation on the hex-reconstructed surfaces is
associated with lifting the underlying reconstruction and this makes an un-
derstanding on the atomic level difficult. Substrates that permit the growth of
1D strings of atoms, and where cluster formation is easier to understand, are
the (1 x 2) reconstructed and unreconstructed fcc(110) surfaces. We will con-
centrate on these surfaces where anisotropic diffusion and anisotropic lateral
bonding of adatoms in conjunction lead to real 1D clusters.
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Fig.10. (a) STM image showing the (1 x 2)-reconstructed Pt(110) surface af-
ter a submonolayer amount of Pt has been deposited at 313 K (image size
97x102 A) [134]. (b) Model of the (1 x 2) reconstruction showing two possible diffu-
sion paths for a Pt adatom (A) along the troughs. The first is direct and the second
indirect over fcc and hep sites on the {111}-oriented ridge. (c) Ab initio-calculation
of the total energy along the reaction coordinate for both diffusion processes (full
lines). Both diffusion paths are degenerate in activation energy. In the presence of
atomic H this degeneracy is lifted and the direct diffusion path has a considerably
lowered barrier (dashed lines) [112]

The clean Pt(110) surface exhibits a (1 x 2) reconstruction where every
other close-packed atomic row is missing, leading to troughs bound by the
energetically favored {111}-facets (see Fig. 10b). Diffusion of Pt adatoms on
this surface is one-dimensional and occurs by a certain number (~ 10%) of
double jump events, i.e., jumps to second neighbor sites, as revealed from an
analysis of time-lapsed STM images [134] such as the one shown in Fig. 10a.
An adatom (labelled A in Fig. 10b) has two diffusion paths to move along
the trough, a direct one along the bottom of the trough, and an indirect
one where the atom walks ‘up’ on the {111}-facet. There it passes an hcp,
an fcc and another hcp site before it goes down again to the bottom of the
trough. Calculations with DFT (Fig. 10c) showed that both reaction paths



22 Harald Brune

have equal activation energies [112]. The existence of the two diffusion paths
has also been found by molecular dynamics (MD) simulations for self-diffusion
on the (1 x 2)-reconstructed Au(110) surface. These simulations show that
the indirect path is the cause for the long jumps [135]. DFT calculations show
that the degeneracy of paths is lifted by adsorption of atomic hydrogen (see
dashed lines in Fig. 10c). Further more it is found that the activation energy
is lowered as compared to the clean case for diffusion of the Pt—-H complex
(B and C in Fig. 10b) along the bottom of the troughs. In accordance with
the smaller activation energy STM revealed significantly enhanced diffusion
rates for the Pt—H complexes showing up as brighter Pt adatoms in constant
current topographs [112].

Apart from the lessons regarding the complex pathways of 1D surface dif-
fusion and its sensitivity to adsorbates, the example of Pt/Pt(110)-(1x2) also
illustrates the effect of anisotropic sticking on the cluster shape. The clusters
in Fig. 10a are 1D strings a few atoms in length. The 1D shape is caused by
the fact that diffusion along troughs neighboring chains is unperturbed; the
distance between two troughs is large and interaction across the ridge is weak.
In contrast to the negligible lateral sticking coefficient the binding energy of
an atom at the end of an atomic string is large. Small 1D clusters have also
been observed for Au, Ni, and Cu deposition on the (1 x 2)-reconstructed
Au(110) surface [17,16,136]. We note that above certain temperatures these
systems involve exchange diffusion leading in heteroepitaxial cases to alloyed
islands and ridges.

The anisotropies of diffusion and sticking are much weaker on the unre-
constructed fce(110) surfaces since there the troughs are closer and the ridges
between them are less protruding. Nevertheless, it was on the unreconstructed
surface that 1D metal clusters where observed for the first time [69,137]. The
STM image reproduced in Fig. 11a shows chains of Cu atoms aligned along
the troughs of the Pd(110) surface. The formation of monoatomic Cu wires
up to 1000 A long was reported for that system, corresponding to aspect
ratios as large as A ~ 300 [69]. With increasing deposition temperature, to
values above room temperature, clusters become compact while remaining
elongated along the (110)-direction. Atomic chains were also observed for
Pd [138] and Fe [139] deposition onto Pd(110).

The mechanism underlying cluster growth for Cu/Pd(110) and in general
on unreconstructed fcc(110) surfaces has been the subject of various models.
A KMC model (see Fig. 11¢) accounting for the fcc(110) symmetry involves
the following assumptions. Diffusion within a trough adjacent to a chain is
unperturbed (Ey , = Fe, = 0.3 €V) whereas adatoms are less mobile along
the short cluster edge (Fe, = 0.65 €V); cross channel diffusion was allowed
(En,e = 0.45 eV) and a net mass transport along the island perimeter to-
wards the short island end was incorporated (corner rounding E. , = 0.3 ¢V,
whereas E., = 0.65 eV). The model reproduced well the temperature de-
pendence of average experimental quantities such as cluster aspect ratio (see
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Fig.11. (a) STM image of monoatomic Cu chains on Pd(110) grown at room
temperature (6 = 0.07 ML). (b) Rectangular clusters form upon deposition at
320 K (# = 0.1 ML, common scale bar for (a) and (b)) [137]. (¢) Anisotropic edge
diffusion and sticking are the dominant mechanisms giving rise to elongated islands
on fcc(110) surfaces. The ball model shows the processes considered in the KMC
simulation (for simulation parameters see text). (d) Simulated (filled symbols) vs.
experimental (open symbols) cluster aspect ratios [140]
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Fig. 11d) and density [140]. According to the simulations, the 1D cluster
regime is extended to temperatures far beyond the 1D diffusion regime, lead-
ing to the large chain lengths. This is due to the corner rounding process, i.e.,
to adatoms diffusing along the chains and then attaching via cross channel dif-
fusion to chain ends. The 2D cluster shape at higher temperatures is caused
by transport from short to long island edges competing with the opposite
one. With a second model it was argued that the mechanism leading to the
morphology transition from 1D chains to 2D clusters is not direct diffusion
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around the corner but rather detachment, terrace diffusion and reattachment
to the cluster [141,142].

The essential point to be learned from the KMC simulations is that
anisotropic sticking (or similarly anisotropic adatom diffusion around the
cluster perimeter) is much more important for the cluster shape than dif-
fusion anisotropy. This fact is illustrated by Si/Si(100) where anisotropic
sticking and diffusion anisotropy are turned by 90° to each other. Since the
role of sticking overwhelms that of diffusion, clusters are elongated along the
slow diffusion direction [143]. Nevertheless diffusion anisotropy is essential for
the understanding of island density scaling with flux and temperature. On
the (1 x 2)-reconstructed fec(110) surfaces diffusion is strictly 1D. Thus there
is no possibility of net adatom flux around the cluster perimeter explaining
the fact that 1D clusters on these surfaces are generally much shorter than
on unreconstructed ones.

7 Growth of Cluster Arrays

The strain energy present in heteroepitaxial systems and the surface stress
characterizing clean surfaces can give rise to the formation of weakly incom-
mensurate layers, respectively surface reconstructions. On fcc(111) surfaces
these layers have surface partial dislocations marking transitions between fcc
and hcp-stacking domains. These dislocations (or domain walls) have long-
range mutual repulsive interactions, and this has two general implications.
Firstly, there is a well defined density of dislocations due to the compromise
between optimum strain relief achieved through introduction of dislocations
and their mutual repulsion. Secondly, the dislocations order into regular pat-
terns. Examples are the herringbone reconstruction of Au(111) (see Fig. 12a),
or dislocation networks (for a general account of strain relief on fcc(111) sur-
faces see [144-146]).

There is clear experimental evidence that for many epitaxial systems the
surface partial dislocations represent strongly repulsive line defects for dif-
fusing adatoms [56,147,58]. Their influence on nucleation can go as far as to
drive the most perfect layer-by-layer growth yet observed [148]. The two in-
gredients, ordering of dislocations into periodic patterns and strong influence
of dislocations on adatom diffusion, can be employed to grow periodic arrays
of almost monodispersed islands [149]. In this section we will discuss results
obtained for nucleation on such patterned substrates.

Our first example is Ni nucleation at the ‘elbows’ of the Au(111) (v/3x 22)-
reconstruction. Fig. 12a shows the clean Au(111) surface with the (112)-
oriented partials appearing bright since they involve bridge sites. Strain relief
is unidirectional in the (v/3 x 22) unit cell. To achieve overall isotropic strain
relief a well ordered mesoscopic pattern of two domains with alternating
orientation of £120° evolves on large terraces. The Ni clusters formed at
room temperature deposition are all lined up along the elbows of this so-called
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200A

Fig.12. (a) STM image of the herringbone pattern characterizing the mesoscopic
order of the Au(111)-(v/3 x 22)-reconstruction [150]. Partial surface dislocations
are imaged 0.20 A higher than fcc areas and thus appear bright. Ni nucleation
on that surface at room temperature takes place exclusively at the elbows of the
reconstruction (b) (6 = 0.11 ML) leading to monolayer high Ni islands aligned in
rows along the (112)-directions (c¢) (¢ = 0.14 ML) [151]. This preferential nucleation
at elbows is due to exchange of Ni into Au at these sites [152]. (d) The formation
of adislands can be suppressed by performing adsorption at 350 K giving access to
the embedded Ni islands; they are comprised of 4 to 5 atoms each (§ = 0.002 ML)
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herringbone reconstruction pattern (Figs. 12b and c). Note that the regular
spacing is accompanied by narrow cluster size distributions. The ordered
nucleation was long believed to be caused by the influence of dislocations
on diffusion. They were thought to generate attractive potential dips at the
elbows [151]. However, the origin of ordered nucleation was revealed by Meyer
et al. to be site selective exchange of Ni atoms with Au surface atoms [152].
The exchange is localized at the elbows since there a close-packed atomic
row terminates, giving rise to Au atoms with reduced lateral coordination
which are especially susceptible to exchange processes. The embedded Ni
clusters each comprising only 4-5 atoms are clearly detected as depressions
in Fig. 12d. The site selective exchange is followed by preferential nucleation
of Ni adislands on top of substitutional Ni islands; the adislands appear bright
in Figs. 12b and c.

The ordering mechanism present in the Ni/Au(111) system is presum-
ably also active for Fe [102,103], Co [153,154] and Rh [155] showing clus-
ters lined up at elbows, too. The argument given by Meyer et al. was that
these elements have a larger surface free energy and heat of sublimation than
Au [152]. Accordingly, for elements with lower values of these quantities such
as Ag [156] and Al [58] the ordering is absent. However, predicting instabil-
ity towards exchange solely on the basis of bulk quantities does not always
work; Al/Au(111) shows exchange at T' > 245 K [157,158]. Nevertheless, the
picture is consistent that site selective exchange is generally responsible for
ordered nucleation on the elbows of the reconstructed Au(111) surface. With
that in mind it is clear that ordering is specific to that surface and to the
elements of the periodic table exhibiting exchange on it.

A more general approach relying on pure adatom diffusion on networks of
dislocations has been suggested [149]. Dislocations confine adatoms by their
repelling them into the unit cell in which they were deposited leading to the
nucleation of exactly one cluster per unit cell. The partial dislocations are a
smooth stacking transition extended over many atoms, as is the repulsion of
adatoms away from the dislocations. In addition, fcc- and hep-domains often
have different adatom binding energies. Both effects cause clusters to form
on a well defined site within the unit cell, thereby congruently transferring
the order of the template surface to the cluster array.

Figure 13 illustrates an example where an array of 2D Ag clusters formed
on the dislocation network of 2 ML Ag on the Pt(111) surface. The mis-
fit between Ag and Pt leads to a (25 x 25)-network with surface partials
representing ‘soft” walls, with lower surface atom density, were the compres-
sive strain is relieved [144] (Fig. 13a). Ag nucleation on top of this network
reveals a transition between two rate limiting diffusion processes with an in-
termediate temperature regime where exactly one island forms per unit cell
(see Figs. 13b and d). Note that all of the clusters nucleate on the distorted
hexagon of the unit cell implying preferential binding to these fcc-stacking
areas, in agreement with theory [159]. The Arrhenius slopes (Fig. 13d) below
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Fig. 13. Nucleation of a cluster superlattice on a dislocation network with a period
of 7 nm. (a) STM image of the network of (110)-oriented partial dislocations formed
by the second Ag monolayer on Pt(111) upon annealing to 800 K. The inset shows
a model of the trigonal strain relief pattern with its fcc- and hcp-stacking domains.
(b) Ag nucleation on this network at ' = 110 K yields an island superlattice
(6 = 0.10 ML). (c) Narrow size distributions are associated with the periodic island
spacing (data as full symbols and binomial distribution as full line) as compared to
nucleation on isotropic substrates (dashed line). (d) Arrhenius plot of experimental
island densities showing the crossover in the rate limiting diffusion process from
intracell diffusion to crossing of dislocations [149]
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and above the plateau give the activation energies for intracell and intercell
diffusion, respectively. From the steeper slope of the latter the repulsive char-
acter of the dislocations becomes apparent. At the plateau intracell diffusion
is fast enough for adatoms to visit the entire unit cell, although their thermal
energy does not yet suffice to cross dislocations and exactly one island forms
per unit cell.

In general there is a correlation between cluster spacings and cluster
sizes [14]. Material deposited onto the area closest to an island is likely to
attach to that island. This capture area of an island is its Voronoi polygon.
For equidistant islands these areas are identical thus leading to very narrow
island size distributions. In our example the Voronoi areas are the (25 x 25)
network unit cells. The scaled island size distribution (see Fig. 13c) is accord-
ingly significantly sharper than that obtained for homogeneous nucleation.
We note that the measured standard deviation of o = 0.20 (¢ equals approx-
imately half the width at half maximum of the size distribution) represents
an upper bound due to the residual width caused by STM-tip convolution.
The theoretical lower bound for ¢ is given by the case of ideal confinement
of adatoms by infinite barriers. Then the cluster size distribution reduces
to the statistics of deposition into the unit cells: for deposition of an aver-
age coverage p into unit cells with size n substrate atoms, the probability of
finding k atoms within a unit cell obeys a binomial distribution. This dis-
tribution, when normalized according to Fig. 13c, has a standard deviation
of o = /q/np. For our example (p = 0.1, ¢ = 1 —p = 0.9 and n = 625)
this yields ¢ = 0.12. This result from confined nucleation compares favorably
to the best size distributions currently obtained in self-organized growth of
quantum dots, which have o = 0.16 [160]. Due to reduced fluctuations o
decreases for larger unit cells and larger coverages. For example deposition
of 0.5 ML into (25 x 25) unit cells leads to extremely sharp island size distri-
butions with ¢ = 0.04. These values refer to island areas, the distribution of
island diameters having only half this width.

The prerequisites for confined nucleation are that dislocations must ar-
range themselves into periodic patterns, they must be repulsive for adatom
diffusion, and there must be no exchange. The first condition is met by nu-
merous heteroepitaxial systems. Well-ordered trigonal dislocation networks
are found in a number of epitaxial metal [38,145,146] and semiconductor sys-
tems [161]. The requirement for surface dislocations to be repulsive is found
to be met by many metal systems. Exchange can be avoided by proper choice
of the template. A Cu template formed on Pt(111) [162] was used instead
of Ag to avoid exchange processes for the growth of Co and Fe arrays (see
Fig. 14). In addition a low deposition temperature had to be used to avoid
exchange (note that Cu(111) is unstable upon exchange with Co down to
170 K [163]) leading to the formation of many small clusters which were
subsequently transferred into an ordered array by Ostwald ripening. Moiré
structures [164-166] are also possible templates for self-organized growth of
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Fig. 14. STM image of a periodic array of 2D Fe islands (lattice constant 3.6 nm)
nucleated on the dislocation network of the Cu (13 x 13) bilayer on Pt(111) (depo-
sition at 60 K, ripening at 250 K) [149]

cluster arrays. Similar to dislocation patterns they reveal periodic variations
in adatom binding energy. In any of these cases the lattice constant of the ar-
ray will be a fixed number given by the misfit of overlayer and substrate. How-
ever, the lattice constant of 2D alloy layers is a function of the composition
and generally given by Vegard’s law. Therefore the misfit and the supercell
size are adjustable as has been shown for Au,Ni;_,-layers on Ni(111) [165].
This renders alloy layers interesting as templates for ordered nucleation.

We discussed two methods of self-organized growth of almost monodis-
persed, equally spaced nanostructures on substrates with periodic strain-relief
patterns. Whereas the first relies on site specific exchange and risks being
highly system specific, the second involving pure adatom diffusion seems to
be more generally applicable. Since both methods require surface partial dis-
locations or Moiré structures that are known to form on hexagonal surfaces
only, it is still a challenge to find a method for creating arrays with square
symmetry.

8 Single Crystal Oxide Surfaces

The motivation for studying metal clusters on single crystal oxide supports is
two-fold. The oxide support reduces electronic coupling with respect to metal
or semiconductor surfaces, and metal clusters on oxide surfaces provide a
model system for industrial supported catalysts [167]. (Such model catalysts
can also be created by MOCVD [168] and by wet impregnation [169]). As in
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the case of metal/metal systems there is the need to achieve a detailed under-
standing of nucleation and growth in order to create the uniformity in cluster
sizes and shapes required to draw conclusions from integral measurements of,
e.g., reactivity and selectivity in a heterogeneous catalytic reaction. In the
near future it is likely that the magnetism, electronic structure and super-
conductivity of clusters on weakly interacting supports will also be studied.
Nucleation and growth of metals on oxides has been intensively studied in the
past [167,170-172]. We focus in this section on two model cases with which
we illustrate the role of substrate preparation, shed light on nucleation kinet-
ics in the presence of attractive point defects characteristic of single-crystal
oxide surfaces, and finally compare the information gained from local probes
with that from Transmission Electron Microscopy (TEM).

Fig. 15. TEM micrographs of Pd particles epitaxially grown on MgO(100) at (a)
300 K, (b) 433 K, and (c) 673 K, respectively (§ = 5-10 ML) [173]

The evolution of cluster shape with growth temperature is shown for the
case of Pd/MgO(100) in Fig. 15. The cluster shape at 300 K is 2D and
the edges are rough, both of which are signatures for kinetically controlled
clusters. Upon deposition at 673 K clusters are truncated half-octahedrons.
This cluster shape is considered to be the thermodynamic equilibrium shape
since the height/base ratio was found to be independent of cluster size [173].
The cluster shape as a Wulff polyhedron gives access to the surface free
energies of the respective facets. For the equilibrium shape to be reached
the adatoms deposited onto the substrate (§ = 5-10 ML) have to be able
to climb up to the cluster tops where they are more strongly bound than on
MgO(100). However, equilibrium is only reached for isolated clusters, while
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for the coalesced clusters, deviations from the equilibrium shape show that
the system is still to some extent affected by kinetic limitations.

T[K]
1000 700 500 400 300 250 200
L1 1 1 1 1
1013
1012
- ]
£
2
=
=z
10!
1010 T T T
1 2 3 4 5

1000/T[K]

Fig. 16. Arrhenius plot of island densities for Pd deposits on Ar-cleaved MgO(100)
obtained with non-contact AFM (size of images 1000 x 1000 A) [174]. The solid line
is a mean-field rate equation model accounting for defect trapping (¢ = 0.1 ML,
F =2.7x10™* ML/s). See text for model parameters

The cluster density is critically dependent on the preparation of the single
crystal MgO(100) surface. Cleavage in air and subsequent evaporation under
UHV conditions yields a 10-times larger island density than UHV cleavage
and in situ deposition [167]. This is indicative of heterogeneous nucleation
at defects created upon exposure to the ambient atmosphere. On the other
hand, cleavage in Ar atmosphere with subsequent annealing in oxygen (750 K,
Po, = 1 x 107* mbar) gives the same densities as UHV cleavage [174]. In-
formation concerning nucleation kinetics for Pd on MgO(100) was obtained
from average cluster densities deduced from VT-AFM images taken as a func-
tion of deposition temperature [174]. The AFM images reproduced in Fig. 16
show that cluster nucleation takes place at terraces and only occasionally at
steps. On the other hand, the Arrhenius plot of the island density is clear
evidence for heterogeneous nucleation at defects with large trapping energies.
The trapping defects must thus be located at substrate terraces. There are ab
initio calculations investigating the Pd trapping energies of several possible
defects on MgO(100) terraces; one which seems likely to be involved is an
oxygen vacancy, the so-called neutral Fy-center [175].
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Comparing experimental data with calculations using mean-field nucle-
ation theory including trapping defects (solid line in Fig. 16), the relevant
system parameters could be derived. The diffusion energy on the defect-free
MgO(100) terraces must be rather low (Ep, < 0.2 V) for all the Pd atoms to
reach the defect sites down to T' = 200 K. The length of the plateau towards
higher T' defines the minimum trapping energy, F; > 1.2 eV. This bound
compares reasonably well with the theoretical value of Ey = 1.55 eV [175].
The knee at 600 K is best fitted by a transition from ¢ = 1 to ¢ = 3, i.e.,
traps remain populated by one Pd atom, but the second and third bound
to it break up while only 4 atoms represent a stable cluster at a trap. The
deduced lateral bond energy of E, = 1.2 eV lies slightly below the theo-
retical gas phase value which is reasonable on a weakly bonding substrate.
Incomplete condensation starts at 750 K, as evidenced by the decrease in
sticking deduced from AES measurements, and by the final increase in the
slope of log(n,) vs. 1/T, obtained in the model for an adsorption energy of
E, = 1.2 eV. The parameter set derived for the model system Pd/MgO(100)
constitutes a valid basis for comparison with theory and is a step towards
a quantitative understanding of nucleation and growth in metal/insulator
systems.

The imaging of clusters with local probes enables in situ studies and gives
access to the cluster height. However, the convolution with the tip falsifies
absolute values of the projected surface area, which are reliably obtained by
ex situ TEM. In our example of Pd/MoS, the convolution is clearly visible
since clusters appear much larger in the STM topograph than they are in
reality (see Fig. 17). Accordingly the size distribution derived from STM is
centered at larger average sizes. The effect of tip convolution is expected
to be even more dramatic for AFM images of metal clusters, e.g., on MgO.
Such images have to be taken in non-contact mode to prevent displacement
of the weakly bound clusters by the tip—sample interaction forces appearing
in contact mode. Awareness of the convolution effect when deriving absolute
cluster sizes and size distributions from local probe techniques is therefore
important.

We end our section about metals on insulators by discussing a method
that reduces the width of the cluster size distribution for these systems. It
is based on the fact that the optical absorption coefficient of metal parti-
cles is strongly size dependent. Laser irradiation of clusters (Ag on a quartz
support) with a frequency chosen in resonance with the plasmon modes for
a certain cluster size selectively heats these clusters which then evaporate
atoms and shrink in size. Specific cluster sizes can thereby be reduced or
even totally removed. Successive irradiation with two laser wavelengths re-
moves the smallest clusters and causes a size reduction of the largest ones.
Thus both tails of the size distribution are removed which reduces its width
(to ¢ ~ 0.26), as verified by means of AFM and optical extinction spec-
tra [177]. In the sense of leading to better defined cluster sizes the method is
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Fig.17. Pd clusters grown on MoSs at 623 K. (a) Ex situ image by TEM as
compared to (b) in situ STM image. The effect of tip convolution on the size
distributions (c) in the case of STM imaging is evident [176]

similar to Ostwald ripening of small clusters discussed in Sec. 5, although it
is not coarsening because the mean cluster size remains unchanged.

9 Conclusion

The presented methods of cluster growth on metal surfaces are transferable
to semiconductor surfaces and possibly also to thin oxide layers. Kinetically
or thermodynamically controlled cluster growth represents an alternative to
the creation of ordered nanostructures at surfaces by lithography, atom op-
tics, colloids, or soft landing of size selected clusters. Self-organized cluster
growth at surfaces will become particularly important for an extension of
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basic science and applications towards objects with smaller length scales.
Questions that may be addressed in the near future are chemical reactiv-
ity, transport, and magnetic properties of surface supported clusters evolving
from the quantum confinement of electrons in the clusters. The advantage of
cluster growth with respect to atomic manipulation with local probes is the
high cluster density enabling access to the clusters’ chemical and physical
properties with integrating experimental techniques. In order to get the rel-
evant information from integrating measurements, however, size and shape
uniformity are essential, requiring detailed understanding and control of the
atomic processes underlying cluster growth at surfaces.
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