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Résumé

Afin de simuler des foules d’humains virtuels en temps réel etde manière réaliste,
trois éléments principaux doivent être réunis. Premièrement, la quantité, c’est-à-dire la
capacité de simuler des milliers de personnages. Deuxièmement, laqualité, car chaque
humain virtuel dans une foule doit avoir une apparence et uneanimation uniques. Fina-
lement, l’efficacitéest primordiale, car une opération habituellement considérée comme
efficace sur un seul humain virtuel devient extrêmement coûteuse quand elle est appli-
quée sur une grande population. Le développement d’une architecture capable de gérer
ces trois aspects est un problème intéressant et stimulant que nous avons adressé dans
notre recherche.

Notre première contribution est une architecture efficace et flexible, nommée YaQ,
capable de simuler des milliers de personnages en temps réel. Cette plateforme, dévelop-
pée à l’EPFL, au VRLAB, est le résultat de plusieurs années derecherche. Elle intègre
des techniques de l’état de l’art à plusieurs niveaux. YaQ a pour but de procurer des
algorithmes efficaces et des solutions en temps réel pour peupler globalement et massi-
vement des environnements à grande échelle. L’utilisationde YaQ est donc appropriée
dans de nombreux domaines d’application, tels que les jeux vidéo et la réalité virtuelle.
Notre architecture est spécialement efficace dans sa gestion des grandes quantités de
données utilisées pour simuler des foules.

Afin de simuler de grandes foules, beaucoup de copies doiventêtre générées à partir
d’un petit ensemble de modèles d’humains. À partir de ce point, si aucune mesure n’est
prise pour varier individuellement chaque humain, de nombreux clones apparaissent
dans la foule. Nous présentons plusieurs algorithmes afin derendre chaque individu
unique dans la foule. Premièrement, nous introduisons une nouvelle méthode permettant
de distinguer les parties du corps d’un humain et appliquonsdes variétés de couleurs et
motifs sur chacune d’entre elles. Deuxièmement, nous présentons deux techniques pour
modifier la forme et le profil d’un humain virtuel : une méthodesimple et efficace pour
attacher des accessoires aux individus, ainsi que des outils pour agrandir le squelette
et le maillage d’une copie. Finalement, nous contribuons également à la variété d’ani-
mations en introduisant des variations sur le haut du corps,permettant à un individu de
faire un téléphone par exemple, ou d’avoir une main dans la poche, ou encore de porter
des accessoires lourds.

Afin d’obtenir une grande quantité d’individus dans une foule, l’utilisation de ni-
veaux de détail est indispensable. Nous explorons les solutions les plus adéquates pour
à la fois simuler de grandes foules avec des niveaux de détail, et aussi éviter des transi-
tions perturbantes lorsqu’un humain virtuel passe d’une représentation à une autre. Afin
d’y parvenir, nous développons des solutions pour rendre laplupart des techniques de
variété applicables sur tous les niveaux de détail.

Mots-clés :foules virtuelles, temps-réel, rendu, variété, animation, moteur de foules
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Abstract

To simulate realistic crowds of virtual humans in real time,three main requirements
need satisfaction. First of all,quantity, i.e., the ability to simulate thousands of charac-
ters. Secondly,quality, because each virtual human composing a crowd needs to look
unique in its appearance and animation. Finally,efficiencyis paramount, for an opera-
tion usually efficient on a single virtual human, becomes extremely costly when applied
on large crowds. Developing an architecture able to manage all three aspects is a chal-
lenging problem that we have addressed in our research.

Our first contribution is an efficient and versatile architecture called YaQ, able to
simulate thousands of characters in real time. This platform, developed at EPFL-VRLab,
results from several years of research and integrates state-of-the-art techniques at all lev-
els: YaQ aims at providing efficient algorithms and real-time solutions for populating
globally and massively large-scale empty environments. YaQ thus fits various applica-
tion domains, such as video games and virtual reality. Our architecture is especially
efficient in managing the large quantity of data that is used to simulate crowds.

In order to simulate large crowds, many instances of a small set of human templates
have to be generated. From this starting point, if no care is taken to vary each character
individually, many clones appear in the crowd. We present several algorithms to make
each individual unique in the crowd. Firstly, we introduce anew method to distinguish
body parts of a human and apply detailed color variety and patterns to each one of them.
Secondly, we present two techniques to modify the shape and profile of a virtual human:
a simple and efficient method for attaching accessories to individuals, and efficient tools
to scale the skeleton and mesh of an instance. Finally, we also contribute to varying
individuals’ animation by introducing variations to the upper body movements, thus al-
lowing characters to make a phone call, have a hand in their pocket, or carry heavy
accessories,etc.

To achieve quantity in a crowd, levels of detail need to be used. We explore the
most adequate solutions to simulate large crowds with levels of detail, while avoiding
disturbing switches between two different representations of a virtual human. To do so,
we develop solutions to make most variety techniques scalable to all levels of detail.

Keywords:

Virtual Crowd, Real-Time, Rendering, Variety, Animation,Crowd Engine



CHAPTER 1

Introduction

Figure 1.1: YaQis a software architecture dedicated to the real-time simulation of large crowds
of varied virtual humans.

Crowd simulation has a large application field ranging from architecture design to en-
tertainment, virtual training, security, therapy for social disorders using virtual reality expo-

9



10 CHAPTER 1. INTRODUCTION

sure,etc.Applications dedicated to urban design or security have strong needs for realism. In
the Architecture domain for instance, to compare and validate designs of public places, vir-
tual humans’ navigation is simulated for the given environments. Then, at a post-processing
stage the resulting locomotion trajectories are studied. In such a case, the correctness of
simulation results, as compared to real humans’ navigation, is obviously a crucial objective
whilst performances are secondary - only reasonable computation times are required. Other
applications such as video games or more generally virtual reality, require interactivity.

Interactivity means that simulation results are progressively rendered to the user, whose
actions or reactions have an impact on the simulation content. As a result, the simulation
is computed online, in order to account for a user’s actions,and in real-time, to ensure im-
mediate, smooth and believable rendering of the simulationcontent to the user. We call this
type of simulation Interactive Virtual Crowds. For smooth visual output, display screen has
to be refreshed at least at25Hz. As a result, a short computation time (40ms) is avail-
able between two simulation steps, whilst the number of tasks to achieve in order to refresh
and render each virtual human state is high; it requires updating humans’ global positions
according to their goal and occurring interactions, computing their postures, updating their
appearance model accordingly, and finally, rendering them to the screen. The complexity of
the simulation thus directly depends on the number of humanscomposing the crowd. One of
the most important criteria for applications requiring Interactive Virtual Crowds is the quality
of the experience brought to the user, no matter the realism of the whole simulation result.
Consequently, Interactive Virtual Crowds attempt to provide believable experiences to users,
i.e., to obtain a satisfying behavior, motion and visual appearance for virtual humans in front
of the spectator, whereas those in the background or invisible areas are of lesser importance.

1.1 Motivations and Contributions

Over the last four years, we have worked on a software platform calledYaQ, dedicated to
simulation, animation and rendering of Interactive Virtual Crowds, and running on main-
stream desktop computers.YaQbenefits from several years of research and development
at EPFL-VRLab. The objective ofYaQ is to create and animate Interactive Virtual Crowds
consisting of thousands of pedestrians, in order to massively populate given environments.
An example of results obtained withYaQis illustrated in Figure1.1. Our major contributions
have been focused on three main aspects: first, creating the architecture ofYaQ in order to
simulate large crowds in real time. Second, exploring rendering level-of-detail techniques to
display as many characters as possible. Finally, our last and main contribution consisted in
exploring variety techniques in order to make each instanceof a virtual human unique.

1.1.1 YaQ Architecture

YaQ is an engine completely dedicated to the real-time simulation of crowds. The main
challenge when building such an architecture, is to be able to deal with the large quantity of
information that needs to be stored, processed, and used in real time. Data have to be stored
in adequate structures, so that they can be easily shared andretrieved. Also, they need to be
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intelligently sorted to minimize the number of context switches at runtime.

Our main contribution in this domain is the detailed mechanism of YaQ: it is built to
tightly pack the data associated to virtual humans in order to store once information that can
be shared by several instances; several lists of human ids are sorted according to different
criteria at each simulation frame to accelerate the processing of the pipeline; and automatic
methods to compute, serialize, and store heavy data in a dedicated database are exploited.

1.1.2 Rendering Levels of Detail

To simulate large crowds at high frame rates, it is necessaryto use several levels of de-
tail (LOD). Characters close to the camera are accurately rendered and animated with more
costly methods, while those farther away are represented with less detailed, faster represen-
tations. The common process is to use many instances of a small set of human templates,i.e.,
virtual human types identified by their mesh, skeleton, textures and LOD. There are mainly
three LOD used in crowd applications, depicted in Figure2.1: classical deformable meshes,
enveloping a skeleton and skinned to perform skeletal animations, rigid meshes, which are
pre-computed geometric postures of a deformable mesh, and impostors, representing a char-
acter with only two textured triangles forming a quad. Deformable meshes are altered by the
online computation of their skeleton movements. Although this method is more expensive
than using rigid meshes [Ulicny et al., 2004], it allows to perform special animations chosen
or produced at runtime, like looking at the camera (see Figure2.1(left)), or mimicking facial
expressions. Yet, impostors are naturally the most exploited LOD in the domain of crowds.
Their main advantage is their rendering efficiency, since only two triangles per character are
displayed.

1.1.3 Crowd Variety

Our main interest is focused on real-time applications where the visual uniqueness of the
characters composing a crowd is paramount. On the one hand, it is required to display
several thousands of virtual humans at high frame rates, using levels of detail. On the other
hand, each character has to be different from all others, andits visual quality highly detailed,
as illustrated in Figure1.2.

Instantiating many characters from a limited set of human templates leads to the presence
of multiple similar characters everywhere in the scene. However, the creation of an individual
mesh for each character is not feasible, for it would have toohigh requirements in terms of
design and memory. Thus, methods have to be introduced to modify each instance, so that
it is visually different from all the others. Such methods also need to be scalable for all
LOD used in crowd simulations to avoid inconsistencies in the individual appearances. Our
main contribution is the introduction of techniques to improve the variety of crowds in three
domains: visual appearance, shape, and animation.

Visual Appearance. We have developed a fast and scalable technique to obtain unique
characters from a small set of basic human templates (see Figure 1.2). Using a dedicated
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Figure 1.2: Five human templates taking full advantage of accessories and segmentation maps.

texture, calledsegmentation map, we are able to distinguish different parts of the virtual
human’s body,e.g., skin, hair, shirt, pants. For each body part, we are able to apply a unique
color, thus making two instances of a same human template visually different. As compared
to previous approaches, our technique allows to have smoothtransitions between body parts
and to enhance character visual appearance with distinctive details, such as make-up, or
fabric patterns. This method is scalable, so that all characters can be displayed consistently
with any LOD used in crowd simulations.

Shape. Our contribution in the domain of shape variety is twofold. Firstly, we introduce
accessories: simple meshes attached to the individuals in order to modify their profile,e.g.,
hats, wigs, glasses, or jewelry. We distinguish two types ofaccessories: simple ones, that can
be directly attached to a human mesh, and complex accessories, that require a modification
of the human animation,e.g., shopping bags, suitcases, puppets, balloons,etc. We have
developed accessories to make them scalable: they can be used with all rendering LOD.
Specifically in the case of impostors, we use a method at the pixel level to correctly place
accessories, and solve occlusion issues inherent to this level of representation with a new
algorithm. The additional use of accessories on top of othervariety techniques allow to
transform instances of a same human mesh into unique individuals. Our second contribution
is to directly modify the instantiated mesh and skeleton of ahuman: using a dedicated design
tool, it is possible to choose at which scale a skeleton can bemagnified, resulting in human
instances of different sizes. Also, usingfat maps, a human instance’s mesh can be deformed
to result in a fat, pregnant, or thin character.
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Animation. In the domain of animation, variety is also very important: if all virtual hu-
mans walk at the same speed and with the same gait, characterslook closer to an army than
a crowd of independent pedestrians. We have several contributions in this domain: first of
all, we use a locomotion engine based on the work of [Glardon et al., 2004a,b] to generate
offline many locomotion cycles at different speeds and with several gaits, using captured
motion data. Second, we use a dedicated IK solver [Baerlocher and Boulic, 2004] to add to
these cycles upper body variations, such as having one hand in the pocket, or on the hip, for
instance. Third, further modifications of the animation areachieved online and in real time
to adapt human movements to complex accessories if they wearany.

1.2 Summary of Chapters

We summarize here the topics detailed in each chapter of thisdocument.

Chapter 2: Related Work. We start by presenting an overview of the related work
achieved in the domain of real-time crowds. In this chapter,we mainly focus on previous
work on crowd rendering, crowd appearance variety, and other crowd architectures.

Chapter 3: Overview. In this chapter, we present an overview of the architecture we
have built:YaQ. We first present the main components of this structure. We also detail how
the whole crowd-related data are processed and stored inYaQ. Finally, we shortly introduce
how crowd navigation is handled. This subject is however no further detailed in this docu-
ment, for it is not the topic of our thesis (see the work of [Yersin, 2009] for more details).

Chapter 4: Appearance Variety. This chapter presents our techniques to improve the
appearance variety of human instances. We detail our concept of appearance sets, segmenta-
tion maps, and how they can be implemented.

Chapter 5: Shape Variety. We introduce shape variety in crowds by exploiting acces-
sories. Their principles and implementation are detailed in this chapter. We also present
techniques and tools to modify the skeleton and the mesh of each human instance.

Chapter 6: Animation Variety. In this chapter, we show the techniques used to in-
troduce variety of animation at two levels: generating several locomotion cycles at various
speeds, and modifying upper body postures both offline and online. Also, we present the
motion kit, a structure built to help the animation of characters, whichever the LOD they are
using.

Chapter 7: Real-time Pipeline. The pipeline ofYaQ is here described in four steps:
scaling, simulation, animation, and rendering.
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Chapter 8: Results and Case Studies. This chapter is a special section that presents
how some features ofYaQhave been applied in various situations (segmentation mapsap-
plied to buildings, accessories and segmentation maps combined in a theme park simulation),
and howYaQas a whole has been used for several applications (cultural heritage, vestibular
reeducation, agoraphobia).

Chapter 9: Conclusion. We finally present our conclusion by summarizing our contri-
butions and introducing interesting directions for futurework.



CHAPTER 2

Related Work

Crowd behavior is an intriguing subject that has been studied since the end of the nineteenth
century [Bon, 1895]. The attempts to reproduce such scenes with computer simulations are
however quite recent. Our crowd engine,YaQ, addresses three main issues in the context of
real-time interactive virtual crowds: rendering large crowds using a level-of-detail approach,
using color and shape variation techniques to provide each individual with a unique appear-
ance, and making them navigate autonomously in their environment. In this chapter, we thus
address the work that has been achieved in these three domains (Sections2.1to 2.3), and also
study other crowd architectures that have been developed for full featured real-time crowd
simulations in Section2.4.

2.1 Real-time Crowd Visualization

Rendering crowds in real time is a challenging problem: all individuals need to be updated
and rendered at least25 times per second to ensure interactivity. To decrease the needed
computation resources, a level-of-detail (LOD) approach is usually taken: highly detailed,
but costly meshes are used to render characters close to the point of view, while lower, faster
rendering methods are exploited for the larger part of the crowd, at farther distances [Ryder
and Day, 2005]. Characters close to the camera are usually rendered as either one of the two
following models (also illustrated in Figure2.1):

• Deformable meshes, usually enveloping a skeleton and skinned to perform skeletal an-
imations. Deformable meshes are animated online and in realtime; first by computing
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their skeleton movements, and second, by deforming the meshaccordingly. Such com-
putations are quite expensive, limiting the possible number of deformable meshes in a
crowd. They are favored for a high level of detail, because they can perform special
animations chosen or produced at runtime, like looking at the camera, or mimicking
facial expressions.

• Rigid meshes, or pre-computed geometric postures of a deformable mesh. They have
the advantage of being faster processed online than deformable meshes, since the mesh
deformation is pre-computed. However, this solution has higher memory requirements
and does not allow for procedural animations.

In some cases, levels of detail were directly applied to the number of polygons composing the
human meshes. For instance, De Heras Ciechomskiet al.[Ciechomski et al., 2004] used rigid
meshes only, and reduced the number of triangles of the meshes with the increasing distance
to the camera. As for the rendering of the massive, low-resolution parts of the crowd, we
distinguish two approaches: the point-based approach, andthe image-based approach.

Figure 2.1: (left to right) A deformable mesh, skinned and animated in real time; a rigid
mesh,i.e., pre-computed posture of the same mesh; and an impostor, a pre-computed image
of the same mesh, textured onto a quad to give the illusion of a3D mesh.

2.1.1 Point-based Approach

In 1985, Levoy and Whitted first had the idea of using a point-based technique: they decou-
pled the modeled geometry from the rendering process by using points as a meta-primitive.
This meta-primitive plays the role of a mediator between thetraditionally modeled geometry
and the rendering pipeline: geometrical objects are first converted into points (the meta-
primitive), to be rendered on the screen [Levoy and Whitted, 1985]. Wand and Strasser pre-
sented a multi-resolution rendering algorithm based on this approach to render large crowds
of animated characters: having for sole input the keyframe animations of meshes, a hierarchy
of point samples and triangles is built to represent the various resolutions of the scene [Wand
and Straßer, 2002]. Their results are illustrated in Figure2.2. Rudomin and Millan later
combined point-based rendering for distant characters with displaced subdivision surfaces
for characters at a closer range [Rudomin and Millan, 2004].
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Figure 2.2: Results obtained in [Wand and Straßer, 2002], using a hierarchy of points and trian-
gles.

2.1.2 Image-based Approach

Combining an image-based technique with highly detailed meshes to render large crowds in
real time is the most common approach. The quality of a character appearance is usually
very high when close to the camera, using a deformable or rigid mesh, and degrades over
the distance, until it becomes an animatedimpostor. Impostors are sets of 2D pre-computed
images of discrete keyframes of animated virtual humans: images are pre-computed using
various view angles in order to fit any relative position between the camera and humans.
These images are then exploited at runtime in place of 3D models when rendering the scene.
Impostors can thus represent a character in the scene with only two triangles forming a
quad, and textured with one of these images. An example of such an image is presented on
the right-side of Figure2.1. The main advantage of impostors is their rendering efficiency,
since only two triangles per character are displayed. Theirmajor drawback is their memory
requirements, higher than the ones of rigid meshes.

Aubelet al. first applied the concept of impostors to virtual humans [Aubel et al., 2000].
Tecchiaet al. used the same concept to render large crowds of varied characters [Tecchia
and Chrysanthou, 2000]. They reduced the impostor memory consumption first by working
with symmetrical animations, thus limiting the number of images required for each keyframe
(images can be mirrored), and second, by tightly packing theimages together, removing all
empty space around each of them [Tecchia et al., 2002b,a].

Later, Dobbynet al. presented the first hybrid approach, combining impostors with rigid
meshes in [Dobbyn et al., 2005]. Rigid meshes were used at the forefront, replaced by im-
postors whenever the distance to the point of view became toolarge. To ensure no disturbing
popping artifacts when switching from a level of detail to another, a "pixel to texel" ratio was
enforced. The results they obtained is illustrated in Figure 2.3. Following this work, several
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Figure 2.3: Dobbyn et al. combined rigid meshes with impostors to renderlarge crowds and
keep a high appearance quality close to the camera [Dobbyn et al., 2005].

studies have been conducted in order to determine which LOD is the most adequate, and at
which distances LOD switching should be achieved to avoid popping artifacts [Hamill et al.,
2005; McDonnell et al., 2005]. More recently, Millan and Rudomin combined impostors and
instanced geometries to render very large crowds. Their instancing approach has the advan-
tage of maximizing the use of the GPU, however it limits the number of possible animations
too [Millan and Rudomin, 2006]. YaQalso benefits from a level-of-detail strategy. We use
three levels: at the forefront, highly detailed deformablemeshes capable of facial and hand
animation are used. Then, at a farther distance, pre-computed rigid meshes are displayed,
and finally, when characters appear very small, impostors are used [Maïm et al., 2009]. In
Figure2.1, we illustrate these three LOD. We further detail our approach in Chapter3.

Impostors being memory hungry, a new and efficient level of detail has been introduced
by Kavanet al. A polypostor represents a virtual human with a small set of 2D polygons,
animated by displacing their vertices [Kavan et al., 2008]. This representation offers much
lower memory consumption, since only one texture per virtual human needs to be stored, and
each animation corresponds to a series of vertex displacements. An image of an animated
polypostor is showed in Figure2.4.

Figure 2.4: A polypostor is a 2D polygonal representation of a virtual human. Its animation is
only based on the displacement of its vertices [Kavan et al., 2008].

Recently, Barczaket al. presented a solution entirely programmed on the GPU to render
large crowds with three GPU-based levels of detail: close tothe point of view, characters are
rendered with hardware tessellation and displacement mapping; at a reasonable distance, a
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conventional rendering approach is used; at a far distance,simplified shaders and geometry
are exploited [Barczak et al., 2008].

Another issue inherent to impostors is to solve occlusions when two of them intersect. In-
deed, impostors being rendered as a quad, or two triangles, accurate occlusion between them
if they are at the same depth results in disturbing artifacts. Schaufler introduced nailboards,
able to overcome visibility artifacts by storing small depth offsets in the alpha channel of
their texture [Schaufler, 1997]. However, this method is limited to orthographic or near-
orthographic views. Aubelet al. also introduced a technique to avoid visibility issues by
dividing an impostor into a series of body parts,i.e., several quads, each assigned with a
specific depth value [Aubel et al., 2000]. This technique is suitable when used on body parts
only, but it is not adapted for subtle cases, where pixels need to be processed individually.
Kavanet al. order the body parts of a polypostor by creating a visibilitygraph, based on the
3D model. In Chapter5.2, we present a GPU-based per-pixel approach, allowing to solve
occlusion problems at the pixel level, such as positioning the impostor of a backpack and its
straps on the shoulders of a virtual human impostor.

2.2 Crowd Appearance Variety

Rendering large crowds is usually based on the instantiation of a small set ofhuman tem-
plates. A human template is a virtual human type, defined by three main components:

• At least one mesh, usually composed of triangles. From a firsthigh-resolution mesh, it
is possible to derive several meshes at lower resolutions (less triangles) and use them
as levels of detail.

• A unique skeleton, that defines the human template’s joints and their size. The mesh
is skinned around the skeleton to enable animation.

• A texture, mapped onto the mesh with UV coordinates.

If such templates are instantiated many times, large crowdscan be created. However, all
instances of a same template have exactly the same look. For this reason, several approaches
have tried to add variety to instances of a same template. In the following sections, we distin-
guish two approaches: one focused on color variety of instances, and another concentrated
on shape variety.

2.2.1 Color Variety

In a recent study, McDonnellet al. showed that introducing color variety was paramount
to avoid a clone effect [McDonnell et al., 2008]. A first step to improve variety is to create
several textures per template, and use them randomly at instantiation. Although this solution
offers the best results, designers cannot create one texture for each instance for obvious
reasons. Previous work on color variety is based on the idea of dividing a human template
into several body parts, identified by specific intensities in the alpha channel of the template
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texture, as illustrated in Figure2.5. At runtime, each body part of each character is assigned
a color in order to modulate the texture. Tecchiaet al. used several passes to render each
impostor body part [Tecchia et al., 2002b,a]. Dobbynet al. extended the method and avoided
multi-pass rendering using programmable graphics hardware [Dobbyn et al., 2005].

Figure 2.5: Variety in appearance is achieved by dividing a human into several body parts and
coloring each part with varied colors. The body parts are differentiated by a specific intensity in
the alpha channel of the texture [Tecchia et al., 2002a].

Based on the same idea, Gosselinet al. showed how to vary characters sharing the same
texture by changing their tints. They also presented a method to selectively add decals to
the characters’ uniforms [Gosselin et al., 2004]. However, their approach is only applied to
armies of similar characters, and the introduced differences are not sufficient when working
with crowds of civilians. An illustration of their results is showed in Figure2.6. Galvaoet
al. presented another solution to obtain color variety withoutusing the alpha channel, which
can then be exploited for other purposes [Galvao et al., 2008]. In Chapter4, we present
our approach to obtain improved color variety, using segmentation maps. With segmenta-
tion maps, it is possible to obtain much more subtle effects,like make-up, freckles, cloth
patterns,etc.[Maïm et al., 2009].

2.2.2 Shape Variety

A second approach to further vary individuals in a crowd is tomodify the shape of instances.
When we use the term "shape modification", we englobe the workachieved to directly mod-
ify the mesh of an instance, but also the research that has been conducted in the domain of
cloth simulation for crowds, and the addition of accessory meshes.

One of the basic approaches to generate new human meshes is tomorph between existing
models [Lee and Magnenat-Thalmann, 2001]. To make such an operation intuitive, one
solution is to extract high-level parameters from the existing models. Then, new meshes are
created by providing a user-defined set of parameters, whichwill define how to morph the
models [Seo et al., 2003; Allen et al., 2004]. Another solution is to use anthropometric data
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Figure 2.6: Crowd using color variety and decals from [Gosselin et al., 2004].

to correctly choose how a human mesh can be resized. Seoet al. proposed such an approach
to generate virtual populations: the generation of human bodies is based on the kinematic
properties of anthropometry (size, shape, proportions) [Seo et al., 2002]. Unfortunately, the
generation process was slow, and crowds were thus limited toa few dozen characters. Kasap
and Magnenat-Thalmann [Kasap and Magnenat-Thalmann, 2007] presented an improved
technique, also based on anthropometric parameters. They divide the body into segments,
and deform each of them with freeform deformation methods and radial functions, while
preserving skinning information. More recently, Galvaoet al. presented a solution to vary
the shape of humans composing a crowd: they apply variety at different levels: body mass,
limb size, and muscle bulge. Body mass and muscle bulge variety is achieved by combining
weighted displacement maps. The limb size and character’s height are modified using a
skeleton displacement tool: scaling values are associatedto each joint. The mesh follows the
skeleton deformations, according to its skinning properties [Galvao et al., 2008]. The results
obtained with their work is illustrated in Figure2.7.

Figure 2.7: Results obtained in [Galvao et al., 2008] by varying the color, limb size, muscle
bulge, and body mass of characters.
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To modify the shape of a virtual human, it is also possible to attach various small meshes
to its body. Recently, Dudash demonstrated in an NVidia white paper how to divide a human
mesh into several pieces and use these pieces to recompose varied meshes [Dudash, 2007].
In his example, several warriors were divided according to their armor pieces and weapons.

Finally, clothes simulation is another approach to furthervary characters [Ryder and
Day, 2005], but for real-time crowd applications, their animation remains too expensive
to be used. Dobbynet al. proposed to pre-simulate cloth mesh deformation and use the
resulting animation at runtime on impostors (see Figure2.8) [Dobbyn et al., 2006]. The same
year, McDonnellet al. presented a perceptual study of virtual humans wearing deformable
clothing at different levels of detail [McDonnell et al., 2006].

Figure 2.8: The physical simulation of clothes is pre-computed and re-used on rigid meshes and
impostors [Dobbyn et al., 2006].

2.3 Crowd Motion Planning and Navigation

The first studied approach,i.e., agent-based, represents a natural way to simulate crowds as
independent individuals interacting with each other. Suchalgorithms usually handle short
distance avoidance, and navigation remains local. Reynolds proposed to use simple rules
to model crowds of interacting agents [Reynolds, 1987, 1999]. Heigeaset al. introduced
a physically-based interactive particle system to model emergent crowd behavior often en-
countered in emergency situations [Heigeas et al., 2003]. Kirchner and Shadschneider used
static potential fields to rule a cellular automaton [Kirchner and Shadschneider, 2001]. Nev-
ertheless, the main problem with agent-based algorithms istheir low performance. With
these methods, simulating very large crowds in real time is unfeasible without distributing
the workload on parallel processors [Reynolds, 2006]. Moreover, such approaches forbid the
construction of autonomous adaptable behaviors, and can only manage crowds of pedestrians
with local objectives.
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Figure 2.9: Reynolds takes advantage of the parallel processors of the PS3 to simulate large
crowds of fishes with an agent-based method [Reynolds, 2006].

To solve the problems inherent in local navigation, some behavioral approaches have
been extended with global navigation. Sunget al., given constraints at specific time intervals
on character poses, positions, orientations, used a motiongraph to generate the adequate mo-
tion [Sung et al., 2005]. Lau and Kuffner used pre-computed search trees of motion clips to
accelerate the search for the best paths and motion sequences to reach an objective [Lau and
Kuffner, 2006]. Lamarche and Donikian used automatic topological model extraction of the
environment for navigation [Lamarche and Donikian, 2004]. Their results for outdoor navi-
gation is illustrated in Figure2.10. Although these approaches offer appealing results, they
are not fast enough to simulate thousands of pedestrians in real time. Pettréet al. presented
thenavigation graph, a structure automatically extracted from an environment geometry, al-
lowing to solve global path planning requests [Pettré et al., 2006; Pettré et al., 2007]. The
main advantage of this technique is that it handles uneven and multi-layered terrains. Nev-
ertheless, it does not treat inter-pedestrian collision avoidance. Finally, Helbinget al. used
agent-based approaches to handle motion planning, but mainly focused on emergent crowd
behaviors in particular scenarii [Helbing et al., 1994, 2000] .

Another approach for motion planning is inspired from fluid dynamics. Such techniques
use a grid to discretize the environment into cells. Hughes used density fields to steer pedes-
trians toward their goals and avoid collisions [Hughes, 2002, 2003]. Chenney used flow tiles
to represent small stationary regions of velocity fields that can be pieced together to drive
crowds [Chenney, 2004]. More recently, Treuilleet al. used a dynamic potential field to
represent the best path to a goal. Pedestrians are steered according to the potential gradient,
avoiding collision with the environment and other pedestrians (see Figure2.11) [Treuille
et al., 2006]. Fluid dynamics represent an interesting solution in applications where the lack
of individuality of each pedestrian is unimportant. Indeed, these solutions are usually meant
to steer large groups of avatars towards a shared goal.

Recently, a new branch of research tries to extract patternsfrom real pedestrian avoid-
ance behaviors in order to rule their models, [Lerner et al., 2007; Paris et al., 2007; Lee et al.,
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Figure 2.10: Outdoor navigation of pedestrians in [Lamarche and Donikian, 2004]. Path plan-
ning is based on the topological properties of the environment, while inter-pedestrian avoidance
is ruled by a neighborhood graph.

Figure 2.11: In [Treuille et al., 2006], crowds are steered by a potential field to reach their goals
while avoiding collisions.

2007]. As of today, the obtained performance does not fit to large interactive crowds.

YaQuses an architecture with levels of detail to plan the motionof large crowds. Based
on a navigation graph, we divide the environment into regions of varying interests. In regions
of high interest, we exploit a potential field-based approach. Since we only use it locally, we
can plan motion for many more groups and with finer grid cells than with an algorithm purely
based on it. In other regions, motion planning is ruled by thenavigation graph and short-term
collision avoidance algorithms. Our local use of a potential field-based approach allows us
to plan motion for many more groups and with finer grid cells than with a purely potential
field algorithm.

2.4 Crowd Architectures

Similarly to YaQ, there exist some architectures able to handle all aspects of crowds, i.e.,
rendering, motion planning, behavior, and animation.

Musseet al. presentedViCrowd, a hierarchical model to simulate crowds in real time in
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collaborative virtual environments. Their platform combines LOD techniques for the geome-
try display and animation [Musse et al., 1998] and group-based intelligent behaviors [Musse
and Thalmann, 2001]. The Agent Behaviour Simulator (ABS) is another behavioral model
dedicated to real-time crowd simulation. The pedestrians are rendered with an image-based
technique (see Section2.1) [Tecchia and Chrysanthou, 2000], while their navigation and
behavior are ruled by 2D maps [Tecchia et al., 2001]: a map to detect inter-pedestrian colli-
sions, a map to detect collisions with the environment, and two maps to rule the pedestrians’
simple and complex behaviors (see Figure2.12).

Figure 2.12: ABS: the Agent Behavior Simulator, rules pedestrian behaviors based on several
2D maps of the environment [Tecchia et al., 2001].

Giang et al. and O’Sullivanet al. developedALOHA (Adaptive Level Of Detail for
Human Animation), a framework applying a LOD approach to thegeometry, motion, and
behavior of crowds [Giang et al., 2000; O’Sullivan et al., 2003]. Unlike the usual approach,
the geometry LODs of ALOHA are created in a bottom-up approach: the process starts
with a low-resolution mesh and progressively improves the appearance of the virtual human
using subdivision surfaces. As for the motion, characters play keyframed animations at a
low level, and use a reaching-and-grasping system for higher LODs. Behavior LODs are
handled differently, depending on the situation: conversational LODs are used when char-
acters are socializing and talking/answering to each other(see Figure2.13), while Artificial
Intelligence LODs are developed for other cases.

Sung et al. presented a scalable crowd simulator that provides visually convincing
crowds in terms of rendering, animation, and behavior. Their system has two levels: at a
high level, a controller takes care of local behavior of agents, based on their position in space
and what is happening in their close neighborhood. At a lowerlevel, a probabilistic finite
state machine decides of the pedestrians actions [Sung et al., 2004], the crowd animation
is based on a Snap Together Motion process [Gleicher et al., 2008]. Shao and Terzopoulos
presented an agent-based model to simulate crowds [Shao and Terzopoulos, 2005]. The ren-
dering engine is adapted from a commercial software package, and their main contribution is
on the behavioral level. Their approach is bottom-up: reactive behaviors are used as building
blocks to support more complex motivational behaviors. Thedecision-making of pedestrians
is controlled by an action selection mechanism. More recently, Pelechanoet al. presented
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Figure 2.13: Group of characters socializing in [O’Sullivan et al., 2003].

theHiDAC (High-Density Autonomous Crowds) system. Although they donot detail how
the rendering and animation of pedestrians is performed, they display realistic characters
in order to be able to simulate densely crowded places, wherevirtual humans may push
each other, fall,etc. Behaviors are determined for each agent individually, witha two-level
approach: at a high level, navigation, learning, communication and decision-making are han-
dled [Pelechano and Badler, 2006], and at a lower level, perception of the environment and
reactive behaviors allow to handle collision avoidance [Pelechano et al., 2007].



CHAPTER 3

Overview

In this chapter, we present an overview ofYaQ, our crowd engine. We first provide a general
insight on its architecture in Section3.1. In Section3.2, we fully detail the main input of
YaQ: the human template and its different rendering levels of detail. Finally, in Section3.3,
we present how the large amount of data necessary to simulatea crowd is handled and stored
by YaQ.

3.1 YaQ Architecture

As illustrated in Figure3.1, YaQ architecture is composed of two offline and one online
elements:Variety, Navigation, andReal-time.

Variety. When displaying crowds, on the one hand, each character needs to get a unique
appearance (see Figure3.2) in order to simulate individuality. On the other hand, it isboth
fastidious to design every single character and to store itsappearance model: this would
result in unconceivable memory consumption and design time. Our solution is to start with
a limited set of human templates, from which we apply three different types of variations to
create thousands of unique instances. The process is schematized in green in Figure3.1. We
later devote one chapter to each of these types:

• In Chapter4, we detail the techniques used to modify the colors and shading of virtual
humans,e.g., their clothes, skin, hair.

• Chapter5 focuses on methods that help changing the shape of a virtual human; for
instance, accessorizing characters, or making them taller/smaller,etc.

27
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• The last type of variety we introduce for crowds is the individualization of their anima-
tions. To simulate a crowd inYaQ, many locomotion animations at various speeds are
generated in a pre-process with a dedicated engine [Glardon et al., 2004a,b]. Other,
more quiet animations, such as standing, talking, or sitting, are hand-designed. In or-
der to animate humans whatever their rendering level of detail (LOD), we have created
a dedicated structure, calledmotion kit. A motion kit contains the information to play
an animation at any LOD. Thus, instead of associating an animation to each human
instance, we associate a motion kit, which provides the adequate data, whichever the
LOD of the instance. Our strategy to handle animations inYaQ, to vary them, and to
create motion kits is explained in Chapter6.

Navigation. This component ofYaQtakes care of structuring the environment to plan the
motion of the whole crowd. The structure we use is based on a dedicated cell-decomposition
technique called navigation graph [Pettré et al., 2006; Pettré et al., 2007]: from a 3D model of
a scene, a navigation graph is automatically derived. It captures and models both the geome-
try and the topology of the navigable space. The navigation graph is used as a basic structure
to categorize the environment into regions of various interest. With the same concept of
levels of detail we use for rendering, regions of high/medium/low interest are identified in
the environment, and ruled by different motion planning algorithms. Each algorithm, in its
own way, provides waypoints to steer virtual humans in real-time towards their goals. A
second interesting aspect of navigation graphs is to use them for triggering situation-based
behaviors. Using a semantic model of the environment (see Figure3.1), the navigation graph
is augmented with semantic data to develop crowd behaviors:specific actions are triggered
in desired areas of the environment. We provide an overview on the Navigation component
in Figure3.1 (in red). Also, a short introduction on this subject is available in Section10.1
of theAppendix. For a more detailed presentation of this component, the reader is advised to
refer to the work of [Yersin, 2009].

Real-time. Once the Variety and Navigation components have computed the instances
and the waypoints to navigate them, the Real-Time componentcan start the simulation. Each
frame of simulation is separated into four different stages, illustrated in blue in Figure3.1.
The first stage, the Scaler, assesses the importance of the different areas of the screen,i.e.,
it decides of the level-of-detail strategy for the current frame. Second, the Simulator steers
the instances toward their next waypoint, while avoiding collisions between them. The Ani-
mator modifies the posture of the instances to reflect the locomotion or other action changes.
Finally, the Renderer efficiently displays the varied instances and the environment, as well
as their projected shadows, to the screen. The Real-time component is detailed in Chapter7.

3.2 Virtual Human Representations

In an ideal world, graphic cards would be able, at each frame,to render an infinite number of
triangles with an arbitrary complex shading on them. To visualize crowds of virtual humans,
we would simply use thousands of very detailed meshes,e.g., capable of hand and facial
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Figure 3.1: The architecture of YaQ is divided into three components. Ina first step, the Variety
component (in green) and the Navigation component (in red) pre-compute the necessary data
(instances and waypoints). In a second step, these data are fed to the Real-time component (in
blue).

animations. Unfortunately, in spite of the recent programmable graphics hardware advances,
we are still compelled to stick to a limited triangle budget per frame. This budget is spent
wisely to be able to display dense crowds without too many perceptible degradations. The
concept of levels of detail (LOD), extensively treated in the literature [Luebke et al., 2002],
is exploited to meet our real-time constraints. For a crowd of virtual humans specifically,
and depending on the location of the camera, a character is rendered with a particular repre-
sentation, resulting from the compromise of rendering costand quality. In this section, we
first introduce the data structure we use to create and simulate virtual humans: the human
template. Then, we describe the three levels of detail a human template uses: the deformable
mesh, the rigid mesh, and finally the impostor.

3.2.1 Human Template

A type of human such as a woman, man, or child is described as a human template, which
consists of :
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Figure 3.2: By applying variety techniques at three levels, instances of a same template seem
unique. Color variations are used to create clothes and skinpatterns, shape variations are intro-
duced with accessories, such as wigs or glasses, and variousanimations are exploited for further
individualization.

• A skeleton, composed of 86 joints, representing articulations;

• A set of meshes, all respresenting the same virtual human, but with a decreasing num-
ber of triangles;

• Several appearance sets, used to vary its appearance;

• A set of animation sequences which it can play.

Each rendered virtual human is derived from a human template, i.e., it is an instance of
a human template. In order for all the instances of a same human template to look different,
we use several appearance sets, that allow to vary the texture applied to the instances, and
modulate the colors of the texture (see Chapter4).

3.2.2 Deformable Mesh

A deformable mesh is a representation of a human template composed of triangles. InYaQ,
it is enveloping a skeleton, used for animation: when the skeleton moves, the vertices of
the mesh follow smoothly its joint movements, similarly to our skin [Magnenat-Thalmann
et al., 1988]. We call such an animation askeletal animation. Each vertex of the mesh is
influenced by one or a few joints. Thus, at every keyframe of ananimation sequence, a vertex
is deformed by the weighted transformation of the joints influencing it. The corresponding
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equation is:

v(t) =

n
∑

i=1

χt
iχ

−ref
i vref (3.1)

wherev(t) is the deformed vertex at timet, influenced byn joints,χt
i is the global transform

of joint i at timet, χ−ref
i is the inverse global transform of the joint in the referenceposition,

andvref is the vertex in its reference position. This technique is known as skeletal subspace
deformation, or skinning.

The skinning can be efficiently performed by the GPU: the deformable mesh sends the
joint transformations of its skeleton to the GPU, that takescare of moving each vertex ac-
cording to its joint influences. However, it is important to take into account the limitations
of graphic cards (Shader Model 2 & 3 [nvidia, 2006]), that can store only up to256 atomic
values,i.e., 256 vectors of four floating points. The joint transformations of a skeleton can be
sent to the GPU as4 × 4 matrices,i.e., four atomic values. This way, the maximum number
of joints a skeleton can have reaches:

256

4
= 64. (3.2)

When wishing to perform hand and facial animations,64 joints are not sufficient. Our solu-
tion is to send each joint transformation to the GPU as a unit quaternion and a translation,
i.e., two atomic values. This allows to double the number of joints possible to send. Note
that one usually does not wish to use all the atomic structures of a GPU exclusively for the
joints of a skeleton, since it is usually exploited to process other data.

Rendering deformable meshes is very costly, due primarily to a pipeline flush occuring
each time a new virtual human is rendered, and also to the expensive vertex skinning and joint
transmission. Nevertheless, it would be a great quality drop to do without them, indeed:

• They are the most flexible representation to animate, allowing even for facial and hand
animation (if using a sufficiently detailed skeleton).

• Such animation sequences, called skeletal animations, arecheap to store in memory:
for each keyframe, only the transformation of deforming joints, i.e., those moved in
the animation, need to be kept. Thus, a tremendous quantity of those animations can
be exploited in the simulation, increasing crowd movement variety.

• Procedural and composited animations are suited for this representation,e.g., look at
the camera, or on-the-fly idle motion generation (see for example Eggeset al. [Egges
et al., 2006]).

• Blending is also possible for smooth transitions between different skeletal animations.

Unfortunately, the use of deformable meshes as the sole representation of virtual humans in
a crowd is too prohibitive. We therefore use them in a limitednumber and only at the fore-
front of the camera. Note that before switching to rigid meshes, we use several deformable
meshes, keeping the same animation algorithm, but with a mesh of a decreasing number of
triangles.
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Skinned and textured deformable meshes require skilled designers. But once finished,
they are automatically used as the raw material to derive allsubsequent representations: the
rigid meshes and the impostors.

3.2.3 Rigid Meshes

A rigid mesh is a precomputed geometric posture of a deformable mesh, thus sharing the very
same appearance. A rigid animation sequence is always inspired from an original skeletal
animation, and from an external point of view, both look alike. However, the process to
create them is different. To compute a keyframe of a rigid animation, the corresponding
keyframe for the skeletal animation is retrieved. It provides a skeleton posture (or joint
transformations). Then, in a preprocess, each vertex is deformed on the CPU, as opposed
to a skeletal animation, where the vertex deformation is achieved online, and on the GPU.
Once the rigid mesh is deformed, it is stored as a keyframe, ina table of vertices, normals
(3D points), and texture coordinates (2D points). This process is repeated for each keyframe
of a rigid animation. At runtime, a rigid animation is simplyplayed as a succession of several
postures or keyframes. There are several advantages in using such a representation:

• It is much faster to display, because the skeleton deformation and vertex skinning
stages are already done and stored in keyframes. The communication between the
CPU and the GPU is kept to a minimum, since no joint transformations need to be
sent, and pipeline flushing is significantly reduced.

• It looks exactly the same as the skeletal animation used to generate it.

The gain in speed brought by this new representation is considerable. It is possible to display
about 10 times more rigid meshes than deformable meshes (seeSection7.4.3for detailed
results). However, the rigid meshes need to be displayed farther from the camera than de-
formable meshes, because they allow for neither proceduralanimations, nor blending, and
no composited, facial, or hand animation are possible either.

3.2.4 Impostor

An impostor is the less detailed representation, and extensively exploited in the domain of
crowd rendering [Tecchia et al., 2002a; Dobbyn et al., 2005; Millan and Rudomin, 2006].
An impostor represents a virtual human with only two textured triangles, forming a quad,
which is enough to keep the desired illusion at long range from the camera. Similarly to a
rigid animation, an impostor animation is a succession of postures, or keyframes, inspired
from an original skeletal animation. The main difference with a rigid animation is that it is
only a 2D image of the posture that is kept for each keyframe, instead of the whole geometry.
Creating an impostor animation is complex and time consuming. Thus, its construction is
achieved in a preprocess, and the result is then stored into adatabase in a binary format
(see Section3.3.2), similarly to a rigid animation. We detail here how each keyframe of
an impostor animation is developed. The first step when generating such a keyframe for a
human template is to create two textures, or atlas:
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• A normal map, storing in its texels the 3D normals as RGB components. This nor-
mal map is necessary to apply the correct shading to the virtual humans rendered as
impostors. Indeed, if the normals were not saved, a terribleflat shading would be
applied to the virtual human, since it is represented with only two triangles. Switch-
ing from a rigid mesh to an impostor would thus lead to awful popping artefacts. In
Figure3.3(center), we show an example of such a representation for humans in walk-
ing postures. The generated image RGB components representthe directions of the
human’s normals.

• A UV map, storing in its texels the 2D texture coordinates as RG components. This
information is also very important, because it allows to correctly apply a texture to
each texel of an impostor. Otherwise, we would need to generate an atlas for every
texture of a human template. We show an example of a UV map for awalking human
in Figure3.3(right)

Figure 3.3: Images of walking humans.(Left) The textured and shaded results, as rendered in
YaQ. (Center)The RGB channels of the image are used to represent the 3D directions of the
normals: Red in the X direction, Green in the Y direction, andBlue in the Z direction.(Right)
The RG channels of the image are used to represent the texturecoordinates.

Since impostors are only 2D quads, we need to store normals and texture coordinates
from several points of view, so that, at runtime, when the camera moves, we can display the
correct keyframe from the correct camera view point.

In summary, each texture described above holds a single meshposture for several points
of view. This is why we also call such textures atlas. We illustrate in Figure3.4a1024×1024
atlas for a particular keyframe. The top of the atlas is used to store the UV map, and its
bottom the normal map.

The main advantage of impostors is that they are very efficient, since only two triangles
per virtual human are displayed. Thus, they constitute the biggest part of the crowd. How-
ever, their rendering quality is poor, and thus they cannot be exploited close to the camera.
Moreover, the storage of an impostor animation is very costly, due to the high number of
textures that need to be saved.

We summarize in Table3.1 and Figure7.4 the performance and animation storage for
each virtual human representation. We observe that each step down the representation hier-
archy allows to increase by an order of magnitude the number of displayable characters. We
also note that the faster the display of a representation, the larger the memory storage. Fi-
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Figure 3.4: A 1024 × 1024 atlas storing the UV map (above) and the normal map (below) ofa
virtual human performing a keyframe of an animation from several points of view.

Figure 3.5: Storage space in[Mb] on a logarithm scale for one second of animation of each level
of detail: (a) deformable mesh,(b) rigid mesh,(c) impostor.

nally, rigid meshes and impostors are stored in GPU memory, which is usually much smaller
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Level of Max Displayable Animation Animation Memory
detail Number Frequency Storage Location

@30Hz [Hz] Cost[Mb/s]

deformable mesh ∼ 200 25 ∼ 0.03 CPU
rigid mesh ∼ 2, 000 20 ∼ 0.3 GPU
impostor ∼ 20, 000 10 ∼ 15 GPU

Table 3.1: Characteristics and costs associated to the animation of each level of detail.

than CPU memory.

3.3 YaQ Data

The main problem when dealing with thousands of characters is the quantity of informa-
tion that needs to be stored and processed for each one of them. Processing the data is very
demanding, even for modern processors, while storing it requires intelligent structures that
can be efficiently accessed and shared.

In this section, we first present howYaQ tightly packs the data associated to a human
template in order to avoid storing information that can be shared over the levels of detail, for
instance. Then, we present how lists of human instances sharing similar structures can be or-
ganized to limit the number of state switches at runtime. Finally, we introduce our database,
where all the heavy pre-computed data is serialized and stored to make the initialization
phase of the simulation as fast as possible.

3.3.1 Human Template Data

The organization of resources inside a human template is illustrated in Figure3.6.

Appearance Set. As previously stated, appearance sets, which we detail in Chapter4,
are used to apply various colors to the body parts of a human instance. Each appearance set is
unique, and associated to a single human template. There canbe several appearance sets per
template, but never more than one template per appearance set. When creating an instance
of a human template, one appearance set belonging to the template is chosen to modulate the
colors of this instance. If a human template is instantiatedseveral times, some instances will
share the same appearance set.

Deformable Mesh. Storing a deformable mesh inYaQsums up to saving four arrays: one
array filled with all the vertices of the 3D mesh, one array to store the normals associated to
all vertices, one array of UV coordinates, and finally, one array of indices. The indices allow
to correctly draw the mesh by grouping vertices into triangles, using their corresponding
normals for the shading, and mapping the texture with the UV coordinates.
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Figure 3.6: Shared resources between representations of a human template: (a) deformable
mesh,(b) rigid mesh,(c) impostor.

Rigid Mesh. A rigid mesh is always associated to an animation, since already deformed.
To store one keyframe of a rigid animation, the whole set of vertices needs to be stored again,
for they are not placed at the same positions as in a deformable mesh. The same applies to
the normals. The UV coordinates remain the same, because thetexture is still mapped in the
same way. Finally, the indices can be reused too from a deformable to a rigid mesh, if care
is taken to keep the same ordering in the different arrays.

Impostors. For impostors, no information is shared with the other representations. All the
data required to shade and texture the quad are stored in the atlas presented in Section3.2.4.

3.3.2 Database Management
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Many elements of data used at runtime inYaQare permanent,i.e., they are not changed
over the whole simulation, and can even be reused between simulations. In order to keep
them available at all times and to store them efficiently, we use an external database.

To animate virtual humans, the locomotion engine of Glardonet al. [Glardon et al.,
2004a,b] is used to generate various locomotion cycles (see Chapter6). Although this engine
is fast enough to generate a walk or run cycle in real time, it cannot keep up that rhythm with
thousands of virtual humans. When this problem first occured, the idea of precomputing a
series of locomotion cycles and storing them in a database came up. Since then, this system
has proved very useful for storing other permanent data. Themain tables that can be found
in our database are the following:

• Skeletal animations,

• Rigid animations,

• Impostor animations,

• Motion kits,

• Human templates, and

• Accessories.

In this section, we detail the advantages and drawbacks we meet by using such a database,
and what kind of information we can safely store there.

All skeletal, rigid and impostor animations we use in real time can neither be generated
online, nor at the initialization phase of the application,because the user would have to wait
during an important amount of time before the simulation launches. This is why the database
is used. With it, the only work that needs to be done at initialization is to load the animation
sequences, so that they are ready when needed at runtime. Although this loading phase may
look time consuming, it is quite fast, since all the animation data is serialized into a binary
format. Within the database, the animation tables have fourimportant fields1: unique id,
motion kit id, template idandserialized data. For each animation entryA, its motion kit id
is later used to create the necessary links (further detailed in Chapter6), while its template
id is needed to find to which human template it belongs. It alsoallows to restrain the number
of animations to load to the strict minimum,i.e., only those needed for the human templates
used in the application. It is mainly the serialized data that allows to distinguish a skeletal
from a rigid or a impostor animation. Note here that storing askeletal animation is different
from storing a deformable mesh, which we have previously detailed in this section. For a
skeletal animation, we mainly serialize into the database all the information concerning the
orientation of each skeleton joint at each keyframe. With a rigid or an impostor animation
however, since the mesh or the image is already animated, thedata to store is the same as
previously described.

Another table in the database is used to store the motion kits. It is important to note
that since they are mainly composed of simple data, like integers and strings, they are not

1A field can be understood as a column in the database that allows for queries.
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serialized in the database. Instead, each of their elementsis introduced as a specific field.
When loading a motion kitM from the database, its basic information is directly extracted
to be saved in our application. The motion kits are thoroughly presented in Chapter6.

We have inserted in the database a table in order to store the permanent data of human
templates. Indeed, we have some human templates already designed and ready to be used
in the crowd simulation. This table has the following fields:unique id, name, skeleton
hierarchy, andskeleton posture. The skeleton hierarchy is a string summarizing the skeleton
features,i.e., all the joint names, ids, and parent. When loading a human template, this string
is used to create its skeleton hierarchy. The skeleton posture is a string giving the default
posture of a skeleton: with the previous field, the joints andtheir parents are identified,
but they are not placed. In this specific field, we get for each joint its default position and
orientation, relatively to its parent.

Finally, the database possesses two tables dedicated to accessories. An accessory is a
mesh used to add variety and believability to the shape of thevirtual humans. For instance, it
can be a wig, a pair of glasses, a bag,etc. (see Chapter5 for more details). In a first table, we
store the elements specific to an accessory, independently from the human template wearing
it: unique id, name, type, serialized data. In the serialized data is stored all the vertex, normal
and texture information to make an accessory displayable. The second table is necessary to
share information between the accessories and the human templates. As later specified in
Chapter5, the displacement of a specific accessory relatively to a skeleton joint is different
for each human template. This displacement is stored as a matrix. So, in this second table,
we employ a field calledtemplate idand a fieldaccessory idto know exactly where the field
matrix must be used. Thus, for each accessory / human template couple, corresponds an
entry within this table. Note that we also store there the joint to which the accessory needs
to be attached. This is because in some special cases, they may differ from a skeleton to
another. For instance, when we attach a back pack to a child template, the joint used is a
vertebra that is different from the one for an adult template.

Using a database to store serialized information has provento be very useful, because it
greatly accelerates the initialization time of the application. The main problem is its size,
which increases each time a new element is introduced into it. However, with real-time
constraints, we allow ourselves to have a sufficiently largedatabase within reasonable limits
to obtain varied crowds.
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Appearance Variety

When simulating a small group of virtual humans, it is easy tomake them look singularly
different: one can use several human templates and texturesfor each virtual human present
in the scene, and assign them different animations. However, when the group extends to a
crowd of thousands of people, this solution becomes unfeasible. First, in terms of design, it
is unimaginable to create one mesh and series of animations per individual. Moreover, the
memory space required to store all the data would be far too demanding. There is no direct
solution to this problem, but it is however possible to achieve good results by multiplying
the levels where variety can be introduced.

First of all, the visual appearance of individuals can be varied: several human templates
can be used. Then, for each template, several textures can bedesigned. Also, the color of
each part of a texture can be varied so that two virtual humansissued from the same template
and sharing the same texture have not the same clothes / skin /hair color.

Second, we can also modify the shape of human instances with several methods: we have
developed the idea of accessories,i.e., “augmenting” a human mesh with various objects such
as a hat, a watch, a back pack, glasses,etc. Also, we have recently worked on modifying
the shape of human instances directly. Based on a standard human template, variations are
applied to the skeleton and vertices, in order to modifiy eachinstance’s obesity and height.
This aspect of variety is presented in Chapter5.

Finally, variety can be achieved through animation. We mainly concentrate on the loco-
motion domain, where we vary the movements of the virtual humans in two ways. Firstly,
by generating in a preprocess several locomotion cycles (walks and runs) at different speeds,
that are then played by the virtual humans online. Secondly,we use offline inverse kinemat-
ics to enhance the animation sequences with particular movements, like having a hand in the
pocket, or at the ear as if making a phone call. Animation variety is presented in Chapter6.

39
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In the following sections, we further develop each necessary step to vary a crowd in
appearance: in Section4.1, we show the three levels where variety can be achieved. Then, in
Section4.2, we present our early work on color variety, and how we segmented the texture of
a virtual human into body parts. In Section4.3, we introduce the segmentation maps,i.e., an
improved approach to differentiate body parts and apply better variations in colors. Finally,
in Section4.4, we present our conclusion on the topic of crowd appearance variety.

4.1 Appearance Variety at Three Levels

When referring to appearance variety, we mean how we modulate the rendering aspect of
each individual of a crowd. In the context of our wokr, this term is completely independent
from the animation sequences played, the motion planning orthe behavior of the virtual
humans. First of all, let us remind that a human template is a data structure containing: a
skeleton, defining what and where its joints are, a set of meshes, representing its different
levels of detail, several appearance sets,i.e., textures and their corresponding segmentation
maps, and finally, a set of animation sequences that can only be played by this human tem-
plate. For further indications on the human template structure, the reader is invited to refer
to Section3.2.1. We apply appearance variety at three different levels.

Figure 4.1: Five different human templates: their shape, textures, skeletons are different.

The first coarsest level is simply the number of human templates used. It seems obvious
that the more human templates, the more variety. In Figure4.1, we show five different human
templates. The main issue when working with many human templates is the time required to
design them first, and the memory requirements to store them.Their number thus needs to be
limited. In order to mitigate this problem, we further vary the human templates by creating
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several textures and appearance sets for each one of them. Anappearance set is defined as a
texture and its associated segmentation maps (more on this in Section4.3).

The second level of variety is represented by the texture of an appearance set. Indeed,
once an instance of a human template is provided with an appearance set, it automatically
assumes the appearance of the corresponding texture. Of course, changing appearance set,
and thus, texture, does not change the shape of the human template. For instance, if its mesh
contains a pony tail, it will remain whatever the texture applied. However, it can impressively
modify the appearance of the human template. In Figure4.2, we show five different textures
applied to the same human template.

Figure 4.2: Five different textures mapped onto five instances of the same human template.

Finally, at the third level, we can play with color variety oneach body part of the texture,
thanks to the segmentation maps of the appearance set. In Figure 4.3, we show several
instances of a same human template, using the same texture; only the body part colors are
modulated. We fully dedicate Section4.3 to this particular level. But first, and in order to
fully understand segmentation maps, we briefly explain in Section4.2our previous approach
to color variety [de Heras Ciechomski et al., 2005] and its limitations, which have been later
overcome with segmentation maps.

4.2 Previous Work on Color Variety

To obtain variation inside a single texture, previous work on color variety proposed a solution
to differentiate character body parts, and then apply a unique combination of colors to each
of them.
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Figure 4.3: We instantiate several times the same human template with the same texture. Only
per-body-part color variety is used to modify their appearance.

4.2.1 Principles

Previous work increasing variety in color appearance for the characters composing a crowd
share the common idea of storing the segmentation of body parts in a single alpha layer,i.e.,
each body part is represented by a defined level of intensity of the alpha channel. Figure4.4
depicts a typical texture and its associated alpha zone map.The method is based on texture
color modulation: the final colorCb of each body part is a modulation of its texture colorCt

by a random colorCr:
Cb = CtCr. (4.1)

ColorsCb, Ct, andCr can take values between0.0 and1.0. In order to have a large panel of
reachable colors,Ct should be as bright as possible,i.e., near to1.0. Indeed, ifCt is too dark,
the modulation byCr will give only darker colors. On the other hand, ifCt is a bright color,
the modulation byCr will provide not only bright colors, but also dark ones. Thisexplains
why part of the texture has to be reduced to a bright luminance, i.e., the shading information
and the roughness of the material. The drawback of passing the main parts of the texture to
luminance is that funky colors can be generated,i.e., characters are dressed in colors that do
not match. Some constraints have to be added when modulatingcolors randomly.

4.2.2 HSB Color Spaces

Once the different body parts are identified with the alpha channel of the human texture, it is
important to constrain the colors that each part can take. Indeed, if no constraint was applied
at this stage, virtual humans would end up with completely random colors, as illustrated in
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Figure 4.4: Texture used for color variety.(Left) the RGB channels represent the basic texture,
which is very bright to allow for color modulations.(Right) the alpha channel of the texture is
used to differentiate body parts. Each body part takes a specific alpha intensity.

Figure4.5.

The usual RGB system represents a color with three values corresponding to the con-
tribution of the three primary colors: red, green, and blue.With this system however, it is
very counterintuitive for a designer to constrain per-body-part color ranges effectively. We
have created a dedicated tool to help the designer in this task, using a different mode of color
representation. [Smith, 1978] proposed a model that deals with everyday life color concepts,
i.e., hue, saturation and brightness, which are closer to the human color perception than the
RGB system. This system is called the HSB (or HSV) color model(see Figure4.6):

• the hue defines the specific shade of color, as a value between0 and360 degrees;

• the saturation denotes the purity of the color,i.e., highly saturated colors are very
bright, while low saturated colors are washed-out, like pastels. Saturation can take
values between0 and100,

• the brightness measures how light or dark a color is, as a value between0 and100;

In the process of designing virtual human color variety, localized constraints are dealt
with: some body parts need very specific colors. For instance, skin colors are taken from a
specific range of unsaturated shades with red and yellow dominance, almost deprived of blue
and green. Eyes are described as a range from brown to green and blue with different levels
of brightness. These simple examples show that one cannot use a random color generator as
is. The HSB color model offers control on color variety in an intuitive an flexible manner.
Indeed, as shown in Figure4.7, by specifying a range for each of the three parameters, it is
possible to define a 3D color space, called the HSB map.
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Figure 4.5: (a) Human instances have their body part colors randomly chosen. (b) For each body
part, a designer has constrained the range of possible colors using our dedicated tool, based on
the HSB color model.

Figure 4.6: HSB color space. Hue is represented by a circular region. A separate square region
may be used to represent saturation and brightness,i.e., the vertical axis of the square indicates
brightness, while the horizontal axis corresponds to saturation.
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Figure 4.7: The HSB space is constrained to a three dimensional color space with the following
parameters(a) hue from20 to 250, saturation from30 to 80 and brightness from40 to 100. (b)
Colors are then randomly chosen inside this space to add variety on the eye texture of a character.

4.3 Segmentation Maps

To further vary the instances of a same human template, the method presented in Section4.2
is perfectly adequate when viewing crowds at far distances.However, using a single alpha
layer to segment body parts has several drawbacks. No bilinear filtering can be used on
the texture, because incorrect interpolated values would be fetched in the alpha channel at
body part borders, as shown in Figure4.8(a). Moreover, for individuals close to the camera,
the method tends to produce too sharp transitions between body parts,e.g., between skin
and hair, as depicted in Figure4.8 (b), due to the impossibility of associating a texel to
several body parts at the same time. Also, character close-ups bring the need for a new
method capable of handling detailed color variety. Subtle make-up, or detailed patterns
on clothes greatly increase the variety of a single human template. Furthermore, changing
illumination parameters of materials,e.g., their specularity, provides more realistic results.
Previous methods would require costly fragment shader branching to achieve such effects.
We apply a versatile solution based onsegmentation mapsto overcome previous method
drawbacks.

4.3.1 Principles

For each texture of a human template, we create a series of segmentation maps. A segmen-
tation map is a four channel image (RGBA), delimiting four body partsi.e., one per channel,
and sharing the same parameterization as the texture of the appearance set (compare the
right-side of Image (b) with the left-side of Image (d) in Figure 4.8). This method allows
for each texel to partially belong to several body parts at the same time through its channel
intensities: the intensity of each body part is defined throughout the whole body of each char-
acter,i.e., 256 levels of intensity are possible for each part,0 meaning it is not present at this
location, and255 meaning it is fully present. As a result, it is possible to design transitions
between body parts much smoother than in previous approaches, as shown on the close-up
of Figure4.8(c) and (d). Moreover, using segmentation maps to efficiently distinguish body
parts provides two additional advantages over previous methods:
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Figure 4.8: Close-up on the transition between skin and hair: artifactsin previous methods(a)
with bilinear filtering and(b) nearest filtering.(c) Smooth transitions obtained with segmentation
maps and bilinear filtering.(d) Detailed transition between skin (red channel) and hair (green
channel) on the segmentation map.

• Possibility to apply different illumination models to eachbody part. With previous
methods, achieving such effects requires costly fragment shader branching.

• Possible mipmapping activation and use of linear filtering,which greatly reduce alias-
ing. Since previous methods use the alpha channel of the texture to segment their body
parts, they cannot benefit from this algorithm, which causesthe appearance of artefacts
at body part seams (see Figure4.8).

We have empirically determined to use eight body parts,i.e., two RGBA segmentation maps
for each appearance set. The results obtained with eight body parts are satisfying for our
specific needs, but the method can be used with more segmentation maps if more parts are
needed. For instance, it would be possible to use the method for adding color variety to a
city by creating segmentation maps for buildings, as introduced in Section8.1.

To provide one more level of variety, it is possible to define several pairs of segmenta-
tion maps per human template texture, allowing to create different patterns as illustrated in
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Figure4.9: make-up, cloth patterns, freckles,etc., and localized specular parameters.

Figure 4.9: (top to bottom)a human template original texture; several pairs of segmentation maps
sharing the same parameterization; examples of unique setsof eight colors for each character;
detailed effects obtained with segmentation maps and specularity parameters on faces (make-up,
freckles, glossy lips, etc.) and on the whole body (cloth patterns, shiny shoes, etc.).

Ideally, for a given pixel of the texture, we wish the sum of the intensities of each body
part to reach255, i.e., a texel partially belongs to several body parts, but the sumof these
adherences should reach100%. However, segmentation maps are designed manually, with a
software like Adobe Photoshop [Adobe, 2009], and it may happen that the sum of intensity
levels for some texels do not reach255. In this case, unwanted artefacts may later appear
within the smooth transitions between body parts. For instance, imagine the transition be-
tween the hair and the skin of a virtual human. A pixel of the segmentation map may reach
a contribution of100 for the skin part, while the hair part contribution is of120. Their sum
amounts to220. Although this is not an issue while designing the segmentedbody parts in
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Photoshop, it leads to problems when trying to normalize thecontributions in the application.
Indeed, with simple normalization, such pixels compensatethe uncomplete sum with a black
contribution, thus producing a final color much darker than expected. This is illustrated in
Figure4.10. The proposed solution is to compensate this lack with whiteinstead of black, to
get a real smooth transition without unwanted dark zones.

Figure 4.10: A blue to red gradient.(Left) The sum of the red and blue contributions does not
reach 255 in some pixels, causing the gradient to suffer froman unwanted black contribution,
(Right)A white contribution is added so that the sum of contributions is always 255.

4.3.2 Color Computation and Storage

At its creation, a character is assigned a unique set of eightRGB colorscbp for its eight body
parts (also illustrated in Figure4.9), randomly selected within constrained color spaces. For
each pixel composing a body, a final color is computed as a combination of these eight colors,
weighted by the channel intensities of the segmentation maps. For instance, a body pixelp
with texture coordinates(u, v) has its final colorcp computed as:

cp = ct

∑

s∈(S1,S2)

∑

a∈(R,G,B,A)

Is,a(u, v)cbp(s, a). (4.2)

Here,ct is the color of the original texture (top of Figure4.9) at coordinates(u, v). The
identifier s represents either the first or the second segmentation map from the pair used:
(S1, S2). The function defined asIs,a(u, v) is the intensity of the texel with coordinates(u, v)
for channela of segmentation maps, and finally,cbp(s, a) is the color of the corresponding
body part. Note that Equation4.2 computes a sum on two segmentation maps and four
channels per segmentation map, totaling to eight components for eight body parts.

To compute the final pixel color of each character, we have implemented a dedicated
fragment shader (see Section10.2of the Appendix). At its creation, each character is as-
signed a unique set of eight random colorscbp to be applied to the eight body parts. Sending
these colors to the shader as uniforms would be time consuming. Instead, eight unique body
part colors per character are computed at initialization, and stored in eight contiguousRGB
texels, of a1024×1024 image, called Color Look-Up Table (CLUT). Once filled, the CLUT
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is only sent once to the shader. In order to arrange as many sets of eight RGB colors as
possible, the alpha channel of the look-up image is also exploited. Thus, only six RGBA
texels per virtual human are used.

Therefore, it is possible to store a set of up to:1024×1024
8

= 131, 072 unique combinations
of colors. Previous methods were limited to4, 096 combinations, because they could not
address every row of the look-up image by only using the alphachannel of a human texture.
Finally, to further improve detailed variety, we also assign each body part specularity pa-
rameters. Note that these parameters are not saved within the CLUT, but directly sent to the
GPU. We show an illustration of a CLUT in Figure4.11.

Figure 4.11: A CLUT image used to store the color of each virtual human bodyparts and
accessories (detailed in Section4.3.2).

In terms of storage, each segmentation map pair correspondsto two1024×1024 textures
of about 1MB each, compressed in DDS format (DXTC5). The number of pairs defined for
each human template texture is up to the designer. As for the CLUT, it is not compressed to
avoid artifacts when reading pixel by pixel the colors to apply to the characters. It approx-
imately weights 4MB. The total memory storage cost for usingour approach is thus only
dependent on the number of human templates exploited and theappearance sets defined for
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Figure 4.12: Appearance sets applied to instances of a single human template. Note the different
specular effects on the body parts and the varying cloth patterns.

each of them. Segmentation maps are generic: they can be usedin any number and on any
textured object to vary its appearance. For instance, to segment instances of accessories (see
Figure1.2). They are also scalable to any LOD, and thus, keep the appearance of a char-
acter consistent. In Figure2.1, we illustrate this scalability on a single character rendered
in three LOD. The final results obtained by introducing appearance variety are illustrated in
Figure4.12, where several instances of a single human template are displayed, taking full
advantage of all available appearance sets and color variety.

We detail in Section10.2of theAppendixone approach to implement segmentation maps
in a fragment shader, using GLSL with Shader Model 3.0 hardware.

4.4 Conclusion

In this chapter, we have introduced a new simple technique toapply variety in visual appear-
ance to object instances. The first step to add visual appearance variety is to create several
different textures for each template. The next step is to vary the colors of clothes, skin and
hair of instances sharing the same texture. For that, we complement the usual template tex-
ture with two segmentation maps that allow delimiting eightbody parts that can be colorized
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differently for each instance at runtime. Finally, in orderto simulate different types and
colors of materials, the designer can specify illuminationparameters for each body part.

Thanks to this technique, crowds are enhanced with subtle make-up, freckles and beard
effects, or detailed cloth patterns, and smooth transitions between body parts are ensured (see
Figure3.2). At initialization, the instances are created, and randomcolors within defined
spaces are chosen for each of them. The sets of chosen colors are then contiguously stored
in a Color Look-Up Table on the GPU.

All the successive steps of this technique have been fully detailed, and a commented
fragment shader, implemented in GLSL, can be found in Appendix 10.2. We have illustrated
the use of appearance sets on several examples, demonstrating their versatility. Moreover,
appearance sets are easily scalable for all LOD commonly exploited.
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CHAPTER 5

Shape Variety

We have already described in Chapter4 how to obtain varied clothes and skin colors by using
several appearance sets. Unfortunately, even with these techniques, the feeling of watching
the same person is not completely overcome. The main reason is the lack of variety in
the human templates used. Indeed, it is very often the same human template (or a small
number of them) that is used for the whole crowd, resulting inlarge groups of similarly
shaped humans. We cannot increase too much the number of human templates, because it
requires a lot of work for a designer to create the human template, its textures, its skinning, its
different levels of detail,etc.Note that the number of human templates is also limited by the
storage capacity of the computer running the simulation. Tofurther add variety to characters
composing the crowd, it is possible to modify their shape. Inthis chapter, we present two
methods to achieve this. First of all, characters can be accessorized with items such as bags,
hats, wigs, glasses, moustaches,etc.Secondly, we propose a technique to modify the height
of a human skeleton, and the shape of its mesh.

Accessorizing crowds is kept simple and efficient by writingdown two assumptions:

(1) Accessories are not deformed. This makes the designing phase much simpler, and also
alleviates the underlying runtime computations.

(2) An accessory is associated to a human template by attaching its vertices to a single
specific joint of the character’s skeleton. Thus, every movement of this single joint
directly reflects on the attached accessory.

Although these assumptions limit the variety of accessories, they greatly simplify their cre-
ation and usage. Also, the available set of accessories is still large enough to offer a great
improvement on crowd variety, as illustrated in Figure3.2.

53
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To add variety to the morphology of human templates, we can modify their height and
shape. For each template, the designer can specify skeletonand skinning alterations. Skele-
ton modifications allow for global height variations and more localized effects such as broad
or narrow shoulders, while skinning deformations increasethe shape uniqueness by scaling
each vertex independently to obtain thin, fat, muscular andpregnant templates.

We first present a general introduction to accessories and separate them into two types in
Section5.1. Then, in Section5.2, we show how it is possible to adapt them for all rendering
levels of detail (LOD),i.e., deformable meshes, rigid meshes, and impostors. In Section 5.3,
we describe our implementation of accessories inYaQ. A discussion on their limitations and
possible extensions is presented in Section5.4. Finally, we introduce how to further modify
the shape and height of a human template in Section5.5

5.1 Accessories

In real life, people have different haircuts, they wear hatsor glasses, carry bags, or suitcases,
etc.These particularities may look like details, but it is with the sum of those details that we
are able to distinguish anyone. In this section, we first explain what exactly are accessories.
Then, we show from a technical point of view the different kinds of accessories we have
identified, and how to apply them to all rendering levels of detail.

An accessory is a simple mesh representing any element that can be added to the original
mesh of a virtual human. It can be a hat as well as a handbag, or glasses, a clown nose, a wig,
an umbrella, a cellphone,etc.Accessories have two main purposes: first, they allow to easily
add shape variety to virtual humans. Second, they make characters look more believable:
even without intelligent behavior, a virtual human walkingaround with a shopping bag or
a cellphone looks more realistic than one just walking around. The addition of accessories
allows a spectator to identify himself to a virtual human, because it performs actions that the
spectator himself does everyday. We basically distinguishtwo different kinds of accessories
that are incrementally complex to develop. The first group iscomposed of accessories that
do not influence the movements of a virtual human. For instance, whether someone wears
a hat or not will not influence the way he walks. The second group gathers the accessories
requiring a small variation in the animation clip played,e.g., a virtual human moving with
an umbrella or with a bag still walks the same way, but the arm in contact with the accessory
needs an adapted animation sequence.

5.1.1 Simple Accessories

The first group of accessories does not necessitate any particular modification of the ani-
mation clips played. They simply need to be correctly “placed” on a virtual human. Each
accessory can be represented as a simple mesh, independent from any virtual human. First,
let us lay the problem for a single character. The issue is to render the accessory at the correct
position and orientation, accordingly to the movements of the character. To achieve this, we
can “attach” the accessory to a specific joint of the virtual human. Let us take a real example
to illustrate our idea: imagine a walking person wearing a hat. Supposing that the hat has
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the correct size and does not slide, it basically has the samemovement as the head of the
person as he walks. Technically, this means that the series of matrices representing the head
movement are the same for the hat movement. However, the hat is not placed at the exact
position of the head. It usually is on top of the head and can beoriented in different ways,
as shown in Figure5.1. Thus, we also need the correct displacement between the head joint
position and the ideal hat position on top of it. In summary, to create a simple accessory, our
needs are the following:

• For each accessory:

– A mesh (vertices, normals, texture coordinates),

– A texture.

• For each human template / accessory couple:

– The joint to which the accessory must be attached,

– A matrix representing the displacement of the accessory, relatively to the joint.

Note that the matrix representing the displacement of the accessory is not only specific to
one accessory, but specific to each human template / accessory couple. This allows us to vary
the position, the size, and the orientation of the hat depending on which virtual human mesh
we are working with. This is depicted in Figure5.1, where the same hat is worn differently
by two human templates. It is also important to note that the joint to which the accessory
is attached is also dependent on the human template. This wasnot the case at first: a single
joint was specified for each accessory, independently from the human templates. However,
we have noticed that depending on the size of a virtual human,some accessories may have to
be attached to different joints. For instance, a backpack isnot attached to the same vertebra
if it is for a child or a grown up template. Finally, with this information, we are able to assign
each human template a different set of accessories, greatlyincreasing the feeling of variety.

5.1.2 Complex Accessories

The second group of accessories we have identified is the one that requires slight modifi-
cations of the animation sequences played,e.g., the hand close to the ear to make a phone
call, or a hindered arm sway due to carrying a heavy bag. Concerning the rendering of the
accessory, we still keep the idea of attaching it to a specificjoint of the virtual human. The
additional difficulty is the modification of the animation clips to make the action realistic.
We only focus on locomotion animation sequences. Our raw material is a database of motion
captured walk and run cycles that can be applied to virtual humans. There are two options
to modify an animation related to an accessory. Let us take two examples, illustrating these
cases:

• If we want a virtual human to carry a bag for instance, the animation modifications
are limited to the arm sway, and maybe a slight bend of the spine to counterweight
the bag. Such modifications can be applied procedurally, andat runtime, by blocking
some joint movements, and / or clamping their rotation.
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Figure 5.1: Two human templates wearing the same hat, in their default posture. The pink,
yellow and blue points represent the position and orientation of the root, the head joint(m1), and
the hat accessory(m2), respectively.

• If it is a cellphone accessory that we want to add, we need to keep the hand of the
character close to its ear and avoid any collision over the whole locomotion cycle. This
kind of modifications is too complex to be achieved at runtime. In such cases, we work
with an inverse kinematic tool to modify the animation cycles in a pre-process. From
each animation clip, an adjustment of the arm motion is performed in order to obtain a
new animation clip integrating the desired movement. Theseanimation modifications
can be generalized to other movements that are independent from any accessory, for
instance, hands in the pockets.

The process to render complex accessories is exactly the same as rendering simple acces-
sories, and detailed in Section5.3.2. The animation stage however, has some particularities
for complex accessories, and requires special care. We dedicate Chapter6 to these animation
modifications.

5.2 Levels of Detail for Accessories

There are several important steps in the pre-process of modeling an accessory, so that it can
later be correctly placed and oriented for all human templates. First of all, we identify the
joint to which the accessory should be attached. In most cases, the same joint is selected for
all human templates, but when they are too different in size,the best adapted joint can differ,
e.g., a backpack would be attached to a different vertebra on a child and on an adult template.
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The chosen joint is called theattach joint. In a second phase, the accessory is transformed,
so that it perfectly coincides with the mesh of each human template. These changes are
expressed relatively to the attach joint as a4 × 4 transformation matrixTaccessory, saved for
each human template and accessory combination.

At the initialization of the crowd simulation, all characters are assigned various acces-
sories that are then displayed at runtime. Note that these assignments are not randomly
achieved. First of all, each accessory is categorized with aspecific type (backpack, hat,
glasses,etc.) and a specific theme (casual, old-fashioned, funny,etc.). Secondly, the human
templates for which this accessory will be available are chosen by the designer. This classi-
fication allows to choose which accessories are to be used in an application, thus offering a
large variety of possibilities within the limits of extravagance set by the designer. The final
4× 4 transformation matrixT of the accessory in world space is computed at each time step
with the equation:

T =

[

R t
0 1

]

= TcharTjointTaccessory (5.1)

whereTchar is the character transformation matrix in world coordinates, andTjoint is the
attach joint deformation matrix, relative toTchar.

Accessories are scalable to all LOD commonly used in crowd simulations. For de-
formable meshes, Equation5.1 is directly computed at runtime. In the case of rigid meshes
and impostors, we explain below dedicated methods to easilyplace accessories. Beforehand,
it is important to mention that switching from an accessorized deformable mesh to a rigid
one is unnoticeable as they share the exact same appearance.To ensure transparent switch-
ing between accessorized rigid meshes and impostors, we usethe pixel to texel ratio metrics
described in [Dobbyn et al., 2005].

5.2.1 Rigid Meshes

Rigid meshes are precomputed postures, or keyframes, of deformable meshes performing
a given animation sequence. Their main advantage is that no dynamic deformation of the
skeleton is necessary at runtime. However, it also implies that matrixTjoint in Equation5.1
is not available to place an accessory.

A naive approach would be to store the accessory animation asdone for a rigid mesh:
store the positions of all the accessory vertices at each keyframe. However, we here take
advantage from our assumption (1): the accessory’s mesh is never deformed: every time
a rigid mesh keyframe is stored, the matricesTjoint to which accessories are attached are
also saved. We have identified six potentially “attachable”joints: the skull, for glasses and
hats, a vertebra for backpacks, elbows, for watches and bracelets, and finally wrists, to place
objects in the character’s hands, given there is no finger animation. Thus, for one rigid
mesh keyframe, only six matrices representingTjoint are saved. The storage cost for a single
keyframe is thus independent from the number of accessories, whereas the naive approach
would require to save one keyframe for each of them.
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5.2.2 Impostors

Accessories for impostors are generated in a pre-process: image tiles are sampled all around
the object in orthographic mode and saved in512 × 512 normal anduv maps. In Fig-
ure5.2(b) and (c), we illustrate auv map and a normal map for a hat. Sampling the circum-
scribed sphere of an object is often achieved with sphericalcoordinates, although it leads to
an excessive amount of samples near the poles, as compared tothe equator. Also, finding
the correct tile at runtime requires costly trigonometric computations. As depicted in Fig-
ure5.2(a), we apply a Sukharev grid on each spherical face of a cube [Yershova and LaValle,
2004]: this method uses a cube map to discretize a sphere and distribute samples on it. With
this method, samples are distributed on the sphere in a much more uniform way than with
spherical coordinates. Moreover, with this method, findingthe correct tile online sums up to
a fast cube map look-up [Greene, 1986]. Note that the memory storage cost for an accessory
impostor is constant and independent from the number of keyframes generated for a human
impostor. More precisely, we store oneuv map and one normal map per accessory in DDS
format (DXTC5), for a total of only 680KB (including mipmaps). We note that some chan-
nels have more precision than others. Thus, to make sure the compressed atlas have as little
artifacts as possible, we use the most accurate channels to store the data we need.

Figure 5.2: (a) Sampled tiles for a hat impostor creation.(b) The resultinguv map and(c)
normal map.

To correctly place an accessory impostor, we use a dedicatedruntime pipeline, illustrated
in Figure5.3(a), and composed of five steps:

Step 1. Compute the accessory transformation matrixT with Equation5.1, that provides
the orientation and position of the accessory, should it be rendered as a 3D mesh. To obtain
T , we pre-compute and save the six matricesTjoint for each human impostor keyframe,
similarly to the rigid mesh approach, since no skeletal deformation is performed online for
impostors either.

Step 2. Retrieve a normal and auv map tile, representing the accessory from the correct
point of view. The adequate view is deduced by expressing thecurrent camera position



5.2. LEVELS OF DETAIL FOR ACCESSORIES 59

relatively toT , i.e., in accessory space. The resulting direction vector determines the tile to
use in the cube map, as illustrated in Figure5.3(a) [Greene, 1986].

Step 3: Compute the exact position of the accessory impostor,i.e., the quad. This position
does not correspond to the one where the 3D mesh would be rendered, because the center of
the quad and the center of the 3D mesh do not necessarily correspond. To have an impostor
correctly positioned at runtime, we make sure, in a pre-process, and when generating each
tile, to save the offset(X, Y ) between the 2D quad center and the 3D accessory center,
projected onto the quad. At runtime, the translation partt of T is transformed into camera
space, and offset by(X, Y ) so that the impostor is properly placed. Note thatt is only offset
on theX andY axes in camera space. At this stage, the depthZ where the quad has to be
rendered is still the same as the one originally computed inT . The algorithm to compute
each fragment depth is detailed in Step 5.

Step 4: Rotate the quad around the cameraZ axis so that it is correctly oriented. We
illustrate the necessity of this stage in Figure5.3 (c), where a side view of a hat positioned
on a human impostor is shown. Since the character wears the hat inclined backwards, the
quad has to be rotated to correctly imitate the 3D hat orientation. The computation of this
rotation is achieved at runtime by first transforming the rotation partR of T into camera
space, and then extracting itsZ axis component.

Figure 5.3: (a) Pipeline of accessory impostor positioning.(b) Impostors with no occlusion
treatment.(c) Impostors with our fragment depth computation.
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Step 5: Compute the depth of each impostor pixel (or fragment) to avoid visual artifacts,
as in Figure5.3 (b). The main problem when addressing such an issue with a perspective
projection is that depth values in theZ buffer do not vary linearly. Our dedicated algorithm
solves visibility problems inherent in impostors. Moreover, it is robust and allows to use
any projection, even perspective. Here, we first explain theimportant values to compute in
a preprocess, and how they are later exploited in real time todetermine the depth of each
fragment.

When each tile is generated offline, the near and far clippingplanes are set as close to the
object as possible. Note that the near plane thus has the samedepth as the accessory vertex
closest to the camera. Then, on the GPU, the 3D accessory vertex depth values in camera
space are passed from the vertex to the fragment shader. For each fragment, these values
are interpolated. We then compute, for each fragment, a finaldepthzacc as the normalized
distance between the fragment and the near plane:

zacc =
zfrag − zn

zf − zn

(5.2)

wherezn andzf are the near and far clipping plane depths, andzfrag is the fragment
depth value interpolated from the vertices. For each fragment, zacc is saved in one of the
unused channels of theuv map (see Figure5.2(b)).

In addition, for each tile, two important parameters need besaved at this stage, still in
camera space: the distancezf − zn between the near and far planes, which later allows to
denormalizezacc, and the distancezc−n between the depth of the 3D accessory center and
the near plane.

At Step 5 of the runtime pipeline, the four quad vertices are sent untouched to the vertex
shader, where they are transformed into camera space. At this moment, these vertices all have
the same depth as the 3D accessory center, defined inT . They are then sent to the fragment
shader, where we compute the final depth of each fragment in two operations. First, the
valuezacc is retrieved from theuv map to be denormalized. Then, the depthzcamera of the
fragment is computed in camera space:

zcamera = zfrag + zc−n − (zacc(zf − zn)) (5.3)

wherezfrag is the fragment depth value in camera space, interpolated from the depth
of the quad vertices in the GPU. The first part of Equation5.3 shows that each fragment
has a depth ofzfrag + zc−n at thenearest. If the accessory was to be rendered with its 3D
mesh, this value would correspond to the depth of its vertex closest to the camera. From this
distance, the second part of Equation5.3offsets each fragment by the denormalized value of
zacc. Based on its initial computation (see Equation5.2), this offset is at the maximum equal
to the distance betweenzn andzf , i.e., the 3D accessory vertex that is the farthest from the
camera.

Finally, we use the perspective transform to expresszcamera in the canonical view volume,
i.e., between−1.0 and1.0:
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depthfrag =
sf + sn

sf−n

+
2.0sfsn

sf−nzcamera

(5.4)

wheresn andsf are the depths of the scene near and far planes in camera space, and
sf−n is the distance between them. Note that in the OpenGL ShadingLanguage, the depth
assigned to each fragment ranges between0.0 and1.0. The result to Equation5.4 there-
fore has to be normalized. This method produces optimal results when the computation of
depth values is performed for both human impostors and theiraccessories, as shown in Fig-
ure5.3(c). Also, note that the presented accessory impostor method is also compatible with
more sophisticated virtual human impostor methods such as the one of [Kavan et al., 2008].

5.3 Accessories Implementation

In this Section, we focus on the architectural aspect of accessories. We present with small
pseudocode snippets, how to store, load, and render them.

5.3.1 Loading and Initialization

First of all, each accessory has a type,e.g., “hat” or “back pack”. We empirically differentiate
seven different types. In order to avoid the attribution of,for instance, a cowboy hat and a
cap on the same head, we never allow a character to wear more than one accessory of each
type. To distribute accessories to the whole crowd, we need to extend the following data
structures (introduced in Section3.2):

• Human template: each human template is provided with a list of ids corresponding
to the accessories it can wear. This list is sorted by type. This way, we know which
template can wear which accessory. This process is necessary, since all human tem-
plates cannot wear all accessories. For instance, a school bag would suit the template
of a child, but for an adult template, it would look much less believable.

• Human instance:each human instance possesses one accessory slot per existing type.
This allows to later add up to seven accessories (one of each type) to the same virtual
human.

We also create two data structures to make the accessory distribution process efficient:

• Accessory entity:each accessory possesses a list of human instance ids, representing
the virtual humans wearing it. They are sorted by human template.

• Accessory repository: an empty repository is created to hold all accessories loaded
from the database. They are sorted by type.
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We show a schematic view of the accessory repository in Figure5.5(left): all accessories are
listed and sorted by type. Each accessory possesses a list ofhuman instance ids using it. At
initialization, the above data structures are filled, basedon the content of our database (intro-
duced in Section3.3.2). We detail this process in the three following pseudocode snippets:

01 // Create accessory entity and fill accessory repository.
02 For each accessory a in database:
03 load a’s data contained in the database,
04 create a’s vertex buffer (for later rendering),
05 insert a into the accessory repository (sorted by type).

01 // Fill each human template’s accessory list.
02 For each human template h:
03 For each accessory a suitable to h :
04 insert a’s id into h’s list l (sorted by type).

01 // Fill each human instance’s accessory slots and
02 // fill each accessory’s list of instances wearing it.
03 For each human instance i:
04 get human template h of i,
05 get accessory id list l of h,
06 For each accessory type t in l:
07 choose randomly an accessory a of type t,
08 assign a to the correct accessory slot of i,
09 push i’s id in a’s human instance id list (sorted by human template).

The process of filling these data structures is done only onceat initialization, because we
assume that once specific accessories have been assigned to avirtual human, they never
change. However, it would be easy to change the accessories worn at runtime, through a
call to the last loop. Note that a single vertex buffer is created for each loaded accessory,
independently from the number virtual humans wearing it.

5.3.2 Rendering

Since the lists introduced in the previous section are all sorted according to our needs, the
rendering of accessories is much facilitated. We show in thefollowing pseudocode our
pipeline:

01 For each accessory type t of the repository:
02 For each accessory a of type t:
03 bind vertex buffer of a,
04 send a’s appearance parameters to the GPU,
05 get a’s list l of human instance ids (sorted by human template).
06 For each human template h in l:
07 get the joint j of h to which a is attached,
08 get the original position matrix m1 of j,
09 get the displacement matrix m2 of couple [a,h],
10 For each human instance i of h:
11 get matrix m3 of i’s current position,
12 get matrix m4 of j’s current deformation for i,
13 multiply current modelview matrix by mi (i=1..4),
14 call to vertex buffer rendering.

This pseudocode is especially optimized in order to minimize state switches. First of all,
at line 03, each accessory has its vertex buffer binded. We can process this way, indepen-
dently from the human instances, because an accessory neverchanges its shape or texture.
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Then, we process through each accessory’s human instance idlist (line 05). This list
is sorted by human template (line 06), allowing us to retrieve information common to all
its instances,i.e., the joint j to which is attached the accessory (line 07), along with its
original position matrixm1 in the skeleton (line 08), and the original displacement matrix m2
betweenm1 and the desired position of the accessory (line 09). An example illustratingm1
andm2 with a hat attached to the head joint of two human templates isshown in Figure5.1.

Once the human template data is retrieved, we iterate over each instance wearing the
accessory (line 10). A human instance also has specific data that is required: its position
for the current frame, in matrixm3 (line 11), and the displacement of its joint, relatively to
its original posture, depending on the animation played, inmatrix m4 (line 12). Figure5.4
illustrates the transformation represented by these two matrices.

Finally, by multiplying the matrices extracted from the human template and instance, we
are able to define the exact position and orientation of the accessory (line 13). The rendering
of the vertex buffer is then called and the accessory is displayed correctly (line 14).

Figure 5.4: (Left) a human template in default posture.(Right)An instance of the human tem-
plate playing an animation clip. The displacement of the body, relatively to the world origin
(m3) is depicted in red, the displacement of the head joint due to the animation clip(m4) in
yellow.
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5.3.3 Empty Accessories

We have identified seven different accessory types. And, through the accessory attribution
pipeline, we assign seven accessories per virtual human. This number is quite large and the
results obtained can be unsatisfying: indeed, if all characters wear a hat, glasses, jewelry,
a back pack,etc., they look more like christmas trees than believable people. We need
the possibility to have people without accessories too. To allow for this, we could simply
randomly choose for each human instance’s accessory slot, whether it is used or not. This
solution works, but a more efficient one can be considered. Indeed, at the rendering phase
of a large crowd, testing each slot of each body to know whether it is used or not implies
useless code branching,i.e., precious computation time.

We therefore propose a faster solution to this problem by creating empty accessories.
An empty accessory is a fake one, possessing no geometry nor vertex buffer. It only pos-
sesses a unique id, similarly to all other accessories. At initialization, before loading the real
accessories from the database, the following pseudocode isexecuted:

01 For each accessory type t:
02 create one empty accessory e of type t,
03 put e in the accessory repository (sorted by type),
04 For each human template h:
05 put e’s id in h’s accessory id list.

The second loop over the human templates at line 04 is necessary in order to make all
empty accessories compatible with all human templates. Once this pre-process is done, the
loading and attribution of accessories is achieved as detailed in Section5.3.1. This prelim-
inary introduction of empty accessories causes later theirpossible insertion in some of the
accessory slots of the bodies. Note that if, for instance, a body entity gets an empty accessory
for hat, reciprocally, the id of this body will be added to theempty accessory’s body id list.
This is illustrated with an example in Figure5.5 (right), where human instance1 (referred
to asBody1) wears an empty accessory in the glasses category. One may wonder how the
rendering of an empty accessory is achieved. If keeping the same pipeline as detailed in
Section5.3.2, we meet troubles when attempting to render an empty accessory. Moreover,
some useless matrix computations would be done. Our solution is simple. Since the empty
accessories are the first ones to be inserted into the accessory repository (sorted by type), we
only need to skip the first element of each type to avoid their computation and rendering.
The pseudocode given in Section5.3.2only needs a supplementary line, which is:
01b skip first element of t.

With this solution, we take full advantage of accessories, obtaining varied people, not only
through the vast choice of accessories, but also through thepossibility of not wearing them.
And there is no need for expensive tests within the renderingloop. In Figure5.6, we show the
results obtained with a single human template instantiatedseveral times, using accessories
in addition to the appearance variety detailed in Chapter4.

5.3.4 Color Variety Storage

In Chapter4, we detailed how to apply color variety to the different bodyparts of a texture.
The same method can be applied to the accessories. A human texture is segmented in eight
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Figure 5.5: (Left) a representation of the accessory repository, sorted by type. Each accessory
possesses its own list of body (or human instance) ids. Reciprocally, all bodies possess slots
filled with their assigned accessories.(Right) an illustrated example of the accessory slots for
body with id1.

Figure 5.6: Several instances of a single human template, varied through the appearance sets and
several segmentation maps, and accessories.
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body parts, each having its specific color range. At initialization, for each instantiated virtual
human and each body part, a color is randomly chosen in a rangeto modulate the original
color of the texture.

Since accessories are smaller and less complex than virtualhumans, we only use four
different parts,i.e., one segmentation map per appearance set. Then, similarly to the char-
acters, each instance of each accessory is randomly assigned four colors within theHSB
ranges defined for each part. These four random colors have also to be stored. We reemploy
the Color Look-Up Table (CLUT) of human instances to save thecolors of accessories. In
order not to confuse the color variety of the body parts and those of the accessories, we store
the latter contiguously from the bottom-right of the CLUT (see Figure4.11), whereas the
human instance colors are stored from the top-left. Each character thus needs eight texels for
its own color variety and7 × 4 other texels for all its potential accessories. This sums upto
36 texels per character. A1024 × 1024 CLUT is therefore able to roughly store more than
29, 000 unique color variety sets.

5.4 Accessory Limitations

The accessories presented above are a nice solution to further add variety to a crowd of
human instances. They are simple to use, scalable, and provide visually appealing results.
Nevertheless, to keep the accessorizing process as simple as possible, we have made assump-
tions that limit our technique.

Firstly, the mesh is presumed to be attached to a single joint, limiting the possibilities. It
would be possible to skin an accessory with more joints, but adapting it to any template with-
out changing the mesh vertices would prove to be difficult. Secondly, to attach accessories
to moving characters, we assume to work with skeletons and skeletal animations, which is
not necessarily the case. Nevertheless, this limitation can easily be overcome by attaching
an accessory, for instance, to one of the vertices composingthe character instead of a joint.

Thirdly, the technique does not provide solutions for simulating movements independent
from the attach joint,e.g., a hat too big sliding on a child’s head. However, this could be
implemented as a supplementary layer on top of the current positioning algorithm. Finally,
some accessories cannot be used as presented here, because their presumed weight should
alter the animation of the characters. For instance, a handbag can easily be placed in a
virtual human’s hand, but if the performed animation sequence is not altered, the bag seems
weightless, and the resulting effect is not realistic. We have come up with two solutions to
solve this issue, which are presented in the next chapter. Moreover, the range of accessories
unconcerned by this limitation is sufficiently large to already obtain unique instances in
crowds.
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5.5 Shape and Height

A second possibility to add shape variety to instances of a same human template is to modify
their morphology, like their height and shape. A dedicated tool has been created in order
to help a designer for such a task: for each template, the designer can specify skeleton and
skinning alterations. Skeleton modifications allow for global height variations and more
localized effects like broad / narrow shoulders, while skinning deformations increase the
shape uniqueness by scaling each vertex independently to obtain thin, fat, muscular and
pregnant templates. Combined shape and height effects are illustrated in Figure5.7.

Figure 5.7: The space of interactive height and shape variety at creation. The human template
grows up in the right axis, while it gets more fat on the left axis.

5.5.1 Shape

Modifying the shape of a human mesh is achieved in three steps.

Step 1. Using a commercial 3D package like 3DSMax [Autodesk, 2009a], it is possible
for a designer to paint aFatMap for a given template, as seen in Figure5.8. The FatMap is
an extra gray-scaleUV texture that is used to emphasize body areas that store fat. Darker
areas represent regions where the skin will be most deformed, e.g., on the belly, and lighter
areas are much less deformed, like the head. When the creation of the FatMap is complete,
the grayscale values at each texel are used to automaticallyinfer one value for each vertex of
the template’s mesh. Each of these values, called afatWeight, is attached to the vertex as an
additional attribute.
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Figure 5.8: Two FatMaps designed in 3DSMax [Autodesk, 2009a]. Dark areas represent regions
more influenced by fat or muscle modification, while lighter parts are less modified.

Step 2. The next step is to compute in which direction the vertices are moved when scaled.
We have found that using the normal of a vertex as its scaling direction provided bad results,
especially at the shoulders and armpits. Instead, we compute the scaling direction of each
vertex as the weighted normal of the bones influencing it: foreach jointj influencing a
vertexv, we first compute the vector~j, i.e., the vector connectingj to its childj2 (asj2 − j).
Second, we compute the vector connectingj2 to v as ~j2v = v − j2. Finally, we can obtain
the normal~nj to~j that passes throughv as:

~nj = ~j2v −

(

ĵ ·
~j · ~j2v

‖~j‖

)

. (5.5)

Whereĵ is the unit vector in direction~j. The final vectornv, normal tov, is computed as the
sum of normals computed with Equation5.5 for all joints influencingv, weighted by their
level of influence (which is provided from the skinning phaseof the vertex):

~nv =
4
∑

j=0

n̂j · weightj (5.6)

where ~nj is the unit vector in directionnj , computed with Equation5.5, andweightj is the
level of influence of jointj on vertexv. Note that the above equations cannot be computed
if j is a childless joint. In such a case, we use an approximation to evaluatenj asv − jw,
wherejw is the position of jointj in the world coordinates.
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Step 3. Once the direction of the body scaling is computed for each vertex, the actual
scaling can take place. The extent to which we scale the body is defined by afatScale,
randomly chosen within a pre-defined range. Each vertexv is thus deformed as:

v′ = v + ( ~nv · (1 − fatWeightv) · fatScale) (5.7)

wherefatWeightv is the weight associated tov at the creation of the FatMap (see Step 1).

A design tool has been created in order to help a designer in the vertex editing phase. It
allows the designer to test the FatMap created in another software, and to decide of minimal
and maximal values to which vertices are authorized to be scaled, i.e., the valuesfatScale
can take.

5.5.2 Height

Our second contribution is to modify the height of a human template, by scaling its skeleton.
To help the designer in this task, we provide additional functionalities to the design tool
presented above: for a given human template skeleton, the global space of height scaling can
be defined. Fine-grained local tuning for each joint can alsobe specified,i.e., minimal and
maximal scale parameters on thex, y, andz world axes. These data allow several different
skeletons to be generated from a single template, which we call the meta-skeleton. For each
new skeleton, a global scale factor is randomly chosen within the given range. Then, the
associated new scale for each of its bones is deduced. Short /tall skeletons mixed with broad
/ narrow shoulders are thus created.

The skin of the various skeletons also needs adaptation. Each vertexv of the original
template is displaced by each jointj that influences it:

v′ = v + (worldMatrixSkeletonj

·(inverseWorldMatrixMetaSkeletonj · v · scalej))

whereinverseWorldMatrixMetaSkeletonj is the matrix that allows to express vertexv
in the original joint reference, andworldMatrixSkeletonj is the transformation matrix of
joint j in the newly generated skeleton.

Both methods, skeleton modification and displaced skin vertices, are compatible when
applied consecutively. Some results of the technique applied to a template are illustrated in
Figure5.9. The main limitation to this approach is that it is not compliant with other levels
of detail (LOD) at low cost. In both cases, our current solution is to generate a series of
skeletons and meshes in a pre-process, and compute rigid meshes / impostors for each of
them. Unfortunately, this solution is quite limiting in terms of memory. Finding solutions to
efficiently scale this work is our main concern for future work.
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Figure 5.9: Results of shape and height modifications shown on multiple instances of a single
template.



CHAPTER 6

Animation Variety

As explained in previous chapters, it is possible to vary theappearance and shape of in-
dividuals, even when issued from the same human template. However, we introduced in
Chapter3 the necessity to also provide a large variety of animation clips to the simulation.
The most important factor for virtual humans to look different is to modify their visual ap-
pearance,i.e., their body part colors, and their shape. A second importantfactor, although
less paramount is their animation. If they all perform the same animation, the results are not
realistic enough [McDonnell et al., 2008]. In this chapter we describe three techniques to
vary the animation of navigating characters,i.e., working with locomotion animations. First,
in Section6.1, we introduce variety in the animation by generating a largeamount ofloco-
motioncycles (walking and running), andidle cycles (like standing, talking, sitting,etc.). In
Section6.2, we detail themotion kit, a data structure, previously introduced in Chapter3, that
efficiently handles animations at all levels of detail (LOD). Then, in Section6.3, we present
a second technique of animation variety,i.e., how pre-computed animation cycles can be
augmented with upper-body variations, like having a hand onthe hip, or in a pocket. Finally,
in Section6.4, we introduce the third technique to achieve variety: procedural modifications
applied at runtime on locomotion animations to allow crowdsto wear complex accessories
(introduced in Section5.1.2).

6.1 Animation Types

In order to obtain variety in animation, there is a great needfor a large set of raw animation
cycles that can then be further varied. Varied animations have to be created for each human
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template, and stored on a centralized animation clip database to be used directly by the
human instances.

For a typical crowd scenario, we create two kinds of clips:idle and locomotionclips,
that we morphologically adapt for each template. Idle clipsare usually hand-designed. We
take care to make these animations cyclic, and categorize them in the database, according to
their type: sitting or standing, talking or listening,etc. For locomotion clips, walk and run
cycles are generated from a locomotion engine based on motion capture data. We compute
such locomotion clips for a set of speeds. Thus, during real-time animation, it is possible
to directly obtain an adequate animation for a virtual human, given its current locomotion
velocity, and its morphological parameters.

Figure3.1 presents a convenient schema to visualize and situate the various animation
components (in the Variety box), within the overallYaQarchitecture.

6.1.1 Idle Animation Clips

Since idle motion clips are created by a designer, they are per se very different, and no addi-
tional variety technique is required to make them unique. This is not the case for locomotion
cycles, which are further discussed in the remaining of thischapter.

Idle clips are used in specific cases. At the initialization of YaQ, it is possible for the user
to indicate a series of navigation graph vertices, where he would like to see idle pedestrians.
The reader is invited to refer to Section10.1of the Appendix for an introduction on navi-
gation graphs. The user thus provides a list of graph vertices, the number of pedestrians he
wishes to put there, and the type of idle animations he wants the pedestrians to play. Then,
at runtime, and thanks to the meta-information associated to each idle clip in the database,
pedestrians are randomly picked and inserted in the chosen graph vertex, and they start play-
ing the type of idle animations that has been assigned to them. Care is taken to make idle
clips cyclic, and that their starting/ending frame is the same for all clips of the same type
(having the same meta-information). Thus, when an idle pedestrian has finished playing an
animation, it can randomly pick another animation of the same type without any transition
problem. We do not further detail this type of animations here, as they are sufficiently varied
to not require any further treatment.

6.1.2 Locomotion Animation Clips

We recall here the locomotion engine of [Glardon et al., 2004a,b] that we have used to gen-
erate our original set of walk and run cycles.

Glardonet al. have introduced a PCA-based locomotion engine capable of animating on
the fly human-like characters of any size and proportion by generating complete locomotion
cycles. They have captured walk and run motions from severalpeople, from which they have
created a normalized model. There are mainly three high-level parameters which allow to
modulate these motions:

• Personification weights: five people, different in height and gait have been captured
while walking and running. This variable allows the user to choose how he wishes to
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parametrize these different styles.

• Speed: the five subjects have been captured at different speeds. This parameter allows
to choose at which velocity the walk/run cycle should be generated.

• Locomotion weights: this parameter defines whether the cycle is a walk or a run ani-
mation.

Thus, the engine is able to generate a whole range of varied locomotion cycles for a given
character. To efficiently animate the locomotion of each individual, we generate in a pre-
process a certain number of locomotion cycles for each humantemplate. We have used this
engine to generate over100 different locomotion cycles per human template: for each one
of them, we sample walk cycles at speeds varying from0.5 m/s up to2 m/s and, similarly
for the run cycles, between1.5 m/s and3 m/s. Each human template is also assigned
a particular personification weight so that it has its own gait. With such a high number
of animations, we are already able to perceive a sense of variety in the way the crowd is
moving. Virtual humans walking together with different locomotion styles and speeds add
to the realism of the simulation.

6.2 Motion Kits

We have developed three levels of representations for the virtual humans: deformable
meshes, rigid meshes, and impostors. When playing an animation sequence, a virtual hu-
man is treated differently depending on its current distance and eccentricity to the camera,
i.e., the current LOD it uses. For clarity purpose, we have given each animation clip a dif-
ferent name depending on which level of detail it applies to:an animation clip intended for
a deformable mesh is askeletal animation, one for a rigid mesh is arigid animation, and
finally, an animation clip for an impostor is animpostor animation.

We have already shown that the main advantage of using less detailed representations is
the speed of rendering. However, for the memory, the cost of storing an animation sequence
for a deformable meshvs. a rigid meshvs. an impostor is increasingly expensive (see
Figure7.4). From this, it is obvious that the number of animation sequences stored must
be limited for the less detailed representations. It is alsotrue that we want to keep as many
skeletal animation clips as possible for the deformable meshes, firstly, because their storage
requirement is cheap, and secondly, for variety purposes. Indeed, deformable meshes are at
the forefront, close to the camera, and several virtual humans playing the same animation
clip are immediately noticed.

The issue arising is then switching from a level of representation to another. For instance,
what should happen if a deformable mesh performing a walk cycle reaches the limit at which
it switches to the rigid mesh representation? If a rigid animation with the same walk cycle
(same speed) has been pre-computed, switching is done smoothly. However, if the only rigid
animation available is a fast run cycle, the virtual human will “pop” from a representation to
the other, which is a disturbing artifact that may attract the eye of the observer. We therefore
need each skeletal animation to be linked to a ressembling rigid animation, and similarly to
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an impostor animation. For this reason, we have developed themotion kitdata structure. We
first describe the motion kit data structure in Section6.2.1and then its implementation in
Section6.2.2.

6.2.1 Data Structure

A motion kit holds several items:

• A name, identifying what sort of animation it represents,e.g., walk_1.5,

• Its type, determined by four identifiers:action, subaction, left arm action, andright
arm action,

• A link to a skeletal animation,

• A link to a rigid animation,

• A link to an impostor animation.

The only knowledge stored in each virtual human instance is the current motion kit it uses.
Then, at the Animator stage of the runtime pipeline (see the Real-time Component in Fig-
ure3.1), depending on the distance of the virtual human to the camera, the correct animation
clip is used. Note that there is always a 1:1 relation betweena motion kit and a skeletal
animation,i.e., a motion kit is useless if there is no corresponding skeletal animation. As
for the rigid and impostor animations, their number is much smaller than for skeletal anima-
tions, and thus, several motion kits may point to the same rigid or impostor animation. For
instance, imagine a virtual human using a motion kit representing a walk cycle at1.7 m/s.
The motion kit has the exact skeletal animation needed for a deformable mesh (same speed).
If the virtual human is a rigid mesh, the motion kit may point to a rigid animation at1.5 m/s,
which is the closest one available. And finally, the motion kit also points to the impostor an-
imation with the closest speed. The presented data structure is very useful to easily switch
from a representation to another.

In Figure 6.1, we show a schema representing a motion kit and its links to different
animation clips. All the motion kits and the animations are stored in a database, along with
the links joining them (see Section3.3.2). One may wonder what the four identifiers are for.
They are used as categories to sort the motion kits. With sucha classification, it is easy to
randomly choose a motion kit for a virtual human, given certain constraints.

Firstly, theaction typedescribes the general kind of movements represented by the mo-
tion kit. It is defined as either:

• idle/standfor all animations where the virtual human is standing on itsfeet,

• idle/sit for all animations where the virtual human is sitting,

• locomotion/walkfor all walk cycles, or

• locomotion/runfor all run cycles.
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Figure 6.1: Example of motion kit structure. On the left, a virtual humaninstantiated from a
human template points to the motion kit it currently uses. Inthe center, a motion kit with its links
identifying the corresponding animations to use for all human templates and LOD.

The second identifier is thesubaction type, which more restrains the kind of activity of
the motion kit. Its list is non-exhaustive, but it contains descriptors such as:talk, dance,
listen, etc.We have also added a special subaction callednone, which is used when a motion
kit does not fit in any of the other subaction types. Let us notethat some action / subaction
couples are likely to contain no motion kit at all. For instance, a motion kit categorized as a
sit action and adancesubaction is not likely to exist.

The third and fourth identifiers:left andright arm actionsare used to add some specific
animation to the arms of the virtual humans. For instance, a virtual human can walk with the
left hand in its pocket and the right hand holding a cellphone. We further detail how such
animation clips are generated in Section6.3. For now, it is sufficient to know that these two
identifiers are used to further categorize a motion kit. There are three options to set these
identifiers: none, which means that no special arm activity is achieved;pocket, indicating
that the hand is in its pocket; andcellphone, for having the hand close to the ear, as if making
a phone call. This list can be extended to other possible arm actions. For instance, holding
an umbrella, pull a caster suitcase, or scratch one’s head.

When we create a varied crowd withYaQ, it is simple for each virtual human to randomly
ask for one of all the available motion kits. If the need is more specific,e.g., a virtual human
sitting on a bench, it is easy to choose only the adequate motion kits, thanks to the identifiers.
To illustrate this, we show an example in Figure6.2, where a virtual human is playing skeletal
animation, linked to a motion kit with the following identifiers: [walk] [none] [cellphone]
[pocket].

6.2.2 Implementation

In YaQ, at initialization, the motion kits of the chosen human templates are uploaded from
the database, and stored in a four-dimensional table:

Table[ action id ][ subaction id ][ left arm action id ][ right arm action id ].
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Figure 6.2: A virtual human using a motion kit with identifiers:[walk] [none] [cellphone]
[pocket].

For each combination of the four identifiers, a list of motionkits corresponding to the given
criteria is stored. As previously mentioned, not all combinations are possible, and thus, some
lists are empty.

In our architecture, an animation (whatever its LOD) is dependent on the human template
playing it : for a deformable mesh, a skeletal animation sequence specifies how its skeleton
is moved, which causes the vertices of the mesh to get deformed on the GPU. Since each
human template has its own skeleton, it is impossible to share such an animation with other
human templates. Indeed, it is easy to imagine the difference there is between a child and
an adult skeleton. For a rigid animation, the already deformed vertices and normals are
sent to the GPU. Thus, such an animation is specific to a mesh, and can only be performed
by a virtual human having this particular set of vertices,i.e., issued from the same human
template. Finally, an impostor animation clip is stored as asequence of pictures of the
virtual human. It is possible to modify the texture and colorused for the instances of the
same human template, but it seems obvious that such picturescannot be shared by different
human templates. This specificity is reflected in our implementation, where three lists of
skeletal, rigid, and impostor animations are stored for each human template.

It follows that each motion kit should also be human template-dependent, since it has a
physical link to the corresponding animation triplet. However, this way of managing the data
is far from optimal, because usually an animation (whateverits LOD) is always available
for all the existing human templates. It means that, for instance, if a template possesses
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an animation imitating a monkey, all other human templates are likely to have it too in
their animation repertoire. Thus, making the information contained in a motion kit human
template-dependent would be redundant. We introduce two simple rules that allow us to keep
a motion kit independent from a human template:

(1) For any motion kit, all human templates have the corresponding animations.

(2) For all animations of all human templates, there is a corresponding motion kit.

Thanks to these assertions, we can keep a motion kit independent from the human tem-
plates. We now explain how to still keep the knowledge of which animation triplet is linked
with which motion kit. First, note that each human template contains amongst other things:

• A list of skeletal animations,

• A list of rigid animations,

• A list of impostor animations.

Following the two rules mentioned above, all human templates contain the same number
of skeletal animations, the same number of rigid animations, and the same number of impos-
tor animations. If we manage to sort these animation lists similarly for all human templates,
we can link the motion kits with them by using their index in the lists. We show a simple
example in Figure6.1, where a structure representing a human template is depicted. On the
left-side of the image, a motion kit is represented, with allits parameters. Particularly, it
possesses three links that indicate where the corresponding animations can be found for all
human templates. These links are represented with arrows inthe figure, but in reality, they
are simply integers that can be used to index each of the threeanimation lists for all human
templates.

With this technique, we are able to treat all motion kits independently from the human
templates using them. The only constraint is to respect rules (1) and(2).

6.3 Upper Body Movements

Further variations in locomotion clips are introduced in order to increase individuality in
motion. Indeed, in reality, individuals composing a crowd are rarely walking the same way,
arms resting alongside the body (the exception would be military march activities). Most
of the time, hands are used to hold objects (cellphone), are hidden in clothes (pocket), or
simply rest on the hip. Upper body variations are thus introduced in the cycles which keep
the forward-backward movement of the pelvis when walking and running. Example of such
variations are visible in Figure6.3.

Further variations in motion clips are introduced in order to increase individuality in
motion. Indeed, in reality, individuals composing a crowd are rarely walking the same way,
arms resting alongside the body (the exception would be military march activities). Most
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of the time, hands are used to hold objects (cell phone, bag, flowers), are hidden in clothes
(pocket), or simply rest on the hip. Upper body variations are thus introduced in the cycles
which keep the forward-backward movement of the pelvis whenwalking and running. A
varied locomotion cycle is created in a pre-process of threesteps: first, we generate the cycle
with default upper body animation. Then, the designer manually defines a set of constraints,
which enforce a specific arm posture,e.g., forcing some joints of the hand to reach a goal
position attached to the pelvis to simulate a hand in a pocket. Finally, using an IK solver, we
iterate over each frame of the original cycle to obtain the desired arm position.

Figure 6.3: Examples of upper body movements (hands in the pocket, phonecall, hand on
hip, ...) added to a generic locomotion cycle.

The task of augmenting a locomotion cycle with upper body movements, such as those
illustrated in Figure6.3, proves to be more difficult than what it looks at first sight. Indeed,
simply blocking the arm of a virtual human in a certain position is not sufficient; since the
character is walking, such an approach would result in the hand colliding with other body
parts. For upper-body motions to be correctly introduced, they need to be adapted at each
animation keyframe in order to follow the movements of the primary locomotion cycle. Such
a task is too costly to be achieved in real time, and thus needsto be achieved in a pre-process,
i.e., based on the initial locomotion cycle, a new cycle must be generated.

A varied locomotion cycle is created in two passes. The first pass generates the primary
cycle with default upper-body animation. The second pass, consisting in adding the sec-
ondary upper-body motion, is achieved using a prioritized Inverse Kinematics (IK) solver [Baer-
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locher and Boulic, 2004]. This tool allows to enforce several constraints at the same time,
with levels of priority if necessary. To solve the IK problem, the following inputs are needed:

• The original locomotion cycle;

• A hand-designed “first guess” posture of the hand and arm, using dedicated software,
such as MotionBuilder [Autodesk, 2009b];

• The set of constraints to apply to the hand and/or arm. Each constraint is described
with two points on the body that we require to be placed as close to each other as
possible. For instance, in Figure6.4, the three colored cubes on the hand have to be
positioned as close as possible to the three corresponding colored cubes attached to the
pelvis.

Figure 6.4: Set of controlled effectors attached to the hand and corresponding goal positions
attached to the pelvis.

Once the inputs are provided, the IK solver is run for each frame of the animation, starting
with the first guess posture of the arm. When all frames have been computed, the final
orientation of the modified joints are used to overwrite the original orientations. We illustrate
in Figure6.5a locomotion cycle that has been augmented with the right hand in the pocket.

In order to make these variations scalable to all levels of detail, we need to pre-compute
some rigid animations, exactly as we do for primary locomotion cycles. For the impostors
however, we have observed that there is no need to pre-compute such variations, for they are
too subtle to be noticed at far distances. Thus, when a virtual human transits from a rigid
animation to an impostor animation, its upper body animation (if it uses one) is switched to
a standard locomotion, with arms alongside the body.
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Figure 6.5: Example of posture from an accessorized locomotion cycle.

6.4 Complex Accessories

The main drawback of upper-body variations as presented in the previous section is that they
need to be pre-computed and stored in the animation databaseas extra-animations. In some
simpler cases, the use of an IK solver is not necessary, and applying some online modifica-
tions is sufficient to obtain realistic results. This is the case for most complex accessories
(bags, flowers, boxes, suitcases,etc.), except for the cellphone, where the hand needs to stay
close to the ear. In this case the technique of Section6.3 is used.

Similarly to simple accessories, complex accessories are attached to a single skeleton
joint. Also, the accessory attribution and rendering process remains the same for both types.
The main changes happen at the Animator stage of the runtime pipeline (see Figure3.1).
The use of complex accessories is processed in four steps.

Step 1. At initialization, and for each complex accessory, the designer can specify which
joints will be constrained and in which way. We have implemented two possibilities to
constrain a joint online: it can be frozen in a chosen orientation, or its movement can be
limited within a given range of angles. For instance, carrying a bunch of flowers requires the
shoulder movement is to be limited to a chosen angle range, while the elbow is completely
frozen at an angle of about 90 degrees.
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Step 2. At runtime, during the animation phase, joints are first updated as usual, based on
the current animation keyframe. Once the skeleton posture is fully updated, the joints that
need special modifications are treated in the next two steps.

Step 3. The frozen joints are the most easy to update: whichever the state of their current
animation matrix (computed in Step 2), we completely overwrite it with the chosen orien-
tation. Note that care is taken to keep the same joint’s translation in the matrix, because it
determines the length separating the joint to its child, andshould never be modified.

Step 4. For joints with constrained orientation ranges, the process is more difficult. In-
deed, an orientation matrix often defines a rotation on several axes, and finding out the overall
angle of its movement is not intuitive. To solve this problem, we first transform the matrix
of Step 2 into an exponential map. An exponential map is a structure composed of three
floats, like a 3D vector, which are able to represent any 3D rotation. The advantage of this
representation is that its norm corresponds to the exact angle of the described rotation. It is
thus much easier to clamp a rotation expressed with an exponential map than with a matrix:
first, we take the normn of the exponential mape and clamp it within the minimal and max-
imal authorized angles (provided at Step 1) as:n = clamp(n, minangle, maxangle). Then,
the clamped exponential mape′ is recomputed ase′ = ê ·n, whereê is the normalized vector
represented bye. Finally, the rotation matrix is derived frome′ and used to overwrite the one
that was computed in Step 2.

We illustrate the results obtained with this approach in Figures6.6 and6.7. The main
drawback of this approach is the difficulty we have to adapt itfor rigid meshes and impostors.
Indeed, no online animation can be performed on these representations. A first solution is
to pre-compute the constrained animations, but the underlying memory requirements would
soon be too demanding. Another possibility is to use an alternative representation to rigid
meshes and impostors. For instance, using a polypostor, as described in [Kavan et al., 2008],
would solve our problem, since its 2D polygon can be updated at runtime.
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Figure 6.6: Results obtained in an urban environment when modifying theupper body at runtime
to make virtual humans carry bags, puppets, balloons, flowers, etc.

Figure 6.7: More complex accessories carried by virtual humans in a theme park environment.



CHAPTER 7

Real-Time Pipeline

In the Real-time component ofYaQarchitecture (schematized in Figure7.1), decomposing
the process that occurs at each frame into stages allows to efficiently handle the data needed
to simulate thousands of characters in real time. A second important point to satisfy real-
time constraints is to be able to group similar data and process them together in order to limit
costly CPU and GPU state switches. Each stage becomes responsible for a specific task and
thus can be developed, tested and optimized separately. It is important to note that in the
following description of the Real-Time pipeline, each stage has direct access to the instances
composing the crowd.

We distinguish four different stages inYaQpipeline: the Scaler, detailed in Section7.1,
the Simulator, presented in Section7.2, the Animator (Section7.3), and finally, the Renderer,
introduced in Section7.4.

7.1 Scaler

The Scaler is the first stage of the pipeline. The work done in this stage consists in finding
which simulation and rendering level-of-detail is used forwhich area of the scene for the
current simulation frame.

7.1.1 Score Allocation

The Scaler receives two inputs: a navigation graph filled with virtual human ids and a camera
view frustum. From these inputs, the Scaler’s role is to provide each navigation graph vertex
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Figure 7.1: The real-time component ofYaQarchitecture is composed of four steps: the Scaler,
the Simulator, the Animator, and the Renderer.

with two scores. Firstly, a level of detail (LOD), determined by finding the distance from the
vertex to the camera and its eccentricity from the middle of the screen. This LOD score is
then used to choose the appropriate virtual human representation in the vertex. Secondly, the
Scaler associates with each vertex a score of interest, resulting in an environment divided into
regions of different interest (ROI). For each region, we choose a different motion planning
algorithm. Regions of high interest use accurate, but more costly techniques, while regions
of lower interest may exploit simpler methods.

Using the navigation graph as a hierarchical structure to provide virtual humans with
scores is an efficient technique that allows to avoid testingindividually each character. The
processing of data is achieved as follows: firstly, each vertex of the graph is tested against the
camera view frustum,i.e., frustum culled. Empty vertices are not even scored, nor further
held in the process for the current frame; indeed, there is nointerest to keep them in the
subsequent stages of the pipeline. On the other hand, vertices filled with at least one character
and outside the camera view are kept, but they are not assigned any LOD score, since they
are outside the view frustum, and thus, their virtual humansare not displayed. As for their
ROI score, they get the lowest one: a minimal simulation sporadically moves the related
virtual humans along their path, and no dynamic collision avoidance need be achieved. This
minimal simulation is necessary, even though the characters are invisible, because without
care, when they quit the camera field, they immediately stop moving, and thus, get packed on
the borders of the view frustum, causing a disturbing effectfor the user. Finally, the vertices
that are filled and visible are assigned a higher ROI score, and then are further investigated
to sort their embedded virtual humans by human template, LOD, and appearance set.
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7.1.2 Human Instance Lists

At the end of this first stage, three important human instancelists are obtained, sorted ac-
cording to different criteria. Updating these lists at eachframe takes some time. However,
it is very useful to group data in order to process it through the next stages of the pipeline:
simple approaches that process virtual humans one after another, in no specific order, pro-
voke costly state switches for both the CPU and GPU. For an efficient use of the available
computing power, and to approach hardware peak performance, data flowing through the
same path need to be grouped.

To correctly handle virtual human instances, we start by associating a unique identifier
to each one of them. Since human instances need to be accessedin many different contexts,
several lists of these identifiers are set up, sorted according to different criteria, and kept
up-to-date. We mainly distinguish three lists of human instances (or identifiers representing
them): the rendering list, the navigation list, and the animation list. All lists are kept up-to-
date in the first step of the runtime pipeline, which is detailed in Chapter7.

Rendering list. This list is sorted to optimize the rendering of all instances. It is sorted
according to four criteria:

• By human template. This first criteria seems logical: indeed, instances of a same
human template share a lot of common data,e.g., skeleton, mesh, appearance sets.

• By steering type. We distinguish two types of steering whichrequire a different posi-
tioning (see Chapter6: the “locomotion” mode, when pedestrians walk or run, and the
“idle” mode, when they perform more quiet actions such as talking, sitting,etc.).

• By level of detail. The rendering system is very different torender each type of repre-
sentation.

• By appearance set. As previously demonstrated, some instances share the same ap-
pearance set (but not the same body part colors) and thus, thesame texture (more
details in Chapter4.

Note that impostors are very different from deformable or rigid meshes. For this reason, we
use a different list to render them, sorted by human template, by appearance set (to avoid
constantly switching the texture), by animation, and finally, by keyframe. This animation-
based ordering allows us to limit the number of atlas switches: an atlas is read once for all
the impostors that use it, before switching to another atlas.

Navigation list. Our navigation list is sorted out to optimize the simulationupdates
of virtual humans, depending on the region where they are situated,i.e., regions of high,
medium, or no interest. Indeed, as introduced in Appendix10.1, virtual humans are steered
with motion planning techniques of various accuracy, depending on their position. We thus
use a list sorted with four criteria. First, the level of interest (high, medium, or low), to
know which algorithm to use. Second, by graph vertex: each vertex of the navigation graph
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containing humans is introduced in this list. Third, by steering type (we only navigate the hu-
mans in the locomotion mode). A graph vertex can belong to several paths, as later detailed.
We thus finally sort the list of human instance according to the path they are following.

Animation list. The main animation of human instances is usually achieved with the
same lists used for rendering. An ideal list for this stage would be sorted by human template,
by steering type (walking humans are not animated the same way as standing humans, see
Chapter6), and by level of detail. Since the rendering list is exactlythe same, except for the
appearance set sorting criterion, we do not require to create a new list for animation. The
additional work we achieve for facial and procedural animations however, is quite different,
because it only applies to deformable meshes. Thus, such additional animations use a much
simpler list, indexing only the deformable meshes in no particular order.

In a recent work [Pettré et al., 2006], we have experimented different steering methods.
An interesting observation we have made is that with a varying number of characters in a very
large scale (tens of thousands), the performance of the different steering methods remained
about the same. Memory latency to jump from an instance to theother was the bottleneck
when dealing with big crowds.

7.2 Simulator

The second stage of the pipeline is theSimulator, which uses the second list introduced
above to iterate through all levels of interest and obtain the corresponding filled vertices. At
this stage, virtual humans are considered as individual 3D points, and depending on the ROI,
the proper motion planning method is applied. In other words, the Simulator ensures that
each virtual human instance comes closer to its next waypoint, i.e., its next short-term goal,
and handles dynamic inter-pedestrian collision avoidance. YaQdistinguishes three different
levels of interest:

Level 0: regions of high interest are typically zones in front of the camera, or where par-
ticular events are happening. Such regions are governed by apotential field-based algorithm
similar to [Treuille et al., 2006], based on a precomputed grid. To avoid the costly spreading
of the potential field, we limit its computation to the sole region of high interest. Note that
in regions of this level of interest, pedestrians are steered towards special waypoints corre-
sponding to the center of a neighbor cell with the lowest potential. The navigation graph
waypoints are not used here.

Level 1: in regions still visible but of lower interest, pedestriansare smoothly steered
towards their navigation graph waypoint with an algorithm similar to Reynolds’ seek be-
haviour [Reynolds, 1999]. In addition, a short-term collision avoidance method is exploited:
taking advantage of the grid structure, a pedestrian checksin the cells ahead if another pedes-
trian is close by. If it is the case, an intermediate waypointis introduced to avoid the collision.
Once the collision is resolved, the pedestrian is assigned its next navigation graph waypoint
again, and resumes its progress on its path.

Level 2: in regions of no interest,i.e., outside the camera view frustum, pedestrians
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are steered linearly towards their next navigation graph waypoint and do not perform any
collision avoidance.

The last operation performed by the Simulator is to update the behavior of the virtual
humans. The navigation graph vertices contain zero or more semantic keywords correspond-
ing to a specific behavior. For each vertex annotated with a specific behavior, the Simulator
applies the corresponding actions to its pedestrians. The resulting behaviors are typically
expressed through accessories acquisition and dynamic animation changes,e.g., going out
of a shop with a shopping bag, or looking at a specific interestpoint.

7.3 Animator

The Animator, the third stage of the real-time pipeline, is responsible for the animation of
each virtual human, whichever the representation it is using, i.e., deformable mesh, rigid
mesh, or impostor. The lists of visible virtual humans, sorted by human template, LOD, and
appearance set in the Scaler phase, are the main data structure used in this stage.

The three different rendering levels of detail are depictedin Figure 9.1. The anima-
tion process is similar for all representations: dependingon the animation time, the correct
keyframe is identified and retrieved. Then, each representation is modified accordingly.

Deformable Meshes. Below are described the specific tasks that are achieved for the
deformable meshes:

For each human template:
get its skeleton,
For each deformable mesh LOD:

For each appearance set:
For each virtual human id:

get the corresponding body,
update the animation time (normalized between 0.0 and 1.0),
perform general skeletal animation,
perform facial skeletal animation,
perform hand skeletal animation.

Note that the second loop iterates over several LOD of deformable meshes. This situation
happens when several meshes with a different number of triangles are used,e.g., we can use
deformable meshes of 6,000 triangles at the fore-front and less detailed deformable meshes,
of 1,000 triangles behind. Performing a skeletal animation, whether it is for the face, the
hands or all the joints of a virtual human, can be summarized in four steps. First, the correct
keyframe, depending on the animation time, is retrieved. Note that at this step, it is possible
to perform a blending operation between two animations. Thefinal keyframe used is then
the interpolation of the ones retrieved from each animation. The second step is to duplicate
the original skeleton relative joint matrices in a cache. Then, in the cache, the matrices of the
joints modified by the keyframe are overwritten. Finally, all the relative matrices (including
those not overwritten) are multiplied to obtain global matrices, and each of them is post-
multiplied by the inversed global matrices of the skeleton.Note that optional animations,
like facial animation, are usually performed only for the best deformable mesh LOD,i.e., the
most detailed mesh, at the fore-front.
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Rigid Meshes. For the rigid meshes, the role of the Animator is much reduced, since all
the deformations are pre-computed:

For each human template:
For each rigid mesh LOD:

For each appearance set:
For each virtual human id:

get the corresponding body,
update the animation time (between 0.0 and 1.0).

Note that once again, we could pre-compute rigid animationsfor several meshes with a
different number of triangles. This is why the second loop isintroduced. However, most
of the time, we limit the number of rigid mesh LOD to 1, for storing animations for several
meshes would quickly become too expensive.

Impostors. Finally, for the impostors, since a keyframe of an impostor animation is only
represented by two texture atlas, no specific deformation needs to be achieved. However,
we assign the Animator a special job: to update a new list of virtual human ids, specifically
sorted to allow a fast rendering of impostors. This list was previously introduced as the
animation list in Section7.1.2. At initialization, and for each human template, a special list
of virtual human ids is created, sorted by appearance set, impostor animation, and keyframe.
The first task achieved by the Animator is to reset the impostor specific list in order to refill it
accordingly to the current state of the simulation. To refillthis list, an iteration is performed
over the current rendering list (sorted by human template, LOD, and appearance set), which
has just been updated in the Scaler stage:

For each human template:
get its impostor animations,
For the only impostor LOD:

For each appearance set as:
For each virtual human vh:

get the body of vh,
update the animation time (between 0.0 and 1.0),
get body’s current impostor animation id a,
get body’s current impostor keyframe id k,
put vh’s id in special list[as][a][k].

This way, the impostor specific list is updated every time thedata passes through the Anima-
tor stage, and is thus ready to be exploited at the next and last stage, the Renderer.

7.4 Renderer

The Renderer represents the phase where draw calls are carefully issued to the GPU to
display the environment and the crowd. Indeed, it is important to minimize first the state
changes overhead, and second, the number of draw calls.

7.4.1 Shadows

In our architecture, illumination ambiances are set from four directional lights, whose direc-
tion and diffuse and ambient colors are prealably (or interactively) defined by the designer.
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The light coming from the sun is the only one casting shadows.As we lack a real-time
global illumination system, the three other lights are present to provide enough freedom for
the designer to give a realistic look to the scene. This configuration has given us satisfaction
as we mainly work on outdoor scenes. See Figure7.2for results.

Figure 7.2: Dense crowd in a large environment.

Virtual humans cast shadows on the environment and, reciprocally, the environment casts
shadows on them. This is achieved using a shadow mapping algorithm [Williams, 1978; Woo
et al., 1990] implemented on the GPU. At each frame, virtual humans are rendered twice:

• The first pass is from the directional light view perspective, i.e., the sun. The resulting
z-buffer values are stored in the shadow map.

• The second pass is from the camera view perspective. Each pixel is transformed into
light perspective space and itsz value is compared with the one stored in the shadow
map. Thus, it is possible to know if the current pixel is in shadow or not.

So, we need to render twice the number of virtual humans really present. Though with
modern graphics hardware, rendering to az-only framebuffer is twice as fast as rendering
to a complete framebuffer, one expects a certain drop in the frame rate. Moreover, standard
shadow mapping suffers from important aliasing artefacts located at shadow borders. Indeed,
the resolution of the shadow map is finite, and the larger the scene, the more aliasing artefacts
appear. To alleviate this limitation, several strategies are used:
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Figure 7.3: Shadowed scene with apparent directional light frustum.

• Dynamically constrain the shadow map resolution to visiblecharacters, and

• Combine percentage closer filtering [Reeves et al., 1987] with stochastic sampling [Cook,
1986], to obtain fake soft shadows [Uralsky, 2005].

We now further describe how to dynamically constrain the shadow map resolution to visible
characters. A directional light, as its name indicates, is defined only by a direction. Ren-
dering from a directional light implies using an orthographic projection,i.e., its frustum is a
box, as depicted in Figure7.3. An axis-aligned bounding box (AABB) is a box whose faces
have normals that coincide with the world axes [Möller and Haines, 1999]. They are very
compact to store; only two extreme points are necessary to determine the whole box. AABB
are often used as bounding volumes,e.g., in a first pass of a collision detection algorithm, to
efficiently eliminate simple cases.

A directional light necessarily has an orthographic frustum aligned along its own axes.
So, we can consider this frustum as an AABB. The idea is to compute at each frame the box
englobing all the visible virtual humans, so that it is as tight as possible. Indeed, using an
AABB as small as possible allows to have a less stretched shadow map. At each frame, we
compute this AABB in a four-step algorithm:

1. The crowd AABB is computed in world coordinates, using visible navigation graph
vertices. By default, the AABB height is set to two meters, inorder to bound the
characters at their full height.

2. The light space axes are defined, based on the light normalized directionLz:

Lx = normalize((0, 1, 0)T × Lz ).

Ly = normalize(Lz × Lx ).

3. The directional light coordinate system is defined as the3×3 matrixMl = [Lx, Ly, Lz].

4. The eight points composing the AABB (in world coordinates) are multiplied byM−1
l ,

i.e., the transpose ofMl. This operation expresses these points in our light coordinate
system.
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Note that remultiplying the obtained points byMl would express the crowd AABB back into
world coordinates. In Figure7.3 are illustrated the shadows obtained with this algorithm.
Practically, to be able to choose an adequate resolution given the situation,e.g., detailed
shadows for characters close to the camera, we use three different shadow maps: one for the
shadows cast by the environment, one for the people (deformable and rigid meshes) near the
camera, and one for people far from it (impostors).

7.4.2 Virtual Human Rendering

Once the first pass has been executed, the second pass is used to render all the virtual hu-
mans and their shadows. To reduce state change overhead, thenumber of draw calls are
minimized, thanks to our rendering list of visible humans sorted by human template, LOD
and appearance set.

Deformable Meshes. In the following pseudo-code, we show the second pass in the
deformable mesh rendering process:

For each human template:
For each deformable mesh LOD:

bind vertex, normal, index, and texture buffer,
send to the GPU the joint ids influencing each vertex,
send to the GPU their corresponding weights,
For each appearance set:

send to the GPU texture specular parameters,
bind texture and segmentation maps,
For each virtual human id:

get the corresponding body,
send the joint orientations from cache,
send the joint translations from cache.

Note that the process of the first pass is quite similar, although data useless for shadow
computation is not sent,e.g., normal and texture parameters. In this rendering phase, one can
see the full power of the sorted lists: all the instances of a same deformable mesh have the
same vertices, normals and texture coordinates. Thus, these coordinates need to be binded
only once per deformable mesh LOD. The same applies for the appearance sets: even though
they are used by several virtual humans, each needs to be sentonly once to the GPU. Note
that each joint transformation is sent to the GPU as two vectors of four floating points,
retrieved from the cache filled in the Animator phase.

Rigid Meshes. For the rigid meshes, the process is quite different, since all vertex defor-
mations have been achieved in a pre-process. We develop herethe second pass in pseudo-
code:

For each human template:
For each rigid mesh LOD:

bind texture coordinate buffer,
bind indices buffer,
For each appearance set:

send to the GPU texture specular parameters,
bind texture and segmentation maps,
For each virtual human id:
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get the corresponding body,
get the correct rigid animation keyframe,
bind its vertex and normal buffers.

In the rendering phase of the rigid meshes, only the texture coordinates and indices can be
binded at the LOD level, in opposition to the deformable meshes, where all mesh data is
binded at this level. The reason is obvious: for a deformablemesh, all the components
representing its mesh information (vertices, normals,etc.) are the same for all instances.
It is only later, on the GPU, that the mesh is deformed to fit theskeleton posture of each
individual. For a rigid mesh, its texture coordinates, along with its indices (to access the
buffers), remain the same for all of their instances. However, since the vertices and normals
are displaced in a pre-process and stored in the keyframes ofa rigid animation, it is only at
the individual level, when we know the animation played, that their binding can be achieved.

Note that since the vertices sent to the GPU are already deformed, there is no specific
work to be achieved in the vertex shader. Concerning the shadow computation phase,i.e.,
the first pass, the pseudo-code is the same, but without sending useless data, like normal and
texture information.

Impostors. Rendering impostors is fast, thanks to the animation list, which is sorted by
human template, appearance set, animation, and keyframe, and is updated at the Animator
phase. Here follows the corresponding pseudo-code:

For each human template:
get its impostor animations,
For each appearance set:

bind texture and segmentation maps,
For each impostor animation:

For each keyframe:
bind normal map,
bind UV map,
For each virtual human id:

get the corresponding body,
get the correct point of view,
send to GPU texture coordinates where
to get the correct virtual human posture

and point of view.

With our dedicated list, if several virtual humans issued from the same human template and
appearance set are playing exactly the same keyframe, the normal and UV atlases are bound
only once.

7.4.3 Performance

In this chapter, we have detailed different steps ofYaQ’s pipeline to simulate crowds.

We now expose the performance obtained with this architecture. As a reminder, in Fig-
ure 3.1, the storage requirements are summarized, depending on theanimation types. In
Figures7.4and7.5, we compare the frame rates obtained in two cases. Firstly, when sorted
virtual human lists are exploited, as detailed in Section7.1.2. Secondly, when the runtime
animation and rendering stages do not use sorted lists, but directly each virtual human, one
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Figure 7.4: Frames per second obtained for (top) highly detailed deformable meshes, and (bot-
tom) simple deformable meshes. The red lines show the results obtained when working with
sorted lists, the green ones with a naive approach. The starsindicate the results for 30 frames per
second.
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Figure 7.5: Frames per second obtained for (top) rigid meshes, and (bottom) impostors. The
red lines show the results obtained when working with sortedlists, the green ones with a naive
approach. The stars indicate the results for 30 frames per second.
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Figure 7.6: (left) Virtual humans navigating in a complex environment. (right) Same configu-
ration of virtual humans with apparent levels of detail; in red: the rigid meshes, in green: the
impostors.

after another, in no specific order. With such a process, all the information needed by the
GPU has to be sent for each virtual human, independently fromthe data that may be shared
by several of them. The conditions in which the tests have been achieved are as follows: five
human templates, steering and animation enabled, no shadows, no accessories, no collision
avoidance. As one can observe in Figure7.4, when using highly detailed deformable meshes,
the results obtained with or without sorted lists are almostsimilar. This can be explained by
the communication sent from the CPU to the GPU (joint transmission): such transmissions
imply a pipeline flush for each rendered virtual human, thus becoming the bottleneck of the
application. However, when less detailed representationsare exploited, the advantage of
sorting the lists becomes clear in Figure7.5. An image directly obtained from our running
architecture is shown in Figure7.6. On the right-side, one can observe the distance at which
the virtual humans switch to lower representations: in red are the rigid meshes, and in green
the impostors.
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CHAPTER 8

Results and Case Studies

In this chapter, we present the results obtained withYaQ. We analyze the achieved perfor-
mance, and present various case studies in whichYaQhas been successfully used:

• Case Study 1: Buildings.In Section8.1, we illustrate the versatility of segmentation
maps (described in Chapter4) by using them in a completely different context.

• Case Study 2: Theme Park.In Section8.2, we present a concrete example where
accessories (Chapter5) and segmentation maps (Chapter4) are combined to simulate
a theme park populated with human instances that are unique in appearance.

• Case Study 3: Ancient Pompeii.In Section8.3, we present howYaQhas been used
to simulate a Roman population in the Ancient city of Pompeii. This application has
been developed in the framework of a European project on Cultural Heritage.

• Case Study 4: Medical Domain. In Section8.4, we present two applications of
YaQ in the medical domain. Firstly,YaQ is currently used in the office of a physical
therapist to treat some patients’ equilibrium problems. The second application ofYaQ
aims at supporting the work of psychiatrists in helping victims of agoraphobia (with
crowds). This application has not yet been tested on actual patients, because we are
finalizing the integration ofYaQ in a CAVE1 to improve the feeling of immersion of
future patients.

1CAVE is the abbreviation for Cave Automatic Virtual Environment. It is a large cube in which a person
can stand. Each cube face is a screen on which virtual realityimages are projected for the viewpoint of the
person, thus drastically improving the feeling of immersion for a user, as compared to a single screen.
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8.1 Case Study 1: Buildings

Figure 8.1: Relations between data structures. Each mesh instance possesses a set of colors in
the CLUT. Applying colors smoothly to the texture parts is achieved with the use of segmentation
maps.

We have fully detailed our approach and implementation of appearances sets in Chap-
ter 4. We have presented images where this approach was successfully applied on virtual
humans. In this section, we demonstrate the versatility androbustness of appearance sets by
using them on an additional example. Indeed, although the issue of appearance variety may
seem limited to crowds, it can be encountered in many other cases, where objects are suscep-
tible to be instantiated several times. The example we present here is the case of buildings,
instantiated many times to form a city.

Figure 8.2: Each instance of a building template randomly chooses an appearance set (a texture
and a segmentation map).

Applying color variety to buildings in a city is similar to the crowd approach. In Fig-
ure 8.1, we describe the different data structures employed. At thecreation of a building
template, the designer produces a series of appearance sets, each composed of one texture,
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and one or more segmentation maps, depending on the number ofparts composing the build-
ing. As a reminder, note that each segmentation map cannot differentiate more than four
parts, one per channel. When the building template is instantiated, one color is chosen for
each part, and stored in a Color Look-Up Table (see Section4.3.2).

For each building template, several appearance sets can be created. Figure8.2 shows
some examples of appearance sets applied to the same building template. As a result, a

Figure 8.3: Appearance sets applied to instances of six building template.

designer can easily modify building colors, patterns, and material properties. In Figure8.3,
buildings take full advantage of appearance sets: althougha single texture is applied to each
of them, thanks to the segmentation maps, it is possible to identify the windows, and define
particular specular and reflective parameters for them.

8.2 Case Study 2: Theme Park

We have previously detailed various techniques that can be used to vary the appearance of
human instances (see in Figure8.4a crowd using color variety techniques and accessories).

In this section, we present a case study of these techniques,where appearance sets and
accessories have been combined to generate a crowd of uniquehuman instances. To further
illustrate the versatility of the segmentation map method,accessories are also segmented so
as to increase their variety. Note that we do not further detail these techniques here, for they
have already been presented. We rather show the results and performance obtained in the
concrete simulation of a large crowd of varied instances in aspecific context.
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Figure 8.4: Appearance sets composed of two segmentation maps (eight body parts) applied to
instances of six human templates. Accessories are varied with appearance sets composed of one
segmentation map (maximum four different parts).

8.2.1 Scenario

Our particular scenario takes place in a theme park. The parkis composed of numerous
doorways that cluster the environment into several atmospheres. When a character passes
through a doorway, its colors and accessories change according to the area theme: circus,
heaven, hell, halloween, etc. With this scenario, we demonstrate that our appearance variety
methods can be integrated to complex real-time crowd applications. A video of this specific
simulation is available online [Maïm et al., 2009]: the video shows a simulation of over
5, 000 characters moving in the theme park environment (of50, 000 triangles). Dynamic
shadows are computed for the characters and the scene, navigation and collision avoidance
are enabled, and our three rendering LOD are used. Figure8.5 illustrates crowds benefiting
from our techniques in the theme park with two images. With accessories and segmentation
maps, we obtain unique and visually appealing individuals.

8.2.2 Performance

The following results and the video introduced above have been produced on an AMD64 X2
5200 with 2GB of RAM and an Nvidia 7900 GTX 512MB graphics board. Virtual humans
and accessories are rendered using OpenGL pseudo-instancing.

In Figure8.6, we show the number of characters, each wearing0 to 3 accessories, that we
can render at 30 fps. For deformable meshes (Figure8.6(a)), the number of displayable char-
acters only slightly changes, since the bottleneck of the pipeline remains the mesh skinning.
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Figure 8.5: Unique characters simulated in a theme park.

Also, each character has over6, 000 triangles,i.e., 5 to 12 times an accessory triangle count.
With rigid meshes (Figure8.6 (b)), accessories are proportionally more costly, for there is
no skinning phase, and the cost of rendering an accessory triangle sums up to the same as
rendering a rigid mesh triangle. As for impostors (Figure8.6 (c)), displaying an accessory
or a character has the same fixed cost: two triangles. The lossof performance is thus sizable.
However, it is possible in several cases to avoid rendering accessory impostors that are suf-
ficiently small to be indistinguishable at far distances,e.g., glasses, jewelry. In this manner,
many more human impostors can be rendered than depicted in Figure8.6 (c). The fragment
depth computation implies disabling early culling optimizations done by the GPU. However,
as shown in Figure8.6 (d), the more accessory impostors, the less this computation affects
the frame rate. Figure8.6 also depicts results with and without segmentation maps. For all
LOD, using segmentation maps implies less characters, because of the additional pixel color
computation. However, this cost is not prohibitive.
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Figure 8.6: Number of displayable characters at 30 fps with 0 to 3 accessories for(a) deformable
meshes,(b) rigid meshes,(c) impostors, and(d) impostors with depth computation.

Finally, with no accessories nor segmentation maps, largercrowds can be rendered, but
they are composed of numerous similar instances, which is not desirable. With our methods,
instead of huge crowds of mirror image characters, we offer large crowds of unique instances.
In Figure1.2, only five human templates are instantiated several times, fully exploiting their
textures, accessories, and segmentation maps. To illustrate the versatility of the segmentation
map method, accessories are also segmented to increase their variety. We demonstrate in the
mentioned video that our methods can be integrated to complex real-time crowd applications.

8.3 Case Study 3: Ancient Pompeii

The architecture ofYaQhas also been used to simulate crowds in a real-time culturalheritage
application: Pompeii was a Roman city, destroyed and completely buried during an eruption
of the volcano Mount Vesuvius. We have revived its past by populating a 3D model of its
previous appearance with crowds of Virtual Romans. In this section, we introduce howYaQ
has been able to simulate Ancient Pompeii life in real time.

First, we receive in input an annotated city model, generated using procedural model-
ing [Müller et al., 2006; Maïm et al., 2007]. These annotations contain semantic data, such
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as land usage, building age, and window/door labels.YaQ is responsible for automatically
interpreting the semantics to populate the environment andtrigger special behaviors in the
crowd, depending on the location of the characters. A video available online [Maïm et al.,
2007] shows the results obtained while simulating virtual Romans in a district of Ancient
Pompeii. We do not further detail how the virtual Romans express intelligent behaviors, for
it is beyond the scope of this document. We however focus on the visual results,i.e., which
variety techniques have been used and how they have been exploited.

Color Variety. For this simulation, seven roman templates were used (two nobles, two
plebeians, two patricians, and one legionary). To ensure a varied crowd, each template used
segmentation maps to introduce color variety to their clothes, skin, hair, and eyes. Designing
the constrained color ranges for each body part (see Section4.2.2) of each template has
been a particularly demanding task; indeed, color spaces have been chosen according to
archaeological data: slaves wore dark colors, mainly in shades of brown, while rich Romans
exhibited bright colors, as depicted in Figure8.7.

Figure 8.7: Virtual Romans simulated in a reconstructed district of Ancient Pompeii. The colors
worn by instances reflect their status: slaves, poor, rich, etc.

Accessories. In order to further increase their appearance variety, the Virtual Romans
wear accessories adapted to their time: amphoras and roman bread mainly. To be true to the
ancient traditions, amphoras are attached to different joints depending on the Roman’s status:
middle- and low-class Romans may carry amphoras on their head, while richer instances do
not have such practices (see Figure8.8).

Animation Variety. In the Pompeii simulation, animation has been varied with two tech-
niques: first of all, dedicated upper-body movements are pre-computed and introduced in
locomotion animations, as introduced in Section6.3. These upper body movements have
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Figure 8.8: (left) A middle-class Virtual Roman carries amphoras in her handsand also on
her head, while (right) a rich Virtual Roman may carry bread in her hands, but would not bear
anything on her head.

Figure 8.9: Virtual Romans walking in a street of Ancient Pompeii.

been designed specifically for these Roman templates: womencan put either hand on their
hips (Figure8.8(left)); rich men may show their open right palm in a salute position; middle-
class men can have their right hand rest on their left shoulder to present a respectful salute
(Figure8.9). The second technique we use to apply animation variety is similar to the method
introduced in Section6.4 to bear complex accessories: freezing some joints in a predefined
orientation. In this particular case, we do not freeze joints to constrain the movements of
Romans wearing complex accessories, but to bend the back of Roman slaves. This effect is



8.4. CASE STUDY 4: MEDICAL DOMAIN 105

clearly visible on the video referenced above.

8.4 Case Study 4: Medical Domain

As presented in the previous sections, there are many situations and events that can be simu-
lated withYaQ. Recently, our crowd engine has aroused the interest of professionals in vari-
ous fields of the medical domain, to help training patients suffering from diverse pathologies.
In Section8.4.1, we first present how the crowd engine has been used to train patients suf-
fering from equilibrium problems. Then, in Section8.4.2, we introduce howYaQhas been
adapted to be used in a CAVE. A previous collaboration with Dr. Riquier, psychiatrist, has
been conducted to help patients suffering from social phobia. The idea of integrating crowds
in a CAVE could potentially lead to another future collaboration, in order to train patients
who are victims of agoraphobia (with crowds) in a virtual environment.

8.4.1 Vestibular Reeducation

Vestibular reeducation is a physical treatment of vestibular instability. This treatment, super-
vised by a physical therapist, is a balance training that thepatient performs, resulting in an
improved balance and a decreased risk of falling. Jérôme Grapinet, physical therapist spe-
cialized in dizziness and instability since 1989, has collaborated with the EPFL-VRLAB to
test a new training exercise for patients with vestibular problems: immerse them in a crowd
of virtual humans passing by him (see Figure8.10).

Figure 8.10: Jérôme Grapinet, physical therapist, has created a new exercise for his patients,
usingYaQ.

Mr. Grapinet states that theYaQcrowd engine answers to a need that has been present
for a long time: being able to immerse victims of an inner ear vestibule injury, or victims
of instability, in a virtual situation for training purposes. In both cases,YaQcan be used
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to reaccustom vision to random optokinetic stimulations2 that are unpredictable, and that
mimics a real situation which usually greatly troubles the patient: mingling in a crowd,
walking in a supermarket, etc.

Figure 8.11: (left) Mr. Grapinet’s projection cabin (in pink) has no right angles, and allows a
patient to feel fully immersed in the projected virtual world. (right) The projection cabin used to
display the crowd simulation ofYaQ.

Technically, previous attempts to immerse patients in sucha manner have been achieved
with head mounted displays (HMD). These attempts were not conclusive, for the field of
view is too limited with such displays.YaQ has been tested in another context, using a
projection cabin, especially created to improve optokinetic stimulations (see pink cabin in
Figure8.11left). This cabin of approximately 6m2 allows to have a wide field of view with
a dome-shaped roof and no border seams, as compared to a CAVE (see Figure8.11right).

Mr. Grapinet is satisfied ofYaQand uses it to train his patients. Results of a dedicated
study he performed will be published in the yearly congress of the International Vestibular
Rehabilitation Society (Congrès de la Société Internationale de Réhabilitation vestibulaire),
taking place in Luxembourg on May 15th, 2009. More details onthis collaboration can also
be found on Mr. Grapinet’s web site [Grapinet, 2008].

8.4.2 CAVE

We have adaptedYaQso that it can be displayed on the multiple screens of a CAVE. Our
goal is to help psychiatrists to train their patients victims of agoraphobia (with crowds), by
immersing them in a virtual crowd. The CAVE is a very useful installation here, for it almost
completely surrounds a user, and thus increases his feelingof immersion. Note that as of
today, no actual patient has testedYaQ in the CAVE. We first want to test our installation
on non-phobic persons to assess the improved feeling of immersion, as compared to using a
single projection screen. In this section, we present howYaQhas been adapted to simulate
crowds in the CAVE with stereo display and head tracking, as depicted in Figure8.12.

Rendering on multiple screens. The first step to useYaQ in the CAVE is to be able
to adapt it for rendering on four screens at once. For this process we have used an nVidia

2The term “optokinetic” refers to the twitching movements ofthe eye when moving objects are viewed.
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Figure 8.12: The CAVE of the EPFL-VRLAB uses simple home video projectorsto immerse a
user in a virtual environment. Head tracking enables tracking a user’s orientation and position
inside the CAVE allowing for interaction with the walking virtual humans.

Quadro Plex system. This system contains 2 GPUs of type Quadro FX 4500 X2, and pos-
sesses 8 DVI outputs. A virtual screen is segmented into fourdifferent viewports. Each of
them represents a single screen in the CAVE. To render an image on all four screens, at each
frame, the camera is first positioned to face the front view, then it sequentially also renders
each lateral view, and finally the floor view. The process of rendering a single image in the
CAVE is thus a four pass rendering operation.

Head tracking. To track the head movements of a user, we use a PhaseSpace motion
capture system composed of 8 cameras that surround the screens of the CAVE. The user
entering the CAVE wears a head-tracking device composed of three markers that allow the
system to track the head position and orientation. Indeed, these informations are required to
compute the correct perspective projection for each screenof the CAVE. Whenever the user
is moving inside the CAVE, the projection matrices are dynamically modified to sustain the
immersion.

Anaglyphic stereo. To further improve the user’s immersion level, we achieve anaglyphic
stereo rendering using red-and-blue glasses. To do so, we render each frame twice, once for
the red channel (left eye) and once for the green and blue channels (right eye).

Screen calibrations. The screens of the CAVE are slightly curved. In order to correct
this, each screen image is first rendered to a texture. Then, the texture is applied to a polygon
mesh, which is reshaped to match the curvature of the screens.
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CHAPTER 9

Conclusion

In this thesis, we have described how the architecture ofYaQhas been built to ensure the sim-
ulation, animation and rendering of large and interactive crowds in real time. We illustrate in
Figures1.1and9.1(top) the results typically obtained when simulating a crowd in an urban
environment withYaQ, taking advantage of all the variety techniques described before. We
distinguish two major contributions in our work. Our first contribution is the general archi-
tecture ofYaQ, its structure, and mechanism to make real-time simulationof large crowds
possible. Our second contribution is the introduction of variety at many different levels:
color, shape, and animation.

9.1 YaQ Architecture

Contributions. The specificity ofYaQ is to be able to simultaneously address crowd
navigation, animation and rendering in real time.YaQ integrates techniques at the level
of the state of the art for solving each of these problems. Structures dedicated to crowds
have been specifically created: human instances are wisely sorted into lists at every frame
of the simulation to minimize state switches, motion kits are created to help the animation
of individuals at all LOD, a dedicated database is used to intelligently store serialized data
that can be shared by several entities. At all steps,YaQallows to set-up a desired trade-off
between performance and realism. It can thus be used for various application domains, such
as video games where performance is preponderant, to Virtual Reality applications where
the level of realism that can be obtained is a crucial criterion.
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Future Work. The simulation part ofYaQ has been designed from scratch to run in a
sequential way. Nowadays, there are new opportunities to improve this design by exploiting
multi-core CPUs. It would be an interesting topic of research to identify the parts of the
simulation that can be parallelized and/or distributed on several cores. For instance, we are
confident that major parts of the collision avoidance could be optimized with parallelization.
Also, every operation that is achieved on virtual humans individually before rendering could
potentially be parallelized. A first step would be to better exploit the several cores of today’s
home computers. In a second step, distributing the simulation on several machines at the
same time would offer the possibility to simulate even larger crowds.

9.2 Appearance Variety

Contributions. To modify the appearance of individuals, we have introducedvariety at
several levels: for each human template, several textures are created. Then, body parts are
identified for each texture,e.g., hair, skin, shirt, skirt, using segmentation maps. We empir-
ically exploit two segmentation maps per texture, and can thus delimit eight body parts, but
there is no limitation to this number, and more segmentationmaps can be used if more parts
need to be identified. Once segmentation maps are designed, each time a virtual human is
instantiated, its body part colors are randomly selected within constrained ranges. The sets
of chosen colors are then contiguously stored in a Color Look-Up Table on the GPU. Fi-
nally, specific materials and fabrics can be simulated by changing a body part’s illumination
parameters. For instance, it is possible to simulate shiny shoes, glossy lips, leather trousers,
etc.Thanks to this technique, crowds are enhanced with subtle make-up, freckles and beard
effects, or detailed cloth patterns, and smooth transitions between body parts are ensured.
We present an example of color variety applied to a single human template in Figure9.2.

We have presented the different steps of the technique, and shown its versatility by ap-
plying it to various examples (humans, accessories, buildings). Finally, variety is scalable,
so that it can be applied to all LOD used inYaQ, as illustrated Figure9.1, for instance.

Future Work. In our work, we have prsesented how to modify specular parameters to
simulate various types of clothes. The diffuse element of the Phong lighting equation could
also be parametrizable by the designer for more variety, or we could completely replace our
lighting equation with a more sophisticated one, allowing to simulate materials like velvet,
silk, satin,etc. More globally, an interesting path we would like to take in the future is to use
a single human template, and make all its elements customizable in order to obtain varied
crowds: the main idea is to procedurally generate the human mesh at runtime, on the GPU,
based on many individual parameters for each body part. Suchan approach would need to be
scalable,i.e., its structure needs to be thoroughly studied in order to be usable on all LOD.
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9.3 Shape Variety

Contributions. Several techniques to modify the shape of a human instance have been
proposed. Firstly, the use of accessories much improves thedifferences at the shape level:
elements such as hats, wigs, backpacks are attached to one joint of the human skeleton, and
follow its movements when deformed. Two human instances issued from a same human
template can thus have different hair cuts for instance, which greatly modifies the perception
of a user. Accessories have been studied to be scalable: theycan be applied to deformable
meshes, rigid meshes, and impostors. A second contributionwe have proposed is to modify
an instance’s shape by working on its skeleton height, and onits mesh width. The resulting
effects are impressive, allowing a designer to easily modelpregnancy, starting with a flat
belly, or making fat bodies from skinny models,etc. The main limitation of this second
approach is its lack of scalability. However, this is mainlydue to a lack of time, rather
than an actual deadlock, and solutions to deal with this limitation are proposed in the next
paragraph.

Future Work. First of all, the accessories could easily be adapted to skeleton variations,
i.e., modifications on bones’ height and width. With shape variations at the mesh level how-
ever, accessories need to be adapted by hand for each deformed human mesh. Part of our
future work consists in searching a way for accessories to automatically adapt to the shape
modifications. Second, shape and height variety is a recently studied technique that still
requires to be scaled to all LOD. Our current approach can only be applied to deformable
meshes. However, we are confident that adaptations can be found to make this new technique
scalable. For rigid meshes, the modifications of a skeleton should be saved and applied to
its influenced vertices, although this implies a more costlyupdate of rigid meshes. Another
solution could be to directly apply a general scaling of the mesh so that the virtual human has
the correct height. However, this would require testing to see if this distortion is noticeable
or not. As for impostors, the same general scaling of the quadcould be applied. Since they
are rendered at far distances, the slight stretching of the texture would not be noticeable. An-
other lead for future work would be to implement the polypostors presented in [Kavan et al.,
2008], and adapt directly their 2D polygons to best fit the shape ofdeformable meshes.

9.4 Animation Variety.

Contributions. Variety at the animation level has been introduced in three ways. Firstly,
using a dedicated locomotion engine [Glardon et al., 2004a,b], we are able to generate many
walk and run cycles at various speeds, and with different gaits. Secondly, in a pre-process,
it is possible to iterate a second time over the generated cycles in order to add upper-body
variations that require the use of an IK solver. For instance, this technique allows us to have
a walking human with a hand in its pocket, or on its hip withoutinterpenetrating body parts.
Last, but not least, we integrate additional upper-body modifications directly at runtime, to
allow virtual humans to wear complex accessories, such as shopping bags, suitcases, bal-
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loons,etc.An example of such accessories is shown in Figure9.3. The only prerequisite for
this approach is that the animation modifications do not cause interpenetration of body parts.
At runtime, we simply constrain the joints by freezing theirorientation at a given angle, or
clamping this angle within a constrained range. Another animation modification that can
be achieved at runtime is to perform interactive facial animations. For instance, pedestrians
close to the camera can look at the user.

Future Work. We see three main improvements on the animation side. First,height mod-
ifications currently cause some problems with the body animation. Indeed, to correctly an-
imate a human instance that has a skeleton of30 more centimeters for instance, requires a
retargeting of the motion clips, which is not yet automatically achieved. To make height
modifications compliant with animation, we should adapt ouranimation database so that
motion cycles are not linked to a single template, but sortedaccording to a leg height. This is
perfectly possible, using the locomotion engine previously described. Second, when virtual
humans bump into each other they currently slide away from each other resulting in cum-
bersome foot sliding artefacts. This could be improved by adding collision animation clips
in our database. Then at runtime, depending on the type of collision (frontal, lateral,etc.),
the most appropriate clip would be selected and played. Finally, we would like to enhance
our animation repertoire with virtual humans able to climb stairs, sit on and stand up from
benches and chairs, picking up objects in the scene,etc. This would require the use of a
LOD-based real-time IK solver in the system: costly and accurate iterative IK would be used
for characters at the forefront while faster analytic solutions would be exploited at farther
distances.
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Figure 9.1: (top) YaQsimulating and navigating a crowd of varied virtual humans in a city
environment.(bottom)The 3 different rendering representations become apparent: deformable
meshes (in red), rigid meshes (in green) and impostors (in blue).
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Figure 9.2: Appearance sets applied to instances of a single human template. Note the different
specular effects on the body parts and the varying cloth patterns.

Figure 9.3: Virtual humans can carry complex accessories, such as handbags and balloons. This
effect is achieved by freezing and clamping specific joints of the upper body at runtime.
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Appendix

10.1 Introduction on Navigation in YaQ

YaQallows autonomous, goal-oriented navigation for pedestrians composing virtual popu-
lations. Users control the pedestrians’ activity by givingthem goals, and consequently, can
dispatch the population as desired in a virtual environment. In order to achieve goal-directed
navigation, we first need to plan several paths. As illustrated in Figure3.1, YaQ integrates
an efficient navigation planning solution based on a navigation graph, which captures the
geometry and topology of an environment into a compact data structure [Pettré et al., 2006;
Pettré et al., 2007]. A fully detailed presentation of the motion planning techniques used in
YaQis available in [Yersin, 2009]

10.1.1 Navigation Graph and Semantic Model

As illustrated in red in Figure3.1, given ascene model, it is possible to compute anavigation
graph, based on an approximate cell-decomposition of the navigable space. Each cell has
a circular shape, and captures a portion of the obstacle-free areas in the environment. Two
cells are interconnected when their respective shapes are overlapping. Cells’ connectivity is
also captured into the navigation graph. This approach is capable of handling complex and
large environments, even when composed of uneven surfaces (outdoor terrains) or layered
ones (buildings, cities). An example of a navigation graph is displayed in Figure10.1.

An optionalsemantic modelcan also be used as a second input to generate a navigation
graph annotated with high-level information. Such a model is usually a simplified environ-
ment geometry demarcating zones where specific behaviors are expected from pedestrians.
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Figure 10.1: A navigation graph is composed of circles representing navigable areas. When two
circles intersect, pedestrians are allowed to navigate from one navigable area to the other.

For instance, a semantic model could provide positions of show windows, so that pedestrians
look at these points when passing nearby, or areas where shops are situated so that individ-
uals are provided with shopping bags before leaving the shop. Technically, such areas are
identified in the semantic model, and all graph vertices enclosed within this area are tagged
with a specific behavior. When a pedestrian enters this zone,it will perform the associated
action.

10.1.2 Navigation Planning

Once the navigation graph has been generated, it is possibleto plan the paths that pedes-
trians will use. On the one hand, getting a unique and differentiable locomotion trajectory
for each pedestrian is essential for preserving believability. On the other hand, attributing
a goal to every single pedestrian would result in a fastidious task and expensive computa-
tions at run-time. Ourplanner(see Figure3.1) allows batched processing: first of all, users
providedirectivesto choose how the pedestrians will be dispatched in the wholescene, as
schematized. A directive simply specifies an initial and a destination point. Secondly, for
each directive, the navigation graph is explored using Dijkstra’s algorithm in order to find
global paths, starting from the shortest one to progressively longer ones. These paths are
large passages consisting of navigable areas to cross. As a result, each pedestrian is assigned
to one of these paths, giving a first level of variety in trajectories. In a last step, individual
trajectories are derived for each pedestrian by selecting singularwaypointscontained within
the global path, resulting in a second level of variety for trajectories. Consequently, each
pedestrian moves along its own unique path. Users can createas many directives as desired
to populate environments. Note that this individualization of trajectories is achieved only
once at initialization and provides realistic results, widely spreading pedestrians having the
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same destination.

In real time, virtual humans are steered along their plannedpath by tracking successively
waypoints as planned at pre-process. As previously mentioned, different algorithms are used
for crowd steering, depending on the environment’s regionsof interest. For regions of high
interest, a costly but accurate potential field-based technique is exploited [Treuille et al.,
2006]. To allow the potential field computation at runtime, an additional structure has first
to be created at initialization: agrid, composed of cells, is disposed over the navigation
graph [Yersin et al., 2008].

The resulting locomotion trajectories are unique. However, they also emphasize an in-
dividual behavior of pedestrians,i.e., they always walk alone. In any urban environment, it
is common to observe people walking in groups of 2 or more. Thus, we have extended the
planner to perform the optional task of joining pedestriansin small groups of 2 to 5 people:
based on specific user directives,i.e., the number and size of groups within the crowd, the
planner takes care of assigning close waypoints on a same path for members of a same group.
Note that groups are created randomly with the constraint that the same human template is
not used twice in the same group. This extension has proven tostrongly impact on the spec-
tator perception of the crowd. The resulting distribution of pedestrians on varied paths and
in different groups is illustrated in Figure10.2.

Figure 10.2: Pedestrians are widely distributed in the scene, thanks to the planner (see Fig-
ure3.1) that finds a large variety of paths for a given set of original/destination points. Groups of
2 to 5 people are also created to further increase the realismof the simulation.

10.2 Implementation of Segmentation Maps

The color variety technique described in Chapter4 can be mainly implemented in a fragment
shader. We here detail how to do it in GLSL, using Shader Model3.0 hardware. Note that
for the sake of clarity and brevity, the following code showshow to apply color variety with
an appearance set composed of a single segmentation map,i.e., each fragment can at most
belong to four different parts. However, once the concept isgrasped, it is easily extended to
multiple segmentation maps.
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10.2.1 Color Contributions

To facilitate the fragment shader comprehension, in a first step, we begin by describing the
basic code applying color variation to every fragment of oneinstance. Then, in a second
phase, we will add the necessary lines to include customizedper-part illumination effects
(specularity and reflection).

The uniforms needed for the basic color variation algorithmare the following:

uniform sampler2D texture;
uniform sampler2D segmentationMap;
uniform sampler2D clut;
uniform vec2 clutCoord;

Thetexture andsegmentationMap sampler2D handles represent the components
of the appearance set used for the current object instance.

Each instance possesses one set of four colors,i.e., one per part. Theclut texture
contains the color sets of all instances in the scene, ordered in a particular way. Firstly,
to simplify the CLUT addressing, colors belonging to a single instance are always placed
contiguously on the same row of the CLUT texture. Secondly, we store a set of four RGB
colors in only three texels to save space: since the CLUT is anRGBA texture, it is possible
to store the three first colors in the RGB channels of three texels, and use their vacant A
channel to store the RGB components of the fourth color.

Finally, the uniformclutCoord contains the 2D coordinates that index the first color
of the current instance. Note that since colors of a same set are always contiguous in a same
row, we can efficiently iterate through the current set by only increasing thex coordinate of
clutCoord.

The following code snippet shows how to color fragments:

01 vec3 colorAccum = vec3( 0.0 );
02 vec3 clutFetchFourth = vec3( 0.0 );
03 float whiteContribution = 1.0;
04
05 const vec4 textureFetch =
06 texture2D( texture, gl_TexCoord[ 0 ].st );
07 const vec4 segMapFetch =
08 texture2D( segmentationMap, gl_TexCoord[ 0 ].st );
09
10 // Iterate through the RGB channels of the segmentation map.
11 for ( int i = 0; i < 3; ++i )
12
13 const vec4 clutFetch =
14 texture2D(
15 clut,
16 vec2( clutCoord.x + INV_CLUT_RES*i, clutCoord.y )
17 );
18
19 clutFetchFourth.r = clutFetch.a;
20
21 colorAccum += segMapFetch.r * clutFetch.rgb;
22
23 whiteContribution -= segMapFetch.r;
24
25 // Segmentation map and color accum
26 // bonus texel swizzling.
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27 segMapFetch = segMapFetch.gbar;
28 clutFetchFourth = clutFetchFourth.gbr;
29
30
31 // Get color accum bonus.
32 whiteContribution -= segMapFetch.r;
33 colorAccum += segMapFetch.r * clutFetchFourth.rgb;
34
35 gl_FragColor.rgb =
36 textureFetch * ( max( colorAccum, vec3( 1.0 ) )
37 + vec3( max( whiteContribution, 0.0 ) )

At lines 01 to 03 we declare three local variables. The variable colorAccum will
accumulate the weighted contribution of each part’s color.

At lines 05 and 07, the texture and segmentation map are both addressed by the same im-
plicit built-in varyinggl_TexCoord[0].st, since they share the sameuv parameteriza-
tion. The corresponding fetched colors are saved intextureFetch andsegMapFetch,
respectively.

The core of the algorithm is a loop through the R, G, and B values of the segmentation
map fetch.

First of all, at line 13, the color of the current part is retrieved from the CLUT. As pre-
viously explained, only thex coordinate of the CLUT needs to be incremented. Note that
INV_CLUT_RES represents the reciprocal of the CLUT resolution, used to normalize the
computed coordinates between 0.0 and 1.0.

Then, at line 19, theclutFetchFourth variable is used to save the fourth color in
the CLUT. Recall that its RGB components are stored in the A channel of the CLUT’s three
texel set. This color is thus only known at the end of the loop,once the three CLUT texels
have been read.

At line 21, the color contribution of the part currently processed is added: the current
segmentation map channel is used to weight theclutFetchcolor contribution. The fourth
part’s color contribution, saved inclutFetchFourth, is only added at line 33, once out
of the loop. Note that in a shader, the intensity of a texture channel is no longer expressed
between 0 and 255, but normalized between 0.0 and 1.0. Thus, the RGB components of the
resultingcolorAccumare also in this range.

To iterate over the segmentation map’s channels, a swizzling of thesegMapFetch
variable is achieved at line 27. Similarly, to save the fourth color’s components, the
colorFetchFourth variable is also swizzled at line 28.

Sometimes, it happens that the sum of contributions for a texel does not reach precisely
1.0 (introduced in Section4.3.1). This is the case when, in a segmentation map, the sum
R+G+B+A does not equal 255 for a texel. It happens particularly often when designing
smooth transitions between two parts. In the above code, care is taken to treat this partic-
ularity. If the sum exceeds 255 (1.0 in the shader), it is simply clamped (see line 36). If
however, the sum does not reach 255, the problem is trickier:from a design point of view,
it means that a certain percentage of the texel belongs to no part at all. From a technical
point of view, let us take an example: imagine a transition texel in a segmentation map. Its
R and G components both equal 100 (39%), the others equal 0. For simplicity, let us assume
the corresponding part colors in the CLUT are pure red and green. From the shader code
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above, the final color incolorAccumis 39% of red and 39% of green which represents a
dark yellow:

100

255
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255
green ≃ 0.39
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0.0
0.0



+ 0.39





0.0
1.0
0.0



 =





0.39
0.0
0.39



 (10.1)

This seems to be the correct calculation. However, with thisapproach, when trying to
achieve a gradient transitioning smoothly from red to green, the result provides shades of
yellow that are too dark. To compensate for this, we add whitetocolorAccum to fill in the
missing contribution. In our example, 22% of white is added,resulting in acolorAccum of
(0.61, 0.22, 0.61). In the code, at line 03, the variablewhiteContribution is set to 1.0
(or 100%), and at lines 23 and 32, the percentage of other parts are substracted from it. The
final color is computed at line 35, where the white contribution is added tocolorAccum.

10.2.2 Multiple Materials

Now that the basic mechanism has been illustrated, we show how to obtain per-part illumi-
nation effects. Here, we illustrate the case of specular andsphere map reflection parameters.
Firstly, we need three more uniforms:

uniform vec2 specularParams[ 4 ];
uniform sampler2D sphereMap;
uniform float reflectivityParams[ 4 ];

To achieve specularity, from Phong’s equation, two values are required: intensity and
exponent. Thus,specularParams is an array of four 2D vectors, one for each part of
the segmentation map. For reflection effects, the sphere map(reflection texture) is sent in
sphereMap, and the reflectivity parameter inreflectivityParams. Once more, there
are four of them, one per part. Note that we only send one sphere map, thus all parts of this
segmentation map potentially reflect the same environment.The following code snippet is
similar to the previous one except for a few additional lines, emphasized with a star (*).

01 vec3 colorAccum = vec3( 0.0 );
02 vec3 clutFetchFourth = vec3( 0.0 );
03 float whiteContribution = 1.0;
04* vec3 reflectionContribution = vec3( 0.0 );
05* float specularContribution;
06
07 const vec4 textureFetch =
08 texture2D( texture, gl_TexCoord[ 0 ].st );
09 const vec4 segMapFetch =
10 texture2D( segmentationMap, gl_TexCoord[ 0 ].st );
11* const vec3 sphereMapFetch =
12* texture2D( sphereMap, gl_TexCoord[ 1 ].st );
13
14 // Iterate through the RGB channels of the segmentation map.
15 for ( int i = 0; i < 3; ++i )
16
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17 const vec4 clutFetch =
18 texture2D(
19 clut,
20 vec2( clutCoord.x + INV_CLUT_RES*i, clutCoord.y )
21 );
22
23 clutFetchFourth.r = clutFetch.a;
24
25 colorAccum += segMapFetch.r * clutFetch.rgb;
26
27* specularContribution +=
28* segMapFetch.r *
29* specularParams[ i ].x *
30* pow( r0DotE, specularParams[ i ].y );
31* reflectionContribution += segMapFetch.r *
32* reflectivity[ i ] * sphereMapFetch;
33
34 whiteContribution -= segMapFetch.r;
35
36 // Segmentation map and color accum
37 // bonus texel swizzling.
38 segMapFetch = segMapFetch.gbar;
39 colorAccumBonus = colorAccumBonus.gbr;
40
41
42 // Get color accum bonus.
43 whiteContribution -= segMapFetch.r;
44* specularContribution +=
45* segMapFetch.r *
46* specularParams[ 3 ].x *
47* pow( rDotE, specularParams[ 3 ].y );
48* reflectionContribution +=
49* segMapFetch.r *
50* reflectivity[ 3 ] *
51* sphereMapFetch;
52 colorAccum += segMapFetch.r * clutFetchFourth.rgb;
53
54 gl_FragColor.rgb =
55 textureFetch * ( max( colorAccum, vec3( 1.0 ) )
56 + vec3( max( whiteContribution, 0.0 ) ) ;
57* gl_FragColor.rgb +=
58* reflectionContribution + vec3( specularContribution );

At line 09, the sphere map is addressed with the built-in varyinggl_TexCoord[1].st,
previously computed in the vertex shader (see vertex shadercode in the Appendix). The
fetched color is saved insphereMapFetch.

Then, in the loop, at line 27, the variablespecularContribution is computed as
the weighted contribution of each part’s specularity. The applied formula is the one com-
monly used in the Phong model.

Similarly for the reflection, at line 31, the variablereflectionContribution ac-
cumulates all the parts’ contributions as their reflectivity multiplied by the fetched sphere
map color, weighted by the channel intensity in the segmentation map. At lines 44 and 48,
the fourth part’s contribution to specularity and reflection is accumulated. Note that it would
be impossible to integrate the fourth part’s contribution in the loop, since we are constrained
to three iterations corresponding to the CLUT’s sets of three colors.

The presented code uses a loop, available only in Shader Model 3.0. However, by un-
rolling the loop, this technique can also be implemented on older GPUs. Note that it is
exactly what a good compiler should do, even on Shader Model 3.0 parts.
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