Generating, Animating, and Rendering Varied Individuals
for Real-Time Crowds

THESE NO° 4405 (2009)

PRESENTEE LE 22 MAI 2009
A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE REALITE VIRTUELLE
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Jonathan MAIM

acceptée sur proposition du jury:

Prof. B. Faltings, président du jury
Prof. D. Thalmann, directeur de these
Dr S. Donikian, rapporteur
Prof. R. Hersch, rapporteur
Prof. P. Poulin, rapporteur

(Pr

EC()LE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2009

CONTENTS

1 Introduction
1.1 Motivations and Contributions
1.1.1 YaQArchitecture
1.1.2 Rendering LevelsofDetail
1.1.3 Crowd Variety
1.2 SummaryofChapters

2 Related Work

2.1 Real-time Crowd Visualization
2.1.1 Point-based Approach L.
2.1.2 Image-based Approach,

2.2 Crowd Appearance Varietyo
2.2.1 ColorVariety
2.2.2 ShapeVariety

2.3 Crowd Motion Planning and Navigation

2.4 Crowd Architectures

3 Overview

3.1 YaQArchitecture

3.2 Virtual Human Representations
3.21 HumanTemplate 29
3.2.2 DeformableMesh.
3.23 RigidMeshes

20
22
24

CONTENTS

3.2.4 Impostor e 32
3.3 YaQData 35
3.3.1 HumanTemplateData 35
3.3.2 Database Management, 36
Appearance Variety 39
4.1 Appearance Variety at ThreelLevels 40
4.2 Previous Workon Color Variety 41
4.2.1 Principles e 42
422 HSBColorSpaces 42
4.3 SegmentationMaps e 45
4.3.1 Principles 45
4.3.2 Color Computationand Storage 48
4.4 Conclusion e 50
Shape Variety 53
5.1 ACCESSOMNES o i e 54
5.1.1 Simple AcCessories i 54
5.1.2 Complex ACCESSONEeS v v v v i 55
5.2 Levels of Detail for Accessories 56
521 RigidMeshes 57
5.2.2 ImMpoStors 58
5.3 Accessories Implementation L 61
5.3.1 Loading and Initialization 61
532 Rendering 62
5.3.3 Empty ACCeESSOries i 64
5.3.4 ColorVariety Storage 64
5.4 Accessory Limitations 66
55 ShapeandHeight 67
55,1 Shape e 67
55.2 Height. e 69
Animation Variety 71
6.1 Animation Types e 71
6.1.1 Idle AnimationClips 72
6.1.2 Locomotion AnimationClips 72
6.2 MotionKits 73

6.2.1 Data Structure 74

CONTENTS 5

6.2.2 Implementation 75

6.3 UpperBody Movements 77
6.4 Complex ACCESSONES v v v i e e e e 80

7 Real-Time Pipeline 83
7.1 Scaler 83
7.1.1 ScoreAllocation 83

7.1.2 Humanlinstancelists. 85

7.2 Simulator 86
7.3 Animator e e 87
7.4 Renderer. e 38
7.4.1 Shadows 88

7.4.2 VirtualHumanRendering 91

7.4.3 Performance 92

8 Results and Case Studies 97
8.1 Case Study 1: Buildings 98
8.2 Case Study 2: ThemePark Q9
8.21 Scenario. 100

8.2.2 Performance 100

8.3 Case Study 3: AncientPompeii 0. 102
8.4 Case Study 4: MedicalDomain 105
8.4.1 \estibular Reeducation, 105

8.4.2 CAVE e 106

9 Conclusion 109
9.1 YaQArchitecture 109
9.2 Appearance Variety e 110
9.3 ShapeVariety e 111
9.4 AnimationVariety. 111
10 Appendix 115
10.1 Introduction on NavigationiMaQ 115
10.1.1 Navigation Graph and Semantic Model 115

10.1.2 NavigationPlanning 116

10.2 Implementation of SegmentationMaps 117
10.2.1 Color Contributions 118

10.2.2 Multiple Materials Lo 120

CONTENTS

Remerciements

Je voudrais remercier mon directeur de thése, Daniel Thadppour m’avoir donné
I'opportunité et les moyens de travailler sur cette thés&/Riab pendant ces quatre
derniéres années. Un grand merci également a Boi Faltingsh&e Donikian, Roger
Hersch, et Pierre Poulin pour accepter de faire partie dejorgn

Sans l'aide précieuse et le support inconditionnel de Barlgarsin, cette these ne serait
pas la méme. Merci, Barbara pour tous ces moments partagésble !

Merci a Mireille Clavien, notre utilisatrice principale poavoir testé et éprouvé nos
outils, ainsi que son aide précieuse durant les deadlines.

Merci aux anciens "crowd guys" du VRIab : Julien Pettré pas collaborations, Sé-
bastien Schertenleib et Pablo de Heras Ciechomski.

Merci aux membres et ex-membres du VRIab pour avoir part@éesi discussions et
bonne humeur! Particuliérement, Ronan Boulic, Helenadsy,lBenoit Le Callennec,
Damien Maupu et Daniel Raunhardt (nos quatre sujets petiréliscussions me man-
queront).

Merci également aux étudiants exceptionnels avec qui jidaechance de travaliller :
Fiorenzo Morini, Rob van der Pol, Robin Mange et Antoine Sichm

Merci a Josiane Bottarelli et Renaud Ott pour le support adinatif et technique.

Merci au Fonds National Suisse de la Recherche Scientifique.

Pour Dina, Yaél et Alex.

3.2. VIRTUAL HUMAN REPRESENTATIONS 31
equation is:

v(t) = L refyref (3.1)

wherev(t) is the deformed vertex at timeinfluenced byn joints, isthe global transform
of jointi attimet, T is the inverse global transform of the joint in the referepaosition,
andv'ef is the vertex in its reference position. This technique isvkn as skeletal subspace
deformation, or skinning.

The skinning can be efficiently performed by the GPU: the aeéble mesh sends the
joint transformations of its skeleton to the GPU, that tagas® of moving each vertex ac-
cording to its joint influences. However, it is important &ke into account the limitations
of graphic cards (Shader Model 2 & B\idia, 2009), that can store only up t®56 atomic
valuesj.e., 256 vectors of four floating points. The joint transformatiofackeleton can be
sent to the GPU a$ x 4 matricesj.e., four atomic values. This way, the maximum number
of joints a skeleton can have reaches:

256 _

=64 (3.2)

When wishing to perform hand and facial animatiaisjoints are not sufficient. Our solu-
tion is to send each joint transformation to the GPU as a uraternion and a translation,
i.e., two atomic values. This allows to double the number of pimbssible to send. Note
that one usually does not wish to use all the atomic strustaf@a GPU exclusively for the
joints of a skeleton, since it is usually exploited to pracether data.

Rendering deformable meshes is very costly, due primavily pipeline flush occuring
each time a new virtual human is rendered, and also to thenekgevertex skinning and joint
transmission. Nevertheless, it would be a great quality doalo without them, indeed:

e They are the most flexible representation to animate, atigwven for facial and hand
animation (if using a sufficiently detailed skeleton).

e Such animation sequences, called skeletal animationshaag to store in memory:
for each keyframe, only the transformation of deformingngsji.e., those moved in
the animation, need to be kept. Thus, a tremendous quantikypse animations can
be exploited in the simulation, increasing crowd movemaniety.

e Procedural and composited animations are suited for thigsentatione.g, look at
the camera, or on-the-fly idle motion generation (see fomgta Egge<t al. [Egges
et al, 20049).

¢ Blending is also possible for smooth transitions betweéerdint skeletal animations.

Unfortunately, the use of deformable meshes as the solegepiation of virtual humans in

a crowd is too prohibitive. We therefore use them in a limiednber and only at the fore-

front of the camera. Note that before switching to rigid nessiwe use several deformable
meshes, keeping the same animation algorithm, but with & mes decreasing number of

triangles.

32 CHAPTER 3. OVERVIEW

Skinned and textured deformable meshes require skilledjums. But once finished,
they are automatically used as the raw material to deriveubisequent representations: the
rigid meshes and the impostors.

3.2.3 Rigid Meshes

Arigid mesh is a precomputed geometric posture of a defolemabsh, thus sharing the very
same appearance. A rigid animation sequence is alwayseéasfpom an original skeletal
animation, and from an external point of view, both look aelikHowever, the process to
create them is different. To compute a keyframe of a rigidraion, the corresponding
keyframe for the skeletal animation is retrieved. It pr@dda skeleton posture (or joint
transformations). Then, in a preprocess, each vertex mmed on the CPU, as opposed
to a skeletal animation, where the vertex deformation isexeld online, and on the GPU.
Once the rigid mesh is deformed, it is stored as a keyframa,table of vertices, normals
(3D points), and texture coordinates (2D points). This pssds repeated for each keyframe
of arigid animation. At runtime, a rigid animation is simghayed as a succession of several
postures or keyframes. There are several advantages msisth a representation:

e It is much faster to display, because the skeleton defoamaind vertex skinning
stages are already done and stored in keyframes. The cormationi between the
CPU and the GPU is kept to a minimum, since no joint transféiona need to be
sent, and pipeline flushing is significantly reduced.

¢ It looks exactly the same as the skeletal animation usedrtergee it.

The gain in speed brought by this new representation is deratle. It is possible to display
about 10 times more rigid meshes than deformable mesheSé&xtion7.4.3for detailed
results). However, the rigid meshes need to be displayddefafrom the camera than de-
formable meshes, because they allow for neither procedniaiations, nor blending, and
no composited, facial, or hand animation are possible eithe

3.2.4 Impostor

An impostor is the less detailed representation, and extegsexploited in the domain of
crowd rendering Tecchia et al.2002a Dobbyn et al. 2005 Millan and Rudomin 20049.
An impostor represents a virtual human with only two textunéangles, forming a quad,
which is enough to keep the desired illusion at long rangeftioe camera. Similarly to a
rigid animation, an impostor animation is a succession styres, or keyframes, inspired
from an original skeletal animation. The main differencéwa rigid animation is that it is
only a 2D image of the posture that is kept for each keyfranstead of the whole geometry.
Creating an impostor animation is complex and time consgmirhus, its construction is
achieved in a preprocess, and the result is then stored idaiabase in a binary format
(see Sectior8.3.2, similarly to a rigid animation. We detail here how each fkasne of
an impostor animation is developed. The first step when géingrsuch a keyframe for a
human template is to create two textures, or atlas:

3.2. VIRTUAL HUMAN REPRESENTATIONS 33

e A normal map, storing in its texels the 3D normals as RGB camepts. This nor-
mal map is necessary to apply the correct shading to theaviniwumans rendered as
impostors. Indeed, if the normals were not saved, a terflateshading would be
applied to the virtual human, since it is represented witly dmo triangles. Switch-
ing from a rigid mesh to an impostor would thus lead to awfybpiag artefacts. In
Figure3.3(center), we show an example of such a representation foahsin walk-
ing postures. The generated image RGB components repibgedirections of the
human’s normals.

e A UV map, storing in its texels the 2D texture coordinates &dodmponents. This
information is also very important, because it allows torectly apply a texture to
each texel of an impostor. Otherwise, we would need to gémeara atlas for every
texture of a human template. We show an example of a UV mapJ@king human
in Figure3.3(right)

Figure 3.3: Images of walking humangLeft) The textured and shaded results, as rendered in
YaQ (Center)The RGB channels of the image are used to represent the 3&lidire of the
normals: Red in the X direction, Green in the Y direction, &bde in the Z direction.(Right)

The RG channels of the image are used to represent the texordinates.

Since impostors are only 2D quads, we need to store normdlsexture coordinates
from several points of view, so that, at runtime, when the@a@moves, we can display the
correct keyframe from the correct camera view point.

In summary, each texture described above holds a single possre for several points
of view. This is why we also call such textures atlas. We thai® in Figure3.4a1024 x 1024
atlas for a particular keyframe. The top of the atlas is usestdre the UV map, and its
bottom the normal map.

The main advantage of impostors is that they are very efticgmce only two triangles
per virtual human are displayed. Thus, they constitute thgdst part of the crowd. How-
ever, their rendering quality is poor, and thus they caneogxploited close to the camera.
Moreover, the storage of an impostor animation is very gpsile to the high number of
textures that need to be saved.

We summarize in Tabl8.1 and Figure7.4 the performance and animation storage for
each virtual human representation. We observe that eaglusten the representation hier-
archy allows to increase by an order of magnitude the numislisplayable characters. We
also note that the faster the display of a representati@nlatiger the memory storage. Fi-

34 CHAPTER 3. OVERVIEW

Figure 3.4: A 1024 x 1024 atlas storing the UV map (above) and the normal map (belova) of
virtual human performing a keyframe of an animation fromesal/points of view.

100

01

0.01

0.001

Figure 3.5: Storage space in\/b] on a logarithm scale for one second of animation of each level
of detail: (a) deformable mesHhbp) rigid mesh,(c) impostor.

nally, rigid meshes and impostors are stored in GPU memdrighws usually much smaller

3.3. YAQ DATA 35
Level of Max Displayable| Animation | Animation | Memory
detall Number Frequency| Storage | Location
Q@Q30H z [Hz] Cos{Mb/s]
deformable mesh ~ 200 25 ~ 0.03 CPU
rigid mesh ~ 2,000 20 ~ 0.3 GPU
impostor ~ 20,000 10 ~ 15 GPU

Table 3.1: Characteristics and costs associated to the animatiorchflegel of detail.

than CPU memory.

3.3 YaQ Data

The main problem when dealing with thousands of characseteeiquantity of informa-
tion that needs to be stored and processed for each one of Breessing the data is very
demanding, even for modern processors, while storing itireg intelligent structures that
can be efficiently accessed and shared.

In this section, we first present hovaQtightly packs the data associated to a human
template in order to avoid storing information that can beret over the levels of detail, for
instance. Then, we present how lists of human instancemgtemilar structures can be or-
ganized to limit the number of state switches at runtimealmnwe introduce our database,
where all the heavy pre-computed data is serialized an@dtiar make the initialization
phase of the simulation as fast as possible.

3.3.1 Human Template Data

The organization of resources inside a human templataistifited in Figur8.6.

Appearance Set. As previously stated, appearance sets, which we detail apt@é4,

are used to apply various colors to the body parts of a hunstarnoe. Each appearance setis
unique, and associated to a single human template. Thellgecsgveral appearance sets per
template, but never more than one template per appearanc@/een creating an instance
of a human template, one appearance set belonging to théaterngpchosen to modulate the
colors of this instance. If a human template is instantiagatral times, some instances will
share the same appearance set.

Deformable Mesh. Storing a deformable mesh¥aQsums up to saving four arrays: one
array filled with all the vertices of the 3D mesh, one arrayttwesthe normals associated to
all vertices, one array of UV coordinates, and finally, omayof indices. The indices allow

to correctly draw the mesh by grouping vertices into tri@sglusing their corresponding
normals for the shading, and mapping the texture with the oM dinates.

36 CHAPTER 3. OVERVIEW

Appearance Set

Texture Map

Lk
|
|
|
|
\

Normals

Uvs

Figure 3.6: Shared resources between representations of a human tem(aadeformable
mesh,(b) rigid mesh,(c) impostor.

Rigid Mesh. A rigid mesh is always associated to an animation, sincadyreleformed.
To store one keyframe of a rigid animation, the whole set dieces needs to be stored again,
for they are not placed at the same positions as in a defoenmabsh. The same applies to
the normals. The UV coordinates remain the same, becausextiaee is still mapped in the
same way. Finally, the indices can be reused too from a daiflolerto a rigid mesh, if care
is taken to keep the same ordering in the different arrays.

Impostors. Forimpostors, no information is shared with the other repngations. All the
data required to shade and texture the quad are stored itldBgeesented in Sectid2.4

3.3.2 Database Management

