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Abstract

Generalized Linear Models have become a commonly used tool of data
analysis. Such models are used to fit regressions for univariate responses
with normal, gamma, binomial or Poisson distribution. Maximum like-
lihood is generally applied as fitting method.

In the usual regression setting the least absolute-deviations estimator
(Li-norm) is a popular alternative to least squares (La-norm) because
of its simplicity and its robustness properties. In the first part of this
thesis we examine the question of how much of these robustness fea-
tures carry over to the setting of generalized linear models. We study a
robust procedure based on the minimum absolute deviation estimator
of [Morgenthaler| (1992), the L, quasi-likelihood when ¢ = 1. In par-
ticular, we investigate the influence function of these estimates and we
compare their sensitivity to that of the maximum likelihood estimate.
Furthermore we particulary explore the L, quasi-likelihood estimates
in binary regression. These estimates are difficult to compute. We
derive a simpler estimator, which has a similar form as the L, quasi-
likelihood estimate. The resulting estimating equation consists in a
simple modification of the familiar maximum likelihood equation with
the weights wg(p). This presents an improvement compared to other



robust estimates discussed in the literature that typically have weights,
which depend on the couple (x;,y;) rather than on p; = h(z'3) alone.
Finally, we generalize this estimator to Poisson regression. The result-
ing estimating equation is a weighted maximum likelihood with weights
that depend on p only.

Keywords: Robustness, Generalized linear models, Binary regression,
Poisson regression, Maximum quasi-likelihood.



Version abrégée

Les modéles linéaires généralisés (GLM) ont été dévéloppés afin de per-
mettre 'ajustement de modéles pour des données réponses univariées
issues de distributions telles que les lois Normale, Poisson, Binomi-
ale, Exponentielle et Gamma. FEn général, le principe du maximum
de vraisemblance est appliqué comme méthode d’ajustement pour ces
modéles.

Dans les modéles de régression, les estimateurs de régression LAD
(norme L) offrent des approches alternatives aux estimateurs des moin-
dres carrés (norme Ly), grice a leur caractéristique principale de ro-
bustesse. Dans le premiére partie de cette thése, nous cherchons a
déterminer si cette propriété de robustesse se retrouve pour les mod-
éles linéaires généralisés. Nous examinons une approche de quasi-
vraisemblance basée sur la norme L, introduite par|Morgenthaler|(1992]).
Plus particuliérement, nous nous intéressons a la fonction d’influence
de cet estimateur et la comparons avec celle des estimateurs de vraisem-
blance .

Par la suite, nous étudions des méthodes de L, quasi-vraisemblance
pour les modéles binaires. Le calcul de ces estimateurs étant difficile,
nous introduisons un nouvel estimateur similaire & ceux de la L, quasi-



vraisemblance mais présentant une plus grande facilité de calcul. Le
résultat est une modification de I’estimateur du maximum de vraisem-
blance pondérée par wy(p). Ceci constitue une amélioration par rap-
port & d’autres méthodes robustes dont la fonction de poids dépend de
(xi,9i), au lieu de p; = h(xT 3) seulement.

Finalement, nous généralisons cet estimateur aux modéles de régression
Poissonien. Notre résultat est une méthode de maximum de vraisem-
blance pondérée, dont les poids ne dépendent que de p.

Mots-clés : Robustesse, Modéles linéaires généralisés, Régression bi-
naire, Régression de Poisson, Maximum quasi-vraisemblance.
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CHAPTER 1

Introduction

Statistics is the mathematical science of interpretation and explanation
of data. It consists of methods for data analysis in a wide variety of
scientific domains such as medicine, finance, crime and so forth. Regres-
sion analysis has became one of the most important tools for application
in sciences. The most popular regression estimator was introduced in
the work of Gauss and Legendre (see Plackett (1972), [Stigler| (1981 and
Stigler| (1986) for some historical discussions). This is the well-known
least squares (LS) method, which corresponds to optimizing the fit by
minimizing the sum of the squares of residuals. LS has been adopted
because of its ease of computation.

However, real data often contains outliers. Outlying observations, both
in the dependent and the explanatory variables, can have a strong ef-
fect on the LS estimate. The outlier problem is well-known and simply
removing them as a solution is as old as statistics. In the last century
a large body of literature on outliers and their dangers to classical sta-
tistical procedures has appeared.
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To solve this problem, new statistical techniques have been developed
that are not so easily affected by outliers. These are the robust meth-
ods. Robust (or resistant) procedures, pioneered in the work of E.S.
Pearson, G.E.P. Box and J.W. Tukey (1960), are statistical techniques
whose results remain trustworthy even if there is substantial contami-
nation in the data. More formal theories of robustness have been de-
veloped in 1970s. In these theories, robustness signifies insensitivity to
small deviations from the model assumption. Robust methods do not
hide the outliers nor do they remove them. They will yield a reliable
result even in their presence.

Least absolute deviations (LAD) or the Li-norm is one of the princi-
ple alternative methods to LS (see Bloomfield and Steiger| (1983)) for
more details). This method corresponds to a mathematical optimiza-
tion technique similar to the least squares technique, which obtains the
estimate by minimizing the absolute value of residuals. These estimates
are resistant to outliers. Surprisingly, LAD curve-fitting was introduced
a half-century earlier than LS by R. J. Boscovich (1757). Thirty years
later P. S. Laplace (1789) gave an algebraic explanation of how to find
the estimate of the parameter. Least absolute deviations has not been
widely adopted because of their complicated computation. Today, the
improvement in computer technology has removed this difficulty.

In the classical regression models, described above, the normal distri-
bution plays a central role. Inference procedures for linear regression
models in fact assume that the response variable Y follows a normal dis-
tribution. There are many practical situations where this assumption
is not going to be even approximately satisfied. For example, suppose
the response variable is a discrete variable, which we often encounter
in counted responses, such as number of injuries, patients with partic-
ular diseases, and even the occurrence of natural phenomena includ-
ing earthquakes. There are also many situations where the response
variable is continuous, but the assumption of normality is completely
unrealistic, such as distribution of stress in mechanical components and
failure times of electronics components or systems.
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Nelder and Wedderburn (1972) introduced the term generalized lin-
ear model (GLM) (McCullagh and Nelder, 1983). They unified var-
ious statistical models under this heading, namely regression models
for univariate response variables that are distributed according to an
exponential family. The exponential family includes the normal, bi-

nomial, Poisson, geometric, negative binomial, exponential, gamma
and normal-inverse distributions. A generalized linear model links the
expected value of the response, F(y;) = p;, to a linear prediction
n; = x1' 3 with a monotone function, called the link. The classical
parameter estimate for such models is the value that maximizes the
likelihood, which in many cases is equivalent to maximizing a quasi-
likelihood function, [Wedderburn| (1974).

The non-robustness of the maximum likelihood estimator for 3 has
been extensively discussed. Robust alternatives for generalized linear
models are proposed by many authors: see for instance, the work of:
Stefanski et al.| (1986b)); (Copas| (1988); Kiinsch et al. (1989)); [Morgen-|
thaler| (1992); |Carroll and Pederson| (1993); Bianco and Yohai (1996]);
Marazzi and Ruffieux (1996), (Cantoni and Ronchetti| (2001)) and |Croux|
land Haesbroeck] (2003)).

The particular motivation of this thesis is to study the robustness prob-

lem in the context of generalized linear models and in a specific case,
the logistic regression. Since in the classical regression model, the re-
placement of the Lo-norm by least absolute-deviations, the Lj-norm,
has been shown to lead to resistance against outliers, we are interested
in studying the specific LAD in generalized linear models. [Morgen-]
replaced the Lo-norm in the definition of quasi-likelihood
by an arbitrarily chosen L,-norm for ¢ > 1, expecting that this might
similarly yield robust estimates. In this thesis we study the robustness
behavior of this L, quasi-likelihood for the GLM. In particular, we con-
sider the logistic case and simplify these estimators in a new estimator.
This new estimator has a similar form as the L, quasi-likelihood esti-
mate, but is easier to compute and results in more resistant estimates.
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Thesis’ Outline

In Chapter 2 a detailed overview of the theory and the historical devel-
opment of regression models and generalized linear models is presented.
It focuses on the robust estimates for these models. The chapter is or-
ganized to reflect the historical development of robust models from 1980
to 2008 and from basic to general. In Chapter 3 the robust behavior of
the L, quasi-likelihood estimator is examined and the computational
difficulties of these estimators are studied. In Chapter 4 we introduce a
new weighted maximum likelihood estimator, which is similar to the L,
quasi-likelihood for logistic regression. The properties of these estima-
tors are discussed. We additionally propose the new weight function.
Using simulation and examples, we compare these new estimates with
estimates proposed in the literature. In Chapter 5 we generalize this
estimator to the Poisson model. Finally, in Chapter 6, we present the
conclusions and final remarks.



CHAPTER 2

Regression and Generalized Linear Models

2.1 Regression models
2.1.1 Linear regression

In this chapter we begin the discussion on fitting equations and the
estimation of the parameters of simple linear regression models. In
simple regression, we are interested in studying the relation between
the explanatory variable X and the response variable Y,

Yi = P+ Pox; + €5 for i=1,---,n, (1)

where n is the number of observations. The error is assumed to be
independent and be normally distributed with mean zero and unknown
standard deviation o. The goal is to estimate the regression coefficients
B = (B1,52)

The most popular regression estimator (Gauss and Legendre 1794-95)
is the method of least squares (LS), which consists of estimating 3 by
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(,él, Bg) such that the residuals
ri =y — i = yi — (B1 + faxy)
satisfy
n
Z r? = min!
i=1 s
The solution to this optimization problem is,

s 2 yilw — )

Po= S35 =90

> (w; — 1)

where T := LY x;, § = £ Y.

2T, (3)

Example 1. Figure[]] is a scatter plot of five points. The red point is
an outlier in the direction of . The figure shows the LS fit computed
without the outlier has the better representation, however, the LS result

has been strongly affected by a single outlier.

10
\
10
\

y-axis

Figure 1: Original data with five points and their LS line(left). Same data
by adding an outlier in  direction and their LS line (right).

10
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Now we consider the more general case of a data set in multiple regres-
sion. Let (x; € RP,y; € R), for i = 1,--- ,n be pairs of explanatory
and response variables. Where the vector x; = (1, z;1, - ,xi(p_l))T
The data is assumed to follow the linear model

vi =x; B+ei, (4)

where 8 = (01, , p) are unknown parameters to be estimated and
the error is a random variable with a normal distribution g; &% N (0,0?).
The design matrix is X = (1,x1,- -+ ,Xp—1) € R™*? with non-random
(or fixed) variables. Let y and & be the vectors with elements y; and
¢; respectively. Then the linear model may be written as

y=XB+e. (5)
The fitted value y and residuals r correspond to
y=XpB r=y-y.

As in simple regression, the least squares technique results by minimiz-
ing the squares of residuals,

(y - XB)T(y - XB) = win!

This notation means the unknown parameters 3 is estimated by the
value which minimizes the sum of the squared of residuals. Differenti-
ating with respect to 3 yields X7 (y — X3) = 0, then we can obtain

B=(XTX)"'XTy. (6)

The least squares method has been adopted because of its ease of com-
putation before the advent of electronic computer. However the LS
method is still sensitive to the presence of outliers. In the next part
of this chapter we study some of the robust methods that have been
already proposed in the literature for regression models.
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2.1.2 Robust regression methods

Certainly one can ask the question why we are interested in robust
methods? Robust means remaining resistant against some unpredictable
variations. In statistics, models are mere approximations of reality. The
models that underlie many statistical procedures are overly optimistic
and in real data gross errors occur with surprisingly large frequency.
This kind of observation, which lies far from the mass of data is called
outlier. The outlier can affect statistical models and results in an as-
sumed model far from the true one. Robustness signifies insensitivity
against some deviation from the true model. Robust procedures were
pioneered in the works of E.S. Pearson, G.E.P. Box and J.W. Tukey
(1960) and more formal theories of robustness have been developed in
the 1970s.

In regression models, the aim of robust methods is to identify the out-
liers and highly influential data points, leverage points, and finally to
describe the best fit for the data.

One of the first alternatives to LS, as a robust estimator, was proposed
by Edgeworth (1887), who improved the Boscovich’s (1757) proposal.
This estimator is the least absolute deviation (LAD) or L; regression,
which is determined by

> Irif = min! (7)
=1

The LAD estimator, like the median, is not uniquely deﬁnedﬂ Whereas
the breakdown point (see of the median is as high as 50%, the
breakdown point of the LAD regression estimate is still 0% for outliers
in the explanatory variable (high leverage points). This means that a
single leverage point can affect the L; estimator.

The next innovation was Huber’s M-estimator (Huber| (1973)) and [Hu-
ber| (1981))). Huber proposed to generalize the squares of residuals in
LS to

n

Z p(r;/c6) = ngn! (8)

=1

1See e.g Harter (1977), Gentle et all. (1977) and [Bloomfield and Steiger| (1983).
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Here p is a function, ¢ is an auxiliary scale estimate and c is a tuning
constant. Differentiating this expression with respect to the regression
coefficient 3, one can find the following system of equations:
n

> W(ri/co)x; =0 €R?, (9)

i=1
where x; and 0 are the vectors (1,1, -+ ,%p-1)) and (0,---,0),
respectively. The LS and LAD estimators are M-estimators with p-
function p(r;) = r? and p(r;) = |ri|, respectively. After the general
definition of M-estimator, different functions of ¢ (r;) were proposed in
the literature to achieve the best robust estimates.
Huber| (1964)) introduced an estimator, which is given by

K |z |<ec.
Ye(x) = (10)

csgn(z) |x|>ec.

This M-estimator @, like the L; estimator, is robust as long as no
outliers in x-space are introduced. However, they are still affected by
leverage points and their breakdown points are 0%. Therefore, in order
to bound the influence of high leverage points, generalized M-estimators
(GM-estimates) were introduced by considering some weight function
of x;. Two particular forms of GM-estimates have been studied in the
literature. The first, Mallows-estimators, were proposed by [Mallows
(1975) and replaces (9) by

zn:w(xi)@/} (%) x; =0. (11)
i=1

The second one, Schweppe-estimators, were first proposed by Schweppe
(1975) and is also called Hampel-Krasker-Welsch estimator (Krasker
and Welsch| (1982)). These estimates are given by

n

3 w(xi)(— )% = 0. (12)

P w(x;)0

The choice of w and v were considered to bound the influence of a single
outlier. This influence can be measured by the influence function, which
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was defined by Hampel| (1974) (see[2.2.2). Therefore, the corresponding
GMe-estimator is now generally called the bounded-influence-estimator.
Other estimators of the GM-estimator family were proposed in the
literature, but none of them achieves a breakdown point greater than
30%.

Rousseeuw| (1984) proposed the least median squared (LMS) method
with 50% breakdown point, defined as

med 77 = mﬁin! (13)

Figure 2: Five original points with a leverage point and their LS and LMS
fitting.

In Figure [2| we consider Example [1| (page . The blue line represents
the estimate fitted by the LMS method. The LMS estimate is resistant
against all types of outliers, but it has an efficiency disadvantage. The
LMS converges weakly with speed n~'/3, rather than the usua n~1/2,

2See [Rousseeuw and Leroy| (1987) Section 4 of Chapter 4.
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Hence Rousseeuw| (1984) introduced the least trimmed square (LTS)
estimate as

Z(T?)i:n = H[gn' (14)

where (r%)1., < -+ < (r?),., are the ordered squared residuals. The
value of h defines how many of the largest squared residuals should
not be considered for fitting the model. The best value of h is n/2
for which these estimates achieve their best breakdown points of 50%.
Unlike the slow convergency rate of the LMS, the LTS converges at the
rate n= /2.

In this section we reviewed several popular robust estimators for re-
gression models. The next section describes two other aspects, which
measure the robustness properties of an estimator, the breakdown point
and the influence function.

2.2 Measuring robustness

In Section [2.1.2] we have seen that even a single outlier can change the
result of some estimators. On the other hand, some estimators perform
well with a certain percentage of data contamination. One can also be
interested in measuring the effect of infinitesimal perturbations on the
estimator. In the following we introduce two measures of the robustness
of an estimator, the breakdown point and the influence function.

2.2.1 The Breakdown point

The breakdown point (BP) of an estimator B3 of the true parameter
3 represents the largest percentage of data that can be contaminated
such that B still gives accurate information about 3.

The notation of BP was briefly described by F. Hample(1968) in his
Ph.D. thesis. Hampel| (1971)) later gave a more general definition of
BP. Here we first present a simple version, the finite-sample breakdown
point, which was introduced by |Donoho and Huber| (1983). We will
then describe the asymptotic BP (Hampel (1971))).
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Let Z; = (x; € RP,y; € R) for ¢ = 1,--- ,n be a sample of size n. We
consider some contamination of the original data set Z, resulting in the
corrupted sample Z’. The fraction of corruption, €, in the sample is
given by

n—+m
€= ntm “adding” m points to data set Z
n

m . o
e = — ‘“replacing” m points in data set Z.
n

Let B(Z) be a regression estimator. We first define the maximum bias
that can be caused by such a contamination as

bias(e, Z, 8) = Sup 18(Z2')-B(2)] . (15)

If this bias is infinite, this means that the contamination has a large
effect on the estimator. The BP (finite-sample) of the estimate 3 at
sample Z is given by

e*(Z,8) = inf{e; bias(e, Z, 8) = oo}, (16)

which is the smallest fraction of corruption that causes an arbitrary
large variation from the sample estimate. Note that this definition
contains no distribution function. The following definition of break-
down point is introduced by [Hampel (1971), namely the asymptotic
contamination BP of an estimator.

Let B € O be the asymptotic limit of our estimator at the under-
lying model distribution F. The BP of this estimator is denoted by
£*(B, F) € (0,1) such that for any ¢ < ¢* and a probability function G,
there exist a compact set k C © such that

B((1 —e)F +¢G) € k. (17)

The breakdown point for different estimators has be studied separately
and for reasonable estimates its value cannot exceed 50%.
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2.2.2 Influence function

The influence function (IF) was introduced by Hampel (1974) under
the name “influence curve” (IC). The IF is a tool to study the local
robustness properties of an estimator when a small fraction of outliers
appears in the sample.

The IF of an estimator 3 at the probability distribution F(x y(z,y) is
defined as

B — ) F +tAxy) — BF)
t )

IF(x,y: 8, F) = lim (18)

where Ay ) denotes the point mass 1 at (x,y) and this limit exists. In
the regression model, Fix y)(w,y) is the joint distributions of (X,Y’),
which is given by Hx (2)Gy|x. H is the probability distribution of X
and G is the probability distribution of the errors.

The IF measures the asymptotic bias caused by infinitesimal contami-
nation in the data. From the influence function, one can compute the
asymptotic variance of the estimatorﬂ

V(8. F) = / IF(x,y: B, F)IF(x,y: B, F)TdF (x,p).  (19)

Later, Hampel gave a general definition of the influence function for
the M-estimator, which is the solution of the estimating equation

Y W(xiyiB) =0 €RP.

The IF of these estimates is given by the following expression (Hampel
et al.| (1986))):

IF(x,y, 8, F) = M(¢, F)"'¢(x,y,0), (20)

where M (¢, F) = —Ep [%w(x,y,ﬁ)} € RPXP
Moreover, these estimators are asymptotically normal with asymptotic
covariance matrix given by

V(T,F) = M, F)~'Q(v, )M (¢, F) 71,

3For more details see [Hampel et al| (1986) p. 85.
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where Q(v, F) = Er [¢(x,y, B)1(x,y,8)"] .

The maximum likelihood estimator, for example, is an M-estimator
corresponding to p(x,y, 3) = —loggs(y, B|x). Here gg(.) is the condi-
tional probability density function of y given x. Then

4 0
IF(XJJ,,B,F) = J(F) I%IOggﬁ

and V(B,F) = J(F)~! where

90 = [ (los0a)dr(x.0),
where F(x y)(x,y) is the joint distribution of (X,Y") as defined above.

2.2.3 Sensitivity curve

The definition of the influence function, described above, is asymptotic
since we consider the estimator’s asymptotic value. However, there
exist a simple version called the Sensitivity curve(SC), introduced by
Tukey]| (1970-71). Consider the sample (z1,- -, 2z,—1) of n — 1 observa-
tions, then the SC of the estimator T in case of additional observation
z is given by

SCh(z) =n[Tn(z1, s 2n-1,2) — Tn—1(21,** , 2n—1)]. (21)

From this definition one can show that the IF of an estimator is an
asymptotic version of the SC. By considering the estimator T, (21, -+ ,2,) =
T(F,) as a functional of empirical distribution F), of z1,- - - , z,, the SC
can be transformed to

[T(l — %)Fn—l + %Az) - T(Fn—l)]
1/n

SCy(z) =

where F,,_1 is the empirical distribution of zq,--- ,z,_1. This expres-
sion is similar to the IF with contamination size t = % This shows the

fact that in many situations the SC,,(z) converges to IF(z,T, F') when
n — oo.
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In the first section of this chapter we have discussed regression models.
The basic assumption for the classical regression models is that the
error follows a normal distribution and they are independent. In many
cases, this assumption is not satisfied. Generalized linear models were
introduced to unify various statistical models. The next section of this
chapter will cover an overview of generalized linear models and their
robust fitting.

2.3 Generalized linear models

The term generalized linear models (GLM) was coined by Nelder and
Wedderburn| (1972). They unified various statistical models for univari-
ate response variables that follow a distribution from the exponential
familyﬂ

Let (x; € RP,y; € R) for i = 1,--- ,n be the pair of explanatory and
response variables. Generalized linear models relate the expected value
of the response, E(y;) = p;, to a linear prediction n; = x! 3 as follows:

9EW:)] = g(ui) =xi B, (22)

where g(11) is some monotone function, called the link. The inverse link
function is h(x}3) = p;. We assume that a random variable Y given
X has a probability density function, depending on parameter h(x”3),
fly; h(xT'B)). A set of distributions is said to belong to the exponential
family, if it has a density of the form

{yh(XTﬁ) — b(h(x"B))

T = €eX
fY(y7h(x lg)ad)) = €xXp a(¢)

+ely,9)},  (23)

for some specific functions a(.), b(.) , ¢(.) and canonical parameter h(x? 3).
Thus, many well known distributions are exponential families such as
Poisson, normal, gamma and binomial distribution.

4For an elementary introduction to the subject see [Dobson| (2002) and for more
details McCullagh and Nelder| (1983).
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Since the distribution of Y is an exponential family, we can directly
derive its mean and variance. The log-likelihood of fy (y; h(xT3), ¢) is

yh(x"B) — b(h(x"B))
a(¢)
foud

Then by considering the two relations E(#@B)) = 0and E(W)Jr

I(h(x"B), ¢,y) = log fy (y; h(x" B), ¢) = +c(y,9) -

E(%)2 = 0, one finds
E(Y)=u="b(nx"P),
Var(Y) = b"(h(x"B8))a(¢) -

Thus, the variance of Y, Var(Y'), is a product of two functions, the vari-
ance function, V (1), which depends on canonical parameter h(x”3),
and a(¢) that does not depend on h(x”(3).

Different link functions, which relate the linear predictor to the ex-
pected value of Y are discussed in the literature. Note that each distri-
bution as an exponential family, has a special link function called the
canonical link function, which occurs when the canonical parameter de-
fined in is equal to linear prediction, h(x”3) = xT3. Table
summarizes the essential information for normal, binomial, exponen-
tial /gamma and Poisson distributions and their canonical link function.

Distribution | Notation V() C.link | Mean function, h(x?3)
Normal N(u,o?) 1 identity | x73

Binomial B(n,u) | pu(l—p) | logit (1 +exp(—xT3))~!
Exponential E(p) 1/1 inverse | (x7'3)7!

Poisson P(u) U log x’'B

In the generalized linear model, the unknown parameter 3 is typically
estimated with the maximum likelihood method or the quasi-likelihood
technique. In the next section we study these two methods.

2.3.1 Maximum likelihood estimates

Given the sample (x; € RP,y; € R) for i = 1,--- ,n, where y; ~
fy (i, pi). The mazimum likelihood estimator (MLE) of parameter 3
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in the model p; = h(x;3) is obtained by maximizing the log-likelihood,
where the log-likelihood for independent observations (yi,--- ,yn) is
given by I(p) =), 1;(8) and

yih(x{ B) — b(h(x{ B))

li(n) = log fy (yi; h(x] B), ¢) = e +c(yi, 9)-
Therefore, the log-likelihood as a function of 3 is
1B) =D (),
then,
{(8) = max! (24)

This yields the p-dimensional system of equations, the score function,
to estimate 3:

- ol

SB) =75 = (25)

2.3.2 Quasi-likelihood estimates

To derive a likelihood, we have to know the distribution function of
the observation y, which is not always the case. |Wedderburn| (1974)
introduced mazimum quasi-likelihood estimates (MQLE) for fitting the
generalized linear model. He showed that the quasi-likelihood is the
same as log-likelihood function if and only if the family of response dis-
tribution is an exponential family. Suppose the response y; has expecta-
tion p; and variance function, V(u;), where V' is some known function.
The parameter of interest, 3, relates to u; with inverse link function of
h(x¥B) = p;. Then for each observation the quasi-likelihood is given
by
Hi o,
K (i, s) = /U y‘z/i(t;dt, (26)

or
8K(yi,lh‘) _ Yi — i
O V(Hz’)
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The function K has properties similar to those of log—likelihoodﬂ
To estimate 3, we maximize the quasi-likelihood function by differen-
tiating with respect to B, which yields

U(B)=D"V(u) "y —p) =0, (27)

where D is the matrix of partial derivatives D;; = Ou;/08; and V () is
the diagonal matrix with elements (V' (1), ,V (ip)). For V() =1,
the quasi likelihood reduces to the least square method.

Since in both the MLE and the MQLE, the system of equations to solve
is nonlinear, one needs to use numerical method. The Newton-Raphson
procedure is one of the best known and most widely used techniques, it
was proposed by Isaac Newton and published in “Method of Fluxions”
in 1736. Although the method was described by Joseph Raphson in
“Analysis Aequationum” in 1690, the relevant sections of “Method of
Fluxions” were written earlier, in 1671.

Consider the score equation u(z) = 0. The Newton-Raphson procedure
requires the evaluation of a function w(z) and its derivative u'(x), at
arbitrary points x. Geometrically, this method consists of extending
the tangent at a current point z; until it crosses zero, then setting the
next approximation x;41 to the value where the tangent intersect the
abscissa. Algebraically, the method derives from Taylor series expan-
sion of a function in the neighborhood of a point. At each iteration u
is replaced by its Taylor expansion of order 1. Therefore, at iteration

i, we have
/ "(@i) o _
e+ 2) o)+l + U0 o,
then
u(z;)

Tip1 = Tq — u’(xl)

The convergence of this method is not guaranteed but in nice circum-
stances it converges quadratically, which means the accuracy of the

5For more details see [Wedderburn| (1974]).
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approximation is doubled. Omne of the reasons that the method fails
to converge happens when the denominator u’ tends to zero in which
case x; becomes unreliable. For this reason we sometimes prefer other
methods, such as Brent’s method or the secant method, to achieve con-
vergence. On the other hand, we can use the Newton-Raphson method
with a suitable initial value to start the iteration.

The process of fitting in the classical linear models or in the GLM can
be considered a way of replacing the observation y by a set of ¥ in
regression or [t in the GLM. A question that might arise is how large
the discrepancy of the fitted model is. One of the ways to measure
this discrepancy is called residual, r; = y; — ¥;, for regression models
and deviance for the GLM, which is defined as follows. The deviance
function is twice the difference between the maximum achievable log-
likelihood, which is attained at B8 (under model), and the maximum
log-likelihood that is attained with fitted parameters [3,

D(y,B) = 2l(y,8™) - 2I(y, B)- (28)

The random variable D(Y,3) is asymptotically distributed as Xo—p
where p is the number of fitted parameters and n is sample size. This
fact is used to check the goodness of fit.

The deviance is the analogue of the residual sum of squares, which is
familiar from the linear model. Thus one can estimate the unknown
parameters by minimizing the deviance function, equivalent to max-
imizing the log-likelihood. In robust methods for generalized linear
models, different functions of deviance have been suggested to obtain
a robust estimator.

Example 2. In this example we consider the mortality rates from a
non-infectious disease for a large population. The number of deaths Y
m a population, as independent events, can be modeled by a Poisson
distribution.

Figure |3| (left) is a scatter plot of death rate per 100,000 men (on a
logarithmic scale) and their age group. This data corresponds to the
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Figure 3: Original data and an outlier with their MLE fitted lines. The
black line shows the fitting without the outliers; the red line with the outliers.
(left). Same data using a robust fitting method (right).

Hunter region of New South Wales, Australia in 1991@ The red point
represents a small death rate for a group of old men. This is considered
as an added outlier. It shows that the MLE result has been affected
strongly by this single outlier. In Figure [3| (right) the blue line repre-
sents the estimates computed using a robust method, which resists the
effect of outliers.

As we have seen in this example, like the least squares method the max-
imum (quasi) likelihood methods are not robust. In the next section of
this chapter we study robust methods for generalized linear models.

2.3.3 Robust generalized linear models

To robustify the MLE, [Stefanski et al.|(1986a)) studied optimally bounded
score functions for the GLM. They generalized results obtained by
Krasker and Welsch| (1982)) for classical linear models. They suggested

6See [Dobson| (2002)).
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to find bounded-influence estimators, which minimize certain functions
of the asymptotic covariance matrix. Consider the M-estimator of the
form

n

i=1
They defined a scalar measure of influence, the self-standardized sensi-
tivity of the estimator 3 as

S(ap) = sup (" W lyp)/2, (30)

(x,y)

where

Wy (8) = g{¢<ﬂ)¢<ﬂ)T}-

For maximum likelihood, ¥ = I’ = dl(y,x,3)/98 and in general
S(I") = +o00. To obtain robustness, Stefanski et al.| (1986a)) chose the
estimator 3,, for which S()) < b < oo for a positive constant b. They
determined the optimal score function, which turned out to be equal
to
Py 8) = (1 - Cpmin[1 N
BI y7X7 - mwn 9 (Z—C)TB_l(l—O) 9
where | = I(y, x,3) is the log-likelihood and C(8) € R and B(3) €
RP*P are defined to satisfy

E{¢p,(y,x,8)} =0  B(B) =E{¢p9p}

The robust estimator of [Stefanski et al.| (19864)) is difficult to compute.
Kiinsch et al.| (1989)) introduced another estimator, called the condi-
tionally unbiased bounded-influence estimate. Kiinsch et al.[s estimator

(31)

is in the subclass of M-estimators, whose score function is conditionally
unbiased and satisfy

E(w(yx0) = [ $(xB)Paldyx) =0. (32

They introduced the following optimal score function,

b
¢cond(y7x3167bvB) :W{y_p‘_c(XT/B»W)}X, (33)
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where b > 0 is the bound which satisfy S(t) < b, the function ¢(.) is a
bias correction, B is the dispersion matrix defined by

B(/g) = E{wcond’lﬂz;nd} )

and (XTBx)l/ 2 is a leverage measure. The weight function, W, down-
weight atypical observations and is given by

W = Wb(yax7ﬂ7b7 B) = Wb(r(y7x7/67b7B)(XTBX)l/Q) ’

with r(y,x,8,b,B) =y — p — c(x' 3, m), Wi(a) = Hy(a)/a
and Hy(a) is the Huber function . For a more detailed description
of how to implement these estimators, in particular how to estimate
the matrix B, see Kunsch et al.| (1989).

The development of robust models for the GLM continued with the
work of Morgenthaler| (1992)). He introduced the L, quasi-likelihood es-
timates, which replace the Ly-norm in the definition of quasi-likelihood
by an arbitrary Lg-norm for ¢ > 1. This was intended as a robust
estimator similar to the LAD estimator in classical regression. We will
study this estimator in detail in Chapter

More recently, (Cantoni and Ronchetti| (2001)) defined a general class of
Mallows quasi-likelihood estimator. This is in general an M-estimator
in which the influence of outliers in x and y direction is bounded sepa-
rately. They considered the M-estimator of the form

n

3 [wcm)vv(xi)h’(m)vw»-1/2 —a@|=0. @

i=1

where 7; = (y; — ;) V (1;)~/? are the Pearson residuals and
1« -
a(B) = — > Blwe(r)|W )l (n:)V () />
i=1

ensures the Fisher consistency of the estimator. .(.) and W(.) are
suggested as simple functions to obtain a robust estimator. |Cantoni
and Ronchetti proposed v¢.(.) as a Huber function, , and W(x;) =
V1 = h; where h; is the i*" diagonal element of hat matrix H = X (X7 X)~1 X7,
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Another choice for W (x;) is the inverse of Mahalanobis distance. Note
that if W(x;) = 1 for all i, we obtain the classical quasi-likelihood
model. In particular, these estimates are applied in binomial and Pois-
son models.

In this thesis we focused on robust methods for logistic regression. We
therefore consider the model where the response variables have a bino-
mial distribution with link function logit. In the next section of this
chapter, we review the robust estimates suggested in literature for lo-
gistic models.

2.4 Logistic regression and robust logistic regression

2.4.1 Binary regression

Suppose that the response variables y; have binomial distributions y; ~
Bin(n;, i;) and the nonrandom explanatory variables x; € R¥. Then,
the Bernoulli GLM is given by

E(Yi/ni) = pi = h(m),

with n; = x!'3. The link function g(uz) can be chosen logit, loglog,
probit or cloglog. The link function, which is most commonly used is
logit. It is given by

g(pi) = log(pi /(1 — pi)) -

In this research we focus on logit as link function and study the logistic
regression in detail.

Consider the simple case where n; = 1, then y;,--- ,y, are variables
which take the value 1 with probability u; or the value 0 with proba-
bility 1 — p;. The log-likelihood function is given by

1(B) =log L(B) = > [yilog pi + (1 — y;) log(1 — ;)] -
=1
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Differentiation yields the maximum likelihood equations:

i~ i
h (77i X; = 0, 35
2 iy M) (3)
where V(p;) = pi(1 — ;). In the case of logit link function h'(n;) =
Oh(m) = u;(1 — p;) = V(p;), therefore simplifies to

> (i —pi)xi = 0. (36)
i=1
In the next section we give an overview of robust estimators of the
logistic regression parameters 3.

2.4.2 Robust estimates for logistic regression

Development of robust models for logistic regression started with the
work of |[Pregibon| (1981)), who introduced the diagnostic measures to
help the analyst detect outliers and leverage points and quantifying
their effect on various aspects of the maximum likelihood fit. [Pregibonl
(1982) also suggested a robustifying modification to the MLE. Instead
of minimizing the deviance 7 he proposed to use a function of the
deviance to minimize, which is less sensitive to outliers:

p(D(y. B)) = min! (37)

where p is a monotone and non-decreasing function. Differentiation
with respect to 3 results in a weighted version of the maximum likeli-
hood score equations,

sz Yi — pi)X; =0, (38)

where w; = 3 D p(D;). Using Huber’s loss function,

D D<k
p(D) = 12
2Dk)2 -k D>k,
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with a constant k, he obtained

1 D; <k
w; =
(k/D)Y?  D; > k.

Since this weight function only downweights the outliers in the sense of
observations with large deviance and is still sensitive to leverage points,
he also included a weight function 7(x;) in equation (38).

The deviance tapering method of |Pregibon| can be implemented for
any generalized linear model. [Pregibon/s estimators are asymptotically
biasd for logistic models.

Copas| (1988) studied the estimate of |Pregibon| and showed that they
exhibit comparatively strong bias for small samples.

Carroll and Pederson| (1993) proposed another version of Pregibon’s
estimator, which for small samples is less biased than the estimator of
Pregibon| (1982)) or |Copas| (1988). They suggested a simple weighted
MLE with bounded influence by downweighting leverage observations.
They defined the measure of leverage of an observation x by

2

w60 = (X -3 800~ ) (39)

They considered robust location vectors fi,, and a robust dispersion
matrix 3, of the design matrix X = (x1,- - ,X,,) instead of the mean
and the dispersion matrix of X and proposed the M-estimator equation

n

D Wiy — p)xi =0, (40)

i=1
where W; = W (uy(x;)) with non-decreasing function such as W(a) =
(1-%)I(al<e).
Studying the non-consistency of [Pregibon/s estimator continued with
the work ofBianco and Yohail (1996). They proposed a Fisher-consistent
version of |[Pregibon/s estimator. These estimators are defined by

p(D(y. ) + G(p) + G(1 — ) = min! (41)
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where p is a non-decreasing and bounded function, x = h(n;) and

Glu) = / " (= logt)dt. (42)

0

In particular, they studied a family of p functions given by

ft=t?/2¢ t<ec
pell) = {0/2 t>c, )

with tuning parameter c. This function smoothly truncates the identity
function (corresponding to the MLE) for values larger than a constant
c. The correction term t2/2c makes the function smooth.

Any other bounded p function, which makes the estimate qualitatively
robust in Hampel’s sense, can be used. We will denote these estimates
with the notation BY.

Croux and Haesbroeck| (2003) found by numerical experiments that,
when they used the p function , it frequently occurred that the
BY estimator “explodes” to infinity and does not exist (Croux et al.
(2002)). Therefore they found a sufficient condition on p to guarantee
a finite minimum of . Assuming that there is overlap in the sample,
they proposed the function ¥ (t) = p/(t) as,

gH(t) = exp(—+/max(t, d)). (44)

The constant d can be chosen to achieve both robustness and efficiency
together.
Let G(p) + G(1 — p) = q(p), then

q (p) = (7 (—log ) — <M (= log(1 — p))) (1 — p). (45)

Differentiating with respect to 3 yields the M-estimator

n

> v (D(y, B))(yi — pi)xi — ¢ () = 0. (46)

=1
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This equation can also be written as

n

chH _
> WDy, B) (i — 1) — E@(D(y, B))(yi — 1)) xi = 0.
=1

(47)

From now on we will use the notation BY ¢y for the |Bianco and Yohai
estimator with the 9“ function defined by |Croux and Haesbroeckl
Croux and Haesbroeck showed that bad leverage points have a very
small influence on these estimates. However, the observation in x
space in the neighborhood of the hyperplane orthogonal to parame-
ters, xI'3 = 0, which separate the observation y = 1 and y = 0, can
still have a large influence on the BY ¢y estimates. Therefore, they
suggested the weighted BY ¢ estimator with

=1

where 1“5 is the same as (47) and w; = W (rmd;) for rmd the robust
Mahalanobis distance and the function

1 t2 < X2
W(t) = = Ap0.975 49
®) {0 else. (49)

As we have seen so far, the robust approaches for logistic models aim
at minimizing some function of deviance. [Markatou et al| (1997)) pro-
posed another approach based on the idea of replacing the maximum
likelihood score function with a weighted score equations to achieve
efficient estimates with good breakdown properties. The weights are
a function of residuals and are selected to downweight an observation
that is not consistent with the assumed model. However, this method
normally does not downweight a cluster of observations.

Suppose y; ~ Bin(n;, p;) for i = 1,--- ,n with repeated covariate x;.
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Let d; = £, p; = (1+ e_xiT'B)_l and fi an estimate of u. They defined
a new residual as

d;
ri(x;)=—-1 for y=1,

%

ro(X;) = -1 for y=0.

Markatou et al.| (1997) proposed the estimate obtained by minimizing

Zni [1:G (r1(x:)) + (1 — ) G(ro(x:))] = mﬁi,n! (50)

for a given convex function G. Let A(t) = G'(t), then the solution of
(b0) satisfies

Z ni[A(ri(x;)) — A(ro(xi))]ps (1 — pi) = 0. (51)
Or .
> nilws ()i (1= ps) — wo (i) (i — pi)palxi = 0, (52)
i=1
where w1 (x;) = A(Lﬁlﬂ and wo(x;) = A(T‘ﬁlﬂ.

Markatou et al.| (1997) used the residual adjustment function RAF

(Lindsay| (1994))), which is given by
A(d) =2[(d+1)% —1].

They also used the negative exponential RAF (Lindsay| (1994))) as
Ang(d) =2 — (24 d)e %

These models of are not applicable to binary data,
yi ~ Bin(1, ;).

Ruckstuhl and Welsh| (2001 continued in the same direction as
[fou, Basu and Lindsayl They proposed a new class of estimators
called the E-estimator. These estimates depend on tuning constants
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0<ec¢ <land1< ¢ <oo. Suppose f,(k) = P(y = k) is the prob-
ability function of y; ~ Bin(n;,p;) and p,(k) = Y0 I(Y; = k),

~n
k =0,---,m, the proportion of observations equal to k£ in the sample
size n. The E-estimator fi of u is obtained by minimizing

Y M = min
kzzop(fu(k))fu(k)_ 3 ) (53)

with

(log(er)+ Dz —c1 <
p(x) = { zlog(z) 1<z <cy (54)
(log(eca) + D)z —c2 x> ey

Equation can be written as the solution of

> w(p"(k) )Su(k)pn(k) =0, (55)

w(z) =p'(x) —plx)/z=1(c; <z <o)+ %I(I <)+ %I(z > cg).

This equation could be used for a large class of estimators with a suit-
able weight function. Note that Markatou et al.| used w as a function

n k: 1 = k
of (205 — 1) stead of (%),

Using the negative exponential RAF in [Markatou et al| is similar to
the E-estimator. However, the E-estimator is less smooth and decreases

rapidly for large x.

Since our research is based on the L, quasi-likelihood estimator pro-
posed by Morgenthaler| (1992), we study these estimators in detail.
The next chapter covers the L, quasi-likelihood estimators and their
robustness behavior.
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CHAPTER 3

L, Quasi-Likelihood Estimators

3.1 Definition

Let (x; € RP,y; € R), fori =1,--- ,n, be a pair of explanatory and re-
sponse variables. A generalized linear model relates the expected value
of the response to the linear prediction such as g[E(y;)] = g(pi) =
xF'3. The response variable Y given X has the probability distribu-
tion G(y, B|x). Since we assume that the components of ¥ are inde-
pendent, the covariance matrix, V() must be diagonal, namely that
V() = diag(V(u1),- -+ V(). Quasi-likelihoods are used in fitting
the model when we have only the information for the expectation of
response variables, u, and the variance function, V' (u), as a function of
. Consider the quasi-likelihood of each observation as

5K(yi, Ni) Yi — i
= . 56
O V(Hi) ( )
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The quasi-likelihood estimating equations for the unknown parameters
B are obtained by differentiating K (y;, ;) with respect to 3, which
yields

U(B)=D"V(u) "y —p) =0, (57)

where D is the matrix of partial derivatives D;; = O, /08; = h'(n;)xs;
with h/(n;) = Op;/On;. In the classical regression model, the replace-
ment of the Ly-norm by least absolute-deviations, the Lj-norm, is re-
sistant against outliers. [Morgenthaler| (1992)) replaced the Lo-norm in
the definition of quasi-likelihood by the Lg-norm for ¢ > 1 to ob-
tain similarly robust estimators. He proposed the L, quasi-likelihood
estimators, which are determined by

n q
Yi — M .
E S ie| = min! (58)
i=1 V(Ml)l/ A
The gradient of (58]) is proportional to
V()= "*{|mathbfy — p|" 'sgn(y — )}, (59)

where sgn(.) denotes the sign-function that takes values £1. With
q = 2, this formula yields the usual quasi-likelihood. The estimating
equation for 3 is

Uy(B) = DTV (1)~ *{ly — p|" "sgn(y — p) — ()} =0, (60)

where
o(p) = YFX{IE — il tsgn(Y; — i)} (61)

is the bias correction to provide conditionally Fisher consistency and
D and V(u) are defined as above.

The computation of ¢(u) is not always easy and it is not possible to give
a closed form expression. Therefore, often one needs to compute ()
numerically or by Monte Carlo simulation. Suppose the observations
y; has the distribution f,,(y) (¢ = 1,---,n). For (j =1,--- ,m), we
generate the sample z;; from the distribution f,,(y) and estimate ¢(1;)
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is given by

m

. 1 _
clpa) = — D lzij =l sen(zi — ) (62)

J=1

Let consider the response variables have the exponential distribution,
one can find,

0 q=72
1-2P(y<p) q=1
o(p) = (63)
a/p g=1.5
bu? q=3,

for the constant a and b. Then we proposed a general form c(u) ~
Ap?=! when the response variables are from exponential distribution.
To define the covariate A, we can estimate ¢(u) from and fit a
regression model between ¢; and uf~ L

For the binomial model, y; ~ Bin(n;, u;), ¢(u) is equal to

Lniltz‘J
o(p) == > (nips — )" "' P(Yi = )
y;i=0

+ Z L nz,uz q 1P(Y 1)' (64)

Yi= |—7'tl‘7]
Therefore, there are considerable difficulties for computing ¢(u) in L,
quasi-likelihood estimators.
3.1.1 Computation and an example

Computation of M-estimators is usually done iteratively. We have de-
veloped an algorithm to compute the L, quasi-likelihood estimator,
which is illustrated by an example in this section.
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Morgenthaler| (1992)) considered the quasi-likelihood estimating equa-
tion in the form of

Uq(B) =
n h/(

i=1 V(/Lz /2 {|yl — il 1Sgn( — i) — C(Ni)}xi =0. (65)

(2

Or
szxz yi — 1) =0, (66)

where w; = W(y;, fui, q) is the Welght function,

W (i) {lyi — pil? 'sgnly; — ) — (i) }
Wy 0) = V() i — 1) |

The Newton-Raphson method leads to the updated 3
Bnew = Bold - (U/(Bold))_lU(Bold) ) (68)

where U’ is a matrix with elements U;; = 0U,/00; as

n
= > wih!(m)xix; (i — ps) — wih! (m:)xi%;
=1

853
where w} = dw;/Op;. This leads to

ﬁnew = Bold + (XTNX)ilU(IBold)
= (XTNX) M XTN{XBoa + N Wy — )}, (69)

where W and N are diagonal matrices. The former has weights w; on
the diagonal, the later with diagonal elements

Nii = B (i) {wi — wip) (yi — pi)} (i=1,--n).
Example 3. |McCullagh and Nelder (1983) discuss an example in-
volving clotting times of plasma induced by two different lots of an
agent. The response was measured for nine different dilutions x. A
gamma regression model with the inverse link was fitted. The estima-
tors are computed by using maximum likelihood, Ly quasi-likelihood and
Ly quasi-likelihood. Table[3 contains a summary of the results.
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| MLE and ¢ = 2
Lotl || p;' = —0.0166(0.003) + 0.0153(0.0018) log(x)
Lot2 || py' = —0.0239(0.003) + 0.0236(0.0018) log(x)
[ g=1
Lotl || u;' = —0.0176(0.00137) 4+ 0.0157(0.0065) log(z)
Lot2 g b = —0.0240(0.023) 4 0.0235(0.01) log ()

Table 1: Estimated regression parameters for L1 and mazximum likelihood
which is equal to La. The values in parenthesis are the asymptotic standard
deviations corresponding to the parameters. The link used is the inverse
clotting time and the two lines correspond to two different agents. There is
little difference between the estimates in this example.

3.1.2 Asymptotic covariance matrix

The asymptotic covariance matrix of the L, quasi-likelihood estimator,
3, is considerably more complicated than the analog formula for the
MLE, namely

Cov(B) =
(DTV=912QD)"Y(DTV~92RV~9/2D)(DTV~Y2QD)"'. (70)

Here, Q denotes the diagonal matrix with diagonal elements

Qi = (q— DE(]Y; — pi )72
— E{|Y; — | Osgn(Y; — i) /Ot + ¢ (1)

The second term of this formula is zero except for ¢ = 1, in which case
it is —2 fy(/,diﬂ. R also is diagonal with elements

Ry = B(]Yi — @i*7?) — e()*. (71)

1For more details see
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3.2 Influence function of L, quasi-likelihood estimators

We are interested in investigating the robustness properties of L, quasi-
likelihood estimators. Therefore, we measure the asymptotic bias caused
by infinitesimal contamination, the influence function. This measure
has been explained in details in section .

Proposition 3.2.1. Let T, be the root of equation (@), that is, the
Ly quasi-likelihood estimator of a generalized linear model. Its influence
function at the model F is equal to

TFy (%0, y2) = M (¥, F) " (X, yss p1s) € R,

where

B (n+)
V(p. )9/

where M (¢, F) = fEF[%dJ(x,y,u)} , Yx 15 an added element to the
response variable and X, is an added vector (1,41, ..., x*p) to the design

Y(Xe Yo 1) = {lye = a7 sgn(y. — ) = ()  x. ., (72)

matrix.

Proof. The influence function is a direct consequence of the general
formula of TF for the M-estimator (Hampel et al.{(1986])) by noting
that 7. = xI 8, e = h(ns), K (0s) = Op /O . O

Moreover, these estimators are asymptotically normal with asymptotic
covariance matrix given by (19)

V(T,F) = M, F)"'Q(v, )M (¢, F) 71,
where Q(I/},F) =Ep [w(xay7p’)w(x7ya“)T} .

3.2.1 Influence function when g = 2

Assuming g = 2, one finds that c(u) = E{]y — plsgn(y — )} = E(y —
1) = 0 and the M-estimator is calculated by the equation

h'(m)
V(4

P (XKexy Yoy ) = (Yo — 1) X - (73)
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And

g’gj = V(/f'*)_l{h”(n*)(y* - N*)X* - h/(ﬂ*)x*xjh/(m)}’

where h" (n,) = 8?p./On?. Therefore, the matrix M (1, F') can be easily
computed as

oY h'(n)?

M(waF):EF(_%):EF( ) Xx7), (74)
which can be estimated by
My, F) =DV (1)™'D, (75)

where D and V(i) are defined as below. It follows that

tFa(xn) = D7V D) {2 G-}, (0

for n. = xI' B and . = h(n.).

3.2.2 Influence function when ¢ = 1

When ¢ = 1, the correction for consistency is defined by c(u) =

Ep(sgn(Y — p)) = 1 —2P(y < p) and the M-estimator in is

calculated by the equation

h ()
V()

The negative derivative of the estimating equation at the true param-
eter value has expectatiorEI

o,
0p;

= B (WP V0 dlsanly - ) fau XXT) . (75)

(s o i) = (st =) =l ) . (1)

M(’L/}7F):_EF( ):

2For more details see McCullagh and Nelder] (1983]).
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Let f(y|x;) denote the conditional density of the response y given x;
and let the interval with endpoints a and b be the support of f and
g(z,y) = sgn(y — ). By using integration by parts we can obtain

b b b
/ J@nfulady = gy fle)| - / 9z, 9) ' (yl)dy
= 2fy(p)
Since sgn(y — p) = —sgn(u — y) or

i S8R —pte) —sen(y—p) . osen(p—y—c) —sen(u—y)

a

£—00 g £—00
(79)
Then
d(sgn(y — p))/dp = —d(sgn(y — p))/dy. (80)
From and , one can then obtain
/ b
My, F) = Ex( h\y(?i) XXT/ (d(sgn(y — u))/dy)g(ylu)dy>
_ h/(77) T
- 2fy<u)EX( D xx > .

This matrix can be estimated as
M@, F)=DTV-1/28D (81)

where D and V are defined in , and S is a diagonal matrix with
diagonal elements s; = 2fy (y;) fori=1,--- ,n.

Note that in the case of a discrete distribution, one can use summation
by partsﬂ to find S. For example, let y;|x; have a binomial distribution
Bin(n;, it;), we find that s; = 2P(y = [nsu] + 1) .

Furthermore, one obtains the following expression for the influence
function of L; quasi-likelihood estimators

IF) (x., ) = (DTV—1/2SD)—1{%(sgn(y* — ) )} %o
(82)

3See appendix.
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3.2.3 Comparing the influence function for ¢ = 1 and ¢ = 2

Similar to the LAD method as a robust alternative in classical models,
we are interested in verifying the behavior of the L; quasi-likelihood
and comparing it to the MLE. As we can see in the influence
function is not bounded when ¢ = 2, which means that the MLE is
sensitive to outliers and leverage points. This is similar to the least-
square estimators in the usual regression model. Equation shows
that the L; quasi-likelihood estimators are not influenced by outliers
which is similar to the least absolute deviation (LAD) regression case.
What is different between the LAD linear regression and the L; quasi-
likelihood is the behavioral at leverage points. Depending on which link
function we choose, the influence function of the L; quasi-likelihood can
be bounded even if leverage points appear.

Theorem 3.2.1. Suppose the variance function V(u) is the diagonal
matriz of the response variable and h(n) is the inverse link function,
where m; = x} B and h'(n;) = Opi/On; . If the link function satisfies
ILAGDIR l|Ixi|| < b, then it follows that the influence function of L, es-

NG

timator with ¢ = 1 remains bounded even if ||x;|| — oo for a bound

b>0.

Proof. The proof is discussed in Theorem [3.2.2 O

In the case of an exponential distribution, both the inverse link func-
tion g(pu) = 1/u and the identity g(p) = p satisfy the condition of
Theorem . For the binomial model the links “logit", “probit",
“cloglog" and “loglog" are all covered by this theorem.

In order to verify the behavior of these influence functions and in par-
ticular to compare ¢ = 1 to ¢ = 2, we analyze them for the exponential
and the binomial model with their respective canonical links.

Example 4. We consider a case with p = 2, a slope 3 and an intercept
«a. Figure presents the influence function of 3 for an exponential
model. One can see that the influence function is unbounded when q = 2
whereas it is bounded when q = 1 even for leverage points.
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Figure 4: The influence function of B when ¢ = 2 and q = 1 for the
exponential model.

We also examined the binomial model. For binomial responses the
outliers themselves cannot completely distort the estimators. The real
danger is posed by bad leverage points. In Figure the red points
represent these kind of outliers. Due to the fact that the binomial
model is complicated to investigate, in this thesis we focus on the logis-
tic regression model and study the behavior of the L, quasi-likelihood
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estimator. We propose a new estimator, which is similar to the L,
quasi-likelihood estimator and results in a more resistant estimator.

Leverage ponits

XX XX

- - EHH!HXXXXXXX

XXX}(XX}(XX}(XE

I T 1
=200 0 200

[= I EEEX

Figure 5: Demonstration of the bad and good leverage points for the binomial
model with 3 > 0.

Example 5. We consider the binomial models with p = 2, a slope (8
and an intercept o. In Figure (@ we compare the Lo and the Ly es-
timators under the influence of an additional observation x;. It shows
that the bad leverage points can greatly influence B when q = 2. How-
ever the influence of these observations on the L1 estimator converges
to zero. We can say that these estimators are not sensitive to outliers
when g = 1, and depending on the link function they can be insensitive
to leverage points.

In (2.4.2), we have seen that |Croux and Haesbroeck! (2003|) proposed
a weighted version of the BY estimator (Bianco and Yohai| (1996)) to
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Figure 6: The influence function of 8 > 0 when ¢ = 2 and ¢ = 1 for the
binomial model.

achieve the bounded influence function for multi-dimension explana-
tory variables. We study L, quasi-likelihood estimators for the multi-
dimensional explanatory variables as well. In Figure we examine
the influence function of L,; quasi-likelihood for the logistic regression
with two independent normally distributed covariates with $; and (2
positive, 1; = By + f1z;1 + Pox;2, and fixing y = 1. One can see that
when the covariates both tend to oo and even —oo (bad leverage points)
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the influence becomes zero. There is a very small influence when one
of covariates tends to co and the other to —oo. In some cases like the
BY estimator, this small influence could tend to infinity. The reason is
explained in the following theorem.

Figure 7: The influence function of B1 > 0 and B2 > 0 when ¢ = 1.

Theorem 3.2.2. The influence function of the Ly estimator with g =1
is bounded for all values of (X4, y«) with the exception of the limits of
the influence function along sequences for which the Euclidean morm
[%4[| — o0 and Bo x5 + -+ + Bpz;, = 0.

Proof. The boundedness of the influence function follows from the fact
that as ||x.|| tends to infinity, the corresponding 1. = x.”3 tends
with very few exceptions to +0o. The exceptional set is {x. : x'3 —
constant, as ||x.|| — co}. Since x]8 = B1 + foa3 + -+ + Bpa, the
condition can only be satisfied if the constant in question is Bllhz}(lr:]d) |the

VV (ki) ®

vector [z3,...,x,] is orthogonal to [, ..., 3p]. In this case,

a constant.
O
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3.3 Bias and Breakdown point

We next examine the breakdown point of L, quasi-likelihood estima-
tors. We illustrate the asymptotic bias of L, quasi-likelihood caused by
the contamination. Suppose the design matrix and binomial response
are

X = 1 0
11 10 10
19 1

We then change the top left element of matrix X, x, from -1 to 10 to cre-
ate a bad leverage point. We contaminate 3%, 15% ,20% , 33% and 50%
of the data and calculate the bias of ﬁ estimated by L, quasi-likelihood
for ¢ = 2 and ¢ = 1. One hopes that for the more contaminated data
the L; quasi-likelihood estimator remains more stable than the MLE.
But as the Figure [§ shows, the L; quasi-likelihood estimator is biased
even by 3% contamination.

Croux et al.| (2002) proved that the maximum likelihood estimator (Lq
quasi-likelihood estimators) for the logistic regression model does not
explode to infinity but rather implodes to zero when adding some out-
liers to the data set.

We have seen that the influence function of the L; quasi-likelihood es-
timators is bounded when XlTB # 0. Therefore, it would be expected
that the Ly quasi-likelihood estimator remains stable when adding some
outliers in the data set. Instead, we find that the L; quasi-likelihood
could be worse than Ly. As Figure [J] shows, Ly tends slowly to zero
but L; could drop very suddenly to zero. In this example we consider
the same data as above, except the binomial response is modified. We
study how the sensitivity curves behaves if we change even a
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Figure 8: Bias distribution of Ly quasi-likelihood estimators with bad lever-
age contaminations when ¢ =1 and ¢ = 2.

single observation among n; = 4000 points.

1 0
2000 2000 (83)
3800 200

For binomial models, the sensitivity curve shows that the L; estimator
could be worse than Ly after contaminating even a bad leverage point.



60 CHAPTER 3. Lg QUASI-LIKELIHOOD ESTIMATORS
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Figure 9: The sensitivity curve of Ly quasi-likelihood with ¢ =1 and q = 2.

Therefore we are interested in studying mathematically the general for-
mula of these estimators for ¢ = 1 and ¢ = 2.

Consider the n binomial response variables y; ~ Bin(n;, ;) and the

design matrix X with the link function logit g(u;) = n;.

Suppose for i > 2 the vector of explanatory variables, x;, are the cluster

of observations close to each other with x(®). We then consider the

vector x; which has y = 1 far from the mass of data as a contaminated

point with (). We want to investigate how the Ly quasi estimator

reacts when ||x1]| — oc.

Therefore, one can simplify xo ~ x3 >~ .-+ ~ x, = z with ps =~
oy~ @ = (14 eszﬁ)fl and pM = (1 —|—67x1Tﬁ)71 for the

contaminated observation.

Under this assumption, when ¢ = 2, the system of equation can
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be written as

> (i —nip®)z = (1 - pM)xg (84)
=2
Therefore,
B
(1 - M(l)) = HX1|| = Cl(xl)’ (85)

where B = 7, (y; — n;u?)z. Consequently

1
x|

1-— Cl (Xl)
Cy(x1)

B~ H (log( ) (86)

When |[|x1|| — oo, then C1(x1) — 0 and the value of log(lz;?(léf)l))
diverges to infinity. However, the divergence rate of ||x;|| is higher.

Therefore, this can explain why 3 implodes to zero when ||x;|| — co.

For ¢ = 1, we consider a binomial response variable with m success
events out of n, which are close to each other. Let z be the explanatory
variable. Therefore, (2 for this group is estimated as ot. Consider a
contaminated point far from this group with y = 1 and x. The system
of equation is simplified to:

VV®) S fsgns = nin®) — )} = |V (aO)(1 - eu®)x

(87)

PO - me ™))z = [~ )1 el ))x. (38)

Since (1 — ¢(p™M) ~ 1, one gets

Or

D
(1 = pM) = = Ca(x1), (89)

where D = 4/ M (2m — n — ne(2))z. Consequently

pV = ==
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Since Cy(x) — 0 when ||x|| — oo, therefore, u(*) — 0 or u(!) — 1. This
shows the instability of the computation of the L; estimator. For both
results, similar to Lo, B implodes to zero.

3.3.1 Computation and optimization problem

We should note that the computation of the L, estimator can exhibit
numerical instabilities. This is due to the fact that the denominator
of W(yi, 1i,q), (y; — [1;) may be close to zero. This often happens
when the estimated parameters ji; are close to the response variables
y;. Then, W — oo and the algorithm does not converge.

As a solution we propose a method that numerically approximates the
estimator using an iteratively refining search algorithm. The algorithm
works as follows.

Let B4 be the last good estimate, obtained using (69). We use 3,4
as the starting point of the algorithm and search for better estimates
in its vicinity.

=

(®)

Figure 10: The optimization of algorithm to find the Lq quasi-likelihood
estimator.
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In a first step, the algorithm searches on concentric surfaces (zone 1)
around B,,4, up to a maximum radius r = 0.15(83,,,), as shown in
Figure S(B,4) is the estimated standard error of 3,,; (70). On
each concentric surface, we evaluate a fixed number of points. The
algorithm then chooses as best estimate 3 the point with the smallest
gradient among all evaluated points.

There are three possible outcomes of this algorithm. First, the best
estimate has a gradient smaller than the target precision. In this case,
the algorithm stops.

Second, the best estimate may lie on the border of the initial search
zone. In this case, we take the best estimate as a new starting point
and repeat the algorithm, since a better estimate may be found further
outside of the initial zone (search in zone 2).

As a third possibility, the best estimate may lie inside the initial zone.
In this case, we also take the best estimate as the new starting point and
repeat the algorithm, but with a smaller radius to refine the estimate
(search in zone 3).

The algorithm yields a final estimate 3 with a gradient smaller than
an configurable tolerance.

This method has two drawbacks. First, it may not converge to an
estimate which satisfies the targeted tolerance. Second, the method
may be too slow, compared to simple iterative gradient-based searches
such as the program glm in R.

These numerical problem and difficulties computing L, quasi-likelihood
estimators leads us to the idea of simplifying the L, quasi-likelihood es-
timators. The next chapter proposes a new estimator for the binary
regression, namely the weighted maximum likelihood estimator. We
propose a new weight, which depends only on p and tutoring q. These
estimators are similar to L, quasi-likelihood and results in more resis-
tant estimator.
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CHAPTER 4

Robust Binary Regression

In this chapter, we introduce a new estimator in binary regression.
This estimator is based on the minimum absolute deviation estimator
of Morgenthaler| (1992)). The resulting estimating equation in obtained
through a simple modification of the familiar maximum likelihood equa-
tion. This estimator can be considered as a weighted maximum likeli-
hood with weights that depend only on 1 and gq.

Let (x; € RP,y; € R), for ¢ = 1,...,n, be a pair of explanatory
and response variables. The responses have a Bernoulli distribution
y; ~ Bernoulli(u;). In other words, y; is either 0 or 1 and the prob-
ability P(y; = 1) = p;. The expectation and variance of Y; are
E(Y;) = pi and Var(Yi) = pi(1 — pi) = V(ps). Let g be an in-
creasing link function, which maps the interval of probabilities (0, 1)
to the real numbers R. Examples of such transformations are the lo-
gistic g(p) = In(p/(1 — p)), the probit g(u) = ®~*(u), and the com-
plementary loglog g(u) = In(—1In(1 — u)). The regression parameters
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B = (f1,...,0p) enter into the model through

g(u) =78, (90)

where x; = (1, ..., Z;p) are the values of the explanatory variables for
the ¢-th individual.
An excellent introduction to data analysis procedures based on the bi-
nary regression model is the log-likelihood, which is given by [McCullagh
and Nelder (1983)EL

1 {y In (1 i‘iu ) Fln(l— m)} (91)

and the likelihood estimating equations are

" 0 (xTp)

2 Vi) (yi — pi)x; =0, (92)
where h(-) denotes the inverse link h(-) = g~!(-). The likelihood
equations are particularly simple for the logistic link, because for n =
logistic(u), h'(n) = p(1 — p).

The likelihood equation is sensitive to large values of |y; — fi],
particularly if these are combined with x; values near the edge of the
design space. For example, a dose response, in which P(yz = 1) in-
creases with the dose can be inverted by adding a single observation
with y = 0 for a sufficiently high dose. As in ordinary regression, we
call such observations “bad leverage points”, see Section .

Most of the robust estimators proposed in the literature (see are
based on modifications of the log-likelihood. To limit the influence of
bad leverage points, one can put a weight on the contribution of an
observation to the likelihood equation. For x;-values at the edge of
the design space a lower weight is proposed. This type of estimating
equations is considered in the general formula of the weighted mazimum

1Chapter 4 p. 114.
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likelihood estimate (WMLE) Maronna et al.|(2006). The WMLE in the
binary regression case is

)
;wlv(ﬂi) (yz //fz) i =0, (93)

where h/(n;) = Oh;/0p; and w; is a weight function.

Morgenthaler| (1992) considered the quasi-log-likelihoods obtained by
the g-th power of Yi=£i the Ly quasi-likelihood estimator . In

Viw)
binary regression all values of ¢ except ¢ = 2 lead to an asymptotically
biased estimating equation, because

E(|Yi — mil® tsgn(Y; — p)) = (1= pa)* P P(Yi = 1) — pd =" P(Y; = 0)
is nonzero. One can show that

{|yi — il 7 Fsgn(ys — M)} =il —pa) "+ (yi — 1)#?_1 .

Therefore, the bias-corrected contribution of the i-th observation is

e =l sen(ys — 1) — (1= )" g = (1= ) =
(=7t i) (= ).

This equality can again be easily checked for y; = 1 and y; = 0. Thus,
the estimating equation for all these quasi-log-likelihoods is the same
as the likelihood equation apart from the extra weight

wylpe) = V()@ (1= )t ) (94)

Therefore, the estimating equation is

n
1=

n ,( )
1)
Y(xiy) = wq(pi) (Yi — pi)xi = 0. (95)
1 = Vi)
However with this simple weight similar robust estimates discussed in
the literature typically have weights that depend on the couple (x;,y;)
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rather than on u; = h(n;) alone. Examples are weights that depend on a
combination of the contribution to the deviance of the i-th observations
and the Mahalanobis distance of x; from the center of the design.
When the data is grouped and we observe n; times at the same x;,
the response y; can be modeled as a binomial random variable with
n; trials and with probability of success u;, y; ~ Bin(n;, ;). In the
grouped case, the estimating equation becomes

n

) (yi — i pi)x; = 0. (96)

Interestingly, the equation is not identical to the one of the L,
quasi-likelihood in the grouped case

> V q/2 (lys = mal® sgn(ys — ps) — (i) xi = 0,
i=1

because c(u;) = E{|y; — pi|9 tsgn(y; — nipi)} does not have a simple
form.

From now on we will use the notation BL, for this new estimator ,
which is a simplified version of L, quasi-likelihood estimator for binary
regression models.

The weight function is identically equal to 1 for ¢ = 2, which
shows the well-known fact that the Lo quasi-likelihood is equal to the
maximum likelihood procedure of [Wedderburn| (1974). When 0 < ¢ <
2, however, the weight tends to zero as p tends to 0 or 1. Observations
with a success probability close to 0 or 1 are thus given less weight. The
full weight of 1 is given to those observations with success probability
of 0.5. Note also that wy_, (1) = wi4, (@) for all g and for 0 < u < 1.
Thus values of g less than 1 are of no interest. Figure shows the
function wy(u) of the logistic model for various value of 1 < g < 2.
Figure|12|presents w, (1) ,‘l/ ((Zg where the different value of ¢ correspond
to logit and loglog (clogclog) link function. One can see that for ¢ > 2
this weight function does not downweight the leverage observations,
whereas it downweights for ¢ < 2.
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41 Asymptotic covariance matrix

Consider the linear expression , we can show that the approximate
covariance matrix of 3 is equal to

Cov(B) = B, 'Cov(U(8))B, " (97)
where U(B) is defined by the system of equations 7

B =3

wq(pi)(yi — pi)x; =0 € RP,
>~ ) )

and the matrix B, is the expectation of the negative derivative of the
estimating equation at the true parameter

B, = —-E(0U(B)/98) € RPXP,
Therefore, the asymptotic covariance matrix of B is estimated b
Cov(B) =

(DTV=92QD)"Y(DTV~12RV-92D)(DTV-Y2QD)"t. (98)

Here @ denotes the diagonal matrix with diagonal elements
Qi =pf "+ (1= )" (99)
R is also a diagonal matrix with diagonal elements
Ri = pi(1 — 1) Q3.

The L, quasi-likelihood estimate for grouped data has an asymptotic
variance covariance matrix, which is considerably more complicated

than , see .

2For more details see McCullagh and Nelder] (1983]).
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In order to illustrate our formula for the asymptotic covariance of the
BL, estimator, we conduct a simulation experiment. The estimators
of interest are BLy, BL;, BL; 2, BLi7. We compare the asymptotic
variance of these estimates with the corresponding mean-squared er-
ror (MSE) computed by Monte Carlo simulations for the model. The
simulations are carried out for p = 3 dimensions and a sample size of
n = 100 or n = 1000. The explanatory variables x; are distributed
according to a normal distribution N(0,1). The true parameter values,
8™ = (61,052,0;) € RP, are set to (1,2,2). We use the link function
logit g(p) = log(u/(1+4 p)) =n =xTB. N = 1000 samples (y1, .-, Yn)
are generated according to Bernoulli(p;) with p; = h(n;).

Let ﬁk be the estimated parameter for the k-th sample in each gener-
ation for k = 1,..., N. The mean-squared error and the variance of
these estimates are given by

MSE1 =

=2|=

N p n N
kgg ﬂkj MSEQ:N;

»» Mﬁ
\_/
[\

Varl = n x —ZZVarl ﬂk Var2:nxi\7z;l(6m).

k=11=1 =1
Here Varl computes the covariance matrix of the estimated pa-
rameter for the k-th sample. Var2 imputes the true parameter 3™
(198). These two values should converge to the same value for large n.
MSEL1 gives the mean-squared error of the estimated parameter for
the k-th sample in each generation and the mean of these estimated
parameters. MSE2 computes the mean-squared error of the estimated
parameters and the true parameters. MSE1 and MSE2 should converge
to the same value when n is large enough.
In general for large n, the mean-squared error converges to the variance
of the parameters.
Table [2] illustrates how for large n, all four values, MSE1, MSE2, Varl
and Var2, converge.
Figure @ presents the covariance matrix of BL, for values 1 < ¢ < 2.
We can see that it has a high efficiency for different values of q. The
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n=100
MSE1 VAR1 MSE2 VAR2
BL, 80.18 67.53  85.94  54.87
BL; 100.59 80.92 109.40 61.26
BL1 o 97.63 79.37 105.96 56.31
BLi7 | 8350 69.96 89.48 60.68

n=1000
MSE1 VAR1 MSE2 VAR2
BL» 93.23  53.40  53.67 52.44
BL; 61.21 60.37  61.83  58.97
BL; o 60.45 59.70 61.04 53.85
BLi7 | 55.01 54.88 5546  58.35

Table 2: Comparing the asymptotic covariance and the mean squared error
of the BL, estimator for the various value of q.

efficiency is computed as the ratio of the lowest feasible variance and
the actual variance. For ¢ = 1 it is equal to 0.90.

An alternative formula for the covariance

To compute the asymptotic covariance of the regression parameters, we
need to have a model for the generation of the explanatory variable.
In the following, we assume that x; are independently drawn from a
distribution H.

Let D;; = Ou;/0B;. One can show that

DTVv=12QD = DTAD (100)
pTv-a2Ry—42p = DTBD, (101)
where A is the diagonal matrix with diagonal elements A(x;) = V (u;)~%2Q;

and B is also a diagonal matrix with diagonal elements B(x;) = V (1;)}795;
with S; = Q?. Q; is defined in . Therefore, the covariance matrix
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Figure 13: The asymptotic covariance matriz of BLq for various value of
1<g<2.

becomes
Cov(B) = (DTAD) (DT BD)(DTAD)™". (102)

This matrix depends only on the explanatory variable X. We can show
that equations (L00)) and (101)) are given by the following expressions

1 1 &
—D"AD = =" A(xi) ' (ni)xih/ (n;)x] 1
- - ()R’ (mi)xih (i) x; (103)

i=1



74 CHAPTER 4. ROBUST BINARY REGRESSION

1
~D'BD=-) B(x; Dxih (n)xE 104
_ z )W ()il (1) (104)

Let xq,...,xy, are ii.d. reahzatlons of a random variable X with a
known distribution function H. Their expectation and variance are
given by E(X) = p, and ¥ = E((X — p,)(X — p,) 7).

Since lim S XTX 23 E(XTX), then for large n we can obtain the

following asymptotic value of (103]) and (104)):

nlLH;O%(DTAD) = /A(x)(h’(n))zxdeH(x), (105)
lim E(DTBD — / B(x)(h'(n))*xxTdH (x). (106)

Therefore, the asymptotic covariance matrix (102)) becomes

-1
Cov Basy = (/A YR (n xdeH(x))

([ Beawonxtaneo) ([ A(x)(h’(n))zxdeHw)l. (107)

To illustrate this formula and compute the efficiency of the BL, es-
timator for different value of q with respect to MLE, we conduct a
simulations study. We use a basic Monte Carlo integration method to
estimate (107). The simulation are carried out for p = 4 dimensions
with 8 = (1,2,2,2,2). We generate N = 1000 explanatory variables x
from the two following distribution of H(x),

Hi(x) = (1,N,—1(0,%)) (108)

Hy(x) = (1,(1-¢e)N,_1(0,%) +eN,_1(3,%)), (109)
with € = 30%. We choose three different X,

1 0 0 1 0 0 1 0 0
Si=[ 01 0 So=( 0 12 0 Ss=( 0 1/4 0

0 0 1 0 0 1 0 0 1

Table |§| compares the efficiency of BL, estimator for ¢ =1 and ¢ = 1.5
with MLE. In this table two distributions are considered for the x with
three different X.
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H1 (X)
qg=1 q=1.5
h 0.88 0.93
p 0.90 0.95
> 0.93 0.96
HQ(X)
q=1 q=1.5
D 0.89 0.94
pI 0.89 0.94
P 0.92 0.96

Table 3: Comparing the efficiency of the BL, estimator for ¢ = 1 and
q = 1.5. Two distributions are considered for X with three different X.

4.2 Computation

The computation of BL, estimator as an M-estimator is done itera-
tively. We developed an algorithm similar to the L, quasi-likelihood
estimate to compute these estimates. We use the Newton-Raphson
method to iteratively compute 3 as
ﬁnew = Bold + (XTNX)_lU(Iéold)

= (XTNX)"{(XTN){X By + NTW(y — )},

where W and N are diagonal matrices. The former has weights wq ()
as given in on the diagonal. The latter has diagonal elements

Nii = W (i) {wq(pi) — wq (i) (1) (yi — 1)} (i=1,....,n).

For most values of p, this algorithm to estimate BL, is stable com-
pared to the algorithm for L,. However, for p > 3 we have observed
in our simulations that the algorithm occasionally, but rarely, fails to
converge.

An alternative to this procedure can be based on the glm algorithm
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with case weights to iteratively compute 3, but with an updated weight
function at each iteration.

This is possible because our weight function, wq(), only depends on
x and not y. Furthermore, we propose an iteratively refining search
algorithm for the weights. The algorithm works as follows.

We first identify the outliers in the space of the explanatory variables.
The classical approach is to compute for each observation the Ma-
halanobis distance based on arithmetic mean and covariance matrix,
which are not robust. We use the minimum covariance determinant
(MCD) estimator (Rousseeuw| (1985)) to replace the mean and co-
variance with their robust estimates. After identifying the potential
leverage points, we estimate the initial parameters 3, from the re-
duced data obtained by deleting the potential leverage points. We use
the weight wy = wy(h(x”3;,)) as the starting point. We update the
weights w; in iteration ¢ using R’s glm function

B; = coef ficent(glm(y ~ X, weight = w;, family=binomial))

and
w; = wy(h(x"B;)).

The algorithm stops when the difference between two parameters is
smaller than an configurable tolerance. It yields a final estimate 8.

In a simulation study we compared this algorithm to the algorithm
based on Newton-Raphson. Both converge to the same results. In the
case of p > 3, where the algorithm based on Newton-Raphson does not
converge, the glm-based algorithm fails to converge too.

However, the glm-based algorithm may exhibit the problem that it
tends to converge to the MLE, when we have the leverage points ex-
tremely far from the mass of data. Therefore, in this case, we can
say that the algorithm based on Newton-Raphson is stable more and
converges to the estimate.
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4,21 The case of multiple roots

The BL; estimator is an M-estimator with a non-convex p function.
This means that there may be more than one root for the system of
equations Y., ¥(x,y,3) = 0.

We therefore modify the algorithm proposed above such that it can
search for multiple roots of this system of equations. Among the mul-
tiple solutions, we can then use a secondary criterion to determine the
best fit, or we may report several solutions to the end user.

In this algorithm we thus determine the best estimator with the small-
est residual. The algorithm is organized as follows.

The idea is to start with different initial parameters to determine the
different roots of the system of equations. For p = 2, let 3,,, = (51, 8=2)
be the initial parameters. They can be estimated using the maximum
likelihood method. We have seen in binary regression that if 55 changes
to — (2, then one can say that the parameters are influenced by the exis-
tence of outliers. Therefore, we suggest to consider as initial parameters
of the algorithm all combinations of different signs of 3;,,. For exam-
ple one can consider (=31, 32), (B1, 52), (81, —B2), (=P1, —F=). Hence
there are 2P = 4 combinations as initial parameters.

We illustrate this algorithm in 4 examples.

Example 6. Let the explanatory variables x1 and xo be distributed ac-
cording to a normal distribution N(0,1) for n = 35 observations. The
true parameter values are set to (1,2,2) for p = 3. The logit link func-
tion g(p) = log(ﬁ) =1n= XT3 is used. The dependent variable y; is
generated according to Bin(1, u;), where u; = h(n;). Sixz bad leverage
points are added to the data, i.e., 6 instances of y =1 and 6 vectors of
[1,—10,—10] are added to the design matriz. The results are summa-
rized in Figure [17)

Each of the lines in Figure shows the discriminating hyperplane,

where we have xy = SR}

x1 = 0 with the different estimated pa-
3 3,
rameters. The red line shows the maximum likelihood estimated param-

eters for Example[6l The blue and green lines are the two roots of the
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robust estimates BLy. These are computed with the algorithm based on
multiple roots.

—— MLE with outliers ®
—— 1-BL1 with outliers
—— 2-BL1 with outliers

X2
-4

-6

-8

-10

Figure 14: The results computed for Example [§

Example 7. In this example we consider the same model as in Exam-
ple[6l We contaminate the data as follows:

Xi,j]l = (1 —&)N(p1,01) +eN(u2,02)

y[i] = (1 — €)Bin(1, p[i]) + eBin(1,0.5).

Here € indicates the percentage of contamination. We choose arbitrary
but different (u1, pa, 01, 02) with different percentages of contamination.
The results are summarized in Figure[I5

The lines shows the discriminating hyperplane similar to Example [6
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The red and lines present the maximum likelihood and the BLy esti-
mated parameters, which are computed for the data without outliers.
The two blue lines are the results of the multiple root algorithm for
q=1.

In the case of 40% contaminations, the algorithm results only in one
solution

Among the multiple solutions, we can then use the criterion of the
smallest residual to determine the best fit or both results may be re-
ported as the several solutions.

4.3 Influence function of the BL, estimator

Similar to Ly quasi-likelihood, the influence function of the weighted
maximum likelihood estimate BL, can be derived directly from the
general formula of IF for the M-estimator (Hampel et al.| (1986])),

IFq(X*7y*) = M(I/J,F)_l’(/J(X*,y*,M*) €R?,

with
W (1) - - 1
sy Yy x ) = V’L(2q)/2 1_iq1 a * *
Y0t o) = 0 GV ) O (0= )T 40 = ke
(110)
and M (¢, F) = —EF[%’(/)(Z‘,Y, ,u)] Here, y, is an added element

to the response variable, x. is an added vector (1,z.1,...,Z+p) to the
design matrix and 7, = xI'B3, . = h(n.), K (n.) = Ous/On.. The
matrix M can be estimated by

M, (4, F) = D'V=9°QD,
and Q is a diagonal matrix with elements

Q=™ 4 (1) (111)
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Figure 15: The different computed results for Ezampleljfor different per-
centages of contamination.

Theorem [3.2.1] and Theorem [3.2.2] are applicable to the BL, estimator.

Example 8. We consider Example @ and study the IF' of the BL,
estimator. Figure[16 shows that the bad leverage points could influence
the estimates when q = 2, whereas it converges to zero when q = 1.



4.3. INFLUENCE FUNCTION OF THE BLgo ESTIMATOR 81

Figure presents the influence function of the BL, estimator for q =
1.2 and q = 1.5. This shows that for q approaching 2, the estimator is
more sensitive to contaminated observations.

LogiwhLES 42 LogitwhLEs 42 LogiwhLES ¢-1 Logit WMILES -1
<l
g |
S0 a0 w0 2o o o w0 w0 20 o o w0 w0 20 o o oo a0 w0 w100
o evrage pons Good everagepots oad everage pons Good everageports

Figure 16: The influence function of the BLy estimator when ¢ = 2 and
q = 1 for the logistic regression.

Logit WMLES ¢=1.2 Logit WMLES g=1.2 Logit WMLES g=1.5 Logit WMLES q=1.5
T
= 200 0 -0 200 -0 0 50 a0 -30 200 -100 o w0 a0 -0 -200 -100
Bad leverage poins. Good leverage points Bad leverage poins Good leverage points

Figure 17: The influence function of BLq estimator when q¢ = 1.2 and
q = 1.5 for the logistic regression.

For multi-dimensional explanatory variables, we have the same results
as L, quasi-likelihood estimate that when the covariates both tend to
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oo or —oo the IF becomes 0 (Figure . Moreover, there always exists
the risk that was discussed in Theorem [3.2.2)

WMLE WMLE

Figure 18: The influence function of f1 > 0 and B2 > 0 when q = 1.

4.3.1 Bias and sensitivity curve

We have seen (Figure E[) that the L; quasi-likelihood estimate implodes
to zero (Croux et al|(2002)) with worse behavior than the maximum
likelihood estimate. We are therefore interested in studying the sen-
sitivity curve of the BL, to investigate how this estimator behaves
compared to the MLE. We consider a similar example as (3.3)). Let

X = 1 § 200 200
380 20

The sensitivity curves of BL, estimates are represented in Fig-
ure [I9] We move the top right element = of X from —1 to —100 and
estimate the BL; and BLsy for each value. We can see that the BL;
estimate remains stable. In this example we consider a higher degree
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of contamination, 1/400, compared to (3.3)). This result illustrates that
the BL; is more resistant than L; quasi-likelihood.

SC(B)
2

Figure 19: The sensitivity curve of BLq quasi-likelihood with ¢ = 1 and
q=2.

We next examine the breakdown point of BL, quasi-likelihood esti-
mates. We illustrate the asymptotic bias of BL, quasi-likelihood caused
by the contamination. Suppose the explanatory variables, X € R3,
are distributed according to a normal distribution N(0,1). The true
parameter values are set to 8 = (1,2,2). The logit link function
g(p) = log((lf—#)) =7 =x'is used and N = 1000 samples of y; for
i=1,...,n are generated according to Bin(1, u;), where p; = h(n;).

We add m leverage points to the n = 500 original observations. These
m leverage points are added as follows. In each generation we add m
instances of y = 1 to the sample (y1, ..., yn) and m vector of [1, =5, —5]

are added to the design matrix X. The value of m represents the per-
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centages of contamination.

Let B . be the estimated parameter for the k-th sample in each genera-
tion for k =1,..., N. We then compute the bias of the estimator over
N runs.

1.
Bmﬂznﬁggm—ﬁw

We contaminate 2% , 3% , 4%, 5% ,10% ,20% , 34% , 50% of the data and
calculate the bias of BL, estimates for ¢ =2 and ¢ = 1.

As we expected for the more contaminated data, the BL; quasi-likelihood
estimate remains more stable than the MLE. But as Figure shows,
the BL; estimate is heavily biased at 34% contamination, which shows
that its breakdown point is smaller that 34%.

We have studied the bias in many other simulation studies and all them
confirm the breakdown point greater than 20% for the BL; estimate.
We have not been able to confirm this result theoretically.

4.4 Some alternative weight functions for BL,

Any weight function, which depends only on p will lead to an asymptot-
ically unbiased estimating equation. In this section some alternatives
are explored.

Let x; € R? be the explanatory variables and Y; be the independent
Bernoulli variables with success probabilities pu; = P(Y; = 1 | x;)
through the relation p;(8) = p; = 1/(1 + exp(—x7 3)).

We again consider a Mallows estimator with a weight function that only
depends on p and g. We introduce three new weight functions to im-
prove the robustness of these weighted maximum likelihood estimates.
The first weight function has three parts and depends on p, ¢ and two
constants ¢ and ¢.

pft+ (=)l - )2 p—1t<e
Wi () = § Yl son(u — 1) (p — u) e <|u—1l<a

0 |,u—%|>01,
(112)



4.4. SOME ALTERNATIVE WEIGHT FUNCTIONS FOR BLg 85

Simulation 11 Simulation Il Simulation Il Simulation Il
% == o J
—_ 24
8 o | 8 P 8
! S . ' :
+ - I 2 4 i o H
o | + _l_
E - |
' G - ] I N |
o] 4 o . P I 0| -
3 3 3 3
T T T T T T T T
Blal BLg2 Bl BLg2 BLaL BLg2 BLaL BLg2
2% contamination 3% contamination 4% contamination 5% contamination
Simulation Il Simulation 11 Simulation 11 Simulation Il
& & L] 3 H
- m -+ S
L} =] |
— S ]

298
L

0
5 20
300
L
305
L

296
200

+ o | |
o 14 -
=R S N .
P - + —r

s ° -
S s
T T T T T T T
BLgl BLG2 BLql BLG2 BLqgL BLa2 BLGL BLa2
109% contamination 20% contamination 34% contamination 50% contamination

Figure 20: Bias distribution of BLq quasi-likelihood estimates with bad lever-
age contaminations when ¢ =1 and ¢ = 2.

where ¢; = % —C,Cco= % — ¢ — ¢, sgn() denotes the sign-function that

takes the values +1 and u = (1 —2c)I(H>%) +c¢ with indicator function I.

Figure [21| presents this weight function for different values of ¢. Since
for ¢ > 2 this weight function does not downweight the leverage obser-
vations, we only consider the cases 1 < ¢ < 2.

We denote the estimator with this first weight function by W1-BLj.
This estimator yields stable estimates where the "bad leverage point"
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Figure 21: The first new weight function for ¢ = 10%,c = 5%.

is very far from the mass of data. This is when it attributes a weight
of zero to data close to the edge of the design space. In the following
example we illustrate this case.

Example 9. We consider an example with y and x, which is presented

in Figure[23

We add a bad leverage point and move this point far from the data. The
results are shown in Figure [23

The blue point is considered as a point extremely far from the design
space. The WI1-BLi estimator approaches the estimate that is com-
puted from the model without the bad leverage point. However, the BLy
estimator is moderately influenced by this point (the blue lines in Fig-
ure . The other leverage points give the same result as the blue one
in both models.
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Figure 22: The data from Example@ The model is fitted with the W1-BL1
estimator.

This difference is because of a weight zero for data close to the edge
of design space. These estimates have the disadvantage of numerical
instability. In simulation studies, we have observed that the Newton-
Raphson algorithm cannot converge when we have far a way contami-
nated data. This is due to the zero values in the matriz of the weight
Sfunction.

Because of numerical instability we introduce a second weight function
(113)), which has a simpler form with a smooth function. This weight
function depends on p and gq.

W (k) = (1— (20— 1))". (113)

Figure [24] presents this weight function for different values of ¢. To
improve the efficiency and robustness of the weighted maximum like-
lihood with the weight function W/'(u), the best value of ¢ can be
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q = 2 or ¢ = 3. Unfortunately, similar to the first weight function, this

weight function also exhibits numerical instability.
Thus we introduce the third weight function, which combines the W/ (1)
and qu I(). This weight function depends on y, ¢ and a constant c.

117
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Figure 25: The third new weight function for different values of q, ¢ = 0.2
and ¢ = 0.3.

Figure [25] shows this weight function, for different values of ¢, with
¢ = 0.2 and ¢ = 0.3. For ¢ > 0.7 this weight function is equal to the
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weight function of the BL,. In order to improve the robustness and the
efficiency of this estimator, we choose the value of ¢ = 0.2 or ¢ = 0.3
and 1 < ¢ < 2.

The numerical stability of the weighted function maximum likelihood
with the weight function W,/''(y) is better that the WMLE with the
first and second weight function. However the BL, estimate with the
weight function is still superior.

4.5 ./n-consistency of the BL, estimator

The asymptotic behavior of M-estimator has been extensively discussed
especially following the important paper by Huber (Huber| (1967) and
also Huber| (1981))). We are interested in studying under which condi-
tions there exists a y/n-consistent estimator solution for .

Let the design matrix be X = (x1,X2,...,%Xp) € R"*P, where x; is
the vector (1,...,1). Let Y; be the independent Bernoulli variables
with success probabilities u; = P(Y; = y; | x;), where pu; satisfies
g(u;) = xI'B. The BL, estimator is the solution of the estimating
equations

n

n h,
Z Xza ylv Z U)q i ( Ml)xl =0 S Rpa (115)

i=1 i=1

<

where wq (1) = V() =" (" + (1= ps)771).
This solution is defined as the point of global minimum of

Zp Xi, Yi, 3 mln (116)

where p(x,y,3) is a function that satisfies %p(x,y,,@) =P(x,y,3).
In order to study the asymptotic properties of the BL, estimator we
need the first- and second-order derivatives of @ with respect to the
parameter 3.

Denote the components of the vector-valued function 1 by 1; for j =
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1,...,p, x and 3,

by = 03 %,9.8) = {300 ) (1)

Here x; is the corresponding component of x and V(u) is the variance
function applied to h(n).

The first-order derivative of 1 is a matrix € RP*P ¢ = [ijr]jr for
rand j =1,2,...,p, where

. Ry
wjr = 8ﬂ7
__(m)? o I (n)
- Vip) wq(p)zjer + 5, [V(U) wq(ﬂ)] (y — pw)x;(118)

The second term is zero when taking the expected value at the model.

The second-order derivative of 1) is a tensor € RP*P*P '(/J = erk}

. grk
for j,r,k=1,2,...,p, where ¢;,, € R is equal to

*Y; 9 .

i 9. 119
To simplify the computation we ignore the terms involving the second
and third derivatives of the inverse link function, 4”(n) and A"(n), in

the elements fd}jm. ‘We then obtai

(' (n))?
V(p)

Gir = [l (1) (y — 1) — 20, ()] agarmn. (120)
Huber and the authors following him distinguished two cases. In case
A. the M-estimator 3" is the solution of Y " | p(x;,y;,3) = mﬁin!.
In case B. it is determined as the root of the system of equations
S (x5,vi,8) = 0 € RP. The asymptotic behavior of the M-
estimator for the two cases are described in Huber]| (1981)) (p.130).

If the function p is not convex, then there may exist several roots for

3For more details see McCullagh and Nelder] (1983]).
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the system of equations . In this case, |Jureckova and Sen| (1996)
imposed certain conditions on p and the distribution function F(x, y|3)
of (X,Y), in order to obtain sufficient conditions for the existence of a
\/n-consistent estimator. In the following section we review the theo-
rem of |Jureckova and Sen| (1996) (p. 184-191).

4.5.1 Applying the Theorem of Jureckova and Sen to the BL, estimator

Considering the explanatory variables, we assume that x1,... ,x, are
ii.d. realizations of a random variable X with a known distribution
function H. The joint distribution of (X,Y") is then equal to

F(XY)(X7y‘/6) = H(X)G(y|X,ﬂ) ;

where G(y|x, 3) is a Bernoulli distribution with the parameter h(x?3),
where 3 € RP. The true parameter of 3 is denoted by 8™, that is,
Y1,...,Y, are independent Bernoulli random variables with distribu-
tion G(y|x;, B™).

We assume that E(XXT) has full rank p and the fourth-order moments
of x; exists and is finite. We also assume that the function

h(b) = Ep(X, Y, b) (121)

exists for all b and has a unique minimum at 8". This implies that
A(b) = E¥(X,Y,b) has a root at b = 3"

Theorem 4.5.1. (Jureckovd and Sen (1996) Theorem 5.2.1)

Let the data be as described above and let p(x,y, b) be absolutely con-
tinuous in the components of b and such that the function h(b) of
has a unique minimum at b = B3™. Then under conditions A1. and
A2., there exists a sequence 3" of solutions of the system of equations

such that
VallB" = 8™ = 0,(1) a5 n—ox. (122)
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Furthermore,
B =p"+n"(-T(B™) Y (xi,yi, B7) + Op(n™").  (123)
i=1

Under conditions of the Theorem V(8" — B™) has asymptoti-
cally a p-dimensional normal distribution N,(0, A(3™)) with

A(B™) = (D(B™)'E@ XY, M)y (X,Y, ™) T(B™) "

where the matrix T'(3™) has the elements

/ 2
o = B 0 (0%, X,). (124)

This follows from
V(BT = B™) B n(-T) " (3h,), (125)
where '(Ln = Z:'l:l w(xw y“ﬁm)/n

In the following, the two conditions Al. and A2. are defined and
applied to the BL, estimator.

A1l. First-order derivatives.

The 1; are absolutely continuous in () with derivative @&jk = 0, /0B
such that E(z/J?k) < oo fork=1,...,p. The matrices T(B™) € RP*P
with elements v;,(B™) and B(B™) € RP*P with elements bj(B™) are
positive definite, where

Yik(B) = Eji(B)

and

bjx(B) = Cov(vy, r).

For the BL, estimator, 1 (x,y, 3) is in fact continuous in the compo-
nents B, and boundedness of
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E(J%.(X.,Y, 8)) (126)

follows from boundedness of E(X3X7).

Furthermore, I'(8™) = [v,-(8)];r is positive definite under the condi-
tion we imposed on H that E(XXT) has full rank p. Finally, the matrix
B(B™) is a covariance and thus positive definite. We have

bj (ﬁ) COV(%(X7K,@)>7M@(X7Y»5))
Cov(AX)(Y — )X, AX)(Y — p1)Xk)

= B(AX)’X,X), (127)

where A(x) = \}%wq(u). With the assumption on H already men-
o

tioned the positive definiteness of B(8™) = [b;x(0)];x follows.

A2. Second and third derivatives.

The functions zbjk(xi,yi,ﬁm) are absolutely continuous in the compo-
nent 3 € ©. There exist random variables M;,(X,Y, 8™) such that
mjre = BEM;(X,Y, 8™) < 00 and

[9jrn (%9, 8™ + b)| < Myri(X, Y, 8™) for all ||b]| < 6,6 >0,

In the case of the BL, estimator, 1, (x,y,3) is continuous in the com-
ponents of 3. Considering the equation (120)), note that h'(n) and V (u)
are positive and that |y— | < 1. Using the triangle inequality it follows
that

(h'(n))®
V(p)

For any § > 0 and ||b|| < § we need to find random variables M, that
bound the right hand side when evaluated at 3™ + b. Let

(h'(m))*

18") = S [l 142 |l 1]

| Pjrw 1< [Twg(u) | +2 | wg(p) | ] | @iz |- (128)
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and consider the Taylor series with remainder
F(B™ +1b) = f(B™) + b f'(€).
This can be bounded in absolute value by

|F(B™)| +6D(f,B™,0),
where D(f,8™,6) = max {||f'(8+ b)|| : ||b|| < §}. Finally we define
Mjre = ((If(B™)| +6D(f,8™,0)) | X; X, Xy [ ). (129)
The value of m;, is of the form
EM;. = E(C(X) | X, X, Xy | ) , (130)

which is bounded because of our condition on the distribution H.

If p is convex in b, then the solution of (116]) is unique. However, when
p is not convex (the BL, estimator), there may exist more roots of

the system (115)), which satisfies (122]). Let 8" and B} be two such
roots. By satisfying the conditions of Theorem and from the
COROLLARY 5.2.2 of |Jureckova and Sen, we then have

18" = B2l = Op(n™1) as n — 0o,

which results directly from .

For this case, |Jureckova and Sen (1996]) considered three additional
conditions and Theorem 5.2.2, which discusses the \/n-consistency of
this type of estimator.

Theorem 4.5.2. (Jureckovd and Sen| (1996) Theorem 5.2.2)

Let the data be as described in Theorem and let p(x,y,b) be
absolutely continuous in the components of b and such that the function
h(b) of has a unique minimum at b = B™. Then under the
conditions B1.-B3., there exists a sequence 3" of roots of the equation

such that, as n — oo,
V(8" = B™) = Op(1). (131)
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The conditions B1., B2. and B3. are defined and applied to the BL,
estimator in the following.

B1. Moments of derivatives.
There exist k > 0 and 6 > 0 such that for ||b]| <

E@X(X,Y,8" +b) <k
E(y?,(X,Y, 8™ + b)) < k

E()2 . (X,Y,8" + b)) <k

Jrk

For the case of BL, estimator and the fact that |y — u| < 1 we have

E(¥}(X,Y.8)) < E(L(X)X]), (132)
where L(x) = }‘L,jézg w(p).
E(¢5,(X,Y,8)) < E(M(X)X}X?), (133)
where M (x) = }‘L//;lézgwg(,u) + (ag,. [}‘L/l((:zg wq(ﬂ)])Q-
E(;1(X,Y, 8)) < E(N(X)X}X?X?), (134)

16 (,)
where N(x) = }‘1/281) (wyy (p)? 4 4wl (1)?).

It is evident that there exist a
k(B™) = B(M(X)X2X2) + E(N(X)X2X2X2)

which is positive and the equation (132]), (133)) and (134) are all smaller
than k(5™).

Therefore, for any 6 > 0 and ||b|| < § there exists a positive k(3" +b)
that bounds the right hand side of (132]), (133 and (134) when they
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are evaluated at 8™ + b. To obtain such a universal bound, we can
proceed as before. Thus, we have

k(B™ +b) = k(B™) + bk (§).
This can be bounded by
K=kB")+dD(k,B",9),

where D(f,8™,8) = max {||[k'(8+Db)|| : ||b|]| <} and K is a function
of 8™ and §. This apply condition B1. to the BL, estimator.
B2. Fisher consistency.

0 <y(B™) < 00 where 4(B™) = E(—¢;,(X,Y, ™).
This is confirmed from (126]) and (133)).

B3. Uniform continuity in the mean.
There exist o > 0 and § > 0 and a random variables M;,(X,Y,3™)
such that mjp, = EM;,(X,Y,8™) < 0o and

e (%, 9, B4 B) =ik (%, 4, B™)] < |[B]|* Mg (x5, 8™)  for ||b]| <6

We have

‘ij”@()g y, 8" + b) — &jrk(xa Y, /Bm)‘ <
|¢j7‘k(xvya/6m + b)| + |¢]7k(x7y7/6m)|

We have seen in ([128)) that
[Gjrw(x,y, 8™ +Db)| < F(B™)|zjans|,

and

|¢j7‘k(xyy7/3m + b)‘ + |1Lj7“k(x7 yvﬁm” < Mj?"k: )
where M;,;, are defined in (136). We finally define a new M, such
that

M = (2I£(B™)| 4+ 6D(f,8™,0)) | X; X, Xy | ). (135)
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The value of my,, is of the form
EMj., = E(O(X) | X, X, Xy | ) , (136)

because of our condition on the distribution H. This verifies the con-
dition B2. fora=1and b=1.

The conditions B1.-B3. guarantee that for there exists at least one root
of (115), 8" as a BL, estimator, which is a y/n-consistent estimator of

B

4.6 Simulation

In order to test and compare the performance of Bernoulli estimates
(WML), we conducted a simulation experiment. The estimators of in-
terest are the MLE (BL5), BL;, BL; 5 and BL; 7, which are the maxi-
mum likelihood and the weighted maximum likelihood forg =1, ¢ = 1.2
and ¢ = 1.7. Here the MLE is computed with the glm algorithm of
R and the BLs is computed with our algorithm for the maximum like-
lihood estimator. We will compare the robustness and efficiency per-
formance of the BL, estimates with the estimator of |(Croux and Haes-
broeck| (2003) (BY¢p), the estimator of |(Cantoni and Ronchetti| (2001))
in which the weights are calculated with "cov.med" from R (Cantoni),
the estimator of Kiinsch et alf (1989) (CUBIF) and the estimator of
Mallows (Mallows).

The different estimators were computed for N = 1000 samples of di-
mension p = 3 or 7 and sample size n = 35 or n = 100. The explanatory
variables are generated as independent unit normals and were kept fixed
throughout the simulations.

e Simulation I The explanatory variables x; € RP are distributed
according to a normal distribution Np(0,I). The true parame-
ter values are set to 8 = (0.5,1.0,1.0) when p = 3 and B =
(0.5,0.35,...,0.35) when p = 7. The logit link function g(u) =
log( 1i#) =n = X[ was used and N = 1000 dependent variables
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y; were generated according to Bin(1, u;), with p; = h(n;).

e Simulation IT In each group of data set n = 35 or n = 100, one
of the x; vectors was replaced by the vector [1,—10,...,—10].
This means that one of the observations that is outlying in the
x-space was added. The corresponding response was set equal to
1, even though the simulated model would strongly favor y = 0.
Thus, the outlying observation is a bad leverage point. The esti-
mators are computed over N = 1000 generations.

For each simulated data set i, all the estimators were computed. Fur-
thermore, we calculate the following summary statistics: (137))

P P
Bias = > |8 — Bl IQR=Y_IQR(Bx),  (137)
k=1 k=1

where Bik is the k-th component of the i-th simulation. The results are
presented in Table [4]

When the observations with y = 1 and those with y = 0 have corre-
sponding x-values that can be separated by a hyperplane, the logistic
regression is not well-defined. Some of the simulations lead to such
non-overlapping data sets. These were excluded.

This simulation study illustrates that when there is no contamination
to the data set (Simulation I), the estimators behave similarly.

The result of Table [5| shows that under addition of the bad leverage
point (Simulation IT), the MLE is heavily biased, due to the fact that
the MLE estimates of the regression parameters implode. Not surpris-
ingly, its IQR is low, indicating a great stability of the estimate. In
short, the MLE estimates very stably a wrong parameter value.
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Simulation I

n=35 n=100

p=3 p=3 p=7
Bias MSE | Bias MSE | Bias MSE
MLE 0.13 2.13 | 0.04 1.20 | 0.07 2.35
BL, 0.13 2.13 | 0.04 1.20 | 0.07 2.35
BL; 7 0.13 2.12 | 0.04 1.22 | 0.07 2.34
BL; 5 0.15 2.19 | 0.04 1.24 | 0.08 2.40
BL; 0.15 221 | 0.04 1.24 | 0.08 2.40
CUBIF 0.14 2.14 | 0.04 1.21 | 0.07 2.36
Cantoni | 0.16 2.56 | 0.06 1.38 | 0.09 2.80
Mallows | 0.14 2.14 | 0.04 1.21 | 0.07 2.36
BYcn 0.14 2.18 | 0.04 1.24 | 0.08 2.40

Table 4: Comparison of the asymptotic bias and the mean squared error of
the robust estimators for Binary models in Simulation I.

Among the robust estimators, BLL1.7, CUBIF and Mallows could be
called weakly robust. They have a behavior between the highly robust
estimators and the MLE.

When the sample size grows to n=100, these intermediate estimators
become more competitive, but retain a relatively larger bias.

The dimension p = 7 is clearly very challenging. All the robust estima-
tors have quite a large IQR, but are roughly unbiased.

Overall, the estimators BL; and BY ¢y are the winners of this compar-
ison.

In Figure , the bias distribution of BL, estimators for¢g = 1, ¢ = 1.2
and ¢ = 1.7 are compared with alternative robust estimators and the
MLE. Simulation I is shown on the left, while Simulation II is on the
right. The top row contains the results for p = 3, n = 35 and the
bottom row those for p = 7, n = 100. We obtain similar results to 31
(not included) for the bias distribution of 35,83 --- and 87. The MLE
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Simulation II

n=35 n=100

p=3 p=3 p=7
Bias MSE | Bias MSE | Bias MSE
MLE 1.38° 099 | 096 0.67| 0.76 1.74
BL, 1.38 099 | 096 0.67 | 0.76 1.74
BL; 7 0.37 297 | 0.06 1.26 | 0.03 2.54
BL; 5 0.13 2.09 | 0.06 1.20 | 0.11  2.50
BL; 0.14 2.10 | 0.06 1.20 | 0.11 2.51
CUBIF 0.34 1.55 | 0.15 1.01 | 0.07 2.28
Cantoni | 0.14 2.61 | 0.06 1.40 | 0.14 2.97
Mallows | 0.34 1.55 | 0.15 1.01 | 0.07 2.28
BYcn 0.06 225 | 0.01 1.20 | 0.07 2.49

Table 5: Comparison of the asymptotic bias and the mean squared error of
the robust estimators for Binary models in Simulation II .

implodes to zero for the contaminated data set (Simulation II).

We also investigated the efficiency of these estimators for a different
contamination rate and very high leverage points. We obtained similar
results (not included) to those presented above. From this simulation
experiment we can conclude that a simple method of weighted maxi-
mum likelihood with the weight function depending only on p yields a
robust estimator with a good overall behavior.

4.7 Examples

Example 10. The data set leukemia of |Cook and Weisberg (1982)
(Chapters, p. 193) contains 33 leukemia patients with the following
variables. The response variable Y is one when the patient survives at
least 52 weeks. The two covariates are X1 white blood cells (WBC) and
Xy presence (1) or absence (0) of acute granuloma (AG) in the white
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Figure 26: The bias distribution of BLy estimator is compared to alternative
robust estimators in binary regression. Simulation I is shown on the left,
while Simulation II is on the right. The top row contains the results for
p =3, n =35 and the bottom row those for p =7, n = 100.
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blood cells. |Cook and Weisberd (1982) detected that the observation
(15) corresponds to a patient with WBC = 100000 who survived for a
long period and this observation influenced the MLE.

In Table [6| we report the estimated parameters and their asymptotic
standard error within the parentheses corresponding t(ﬂ

e the MLE with the complete sample or BLy, (MLE)

e the MLE without observation number 15 (MLE)s5)

the Pregibon’s weighted MLE (Pwyre)

the estimator corresponding to|Crouz and Haesbroeck (2003) with
c=0.5 (B YCH)

the weighted M-estimate (WBYcn)

the BLy quasi-likelihood estimator (BLy)

Estimate | Intercept WBC(x107%) AG
MLE “1.3(081)  —0.32(0.18) 2.26(0.95)
MLE;; | 0.21(1.08)  —2.35(1.35) 2.56(1.23)
Pware | 0.17(108)  —2.25(1.32) 2.52(1.22)
BYcn | 0.16(1.66)  —1.77(2.33) 1.93(1.16)
WBYcn | 0.20(1.19)  —2.21(0.98) 2. 40(1 30)
BL, 0.14(0.76)  —2.05(0.93)  2.5(0.86)

Table 6: Comparison of the estimated parameters for the leukemia data set
with their standard errors for the MLE, PwyrLe, BYcu and BLy estimator.

We can observe that coefficients fitted with BL, are very similar to
MLE 5, Pwyvire, BYoy and WBY oy with notable smaller standard
error.

4For more details see [Maronna et al.| (2006).
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Example 11. A well-known data set skin was introduced by
and studied by|Pregibon| (1983) and|Crouz and Haesbroeck (2003).
The Binary response variable Y indicates presence or absence of vaso-
constriction of the skin of the digits after air inspiration. The two
covariates are Xq the volume of air inspired and Xo the inspiration
rate.

Figure [I]] presents the skin data set with the estimated coefficients dis-
cussed above. The skin data set is difficult to examine. Observation 4
and 18 have been detected as being influential for the MLE. Deleting
these two points yields a data set whose overlap depends only on one
observation.

Skin Data set (Finney)

Figure 27: Comparing the estimator for Skin data (Finney, 1947).

Table [7 gives the estimated coefficients and their standard errors via
the MLE, MLEy5, Pwye, CUBIF (Kinsch et al| (1989)), BYcu,
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WBY cy and the BLy estimator.

Since the explanatory variables do not contain any outliers, BYcpy and
WBYcpy are are identical. As we can see, the BL1 estimate is similar
to the MLE without observations 4 and 18. We therefore believe that
the (BLy) performs well with this data. Similar to the ML applied to
the data set without the influential observations, the standard errors of

the BLy are quite big.

Estimate Intercept LogVOL logRATE
MLE —2.875(1.32) 5.179(1.863)  4.562(1.837)
MLE, 15 | —24.58(14.02)  39.55(23.25)  31.94(17.76)
Pywmie —2.837(1.35) 5.139(1.882)  4.508(1.882)
CUBIF —2.847(1.31) 5.141(1.85)  4.523(1.824)
BYcn —6.854(10.047)  10.738(15.307) 9.367(12.779)
WBYcn —6.824(9.85) 10.709(15.113)  9.335(12.540)
BL, —21.28(14.52)  34.41(23.64)  27.72(17.96)
BL, 5 —21.19(13.04) 34.25(18.96)  27.61(14.49)
BL; 5 —5.39(2.27) 8.54(2.44) 7.56(2.4)

Table 7: Comparison of the estimated parameters for the Skin data set with
their standard errors for the MLE, CUBIF, BYcy and BL4 estimator with
qg=1,12 and 1.5.

Example 12. In this example we consider the data set from|de Vijver]
M. J. et al| (2002). They used complementary DNA (¢DNA) microar-
The
25000-genes arrays were studied to identify a gene-expression profile
that is associated with prognosis in 295 patients with breast cancer.

In this example we consider 11 genes that Nicolas Fournier, researcher
at EPFL, had identified during his Master thesis for this data set. The
Binary response variable Y indicates whether the selected patients had
distant metastases at their survival time. We fit a logistic regression to
introduce the relationship between diversity and these variables.

rays and the isolation of RNA to analyze breast cancer tissue.
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BL; estimator MLE

Coefficients P-value Coefficients  P-value

Intercept —0.69 (0.24) 0.004 | —0.67 (0.23) 0.0026
Contigd0719 _RC | —0.87 (0.47) 0.0624 | —0.76 (0.44) 0.0822
NM_ 005133 0.27 (0.09) 0.0030 0.25 (0.09) 0.0042
Contig41652 0.51 (0.25) 0.0400 0.56 (0.24) 0.0201
NM 005375 —0.05 (0.04) 0.1294 | —0.05 (0.04) 0.1214
NM 006622 —0.21 (0.06) 0.0004 | —0.21 (0.06) 0.0003
NM 016109 0.13 (0.04) 0.0026 0.13 (0.04) 0.0022
Contigd3806_RC | —0.07 (0.04) 0.1091 70 07 (0.04) 0.1033
L27560 0.15 (0.04) 0.0001 .14 (0.04) 0.0001
Contig43791 RC | —0.07 (0.04) 0.0408 —0 06 (0.03) 0.0601
NM 004524 0.16 (0.06) 0.0038 0.15 (0.06) 0.0055

Table 8: Comparison of the estimated parameters for genes expression data
The coefficients are estimated by the MLE and BLi
for the logistic regression model.

set with their p-values.

In Table [§ we report the estimated parameters and their p-value via
the BLy and the MLE. The values in parentheses are their standard
errors. From Table [§ and based on the confidence interval for each
of the explanatory variables, one can see that two of these variables
(NM_ 005375 and Contig{3806 RC) cannot be considered significant
in the model. From the MLE the variables Contig40719 RC and Con-
tig43791 RC are at the limit to be considered in the model. How-
ever, using the robust method the gene Contig43791 RC can stay in
the model.
ward stepwise procedure on the MLE and the BL,. We keep the variable
in the model if the p-value obtained from the robust method at each step
of procedure is less than 5%.

The results of this analysis are presented in Table [d As we can see

To reduce the number of these variables we apply a back-

the estimated parameters and their p-values, which are computed by the
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mazimum likelihood estimator and the robust models BL1, are essen-

tially similar.

BL; estimator MLE

Coefficients P-value | Coeflicients P-value

NM 005133 0.24 1.87e—03 0.26 3.70e—03
Contigd1652 0.54 2.68e—02 0.56 1.87e—02
NM 006622 —0.25 1.12e—05 —0.24 1.21e—05
NM 016109 0.18 2.21e—06 0.18 1.07e—06
L27560 0.19 3.04e—07 0.18 3.05e—07
Contig43791 RC —0.07 3.01e—02 —0.06 6.97e—02
NM 004524 0.20 2.69e—04 0.19 2.21e—04
Table 9: The coefficients estimation and corresponding P-value for final

logistic regression model, estimated by the MLE and BLi for the genes ex-

pression data set.

The approach to adapt the simple weighted maximum likelihood with
the weight that depends only on p in Poisson regression are studied in

Chapter
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CHAPTER D

Poisson Regression

In Chapter 4 we introduced the robust method for binary regression.
In the present chapter we focus on a Poisson regression, where the re-
sponse variables are in the set of non negative integers without any
upper limit on the observed values.
Let y; for i = 1,...,n be independent according to a Poisson distribu-
tion. The probability density is given by

P(Y:y)ze;“y y=0,1,2,..., (138)

where p > 0 is the expectation and the variance of y;.

Consider a generalized linear model with response variables y; ~ P(u;)
and the non-random explanatory variables x; € RP. Let g(.) be an
monotone increasing function defined on the positive reals. The com-
monly used link function is “log”. The regression parameters 8 =
(B1,---,0p)T enter into the model through

9(i) = log(i) = x; B =1;.
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The Poisson log-likelihood function for a vector of independent obser-

vations y; is
n

I(B) =log L(B) = Z(yi log f1; — pu;)- (139)

i=1

Differentiation (139 with respect to 8 yields the maximum likelihood
equations

> W) x, = 0, (140)
i=1 Hi

where p; = h(n;) and b/ (n;) = Op;/On;. For the canonical link function

i = X the system of equations (140 become

n

> (g — e P)x; = 0. (141)

i=1

In the next section we give an overview of the robust estimates for
Poisson regression parameters 3.

5.1 Robust Poisson regression

In the literature, there is no specific robust method for estimating Pois-
son regression parameters. However, the general robust methods for
generalized linear models can be applied to Poisson models. The con-
ditionally unbiased bounded influence estimator of Kiinsch et al.|(1989)
is one of the first robust models that can be used to estimate the pa-
rameters for these models.

More recently, a Mallows quasi-likelihood estimator of |[Cantoni and
Ronchetti| (2001)) has been applied in particular to Poisson regression.
These two estimators have been discussed in detail in Chapter

In the present chapter we study the L, quasi-likelihood estimator of
Morgenthaler| (1992)) for Poisson regression models. Later we introduce
two weighted maximum likelihood estimates for these models.
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5.2 L, quasi-likelihood for Poisson regression

Consider the system of equations of B:

n W) a—lggn —c =
;V(ul q/2{|yz i sgn(y; — pi) — c(pi)} = 0. (142)

For the Poisson model y; ~ P(u;),c(p;) is equal to

c(pi) = Y]IEX{|Y¢ — 1| tsgn(Y; — )}

U—‘ J e’}
==Y (wi—y) 'PYi=y)+ > (i—m) T 'PYi=u).
yi=0 yi=[pi]

(143)

In the second part of this expression we need to compute an infi-
nite sum. Given the exponential decay of the probabilities, this sum
clearly converges. An approximate value can be obtained by computing
iU — W)~ tP(Y; = j) for a finite value of N .

In order to define the value of N, we performed a small simulation
study. We compute these series for different value of N = 10, N = 100,
N = 1000 and N = 10000 to find the N that bounds the maximum
error by €. This simulation study showed that we can fix the value of
N to 4y for sufficient accuracy.

5.2.1 L, quasi-likelihood for Poisson regression

Since in this research we are interested in studying the L; estimate for
generalized linear models, we only consider the case of ¢ = 1 of L,
quasi-likelihood estimates. For the canonical link function p = €, the
system of equations become

Ui(B) = Z V(i) {sen(ys — i) — 1+ 2P(yi < i) }x;. (144)
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We can show that

P V()Y (2P (ys < ) x S
Ui(8) = {221 P RSk mE )
S V()PP (ys < i) —2)xi i <
Or
Ui(B) = Z V(ﬂi)1/2(2P(yi < i) = V)W (i, pa) X (146)
i=1
where
14 spra— i >
W (yi, i) = { Pt VN (147)
1- P (yi<pi)—1 Yi < -

The weight function (147)) in the estimating equation (146)) is a function
on u and y.

One can consider an alternative approach to compute P(y; < p;). Let
Y (t) be a Poisson process with intensity A, satisfying Y (0) = 0. It
follows that Y (t) ~ P(tA). Let T; be the waiting times between the
events counted by the Poisson process. These are independent and
follow an exponential distribution with rate A. From the definition of
the Poisson process we find

Pt > ) = PO T, < 1) = P(G < 1),

where G is the random variable distributed according to a Gamma
distribution G(u, A).

To apply this formula to the computation of ¢(u), we have to choose A
such that tA = p, i.e., A = p/t.

5.2.2 Computation of L; quasi-likelihood estimator

Let consider the system of equation ([145)) being of the form of

> wilyi — pwa)xi s (148)
=1
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where

wi = V() {sgn(ys — pa) — 1+ 2P (i < pa)}/(yi — pi). (149)

The computation of this weighted maximum likelihood is based on the
Newton-Raphson iterative method, which uses the derivative

oU -
aﬂk = W (ni)wiid Wi (ys — ps) — Wi},
r 1

where h/(n) = Op;/0n; and w' = dw;/Ou;. This yields the Newton-
Raphson update
Brew = Bota + (XT"NX) U (B ),
where N is a diagonal matrix with diagonal elements
Nii = W (m){wi — wi(yi — pi)}-

To simplify the computation we ignore the term involving the deriva-
tives of the weight w] in the matrix N.

In robust binary regression, we have seen the advantage of a weighted
maximum likelihood estimate with weight function that only depends
on . In the binary case, this estimator is a simplified version of L
quasi-likelihood estimates. In Poisson models, the simplification of the
L, estimate cannot yield a similar form of the estimator. Therefore, we
are interested in finding a similar weight function for Poisson regression.
In binary regression the response variables are limited to values of 0
or 1. However, there is no upper limit for a Poisson variable and to
introduce a reasonable weight functions we need at least knowledge of
the mean of the observed data. This fact yields the weight function
that do not depend on p; alone. In the next section we introduce new
weighted maximum likelihood estimates for Poisson models.

5.3 The WMLE for Poisson regression

Let the response variable have a Poisson distribution y; ~ P(u;) and let
the explanatory variables be x; € RP. We introduce two new WMLE
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estimating equations. Several examples and simulations will then illus-
trate these two procedures.

Our first new weighted maximum likelihood system equation has the
form

> h;(ji) Wy (1) (ys — p)x; = 0. (150)

where p; = h(n;), h'(n;) = Opi/On; and the weight function Wy (1)

—m)?
Wy () = exp(~ 0. (151)

Here, m and s denote the arithmetic mean and standard deviation of
the observations,

mi;yl s:%Z(yifm)z.

Alternatively, we compute a robust estimate for these two values from
the observed data y;. We use the minimum covariance determinant
(MCD) estimator (Rousseeuw| (1985))) to introduce a new group of ob-
servation. Furthers, we use this data set to compute the arithmetic
mean and standard deviation m and s.

With this weight, the observations on the edge of the design space are
given less weight. The full weight of 1 is given to those observations
with p equal to the sample mean.

Figure [28) shows the function Wy (1) of the Poisson model for various
values of the sample mean and variance. We will denote this estimator
with WMLE;,.

Based on the definition of this weight function W, (u), one can expect
that these weighted maximum likelihood estimates are biased because
E(W(ul)(}/; - Hz)) # 0.

However, this weight function, similar to the second weight function in
binary regression, yields a numerically unstable estimate. The weight
function W, (1) gives weight 1 only to the observations in a small inter-
val around the center and quickly drops to zero for observation outside
this interval. This abrupt change is a problem in real data with small
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Figure 28: The weight function Wy(u) associated with four Poisson distri-
butions with different parameters p =5,15,28 and 60.

sample size. In such cases, assigning a weight zero reduces the num-
ber of observations and the algorithm may converge to strange results.
This problem is presented in Example

Therefore, we introduce a second weight function for Poisson models,
which only depends on p and two constants ¢; and co. The system
equation for this WMLE is given by

n

S 20 s ) — s, = 0, (152)

i=1 v

where p; = h(n;), b/ (n;) = Op;/On; and weight function
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1 ;—’1 < Wi < Qv
C1HMi v
WMy =q o T (153)

- c1v < u; < CU

0 otherwise

where v is the median of p. In this research we chose some what
arbitrary the value of ¢; = 2 and ¢; = 3. This estimator is denoted
by WMLEMH . Figure [29| shows this weight function for three Poisson
regression models, which is simulated from different values of mean and
variance, respectively.

1.2

1.0

WKL)

0.4

0.2

0 50 100 150 200 250
u

Figure 29: The weight function WM () for three different values of v =
20,40 and 70.

This weighted maximum likelihood estimator is illustrated in several
examples later in this chapter.
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5.3.1 Computation of WMLE

Consider the canonical link function, where the system of equations
(152) become

n

U(p) = Z h;(Z?i)WMH(Mz‘)(yi —pi)x; =0. (154)
i=1 *

The computation of these system of equations similar to ((5.2.2)) is based
on the Newton-Raphson method. The update is

/Bnew = Bold + (XTNX)ilU(Bold)v

where N is a diagonal matrix with diagonal elements
Nii = ' (AWM (i) = W (i) (s — a) }-

To simplify the computation, we again ignore the term involving the
derivatives of the weight W™ () in the matrix N.

Alternatively, 3 can be computed iteratively using the weighted glm
algorithm with updated weight function.

For the WMLE; we can consider the same algorithm with the weight
function W, ().

5.4 Asymptotic covariance matrix

The asymptotic covariance matrix of the WM LEMH is computed sim-
ilar to the method of BL,, where U(B) is defined by the system of
equations ([152)). This asymptotic covariance matrix is estimated by

Cov(B) =
(D"V'QD) N (DTVTIRVTID)(DTVTIQD) T (155)

Here @ denotes the diagonal matrix with diagonal elements

Qi = WM (;). (156)
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R is also a diagonal matrix with diagonal elements
Ri = Q7V ().

V is a diagonal matrix of variance with diagonal elements (V (u1) , cdots , V(ur)).
In Chapter [d we proposed an alternative formula for the asymptotic
covariance matrix of the estimate . Here we generalize this for-
mula for the WMLEMH, In the following, we assume that xi,... X,
are i.i.d. realizations of a random variable X with a known distribution

function H.
Let D;; = Opi/0p;. The asymptotic covariance matrix ((155)) becomeﬂ

Cor(B)us = (| A(x)(h’(n»?xdeH(x))l

([ meomysectane ) (| A(x)(h’(n))zxdeHw))l. (157)
Here A(x) and B(x) are given by

A(xi) = V(i)' Qi (158)

and
B(xi) = V() ~'Q7, (159)

with @; defined in (156)).

To illustrate this formula and compute the efficiency of the WMLEMH
estimator for different value of ¢; and ¢, we conducted a simulations
study. We use a basic Monte Carlo integration method to estimate
(157). The simulation are carried out for p = 4 dimensions with 8 =
(1,0.2,0.2,0.2). We generate N = 1000 explanatory variables x from
the two following distribution of H(x),

Hl(X) = (I,Np_l(O,E)) (160)
Hy(x) = (1,(1-e)Np_1(0,%) +eN,_1(3,%)), (161)

1For more details see l)
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with € = 30%. We choose three different X,
1 00 1 0 0 1 0 0
¥y = 01 0 Yo = 0 1/2 0 Y3 = 0 1/4 0
0 0 1 0 0 1 0 0 1
Table (10| compares the efficiency of the WMLEMH related to the MLE

for different values of (¢1, c2) to the MLE. In this table two distributions
are considered for the x with three different X.

(%)
(81’82) (273) (1’4)
X1 0.79 0.72
pIT 0.81 0.70
X3 0.81 0.70
HQ(X)
(61’62) (273) (1’4)
3 082 0.73
pITY 0.81 0.70
3 0.80 0.70

Table 10: Comparing the efficiency of the WMLEMH for (c1,c2) equal to
(2,3) or (1,4) to the MLE. Two distributions are considered for X with three
different .

5.5 Influence function of the WMLEMH

The influence function of the weighted maximum likelihood estimate
WMLEMH can be derived directly from the general formula of IF for
the general M-estimator (Hampel et alf (1986))),

IF (X, y) = M (v, F) ™ Mhum (X, Y, 1) € RP
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with
' (1)
V(ps)

and M (Yyu, F) = —Ep [%¢MH($, Y, ,u)} Here . is an added element
to the response variable, x. is an added vector (1,z.1,...,Z+p) to the
design matrix and 7, = xI'B3, p. = h(n.), K (n.) = Ous/On.. The
matrix M can be estimated by

O (Ko, Yoy fha) = WM (1) (g — px) ., (162)

My(v, F) = D"V'QD,
where Q is a diagonal matrix with elements
Qi = WMH(,). (163)

Example 13. We consider the Poisson model with p = 2, a slope (3
and an intercept a. We define the model as follows:

e The explanatory variables x; are distributed according to a normal
distribution N(0,1), fori=(1,...100).

o The response variables y; are distributed according to a Poisson
distribution P(10).

o We add an outlier y. = 40. We then add the vector [1, x| to the
original design matriz. Here x, is varying from —200 to 300.

Figure compares the MLE and the WMLEMH estimates under the
influence of an additional observation of varying x;. It shows that the
bad leverage points can significantly influence 8 in the MLE. However,
the influence of these observations on the WMLEMH converges to zero.
We can say that the WMLEMH is not sensitive to bad leverage points.

5.6 Simulation

In order to test and compare the performance of this estimator, we con-
ducted a simulation experiment. The estimators of interest are WMLE;
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Figure 30: Comparing the influence function of 3, for MLE and the
WMLEMH.

and WMLEMH | computed using Newton-Raphson with weight func-
tions Wy (1) and WMH(;;) . We compare the robustness and
efficiency performance of both estimates with MLE, Cantoni (weighted
on X with "cov.med"), CUBIF and MALLOWS estimatesﬂ

The explanatory variables x; € RP are distributed according to a
normal distribution N,(0,1). The true parameter values are set to
B = (1,2,2) when p = 3. The log link function g(u) = log(p) = n is
used and N = 1000 dependent variables y; were generated according
to P(u;), with p; = h(n;).

We add m = 1 outliers (bad leverage points) to the n = 100 original
observations. In each of the N generations, we add m times y = 3y
to the dependent variable and m vectors [1,—5, ..., —5] to the design
matrix, respectively. Therefore, y,c, € R*1™ and X € R("+™)xP_ The
estimators are computed over N = 1000 generations. Then, we com-
pute the bias and mean-squared error (MSE) of estimates over N runs.

2These estimators are studied in Chapter
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Bias and MSE are computed as follows:
1 & 1 &
Bias=| > B.—Bl  MSE=L3 [|(B.-B8) . (164)
k=1 k=1

The results are presented in Table[TI] This simulation study illustrates
that the weighted maximum likelihood estimator with the weight func-
tion WMH(;;) is asymptotically unbiased similar to the estimator of
Cantoni and Ronchetti (2001)) and |Kiinsch et al.| (1989).

When there is no contamination to data set, the estimators behave sim-
ilarly. After adding the outlier to the sample, the WMLEMH estima-
tor performs similar to its competitors Cantoni, CUBIF and Mallows.
More generally we can say that a simple method of weighted maximum
likelihood with the weight function depending only on p yields a robust
estimator with a good overall behavior.

Original data With outliers
Bias MSE Bias MSE
MLE 0.00026  0.00028 2.87 8.26
WMLE;, 0.84 5.81 11.84 1022.68

WMLEMH | 0.0076 0.012 0.0066 0.012
Cantoni 0.00024  0.00036 | 0.000219 0.00036
Mallows 0.94 870 0.0019  0.0018
CUBIF 0.002  0.0018 0.002  0.0018

Table 11: Comparison of the asymptotic bias and the mean squared error
of the robust estimators for Poisson models .

5.7 Examples

Example 14. We consider the mortality rates from a mon-infectious
disease for a large population from Ezample[2 The estimated parame-
ters are presented in Figure [39
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log (death rate)

= MLE
—— Mallows
— WMLE;
Cantoni
—L

30 35 40 45 50 55 60 65 70
Age (years)

Figure 31: Comparison of different estimators for Poisson regression. The
WMLE is estimated by considering the first weight function Wy(u).

Example 15. As an illustration, we consider the data arising from
a clinical trial of 59 patients who suffer from epilepsy carried out by
Leppik et al. (1985E|.

The epileptic attacks can be simple or complex and the total number
of attacks is modeled as a Poisson variable. They were randomized
to receive either the anti-epileptic drug prog-abide or a placebo. The
explanatory variables are the baseline seizure rate, recorded during an
eight week period prior to randomization divided by 4, “Base”. The age
of the patients in years divided by 10, “Age”, and the binary indicators
“Trt” for the prog-abide group.

The interaction between treatment and baseline seizure rate is consid-
ered in the model. This interaction shows that the seizure rate for

3The information for this data set are summarized in |Thall and Vaill q1990[).
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log (death rate)

= MLE
—— Mallows
— wmLE™
Cantoni
—L
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30 35 40 a5 50 55 60 65 70

Age (years)

Figure 32: Comparison of different estimators for Poisson regression. The
second weight function W™ (1) is considered for the WMLE.

the prog-abide group is either higher or lower than that for the placebo
group. Which of two occurs depends on the baseline count. If the base-
line count exceeds a critical threshold, the drug reduces the attacks,
otherwise not.

Table gives the parameter estimates, their standard errors, their
t-values and their p-values. The Poisson regression parameters are
estimated with three robust methods and they are compared with the
MLE. This example shows that with the WMLEMH method we obtain
the similar parameter estimates as using Cantoni’s estimator [Cantoni
|and Ronchetti (2001]) for the epilepsy data set. Via the MLE method,
the variable interaction is not significant to keep in the final model.
However, with the WMLEMH we keep this variable in the model.

Example 16. In this example, we consider the Possum data-set, which
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Int. Age Base Trt Base:Trt

MLE 1.97 0.24 0.085 —0.26 0.008
st.err 0.13 0.04 0.004 0.077 0.004
t-value 14.48 5.90 23.31 —-3.34 1.71
p-value 2e-16 3.7e-9 2e-16  0.0009 0.088

Cantoni 2.04 0.16 0.085 —0.32 0.012
st.err 0.15 0.047 0.004 0.087 0.005
t-value 13.2 3.4 20.4 -3.7 2.4
p-value 2e-16 0.0008 2e-16 0.0002 0.017
Mallows 1.84 0.129 0.13 —0.42 0.029
st.err 0.29 0.076 0.04 0.227 0.043
t-value 6.28 1.69 3.4 —1.86 0.66
p-value 3.4e-10  9.1e-02 6.7e-04 6.3e-02  5.1e-01
WMLEMH 2.13 0.044 0.128 —-0.47 0.054
st.err 0.198 0.057 0.014 0.16 0.021
t-value 10.91 0.77 9.35 -3 2.58
p-value 1.1e-27  4.4e-01 9.2e-21 2.6e-03 le-02

Table 12: Comparison of the estimated parameters for the epilepsy data set
with their standard errors , their t-values and their p-values.

is studied in|Lindsay and Nig| (1990). This data was collected to analyze
the diversity of arboreal marsupials in Montane ash forest in Australia.
Arboreal marsupials were reported at dusk and night-time at 152 sites,
each of 8 ha within with uniform vegetation in the Central Highlands
of Victoria from July 1983 to June 1984 and March 1987 to February
1989.

For each site, the following measures were recordecﬁ: number of shrubs,
number of cut stumps from past logging operations, number of stage
(hollow-bearing trees), a bark index reflecting the quantity of decorticat-
ing bark, a habitat score indicating the suitability of nesting and foraging

4Cantoni and Ronchetti| (2001)).
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habitat for Linderbeater’s possum, the basel area of acacia species, the
species of eucalypt with greatest stand basel area (Eucalyptus regnans,
Eucalyptus delegatension, Fucalyptus nitens) and the aspect of the site.
We use the Poisson generalized linear models with log-link to introduce
the relationship between diversity and these variables.

In Table we report the estimated parameters via the WMLEMH

Variable WMLEMH MLE Cantoni’s
Intercept —1.01 (0.29) —0.95 (0.27) —0.88 (0.27)
Shrubs 0.01 (0.02) 0.01 (0.02) 0.01 (0.02)
Stumps —0.25 (0.30) —0.27 (0.29) —0.22 (0.29)
Stags 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
Bark 0.05 (0.02) 0.04 (0.01) 0.04 (0.02)
Habitat 0.09 (0.04) 0.07 (0.04) 0.07 (0.04)
Acacia 0.05 (0.01) 0.02 (0.01) 0.02 (0.01)
E. deleg. —0.00 (0.20) —0.02 (0.19) —0.02 (0.2)
E. nitens 0.16 (0. 30) 0.12 (0. 27) 0.13 (0. 28)
E. regnans

NW.SE 0.10 (0.2 ) 0.07 (0.1 ) 0.07 (0.19)
SE.SW 0.10 (0.21) 0.12 (0.19) 0.08 (0.20)
SW.NW —0.53 (0. 27) —0.49 (0. 25) —0.53 (0. 26)
SW.NE

Table 13: Comparison of the estimated parameters for the Possum data
set with their standard errors for the WMLEMH the MLE and Cantoni’s
estimator.

the MLE and the Cantoni’s estimator. The values within the paren-
From Table [I3 and basing on the
confidence interval for each of explanatory variables, one can see that
many of these variables can not be considered significant in the model.
To reduce the number of these variables we apply a forward stepwise
procedure on the MLE and the WMLEMH. We keep the variable in the
model if the p-value obtained at each step of procedure is less than 5%.
The results of this analysis are presented in Table [I4 As we can see

theses are their standard errors.
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the model chosen by the mazimum likelihood estimator and the robust
models WMLEMH qre essentially similar.

There is high correlation between variable habitat and acacia (0.54).
Keeping the both variable in the model yield the un significant p-value
for the variable habitat. Therefore, one of these variables should be
considered in the models. Here, we keep the variable habitat in the final
models.

MLE
Variable | Coefficient. Standard error P-value
Intercept —0.756 0.193  0.0000
Stags 0.036 0.01 0.0002
Bark 0.039 0.012  0.0025
Habitat 0.109 0.029  0.0001
SW.NE —0.586 0.207  0.0072
WMLEMH
Variable | Coefficient. Standard error P-value
Intercept —0.848 0.225 0.00016
Stags 0.032 0.011 0.0032
Bark 0.046 0.015  0.0016
Habitat 0.123 0.031 0.0002
SW.NE —0.611 0.227  0.0047

Table 14: The coefficients estimation and corresponding standard errors for
final Poisson model, estimated by the MLE and WMLEMH of Possum data
set.

The WMLEMH is resistant against outliers. The robust estimators for
the Poisson regression proposed in the literature are based on modifi-
cations of the log-likelihood. They introduce a weight function, which
limits the influence of bad leverage points and the outliers. For x;-
values at the edge of the design space and for the high residuals a lower
weight is proposed.

However with this simple weight, similar robust estimates discussed in
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the literature typically have weights that depend on the couple (z;,y;)
rather than on y; = h(n;) alone. This new estimator WMLEMH can
be adopted more than the other robust estimator because of its simple
weight function and ease of computation.



Conclusion and Outlook

In this thesis we have studied the robust inference in generalized linear
models, particularly in logistic and Poisson regression.

Existing robust theory for the regression and generalized linear models
have been presented in Chapter[2] We have seen that the least absolute-
deviations estimator (Li-norm) is an alternative to least squares in
the regression models. In Chapter [3] we have studied the robust be-
haviors of the Li-norm for generalized linear models. The general L,
quasi-likelihood estimator has been examined in detail. Their influence
function shows that the L, quasi-likelihood estimator is not sensitive
to outliers and even leverage points with ¢ = 1 for the canonical link
functions. It has pointed out that these estimates have the compu-
tational difficulties in binary regression. In Chapter [d] we have intro-
duced a new robust estimator in binary regression. This estimator is
based on the minimum absolute deviation, which is similar to the L,
quasi-likelihood estimate for logistic regression. The resulting estimat-
ing equation is obtained through a simple modification of the familiar
maximum likelihood equation. This estimator can be considered as a
weighted maximum likelihood with weights that depend only on p and

q.
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Similar robust estimates discussed in the literature typically have weights
that depend on the couple (x,y). Our weight function depends on u
alone. The presented idea have been generalized in Chapter [f] to Pois-
son regression. The efficiency and the influence function of this new
weighted maximum likelihood estimator have been examined. Further-
more, this simple robust estimator shows results comparable to other
robust estimator discussed in the literature.

The approach to adaptive the simple weighted maximum likelihood
with the weight that depends only on y in the generalized linear model
would be a interesting subject to follow.



Appendix

Theoretical background
Algebra

Definition 1. Summation by part

> fr(grar—gk) = [Frs19nr1 = Fngm] — D grar (frsr — fr) (165)

k=m k=m
The O, and o, notations are used to describe the relation between the
sequences. ? defined these notations as follows.

Asymptotic statistics

Definition 2. Let X1, X5, ... be a sequence of real valued random vari-
ables. If for any € > 0, there exists a constant M such that

we write X,, = Op(1). Such a sequence is said to be bounded in proba-
bility . If X,, 2 0 as n — oo, we write X,, = 0,(1), which means that



132 CHAPTER 5. POISSON REGRESSION

X,, converges in probability to 0. If X,, = 0,(1) then X,, = O,(1) but
not the inverse.

Definition 3. Leth,Wg,... ,Xl,Xg,... ,}/1,}/2,... 5 anle,Zg,...
denote sequence real-valued random wvariables such that Y, > 0 and

Zn>0,n=1,2,.. ..
o If X,, = 0,(1) as n — oo, then X,, = Oy(1) as n — oo.

o If W, = O,(1) and X,, = Op(1) as n — oo, then W,, + X,, =
0,(1) and W, X,, = Op(1)as n — oo ; that is, Op(1) + O,(1) =
0,(1) and 0,(1)0,(1) = Oy(1).

o IfW,, =0,(1) and X,, = 0,(1) asn — oo, then Wy, +X,, = O,(1)
and WX, = op(1)as n — oo ; that is, Op(1) + 0,(1) = Op(
and Op(1)o,(1) = 0p(1).

o IfW,, =0,(Z,) and X, = Op(Y,,) as n — oo, then
WnX, = 0,(Y,Z,) and Wy+X,, = Op(maz(Z,,Y,)) as n — oo;
that is,
0,(Y,)+0,(Z,,) = Op(max(Y,, Zy,)) and Op(Y,,)0,(Z,) = O,(Y,Zy,) .
This is summarized from 7 :
Definition 4. Let X,,, X, Y, and Y be random variables. Then
o X, 2 X almost surely implies X,, 2 X.
o X, 2 x implies X, 4 X in distribution.
o X, 2 ¢ for a constant ¢ if and only if X, e

if X % X and || X, — Y,|| %0, then V,, % X.

X, 2 X and Y, 2 Y then (X,,,Y,) 2 (X,Y) and X, +Y, >
X+Y.
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R Programs

The binary regression

Lg-quasi-likelihood estimator

File: Lgq—helper—function.R
The helper functions for Lg—bin—R

Author: Sahar Hosseinian, EPFL (sahar.hosseinian@epfl.ch)
Subject: Thesis "Robust Generalized Linear Models"
Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

‘é\oﬂ*tﬁs\kﬂ\\h S

N

# Function Vmu

/

e
Vimu «— function (mu){return (mu*(1—mu))}

# Function cb
# Calculating C the fisher consistency bias.

-
c¢b «— function (ni ,mu, ql)
{
c.ie— ()
n+—length (mu)
for(i in 1:m)

{

densbinl « dbinom(ceiling (ni[i]*mu[i]):ni[i],

ni[i],mu[i])

obsbinl « (ceiling (ni[i]*mu[i]):ni[i]—ni[i]*
mul[i])~(ql-=1)

densbin2 « dbinom (0:(ceiling (ni[i]*mu[i])-1),

ni[i],muf[i])
obsbin2 « (ni[i]*mu[i]—0:(ceiling (ni[i]
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*mu[i1])=1))"(ql-1)
c.i[i]esum(densbinl*obsbinl)
— sum(densbin2*obsbhin2)
}
round(c.i ,4)
if (ql==2)
{

}

return(c.i)

c.ixrep(0,length (mu))

# Function Wi

#
Wi« function (X,y,ql,ccc,mu,ni,eta,dinvlink)
{
hprimVinverse « (ni*dinvlink (eta))* ((Vmu(mu)*ni))
“(=al/2)
ymine «— ((abs(y—ni*mu))~ (gl —1))*sign (y—ni*mu)—ccc
res « (hprimVinverse*yminc) /(y—ni*mu)
res « diag(res)
return (res)
}
4

# Function Ui

Uil « function (X,y,ni,mu,dinvlink ,eta,ql,ccc)
{
hprimVinverse «— (ni*dinvlink (eta))* ((Vmu(mu)*ni))
~(—al/2)
ymine «— ((abs(y—ni*mu))~ (gl —1))*sign (y—ni*mu)—ccc
Wsan « diag ((hprimVinverse*yminc)/(y—ni*mu))
res— t (X)%*%Wsan%*%matrix (y—ni*mu, ncol=1)

return (res)

}
#
-

# Function Mi
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Mi « function (ni ,W,eta ,dinvlink)
{
resdiag(dinvlink (eta))
res—res%*%V* ni

return (res)

# File: Var—beta—Lq.R

# Find wvariance of beta of Lg—quasi—likelihood

#in binary regression.

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch )
# Subject: Thesis "Robust Generalized Linear Models”

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

# Function Ri.1

Ri.i « function(ni,mu,ql,ccc)
{
R« c()
m <« length (mu)
for (i in 1:m)
{
RES «= ()
Comb « ()
for (j in 0:(ceiling(ni[i]*muf[i])—1))
{
Comb[ j+1] « factorial(ni[i])
/(factorial (ni[i]=])
*factorial (j))
RES[j+1] « Comb[j+1]* (mu[i]~])
(A=mu[i])~(nifi]=]))
*(ni[i]*muli]=j)"(2%ql -2)
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}
for (k in (ceiling(ni[i]*mu[i])):ni[i])
{
Comb[k+1] « factorial (ni[i])
/(factorial (ni[i]=k)
*factorial (k))
RES[k+1] « Comb[k+1]* (mu[i]~k)
*((1=mufi])~(ni]i]=k))
F(k—ni[i]*mu[i])~(2*ql-2)
}
R.i[i]+— sum(RES)

}

return (R.i—ccc)

# Function Q4Var.i

#
Q4Var.i « function (ni ,mu, ql)

{
if (ql==1)

Q.1 « —4* dbinom (round (ni*mu),ni ,mu)
f (ql==2)
Q.1 « c¢(rep(1,length (mu)))

if(ql!l=1 & ql!l=2)

Q.1 —c()
m « length (mu)
for (i in 1:m)
{
QRES «< ()
QComb « ()
for (j in 0:(ceiling(ni[i]*mu[i])—1))
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QComb[ j+1] « factorial(ni[i])
/(factorial (ni[i]—j)
* factorial(j))

QRES[ j+1] « QComb[ j+1]* (mu[i]~])
(Lo 1])~ (ni1]-1))

¥(ni[i]*mu[i]—j)"~(ql =2)

}
for (k in (ceiling(ni[i]*mu[i])):ni[i])

—~

QComb[k+1] « factorial (ni[i])
/(factorial (ni[i]=k)
*factorial (k))
QRES[k+1] «— QComb[k+1]* (mu[i]~k)
*((1—muli])~(ni[i]=k))
¥(k—ni[i]*muli]) "~ (ql=2)
}
Q.i]i]~ (gl =1)*sum(QRES)
}
}

return (Q.1)

# Function Dnp.matriz

Dnp.matrix « function(ni ,X,eta,dinvlink)

{
}

diag ((ni*dinvlink (eta)))%*%X

A

# Function Var.of.beta

Var.of.beta « function (Dnp, Rii ,Q4Var, ni ,Vmu,mu, ql)

{
DVQD « t (Dnp)%*%(diag ((Vmu(mu)*ni)~(—-ql/2)))
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%*%(diag (Q4Var))%*%Dnp

DVRVD « t (Dnp)%*%(diag ((Vmu(mu)*ni)~(—ql/2)))
%%( diag (1i1))
%*% (diag ((Vmu(mu)*ni)~(—=ql/2)))%*%Dnp

return (solve (DVOD)%*7OVRVING*% solve (DVQD))

File: Optimize—w—inf.R
Optimize the estimated parameter beta if weight function
becomes Inf

Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
Subject: Thesis "Robust Generalized Linear Models”
Copyright 2008, 2009

# STAP/EPFL, Switzerland (http://stap.epfl.ch/)

O KR KR KR KK

if (error.ind==1 &ql==1)

{

warning ("W is Inf")

len.co.old = length(co.old)

# IC of wector beta=std*0.1

radius = 0.1*sqrt (diag(Varbetta))

max.steps = 1000

# number of element *steps=mazsteps

steps = max.steps ~ (1/len.co.old)

delta = radius / steps

beta.grad = co.old

eta.grad «— as.vector (X%*%beta.grad)

mu.grad «invlink (eta.grad)

ccc.grad «— c¢b(ni,mu.grad, ql=ql)

W.grad «— Wi(X,yy,ccc, ql=ql ,mu.grad , ni
,eta.grad ,dinvlink)

U.grad « Ui(X,yy,ni,mu.grad,dinvlink
,eta,ql,ccc)

beta.max = co.old
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best.grad = gradold
for (i in 1:len.co.old)
{
beta.grad[i] = co.old[i] — radius[i]/2
beta.max[i] = co.old[i] + radius[i]/2
}
while (beta.grad[len.co.old] <= beta.max|[len.co.old])
{
# Loop to iteratively increase all components
# of the wvector
# When one component reaches the mazimum, it s
# reset and the next component is increased
for (j in 1l:len.co.old)
{
beta.grad[j] = beta.grad[j] + delta]j]
if (beta.grad[j] <= beta.max[]])
{
break

—

else if (j<len.co.old)

—_~—

beta.grad[j] = beta.max[j] — radius][j]
}
}
eta.grad « as.vector (X%*%beta.grad)
mu.grad «—invlink (eta.grad)
cce « cb(ni,mu.grad, ql=ql)
W.grad « Wi(X,yy,ccc,ql=ql ,mu.grad,ni
,eta.grad ,dinvlink)
U.grad « Ui(X,yy,ni,mu.grad,dinvlink
,eta,ql,ccc)
grad.gradesqrt (sum(U.grad ~2))
if (grad.grad < best.grad)
{
co.new = beta.grad
best.grad = grad.grad
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} #while 2
if (grad.grad >= 0.0001)

«

if (max(abs(beta.grad — beta.max))>=

{

max(radius*0.99))

cat("A better estimate was found on
the border of the search region","\n")
# cat("Repeat algorithm around co.new
# with radius=", radius,"|n")

# CI beta +/— std*0.1
radius = 0.1*diag(sqrt(Varbetta))
max.steps = 1000
# number of element *steps=mazsteps
steps = max.steps ~ (1/len.co.o0ld)
delta = radius / steps
co.old = co.new
beta.grad = co.old
beta.max = co.old
best.grad = best.grad
for (i in 1l:len.co.old)
{
beta.grad [i] = co.0ld[i] — radius[i]/2
beta.max[i] = co.old[i] + radius[i]/2
}
while (beta.grad|[len.co.old] <= beta.max
[len.co.old])
{
# Loop to iteratively increase all
# components of the wvector
# When one component reaches the
# maximum, it s reset and the
#next component is increased
for (j in 1l:len.co.old)

{

beta.grad|[j]<beta.grad[j]+delta]j]
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if (beta.grad[j] <= beta.max[j])
{

break
}
e
{
}

Ise if (j<len.co.old)
beta.grad [j]«beta.max[j]—radius|[j]

}

eta.grad « as.vector (X%*%beta.grad)

mu.grad «—invlink (eta.grad)

ccc «— cb(ni,mu.grad, ql=ql)

W.grad <« Wi(X,yy,ccc,ql=ql ,mu.grad , ni
,eta.grad ,dinvlink)

U.grad « Ui(X,yy,ni,mu.grad,dinvlink
,eta,ql,ccc)

grad.gradesqgrt (sum(U.grad ~2))

if (grad.grad < best.grad)

{

co.new = beta.grad
best.grad = grad.grad
}
} #while 8

—

else

{ #if it is not precise
cat ("Insufficient precision","\n")
cat ("Repeat algorithm around co.new
with radius=", delta,"\n")
radius = delta
max.steps = 1000
steps = max.steps ~ (1/len.co.old)
delta = radius / steps

co.old = co.new
beta.grad = co.old
beta.max = co.old

best.grad = best.grad
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for (i in 1:len.co.old)

{

}

beta.grad[i]«co.old [i]—radius[i]/2
beta.max[i]«co.old [i]4+radius[i]/2

while (beta.grad|[len.co.old]<=beta.max

{

[len.co.old])

# Loop to iteratively increase all

# components of the wvector

# When one component reaches the mazimum,

# it is reset and the mext component

# 1is increased

for (j in 1:len.co.old)

{
beta.grad[j]<beta.grad [j]+delta[j]
if (beta.grad[j] <= beta.max[]])

{
}
(
}

break

Ise if (j<len.co.old)

beta.grad[j]«beta.max|j]—radius][j]

}
eta.grad « as.vector (X%*%beta.grad)
mu.grad «—invlink (eta.grad)
ccc «— cb(ni,mu.grad, ql=ql)
W.grad «— Wi(X,yy,ccc, ql=ql ,mu.grad , ni
,eta.grad ,dinvlink)
U.grad « Ui(X,yy,ni,mu.grad,dinvlink
yeta,ql,ccc)
grad.gradesqrt (sum(U.grad ~2))
if (grad.grad < best.grad)
{
co.new = beta.grad
best.grad = grad.grad
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} # while 4
Y# if it is not precise
Y# if gradient is not zero

# File: Lg—bin.R

# Find the Lq quasi—Ilikelihood estimated parameter beta
#in binary regression.

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch )
# Subject: Thesis "Robust Generalized Linear Models”

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

ajustbin « function (X,y,linkfunction ,ql,tol=10"(-6))

{
n «— dim(X)[1]
if(linkfunction="1logit")

—~

link — function (mu) {return(log (mu/(1—mu)))}
invlink <« function(eta){return(1/(1+exp(—ecta)))}
(
(

dinvlink « function(cta) {return(exp(—cta)
/ (1+exp(—eta))~2)}

}

if(linkfunction="probit™")

{
link «— function (mu) {return (gnorm/(mu))}
invlink « function(eta) {return(pnorm(ecta))}
dinvlink < function(eta) {return(dnorm(eta))}

}
if (linkfunction="cloglog")

«

link — function (mu){return (log(—log(l1—mu)))}
invlink « function(eta){return(l—exp(—exp(eta)))}
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dinvlink « function(eta){return ((exp(—exp(cta)))
*(exp(eta)))}

'

if(linkfunction="1oglog")

{
link — function (mu){return(—log(—log(mu)))}
invlink <« function(eta){return (exp(—exp(—cta)))}

dinvlink « function(eta){return ((exp(—cta))
*(exp(—exp(—cta))))}
}
if (sum(linkfunction=—=c("logit","probit","cloglog",
"loglog"))!=1)

warning ("Link is not available for binomial,

available link are logit, probit,loglog and cloglog.

Canonical link is considered.")

link « function (mu){return (log (mu/(1—mu)))}

invlink «— function(eta){return(1/(1+exp(—cta)))}

dinvlink < function(eta){return(exp(—eta)
/(1+exp(—cta))~2)}

}

Source("Lq:helper:function.R") # Helper functions
source("Var_beta_Lq.R") # Compute variance of beta

if (NOOL(y)==1)
{

yecbind (y,1-y)
}
XX[!apply(y,1 ,sum)==0,]
v [lapply (y,1,sum)==0,]
ni «— .\"[ ,1]+)'[ 72]
vy < v[,1]
probab«—(yy+1)/(ni+2)
weight«(probab)*(1—probab)

/(ni*(dinvlink (link (probab)))~2)
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# The starting value
XWXinv « solve ((t (X)%*%diag (weight )%*%X), tol=le—-700)
startingpoint l— XWXinWo*%(t (X)%*%diag (weight)
%*%link (probab))
startingpoint2 «— as.matrix (glm(y”X[,—1],
family=binomial)$coef)

error «— 10

error.ind « 0

loop «— 0

co.old « startingpointl

while (error > tol)

{
loop «— loop+1
b «— matrix(co.old ,ncol=1)
eta « as.vector (X%*%b)
mu —invlink (eta)
probhate—yy/ni
cce «— c¢b(ni,mu, ql=ql)
W Wi(X,yy,ccc,ql=ql ,mu,ni,eta,dinvlink)

if (sum((yy—ni*mu)==0)==1)
{
error.ind «1

break
}

U« Ui(X,yy,ni,mu,dinvlink ,eta,ql,ccc)

grad « sqrt (sum(U"2))

M «— Mi(ni ,W,eta,dinvlink)

XMXinv « solve ((t(X)%*% M %*%X), tol=1e—-700)
KtWyminmu «— t (X)%*%\%*%matrix (yy—ni*mu, ncol=1)
co.new « b + XMXinv %*% XtWyminmu

if (any(is.na(co.new)))
{

warning("alogorithem did not converge")
return (list (coefficients=co.new))
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#To solve the problem when new beta is far from
#beta

step——co.new—co.old

if (any(step>=10))

{

nsmin (0.7 *sqrt (sum(co.old ~2) /sum((step)~2)),

co.newco.old+n*step
}
error « sum(abs(co.new—co.old)/abs(co.new))
co.old « co.new
Wold +— W
Mold +— M
etaold <« eta
muold < mu

*muold

ymuold « yy—ni
Uold « U
gradold <« sqrt(sum(U~2))

} #while

# Compute variance

Rii « Ri.i(ni,mu,ql,ccc)

Q4Var «— Q4Var.i(ni,mu, ql)

Dnp < Dnp.matrix (ni,X,eta,dinvlink)

Varbetta « Var.of.beta (Dnp, Rii ,Q4Var,ni ,Vmu,mu, ql)

# Optimize estimate if weight—function is Inf
source ("optimize-w-inf.R")

if(error.ind==1 & ql==1)
{

gradian.print«best.grad

—

else

—~~

gradian.print «<gradold

old

1)
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}

number.of.loop «loop

eta.last « as.vector (X%*%co.new)

mu.last «—invlink (eta.last)

ccc.last « cb(ni,mu.last ,ql=ql)

W.last «— Wi(X,yy, ccc.last , ql=ql ,mu.last ,ni
,eta.last ,dinvlink)

Rii.last « Ri.i(ni,mu.last,ql,ccc.last)

Q4Var.last «— Q4Var.i(ni,mu.last,ql)

Dnp.last « Dnp.matrix(ni,X,eta.last ,dinvlink)

Varbetta.last «— Var.of.beta(Dnp.last, Rii.last

,Q4Var.last ,ni,Vmu, mu.last , ql)
Standard.err « sqrt(diag(Varbetta.last))

return(list (coefficients=co.new,

gradient=gradian.print ,
iteration=number.of.loop ,
fitted.values=mu.last ,
Var.beta=Varbetta.last ,
St.err=Standard.err))

}
The BLq estimator

# File: MCD-new—data.R

# This function wuses mecd to find the robust mahalanobis
#distance and give the new datalist without owutliers to
#have a better initial beta.

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
# Subject: Thesis "Robust Generalized Linear Models”

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

library (robustbase)
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# Function mecd_mahalanobis

mecd_mahalanobis— function (X)

{

p — dim(X)[2]

X_mcd «— X[,2:p]

mu_mecd + covMed (X_mcd)$center

cov_mcd «— covMed (X_mcd)$cov

x.mu_mcd + X_mcd—mu_mcd

# Find just the diagonal elements

dist_med « rowSums ( (x.mu_mcd%*%solve (cov_mcd
, tol=1e=700))* (x.mu_mcd))

return (dist_mcd)

# Function New_data_mahalanobis
4

77

New_data mahalanobis < function (X,y)

{

Xmah_mcd + mcd_mahalanobis (X)

data mcd « cbind (y,X)

new_data mcd «— data mcd [(Xmah_mcd < quantile ((Xmah_mcd)
,prob=0.87)),]

return (new_data mcd)

File: Var—beta—BLq.R

Find variance of BLq estimator in binary regression.

Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
Subject: Thesis "Robust Generalized Linear Models"
Copyright 2008, 2009

4YSTAP/EPFL, Switzerland (http://stap.epfl.ch/)

/

RN N NS

&
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# Function Ri.1

Ri.i « function (ni,mu, ql)

{
R.i— ni*mu*(1—mu)* (mu~ (gl =1)+(1—mu)~ (gl =1))"~2
return(R.1)

}

/

# Function Q4Var.t

Q4Var.i « function (mu, ql)

{
if (al==2)
{

Q.1 « c(rep(1,length (mu)))

-

else

~~

Q. i—(mu~ (gl =1)+(1—mu) "~ (gl —1))
}

return (Q.i)

# Function Dnp.matriz

Dnp.matrix « function(ni,X,eta,dinvlink)
{
res—diag(ni*dinvlink (eta))
reseres%*%X
return (res)

# Function Var.of.beta
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Var.of.beta «— function (Dnp, Rii ,Q4Var, ni ,Vmu,mu, ql)
{
DVQD — t (Dnp)%*%(diag ((Viu(mu) *ni)~(—ql/2)))
%% (diag ( Q4V<u )) %*%bnp
DVRVD « t (Dnp)%*%(diag ((Vimu(mu)*ni)~(=ql/2)))
%*% (diag(Rii))%*%(diag ((Vmu(mu)*ni)
~(=al/2)))%*Dup
return (solve (DVOD)%*7DOVRVING*% solve (DVQD))

File: BLg-bin.R

Find the BLq estimated parameter beta in binary regression.

Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
Subject: Thesis "Robust Generalized Linear Models"
Copyright 2008, 2009

4YSTAP/EPFL, Switzerland (hittp://stap.epfl.ch/)

>§B#$%w§x\«_

# Function ajustbinY01q

ajustbinY0lq « function(X,y,ql,tol=10"(-6))
{

n «— dim(X)[1]

£

7

# Helper functions

normf «— function (A) {sqrt(sum (A~2))}

link «— function (mu) {return(log(mu/(1—mu)))}

invlink « function(cta){return(1/(l4+exp(—cta)))}

dinvlink < function(eta) {return(exp(—eta)
/(1+exp(—cta))~2)}

Vimu « function (mu){return (mu*(1—mu))}

Wi « function (mu,ql)

{
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resl «— (mu*(1—mu))~((2—=ql)/2)
res2 «— (mu”(ql=1)+(1—mu) "~ (gl —=1))
res— diag(resl*res2)

return (res)

}

Ui « function (X,y,W,mu,ni)

{
res— (t(X)%*%\%*%matrix (y—ni*mu, ncol=1))
return(res)

}

Mi « function (W, eta ,dinvlink ,ni)
{
resdiag(ni*dinvlink (eta))
rese—res%* RNV
return(res)
}
# Find new data list without outliers
source ("MCD_new_data.R")
# Compute variance of beta
source("Var_beta_BLg.R")

if (NOOL(y)==1)
{

yecbind (yv,1-y)

}

X%X[!apply(y,1,sum)==0,]

v [lapply (y,1 ,sum)==0,]

ni= vy 2]

vyey [, 1]

startingpoint2 «— as.matrix (glm(yy=X[,—1]
,family=binomial)$coef)

newdata— New_data mahalanobis (X, yy)

yvi — newdata[,1]

p — dim(X)[2]
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xf emewdata|,3:(pt+1)]
startingpointd «as.matrix (glm(yfZxf
,family=binomial)$coef)

error «— 10
error.ind «— 0

loop «< 0

if(gl==2 | ql==1.9)
{

co.old « startingpoint2

—

else

—_~—

co.old « startingpoint4

—

CC=0
while (error > tol)
{
loop < loop—+1
if (loop >500)
{
co.old « startingpoint2
loop «1
}
b «— matrix(co.old ,ncol=1)
eta «— as.vector (X%*%b)
mu —invlink (eta)
W« Wi(mu, ql)
U « Ui(X,yy,W,mu, ni)
grad < sqrt (sum(U"2))
dinv « dinvlink (eta)
M «— Mi(W, eta,dinvlink , ni)
XMXinv « solve ((t(X)%*% M %*%X), tol=1e—700)
KtWyminmu «— t (X)%*%\%*%matrix (yy—ni*mu, ncol=1)
co.new + b + XMXinv %*% XtWyminmu

if(any(is.na(co.new)))
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warning("algorithm did not convergel")
return (list (coefficients=co.new) )

}

#To solve the problem when new beta is far

#from old beta

steppe—co.new—co.old

if (any(abs(stepp)>=10))

{
n+min (0.7 *sqrt (sum(co.old ~2)

Jsum((stepp)-2)),1)

co.news«co.old-+Hn*stepp

}

error «— sum(abs(co.new—co.old)/abs(co.new))

—
=

(normf(co.new)>normf(co.old))

CC=CC+1

—e
-

(normf(co.new)<normf(co.old))

=

CC=0

—e
-

(CC==200)

—~ ‘

warning("algorithm did not converge2")
return (list (coefficients=matrix(,,ncol=1

,arow=length (co.old)),
Var.beta=matrix (,,ncol=1
,arow=length (co.old))))

co.old <« co.new

Y#while
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eta.last «— as.vector (X%*%co.new)
mu.last «—invlink (eta.last)

W.last «— Wi(mu.last , ql)

U.last « Ui(X,yy, W.last ,mu.last , ni)

# Compute variance of beta

Rii.last « Ri.i(ni,mu.last,ql)

Q4Var.last «— Q4Var.i(mu.last , ql)

Dnp.last « Dnp.matrix(ni,X,eta.last ,dinvlink)

Varbetta.last <« Var.of.beta(Dnp.last, Rii.last
,Q4Var.last ,ni ,Vmu, mu.last , ql)

Standard.err «— sqrt(diag(Varbetta.last))

return (list (coefficients=co.new,
Var.beta=matrix (diag( Varbetta.last)
,ncol=1 nrow=length (co.old)),
gradient=grad.last ,

fitted.values=mu.last ,
Var.beta=Varbetta.last ,
St.err=Standard.err))

}
The case of multiple roots

/

# File: BLg—beta—initial. R

# Find the BLq estimated parameter from the initial beta
#in binary regression.

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
# Subject: Thesis "Robust Generalized Linear Models”

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

4

F_beta initial <« function(X,y,ql,beta initial ,t0ol=10"(—-6))
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n «— dim(X)[1]

# Helper functions

7_1
normf «— function(A) { sqrt(sum (A~2)) }
link «— function (mu) {return(log(mu/(1—mu)))}
invlink « function(eta){return(1/(1+exp(—cta)))}
dinvlink « function(ecta) {return(exp(—cta)

(

/ (1+exp(—cta))~2)}

Vimu « function (mu){return (mu*(1—mu))}

Wi «— function (mu,ql)

{
resl «— (mu*(1—mu))~((2—ql)/2)
res?2 «— (mu~(ql=1)+(1—mu)~(ql —=1))
res «diag(resl*res2)
return (res)

}

Ui « function (X,y,W,mu,ni)

{
res— (£ (X)%*%\%*%matrix (y—ni*mu, ncol=1))
return (res)

}

Mi « function (W, eta ,dinvlink ,ni)
{
res—diag(ni*dinvlink (eta))
rese—res%*RNV
return (res)

fx‘w—'

if (NOOL(y)==1)

P
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{
}

XX[!apply(y,1,sum)=
v [Lapply (v,1,sum)=

yecbind (v,1-y)

:(),]
:()’]

ni — y[,1]+v[,2]
vyey [, 1]

error «— 10

loop «— 0

co.old « beta initial
CC=0

while (error > tol)

{

loop « loop—+1

if (loop >2000)

{
warning("algorithm did not converge-loop")
return (list (coefficients=matrix(,,ncol=1

,arow=length (co.old))))

}

b «— matrix(co.old ,ncol=1)
eta « as.vector (X%*%b)
mu —invlink (eta)
W — Wi(mu, ql)
U « Ui(X,yy,W,mu, ni)
grad < sqrt (sum(U"2))
dinv <« dinvlink (eta)
M — Mi(W, eta ,dinvlink , ni)
XMXinv « solve ((t(X)%*% M %*%X), tol=1e—700)
XtWyminmu «— t (X)%*%\%*%matrix (yy—ni*mu, ncol=1)
co.new + b + XMXinv %*% XtWyminmu
if(any(is.na(co.new)))
{
warning("algorithm did not converge")
return (list (coefficients=co.new))
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}

#To solve the problem when new beta is far

#from old beta

stepp—co.new—co.old

if (any(abs(stcpp)>—10))

{
nmin (0 .7*sqrt (sum(co.old ~2) /sum((stepp)~2)),1)
co.news<co.old-+Hm*stepp

}

error « sum(abs(co.new—co.old)/abs(co.new))

-
=

(normf(co.new)>normf(co.old))

CC=CC+1

e ad
=

(normf(co.new)<normf(co.old))

=

CC=0

—e
-

(CC==200)

=

warning("algorithm did not converge")
return (list (coefficients=matrix(,,ncol=1
,arow=length (co.old))))

}

co.old « co.new
Y#while
return (list (coefficients=co.new))

}

A

# File: BLg—multi—root.R

# Estimate multiple roots for the BLq quasi—likelihood
#function. Generate 2*2°p —1 initial beta, which are
#computed by glm from original data and MCD new dataset.
#The beta with the smallest residual is given as the
#best beta.



158 CHAPTER 5. POISSON REGRESSION

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
# Subject: Thesis "Robust Generalized Linear Models"

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (hitp://stap.epfl.ch/)

Inputs :
beta_0: initial estimate
tol: minimum required distance for mnew beta from
old betas
X , vy , ql and linkfunction for

CSk ¥R ¥ RS

# Program Bernouli to find beta
source ("BLg-beta-initial.R")

/

# Helper functions for beta_initial_sign

normf — function (A) {sqrt(sum (A~2))}
link — function (mu) {return(log (mu/(1—mu)))}
invlink « function(eta){return(1/(1+exp(—cta)))}
dinvlink < function(eta) {return(exp(—eta)

/ (1+exp(—cta))~2)}

# Function beta_initial_sign

beta initial_sign « function(X , y, ql ,beta 0,beta 1
, tol=10"(-6))

{
p=length (beta 0)
rep 1 « array (0, c(p, 27p))

for (i in 1:p)

-~
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rep 1[i,] < rep(c(l,—-1), times=2"(p—i)
, each=2"(i—-1))
}
beta 0_sign «— cbind ((as.vector (beta 0) &1),
(as.vector (beta 1)*rep 1))
new_estimate < matrix(,,ncol=dim(beta 0 s1gn)[2
nrow=dim (beta 0_sign )[1]

)

|
)

for (k in 1:dim(beta 0_sign)[2])
{
new_estimate[,k] « F_beta initial (X,y,ql
,beta 0_sign[,k], 10" (—6))$coef

}

eta_estimate «— X%*%mew estimate

mu_estimate « invlink (eta_estimate)

final_table « cbind(y, mu_estimate)

norm_final « c()

for( j in 1:(2%(2°p)))
{

}

residual_final « y—mu_estimate

norm_final [j] « normf(new_cstimate[,j])

V_mu_estimate « mu_estimate*(1—mu_estimate)
Pearson_residual_final « residual_final

/ sqrt (V_mu_estimate)
norm_final_pearson « c()
norm_final_residual « ¢ ()

for( | in 1:(2%(27p)))
{
norm_final_pearson[j] «
normf(Pearson_residual_final[,j])
norm_final_residual [j] «
normf(residual_final[,j])

}

min norm_final_residuale
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apply (as.matrix (norm_final_residual)
;2 ,min)
all estimate_min res « as.matrix (
new cstimate[,min norm_final_residual
=—norm_final_residual])
best_coef— as. matrix (all_estimate_min res[,1])
return(list (coefficients=new cstimate,

Mu_esimates=final_table,
norm=norm_final ,
resf=residual_final ,
presf=Pearson_residual_final ,
norm.pearson=norm_final_pearson,
norm.residual=norm_final_residual ,
bestcoef=best_coef))

}

The glm weight function algorithm

# File: all—weight—binary.R

# Find four weight functions in the binary regression.

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
# Subject: Thesis "Robust Generalized Linear Models"

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

# Function Wi
# Find the weight function for BLq estimator
# in binary regression , the simplified Lgq.

Wi « function (mu,ql)

{
resl «— (mu*(1—mu))~((2—ql)/2)
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res?2 «— (mu~(ql—=1)+(1—mu)~(ql =1))
res— (resl*res2)
return(res)

},

# Function N_Wmu
# Find the firts new weight function in binary regression.

#

/-

# Function Imu

Imu «function (mu)

{
res [mu>=0.5]=1
res [mu<0.5]=0
return(res)

}

#

# Function FU

FU « function (mu, cc)

{
res «— (1=2%cc)*Imu(mu)+ce
return(res)

}/

# Function Wmu_1

Win_l— function (mu, ql)

{
res «—((mu*(1—mu))~((2—ql)/2))*(mu~ (gl =1)+ (1—mu)"~ (gl -1)
return (res)

}

v’

# Function Wmu_2
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W2 «function (mu, ql ,cc,epsilon)

{

}

/
7

wU(mu, cc)
WkWim_1((cct+epsilon),ql)
resl «— W1/(—epsilon)

res2 « sign(mu—0.5)%* (mu—u)
return(resl*res2)

# Function Wi 3

Wim_3 0

# Function N_Wnu

7

N_Winmi += function (mu, ql ,cc, epsilon)

{

Ve )

c2 « (1—cc)—epsilon—0.5

¢l = 1-cc—0.5

Wlabs (mu—0.5)<c2 |« ((muf[abs(mu—0.5)<c2]

(1-—muf[abs (mu—0.5)<c2]))~((2—ql)/2))

(muf[abs (mu—0.5)<c2]~ (gl -1)
+(1—mu[abs (mu—0.5)<c2]) "~ (gl =1))

W[abs (mu—0.5)>c1]<0

if (any (abs (mu—0.5)>c2 & abs(mu—0.5)<cl))

{

(

Wlabs (mu—0.5)>c2 & abs(mu—0.5)<cl |«
Wi 2 (mu [ abs (mu—0.5)>c2
& abs(mu—0.5)<cl],ql,cc,epsilon)

}

}

return (diag (W))

# Function S_Wmu

# Find the second mew weight function

7,/7[

in binary regression.
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SN_Wins— function (mu, ql)

{
res—1—(2*mu—1)"2)"ql
return(res)

}

# Function WI
# Find the third new weight function in binary regression.

WE- function (mu, ql ,c2)
{
Wi TNB « ()
n «— length (mu)
for (i in 1:n)

{
(abs (mu[i]—-0.5)<c2)

if

{
Wi, INB[ 1] «— ((mu[i]*(1—mu[i]))~((2—=ql)/2))

(i1~ (al =1+ (1=mali])~ (al 1))

—e
-

(abs (mu[i]—=0.5)>c2)

=

Wi, TNB[ 1] «— (1—=(2*mu[i]—=1)"2)"ql

—

}
return (Wnn TNB)

# File: glm_weighted_BLq.R

# GLM weighted algorithm to find the WMLE for different
#weight functions in binary regression.

# wf is the weight function can be selected from
#wf==Ber, wf==N-Ber, wf=SN—Ber or wf==TN-Ber

s

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
# Subject: Thesis "Robust Generalized Linear Models"



164 CHAPTER 5. POISSON REGRESSION

# Copyright 2008, 2009
#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

/

#
glm.ajust.weight— function (X,y,ql,wf)

{
0 dim(X) [1]

//

# Helper functions

normf — function(A) { sqrt(sum (A~2)) }
link — function (mu) {return(log (mu/(1—mu)))}
invlink +« function(eta){return(1/(1+exp(—eta)))}
dinvlink « function(cta) {return(exp(—ecta)

/ (1+exp(—cta))~2)}

# Find the weight functions
source("all_weight_binary.R")

# Find new data list without outliers
source ("MCD_new_data.R")

//'/
if (NOOL(y)==1)
{

ye—cbind (v,1-y)
}
%X[!apply(y,1,sum)==0,]
vy [lapply (v,1 ,sum)==0,]
ni — y[,1]+v[,2]
vyey [, 1]

newdata— New_data mahalanobis (X, yy)
yf «— newdata[,1]

b dim(X)[2]

xf emewdata|,3:(pt+1)]

startingbetal «as. matrix (glm(yfZxf
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,family=binomial)$coef)

startingbeta2 « as.matrix (glm(y=X[, —1]
,family=binomial)$coef)

if (ql==2 |ql==1.9)
{

co.old <« startingbeta?2

—

else

-~

co.old « startingbeta?2

—

error <10
loop «0
CC=0

while (error >10"(—6))
{
loop < loop+1
if (loop >1500)
{
co.old « startingbeta?2
loop «1
}
b «— matrix(co.old ,ncol=1)
eta as.v(‘(tt()r(X%*%b)
mu —invlink (eta)
if (wi="Ber") { ww«— (Wi(mu,ql))}
if (wi=="N-Ber"){ ww « diag (N_Wmm(mu,ql,0.1,0.1))}
(wi="sN-Ber"){ ww « SN_Wmm(mu, ql)}
(wi="TN-Ber"){ ww «— WI(mu,ql,0.2)}

e e
- [ [

=

(all (ww==0))

i

—~

warning("algorithm did not converge, ww =0")
return (list (coefficients=matrix
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(,,ncol=1nrow=length(co.old)),

Var.beta=matrix (,,ncol=1,nrow=length(co.old))))

}

co.new « matrix(glm(yy" X[, —1]
,weights=ww, family=binomial)$coef ,ncol=1)

#To solve the problem when new beta is far

#from old beta

steppeco.new—co.old

if ((any(abs(stepp)>=10)))

{
n+=min (0.7 *sqrt (sum(co.old ~2) /sum((stepp)~2)),1)
co.new<co.old-m*stepp

if (normf(co.new)>normf(co.old))

CC=CC+1

el
=

(normf(co.new)<normf(co.old))

~

CC=0

if( (CO==50))
{

warning("algorithm did not converge2")

return (list (coefficients=matrix(,,ncol=1
,arow=length (co.old)),

Var.beta=matrix (, ,ncol=1,nrow=length (co.old))))

}
error « sum(abs(co.new—co.old)/abs(co.new))

co.old <« co.new

return (list (coefficients=co.new))
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}
The Poisson regression

The L; quasi-likelihood estimator

/

File: Li—Poisson.R
Find the L1 estimated parameter beta in Poisson regression.

Author: Sahar Hosseinian, EPFL (sahar.hosseinian@epfl.ch)
Subject: Thesis "Robust Generalized Linear Models"
Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

#
#
#
‘,7’4
#
#

w7

# Function ajust.poiss.Lq

ajust.poiss.Lq « function (X,y, tol=10"(—6))
{
n «— dim(X)[1]

# Helper functions
//:/
link «— function (mu) {return(log(mu))}
invlink « function(cta){return(exp(ecta))
dinvlink « function(eta){return(exp(eta))
Vmu «+ function (mu){return (mu)}

}
}

Pmu « function (mu)

{
Re ()
for (i in 1:n)

{
}

return (P)

Pli]esum(dpois (0:(floor (mu[i])) ,muli]))

}

Pmu_2—function (mu,y)
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{
P_mu—Pmu(mu)

0

r (i in 1:n)

= O
o Tl

if (
if(

il<=muli]){P[i]=2*P_mu[i]}
i|>muli]){P[i]=2*P_mu[i]-2}

vl
vl
}
return (())
}
Wi2 «function (mu,y,P)
{
Ve—(Vinu (mu) )
res— (V> (1/2)%*%(P)) / (y—mu)
return (diag(res))
}
Wi « function (mu,y,cta)
{
Vo— (Vmu(mu))~(1/2)
ccc—1—2*Pmu(mu)
yminc « sign (y—mu)—ccc
res «— (V¥yminc)/(y—mu)
res «— diag(res)
return (res)
}
Ui « function (X,y,W,mu)
{
res— (& (X)%*%\%*%matrix (yv—mnu, ncol=1))
return (res)

}

Mi « function (mu, cta)

{
res—diag(dinvlink (eta))
rese—res%* RV
return (res)
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startingpoint2 «— as.matrix (glm(y”X[, —1]
,family—poisson)$coef)

error «+ 10
loop «— 0
co.old « startingpoint2
while (error > tol)
{
loop « loop+1
b «— matrix(co.old ,ncol=1)
eta «— as.vector (X%*%b)
mu «—invlink (eta)
P «— Pmu_2(mu,y)
W — Wi(mu,y,P)
U« Ui(X,y,W,mu)
grad « sqrt (sum(U"2))
M «— Mi(mu, eta)
XMXinv « solve ((t(X)%*% M %*%X), tol=1e—700)
XtWyminmu «— t (X)%*%\%*%matrix (y—mu, ncol=1)
co.new «— b + XMXinv %*% U
error « sum(abs(co.new—co.old)/abs(co.new))
co.old « co.new
Y#while
return (list (coefficients=co.new))

}
The WMLEM H estimator

# File: Var—beta—WMLIE-MH.R

# Find variance of WMLE-MH in Poisson regression.

#

# Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
# Subject: Thesis "Robust Generalized Linear Models”

# Copyright 2008, 2009

#STAP/EPFL, Switzerland (http://stap.epfl.ch/)

#

# Function Ri.1
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#

Ri.i « function (mu)

{
m «<median (mu)
W— diag (Wi(mu,m))
R.i— W~2*mu
return(R.1)

}

4
# Function Q4 Var.i

Q4Var.i « function (mu)
{
m «—median (mu)
Q). diag (Wi(mu,m))
return (Q.1)

# Function Dnp.matriz

7

Dnp.matrix « function (X, eta,dinvlink)

{
res—diag(dinvlink (eta))
reseres%*%X
return (res)

Var.of.beta

# Function
4

Var.of.beta « function (Dnp, Rii ,Q4Var, Vmu,mu)

{

DVQD «— t (Dnp)%*%(diag ((Viu(mu))~(—1)))%*%(diag (Q4Var))

%*%Dnp

DVRVD « t (Dnp)%*%(diag ((Viu(mu))~(—=1)))%*%(diag(Rii))
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%*%(diag ((Vmu(mu))~(=1)))%*%Dnp
return (solve (DVOD)%*7OVRVIN*% solve (DVQD))

File: WMLFE-MH-Poisson.R
Find the WMLE-MH estimated parameter beta
in Poisson regression.

Author: Sahar Hosseinian , EPFL (sahar.hosseinian@epfl.ch)
Subject: Thesis "Robust Generalized Linear Models"
Copyright 2008, 2009

STAP/EPFL, Switzerland (http://stap.epfl.ch/)

S

AN S

4
# Function ajust.poisson.NR

ajust.poisson.NR « function (X,y, tol=10"(-6))

{
n «— dim(X)[1]

/

# Helper functions

link «— function (mu) {return(log(mu))}
invlink <« function(cta){return(exp(ecta))}
dinvlink < function(eta){return(exp(eta))}
Vimu « function (mu){return (mu)}

Wi «function (mu,m)

{

a—numeric (0)
for (i in 1:length (mu))

-~

res «0

Af (mu[i]>2%m & mu[1]<3*m){res— (3*n—mu[i]) /m}
Af (mu[1]<2*m & mu[i]>(mn/2)){res—1}

Af (mu[i]<(n/2)&uu[ 1] >0){res2*mu[i] /m}

Af (muli]>3*n&mnu|i]<0){res<0}
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a—c (a,res)
}
return (diag(a))
}
Ui « function (X,y,W,mu)
{
res— (t(X)%*%\%*%matrix (y—mu,ncol=1))
return (res)

Mi « function (W, eta ,dinvlink)
resdiag(dinvlink (eta))
res—res%* RNV
return(res)
# Find new data list without owutliers
source ("MCD_new_data.R")
# Compute variance of beta
source ("Var_beta_WMLE_MH.R")

7)
startingpoint2 «— as.matrix (glm(y=X[, —1]
,family—poisson)$coef)

newdata— New_data mahalanobis (X, y)

yvi — newdatal[,1]
b dim(X) 2]
xf emewdata[,3:(pt+1)]
startingpointd «— as.matrix (glm(yfZxf
,family—poisson)$coef)
co.old « startingpoint4

error < 10
loop «— 0
while (error > tol)
{
loop « loop+1
if (loop >500)
{

co.old « startingpoint2
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loop «1
}
b «— matrix(co.old ,ncol=1)
eta «— as.vector (X%*%b)
mu —invlink (eta)
n+—median (mu)
W — Wi(mu,m)
U« Ui(X,y,W,mu)
grad « sqrt (sum(U"2))
dinv « dinvlink (eta)
M «— Mi(W, eta ,dinvlink)
XMXinv « solve ((t(X)%*% M %*%X), tol=1e—-700)
XtWyminmu «— t (X)%*%\%*%matrix (y—mu, ncol=1)
co.new « b + XMXinv %*% XtWyminmu
if (any(is.na(co.new)))
{
warning("algorithm did not converge")
return(list (coefficients=co.new) )

}

#To solve the problem when new beta is far
#from old beta
stepp—co.new—co.old
if (any(abs(stcpp)>—10))
{
nn+min (0.7 *sqrt (sum(co.old ~2)
/sum((stepp)~2)),1)
co.newsco.old+mm*stepp
}
error « sum(abs(co.new—co.old)/abs(co.new))
co.old « co.new
www—diag (W)
Y#while
eta.last « as.vector (X%*%co.new)
mu.last —invlink (eta.last)

# Compute variance of beta
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Rii.last « Ri.i(mu.last)

Q4Var.last « Q4Var.i(mu.last)

Dnp.last «— Dnp.matrix (X, eta.last ,dinvlink)

Varbetta.last « Var.of.beta(Dnp.last , Rii.last
,Q4Var.last ,Vmu, mu.last)

Standard.err «— sqrt(diag(Varbetta.last))

return (list (coefficients=co.new,St.err=Standard.err))
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