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Abstract

A broad and constantly growing class of diseases, such as Alzheimer’s disease, sickle-cell or
cataract, involve protein association phenomena as an essential aspect. The common denomina-
tor of all the members of this class of molecular condensation diseases is an attractive
energy of interaction between specific biologic molecules which produces condensation into dense,
frequently insoluble mesoscopic phases. Understanding interprotein interactions is essential since
it is the subtle interplay between interprotein attraction, repulsion and solution entropy that leads
to the condensed protein phases. Among these diseases, cataract is the world’s leading cause of
blindness and effective prevention or non-surgical cure are still lacking. The loss of transparency
of the eye lens found in cataract originates from the alteration of the spatial distribution of the
lens crystallin proteins. Biological studies of the chaperone properties of crystallins have
given valuable information about their aggregation in diluted environment. However, since the
crystallins are present at high concentration in the eye lens cells, it is crucial to complement these
studies with investigations at physiological concentrations where emergent mixture properties,

like phase transitions, are expected.

The eye lens cytoplasm contains a solution of mainly three classes of water soluble proteins,
called a—, B— and ~y—crystallin. In this thesis we develop a coarse-grained model for binary
mixtures of a- and ~y-crystallin proteins. By analyzing our numerical results in conjunction with
experimental neutron scattering data, the interactions between the proteins are modeled. We
demonstrate that transparency of the eye lens is greatly enhanced by a weak, short-range attrac-
tion between « and vy-crystallin. Provided it is not too strong, such mutual attraction considerably
decreases the critical temperature and the corresponding opacity due to light scattering, and it

is consequently essential for eye lens transparency.



i

The phase diagram of the binary a-vy model mixture is then investigated via thermodynamic
perturbation theory. The instability boundary of the crystallin mixtures is found to depend on
the a-v attraction in a manner that is both extremely sensitive and non-monotonic, in excellent
agreement with the experimental and numerical results. Moreover, the composition of the coex-
isting phases depends strongly on the strength of the a-v interaction. In light of the tie lines
determination it appears that a decrease of the binding affinity of o and ~-crystallins with ageing
involves small energy changes in the attraction between the crystallins and can produce sufficient

inhomogeneities to lead to the opacification of the lens.
The colloidal approach developed in this thesis could be applied in the future to study other

mixtures of crystallin proteins and provide new insights into their interactions and thermody-

namic stability when combined with scattering experiments and cloud point measurements.
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Phase transitions, thermodynamics, binary mixtures, crystallin proteins, soft condensed matter,

molecular dynamics, coarse-grained models, colloidal systems, proteins condensation.



Résumé

Une importante classe de maladies, telles que la maladie d’Alzheimer, 'anémie & hématies fal-
ciformes ou la cataracte, sont liées & des phénomenes d’associations de protéines. Le dénomina-
teur commun de ces maladies de condensation moléculaire est la présence d'une énergie
d’interaction attractive entre certaines molécules biologiques qui produit une condensation en
phases mésoscopiques denses et souvent insolubles. La compréhension des interactions entre les
protéines est essentielle puisque c’est le jeu subtil entre attraction, répulsion et entropie qui con-
duit & ces phases condensées. Parmi ces maladies, la cataracte est la principale cause de cécité
dans le monde et sa prévention ainsi que son traitement non chirurgical font encore défaut. La
perte de transparence du cristallin est due a ’altération de la distribution spatiale des protéines
cristallines. L’étude des propriétés de chaperones des cristallines a fourni de précieuses infor-
mations sur leur agrégation en milieu dilué. Cependant, puisque les protéines cristallines sont
présentes & haute concentration dans les cellules du cristallin, il est crucial de compléter ces
études par des investigations en conditions physiologiques ol ’on peut s’attendre a 'apparition

de propriétés nouvelles telles que des transitions de phase.

Le cristallin est constitué d’une solution de trois classes de protéines solubles appelées cristalline
a, [ et . Dans ce travail nous avons développé un modele & grain grossier (coarse-grained)
de mélanges binaires de protéines cristallines a et v en combinant des simulations de dynamique
moléculaire et des résultats de diffusion de neutrons a petit angle. Nous avons montré que la
transparence de la solution est augmentée si on introduit une faible attraction a courte portée
entre les cristallines o et . Si cette attraction mutuelle n’est pas trop grande, elle abaisse la
température critique et ’opacité due a la diffusion de la lumiere et est donc essentielle pour la

transparence du cristallin.
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Nous avons étudié le diagramme de phase de solutions binaires a-y dans le cadre d’une théorie
thermodynamique de perturbation. Les limites de stabilité des solutions cristallines apparaissent
dépendre de 'attraction entre les « et les v d’une maniere tres sensible et non monotone, en
excellent accord avec les résultats numériques et expérimentaux. De plus, la composition des
phases coexistantes dépend fortement de l'intensité de l'interaction a-v. La détermination des
tie-lines montre qu'une diminution de l'affinité de liaison entre les « et les v due au vieil-
lissement implique de faibles changements de 1’énergie d’interaction entre les cristallines et peut

produire des inhomogénéités suffisantes pour provoquer une opacification du cristallin.

L’approche colloidale développée dans ce travail pourrait étre appliquée a l'avenir a 1’étude
d’autres solutions de protéines cristallines et aider a la compréhension de leurs interactions et
de leur stabilité thermodynamique, en la combinant aux résultats d’expériences de diffusion et

aux mesures de cloud point.

Mots-Clés

Transitions de phase, thermodynamique, solutions binaires, protéines crystallines, physique de
la matiere molle, dynamique moléculaire, modeles coarse-grained, systemes colloidaux, agréga-

tion de protéines.
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CHAPTER 1

Introduction

Cataract is the leading cause of blindness and among its different forms, age-related
cataract is responsible for 48% of blindness worldwide [WHO, 2007]. Despite consider-
able efforts, effective prevention of cataract development or non surgical cures are still
lacking [D. Pitts et al., 1986]. Cataract is a loss of visual acuity and of contrast sensitivity
due to the opacification of the crystallin lens of the eye. It has been shown that the fraction
of the incident light that is back scattered by the crystallin lens increases exponentially with
age [Benedek, 1997; Thurston et al., 1997]. Thus, cataractogenesis is a continual process
of opacification that starts already at birth and in which the fraction of the light scattered
by the lens continuously increases with ageing until clinically distinguishable opacification
can be detected. The exponential time constant AT is believed to differ from one subject
to another but, by the age of 80, the percentage of the population requiring a cataract

treatment is around 60% [Ferris and Tielsch, 2004].

1



2 INTRODUCTION 1.1

The process that causes cataract seems therefore natural and unavoidable. However, in the
last decades, researchers have started to uncover the molecular basis for both transparency
and opacification [Benedek, 1971], and strategies to inhibit cataract or, equivalently, to

slow down the rate of progression of turbidity have emerged [Benedek, 1997].

1.1 Eye lens and transparency

The eye is the organ of vision and the light is conveyed from the outside to the retina.
The retina senses the light and creates impulses that transit through the optic nerve to
the brain where they are processed. The role of the eye lens consists in focussing the light
on the retina. The lens has a complex architecture and a unique protein composition that
ensure its transparency. It is composed of elongated concentric shells made of fibre cells
that can be up to 10 mm long in human [Bloemendal et al., 2004]. The shape of these
long cells is maintained by an extensive cytoskeleton. The concentration of proteins is
unusually high in the fibre cells with an important gradient of concentration (from 200
mg/ml in the outer shells up to 500 mg/ml in the nucleus). The abundant water-soluble
proteins of the eye lens are known as crystallins and account for most of the fibre cell
proteins. All mammalian lenses contain three families of crystallins proteins named a-,
(- and v-crystallins, following their decreasing molecular weight and increasing isoelectric
point.

Crystallins synthesized during the early stages of development are located in the nu-
cleus of the mature lens, while the outer cortex is rich in crystallins expressed later on.
As a last step in their differentiation process, the fibre cells lose their cellular organelles
(mitochondria, ribosomes and nuclei) [Bassnett, 2008] so that they can no longer synthe-

size or degrade proteins. Thus, the cell composition at the center of the lens is already
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definitive after foetal development, and the crystallin proteins cannot be replaced. The
last step of differentiation is essential to provide an homogeneous environment that ensures
lens transparency. The mature lens is thus like a very dense jellylike bag of crystallins pro-
teins [Benedek, 1997]. As the main function of the eye lens is to focus the light on the
retina, transparency and high refractive index are essential characteristics. It is therefore

important to understand how transparency in a dense medium like the lens can be achieved.

Maurice, in his pioneering study of the corneal stroma, came to the conclusion that trans-
parency can be explained by the phase correlation of the waves scattered by the different
fibers [Maurice, 1957]. Indeed, if the fibers were acting independently, the cornea would
scatter more than 90% of the incident light. The most striking example of phase correlation
is given by X-ray or light diffraction from perfectly regular lattices in solid state physics.
A perfect lattice scatters the light only in few directions corresponding to Bragg reflec-
tions. Thus the arrangement of the fibers in a regular array was thought to be essential
for the transparency of any tissue. However, experiments on the shark cornea revealed, a
decade later, that the collagen fibres exhibit a totally disordered arrangement [Goldman
and Benedek, 1967]. So even in this case, the phase correlation seems to reduce the light
scattered by the fibres. Indeed, Benedek and Goldman showed that the fibers in both hu-
man and shark stroma are separated by small distances compared to the light wavelength,
ensuring an important correlation between the phases of the waves scattered by neigh-
bouring fibers. The scattering is thus reduced and the stroma is transparent. However,
when fluctuations of the refractive index, due to irregularities in the density of the collagen
fibers, emerge on lengthscale comparable or larger than the light wavelength, the cornea

stroma becomes opaque.

This theory of transparency [Benedek, 1971] was then applied to the eye lens to under-
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stand the conditions of transparency and to relate microscopic alterations in the structure
of the lens to its opacification. Disruption of the local homogeneity in the eye lens can be
produced by the aggregation of the lens proteins into high molecular weight clusters. This
induces sufficient fluctuations to increase the turbidity and cause cataract, the turbidity
of the lens being directly proportional to the molecular weight of the aggregates [Benedek,
1971]. Indeed, experimental studies confirmed the presence of high molecular weight ag-
gregates in aging lenses [Spector et al., 1971]. Therefore, in order to understand cataract
formation, it is essential to investigate the biological function of the protein content of the
lens and to search for possible chemical modifications of these proteins that could lead to
their uncontrolled aggregation. In this context, the biological properties of a first family

of proteins, the a-crystallins, attracted considerable attention in the following decades.

1.1.1 « crystallin and cataract as a protein folding disease

The « crystallins are polydisperse oligomers, comprising more than 40 subunits with a
molecular weight between 800 and 900 kDa. They are large, almost spherical and non-
compact acidic proteins. They are continuously synthesized during lens development and
homogeneously distributed throughout the lens. They account for up to 40% of the soluble
lens proteins [Bloemendal et al., 2004]. To date, the structure of the a-crystallin is still
unknown. These proteins are highly polydispersed ( 20%) since they result from the as-
sembly of a-A and a-B proteins and the arrangement of these smaller subunits is different
for every a. This tendency to form polydispersed assembly is probably responsible for
the difficulty to crystallize them. Because of the lack of knowledge of the exact structure
of the as, the model for a-crystallins has been continuously modified to incorporate new
experimental results. Given the large size and molecular weight of as, it was thought first

that they were solely lens-specific proteins which deserves the structural stability of the
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lens. However, the subunits of this proteins were then found in other organs as well.

Experiments on the binding of hydrophobic reactants have revealed that an area of
hydrophobicity is present in the a-crystallin, allowing these proteins to bind to unfolded
proteins. It was in particular shown that a denatured + can bind to the center of a multi-
subunit « [Boyle et al., 1993]. Moreover, the « subunits were shown to belong to the
family of heat shocks proteins (HSPs) [Bloemendal et al., 2004]. HSPs are a group of
stress proteins that are synthesized to protect the cell against stress induced damages, like
heat, oxydation or contact with toxic compounds. Sometimes HSPs can also work as chap-
erones and bind to other proteins to stabilize them when they are at intermediate stages
of folding, assembling or degradation. Chaperones can also transport damaged proteins
within the cell towards areas where they won’t interfere with its normal functioning. The
chaperone activity of the a crystallin is believed to be essential for the function of the lens.
Indeed, it has been found that the a prevent thermal aggregation of § and ~ crystallins
and of several other enzymes [Liang and Li, 1991]. Moreover « crystallins can bind to
unfolded v and stabilize them against important stresses, like for instance UV light which

can damage lens proteins.

The recognized HSP and chaperone characters of « crystallins are at the origin of viewing
cataract formation as a protein folding disease occurring when non native proteins accu-
mulate faster than the rate at which chaperones can prevent their aggregation [Csermely,
2001]. The mature lens starts with a high concentration of chaperone a crystallins and
can face, in a first time, the unfolding of other proteins, like for instance the s [Horwitz,
1992]. However, because of the impossibility for the mature cells to synthesize new pro-
teins, the chaperone capability of the cell cannot be increased when, with aging, more an
more non native proteins unfold and aggregate. Thus, the absence of cellular organelles in

the mature lens, which is essential for its transparency in the early age of the lens, is very
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likely also responsible for the aggregation of the crystallins on longer terms, when the cell

has used all of its chaperone capability.

Beside the a-crystallins, there is another family of eye lens proteins, the ~-crystallins,

that could play a role in cataract formation.

1.1.2 ~ crystallin and cold cataract

The ~-crystallins are small monomeric proteins, with a molecular weight of about 21 kDa.
In contrast to the a-crystallins, the s have been crystallized and their structure has
been resolved [Blundell et al., 1981; Najmudin et al., 1993; Bettelheim et al., 1999; Ku-
maraswamy et al., 1996]. An interesting property of v crystallin is that when an aqueous
solution of s is cooled below a certain temperature 7™, the solution becomes opaque due
to its spontaneous segregation into protein-rich and protein-poor fluid phases. This re-
versible liquid-liquid phase separation is caused by a net short range attractive interaction
between the s and is analogous to the phase transition of specific atomic fluids. Moreover,
this coexistence is metastable with respect to solid-liquid phase boundary that is found at
higher temperature [Berland et al., 1992], in analogy with short range attractive colloidal

systems.

The discovery of phase transitions in solutions of + proteins increased considerably the
interest for this family of crystallin and their behaviour was investigated with particular
attention in the region near their critical point. The liquid-liquid coexistence curve of the
four members of the bovine v crystallin family has been measured experimentally [Thomson
et al., 1987; Broide et al., 1991]. Interestingly, these protein solutions were found to have
the same critical exponents and, thus, to belong to the same universality class of atomic

fluids. The coexistence boundaries of the four different families of crystallins obey the same
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critical relation that accounts for the coexistence curve of the analogous phase transition
in atomic fluids:

¢c_¢
Pe

where ¢, is the critical packing fraction of the protein solution and 3 = 0.325 is the coex-
istence critical exponent. The four members of v crystallin family have approximately the
same parameter A characterizing the width of the coexistence curve (A = 2.6 £0.1) and
the same critical packing fraction (¢. = 0.2 £ 0.02). In contrast, the proteins divide into
two categories for what concerns their critical temperature T,.: high T, ~-crystallins with
T, ~ 38°C' and low T, 7y-crystallins with T, ~ 5°C'. The critical temperature is a direct
measure of the strength of the non covalent attraction energy between proteins, while the
critical density is known to be determined by the range. Since the high 7, and low T,
~v-crystallins have almost the same secondary and tertiary structures, their different crit-
ical temperature values might be due to differences in only a few amino acid residues in
their respective sequences. Thus, apparently, minor chemical modifications can reduce, or
increase dramatically the critical temperature of solutions of crystallin proteins and lead

to eye lens opacification at completely different temperatures.

Furthermore, opacification due to liquid-liquid phase separation is not only found for in
vitro solutions of y-crystallins extracted from the lens, but it is also observed when cooling
an intact young bovine lens below 15°C' as the consequence of reversible phase separa-
tion [Tanaka and Benedek, 1975]. This somewhat artificial form of cataract, named cold
cataract, is nevertheless a proof of the principle that liquid-liquid phase separation can lead
to a separation of the concentrated cytoplasmic proteins solution into coexisting phases of

different density and/or concentration.
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The study of phase separation in crystallin protein solutions concentrated until now es-
sentially on pure solutions of v crystallins. In the last year, however, important progress
in the scattering techniques have made possible the study of binary mixtures of crystallin
proteins [Thurston, 2006]. The phase behaviour of these binary mixtures is certainly much
more complex than that of the pure solution and nothing is known about the interactions
between the different crystallin proteins. In the present work we will study binary mix-
tures of both a- and ~v-crystallins at high concentrations comparable to those found in the
eye lens. Using molecular dynamic simulations we will derive a colloidal model for these
protein mixtures which can account for their experimental small angle neutron scattering
data. The phase behaviour of this coarse-grained model will then be studied using a per-
turbation theory approach. The present work is a first step towards an understanding of
the thermodynamic stability of the full a-3-+v mixture contained in the eye lens and of the

relevance of phase separations in cataract formation.



CHAPTER 2

Colloidal model for eye lens protein mixtures

Summary

In this chapter, a colloidal model for binary mixtures of a and v crystallin proteins is
derived. Combining molecular dynamics (MD) simulations of a coarse-grained model of
proteins with experimental small angle neutron scattering (SANS) data, the interactions
between the proteins is modeled. We demonstrate that transparency of the eye lens is
greatly enhanced by a weak, short-range attraction between v and y-crystallins. Provided
it is not too strong, such mutual attraction considerably decreases the critical temperature
and the corresponding opacity due to light scattering, and it is consequently essential for
eye lens transparency. We then discuss possible origins of these interactions and present
further details of the model, in particular, the structural properties of the mixtures as

obtained from the simulations.
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2.1 Introduction

Proteins are attracting growing attention within the colloid physics community due to their
suitability as model colloids, and this possibility of exploiting proteins as ideal colloids has
already given promising results. Solutions of lysozyme, the physicist’s protein, were found
to exhibit a metastable liquid-liquid phase separation and posses a cluster phase at low
ionic strength, and evidence for a glass line was also discovered [Dawson et al., 2001; Strad-
ner et al., 2004b; Cardinaux et al., 2007]. The advantages of proteins are clear. In terms
of structure, the often perfect monodispersity of single-chain proteins is a property cur-
rently out of reach for synthesis of organic and inorganic colloidal particles. Interprotein
interactions also encompass richer and more interesting scenarios than are usually encoun-
tered in atomic systems. In fact, since proteins carry pH-dependent surface charges, their
electrostatic interaction can be easily tuned by modifying the solvent properties (pH, ionic
strength). Moreover, several proteins exhibit short-range attractive interactions whose
strength can be modulated by simply varying the temperature [Piazza, 2004]. All these
features make proteins an essential playground for understanding the equilibrium and non
equilibrium phase behaviour of colloidal systems in general. As a matter of fact, the reverse
is also true, and both colloidal and statistical physics are giving important contributions to
the understanding of protein behaviour, especially in phenomena like aggregation, phase
transition or dynamical arrest. These are all phenomena that involve a large number of

proteins and for which atomistic approaches are clearly not feasible.

In analyzing colloidal systems, a coarse-graining procedure, which consists in integrat-
ing out a subset of the degrees of freedom, is usually the first and unavoidable step. This
procedure is required to reduce the complexity of the interactions between components
(electrostatic, hydrophobic, steric, entropic etc.) to an effective potential [Likos, 2001;

Louis, 2001]. Once a suitable coarse-grained interaction has been devised, one can use the
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tools of statistical mechanics for simple liquids [Hansen and McDonald, 1986] to study the
system. In practice, colloidal particles are treated as “big atoms” [Frenkel, 2002; Poon,
2004] with specific interaction potentials. In this way, insights have been obtained in a vari-
ety of contexts, including colloids, colloids-polymers systems, gels, glasses and aggregation
kinetics (for recent reviews see for example Ref. [Likos, 2001; Anderson and Lekkerkerker,
2002; Zaccarelli, 2007]). Moreover, this approach has been successfully extended to pro-
tein solutions and has proven to be extremely valuable also for these more complicated
systems [Foffi et al., 2002a; G Pellicane and Caccamo, 2004].

The colloidal models emerging from this interdisciplinary research are also giving new
insights into numerous questions of biological and medical relevance. A broad and con-
stantly growing class of diseases, such as Alzheimer’s disease, sickle-cell disease and cataract
disease, to name only a few, involve protein association phenomena as an essential aspect.
The basic element common to all members of this class of Molecular Condensation Diseases
[Benedek, 1997], is an attractive energy of interaction between specific biologic molecules
which produces condensation into dense, frequently insoluble mesoscopic phases. It ap-
pears that it is the subtle interplay between interprotein attraction and repulsion that
leads to the condensed protein phase. Among this class of diseases, cataract is particularly
important because it is the world’s leading cause of blindness and effective prevention or
non-surgical cure is still lacking [D. Pitts et al., 1986]. Cataract is most often the conse-
quence of an uncontrolled aggregation (or phase separation) of the proteins in the eye lens

that results in a loss of its transparency.

2.2 Eye lens crystallin proteins

The cells of mammalian eye lenses contain an aqueous solution of highly concentrated lens-

specific proteins, and are normally sufficiently transparent for vision. To understand the
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origin of normal lens transparency, it is essential to recognize that each of the proteins in
the lens does not scatter light independently of its neighbors. Instead, the scattering in the
eye lens is reduced by the correlation in the position of pairs of proteins [Benedek, 1971].
In a normal lens the local fluctuations of the concentration of proteins, on length scales
comparable to the light wavelength, are small.

One of the principal ways of disrupting the needed local homogeneity in the eye lens
is by the aggregation of lens proteins into high molecular weight clusters, that produce
sufficient fluctuations to increase the turbidity and cause cataract. The needed homoge-
neous packing of lens proteins has indeed long been recognized to be fundamental for eye
lens transparency, and has been characterized at molecular length scales using small-angle
X-ray scattering [Delaye and Tardieu, 1983]. Many studies of this nature make cataract an
example of a protein condensation disease where concepts from colloid science have already
been successfully applied.

The highly packed proteins in the eye lens fiber cells are named “crystallins,” and the
most common mammalian crystallins belong to the «, # and « families. In this study we
have focused on the a and v crystallins. The former are globular, polydisperse, multi-
subunit, 800 kDa proteins, whose interactions can be described to a good approximation
with a simple hard-sphere colloid model [Finet and Tardieu, 2001]. The 7-crystallins are
monomeric, with a molecular weight of about 21 kDa. The discovery of a metastable
liquid-liquid phase separation provided the evidence for a short-range attraction between
~v-crystallins and the use of the corresponding colloid model has led to a quantitative
description of the phase behaviour [Thomson et al., 1987; Broide et al., 1991; Malfois
et al., 1996; Fine et al., 1996; Lomakin et al., 1996; Asherie et al., 1998].

Crystallin aggregation and liquid-liquid phase separation can both produce density in-
homogeneities that are the main sources of increased light scatter in cataract, and therefore

continue to be major themes of lens protein research. Liquid-liquid phase separation not
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only gives rise to the so called cold cataract [Zigman and Lerman, 1964], but also dramati-
cally enhances light scattering at body temperature, well above the critical point [Schurten-
berger et al., 1989, 1993; Fine et al., 1996; Thurston, 2006]. The proximity of liquid-liquid
phase separation also substantially affects the thermodynamic properties of lens protein
mixtures [Vérétout and Tardieu, 1989; Liu et al., 1996, 1998; Thurston, 2006 and is there-
fore an important aspect to be taken into account for understanding the driving forces for
chemical changes in the lens cytoplasm, including protein aggregation. The present work
continues a process of extending the initial work on liquid-liquid phase separation and re-
lated properties of aqueous ~y-crystallin solutions to successively more realistic mixtures of

eye lens crystallins [Liu et al., 1996, 1998; Thurston, 2006; Stradner et al., 2007].

It is important to discuss the relationship of this work to investigations of eye lens pro-
teins that are most commonly carried out at relatively dilute concentrations in comparison
with those studied here. For example, the recognition of chaperone properties of the lens
crystallins, and numerous subsequent biophysical, chemical and genetic studies, have con-
siderably enhanced our understanding of lens protein aggregation [Horwitz, 1992; Putilina
et al., 2003; Pigaga and Quinlan, 2006]. In both equilibrium and kinetic contexts, dilute
and semi-dilute solution investigations are critical for determining key structural aspects
of proteins, for identifying specific interactions between proteins, and for quantifying their
strength. More specifically, it is clearly critical to determine the free energies and kinetics
of formation of prevalent complexes of lens proteins, including their dependence on protein
sequence, chemical modifications and solution conditions, and such investigations are most

readily carried out without the added complexities of highly concentrated mixtures.

However, at the same time it has long been very clear that the high crystallin concen-
trations in eye lens cells produce emergent mixture properties, including phase transitions,
that are at present very difficult to predict solely from knowing dilute solution properties.

Therefore, both dilute and concentrated solution investigations are essential and indeed
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complementary for understanding the molecular driving forces that underly lens protein

aggregation, phase separation and ultimately, cataract.

2.3 Experiments

Small angle neutron scattering experiments were performed on solutions of « and vB crys-
tallins obtained by mixing different ratios C, of a 230 mg/ml a-crystallin and a 260 mg/ml
~vB-crystallin stock solution, in 0.1 molar sodium phosphate buffer in D,O at pH 7.1, with
20 millimolar dithiothreitol to inhibit protein oxidation and oligomerization. We define C,

as the relative volume of the a-solution according to :

Vi)

Croy = ——
@™ Vi) + Vo)

(2.1)

with V{;) denoting the volume of the protein solution of type 7. In the following, vB
crystallins will be simply denoted as .

The concentration of the ~-crystallins corresponds closely to their critical concentration
C. and all experiments were performed at a temperature of 25°C' (10°C' above the critical
temperature T, of the 74’s in the present buffer). The SANS spectra of the pure-a and
pure-vy solutions together with the binary C, = 0.125, C,, = 0.25 and C, = 0.5 mixtures
are plotted in Fig. 2.1 and cover the wavevector magnitude g-range of 0.002-3 nm~!. The
pure ~ solution is already highly critical, due to the proximity of the critical point of the
gamma solution. 7 is indeed just above the critical temperature 7)) of the ys and the
density of the solution is near to the critical one. Adding a-crystallins to the + solution
first slightly increases the forward scattering (C, = 0.125). The intensity at low ¢ reaches
a maximum for a mixing ratio of C, = 0.25 while the peak due to the hard-core of the

a-crystallins appears at ¢ ~ 27/d,. Thus, a first estimate of the a’s diameter can be



2.3 EXPERIMENTS 15

E . C=0 |

101 . C,=0.125

: C =0.25f

. a I

= | |
Sk |
T f 1

Figure 2.1: Small-angle neutron scattering intensity 1(q) vs. wavevector magnitude q for high
concentration bovine vB and « crystallin miztures, showing evolution from pure yB to a. Mizing
ratios Cq of a 230 mg/ml a-crystallin (Co = 1) and a 260 mg/ml ~y-crystallin stock solution
are shown as follows: pure a-crystallin, i.e. Co = 1 (dots), C,, = 0.5 (squares), Co = 0.25
(diamonds), Co = 0.125 (triangles) and pure y-crystallins, i.e. Co, =0 (crosses).

inferred from the experimental spectra and the d, ~ 160 A we measure is consistent with
previous studies [Finet and Tardieu, 2001].
For C, = 0.5, the large scale fluctuations are already highly suppressed and the pronounced

structure factor peak of the a-crystallins is found.

Qualitatively, as we have described, these measurements on high concentration mixtures

show a combination of the key features of hard-core repulsion and short-range attraction
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that are relevant in the pure solutions. However, since quantitative models of interactions
between proteins within mixtures cannot be inferred directly from the SANS experiments,
especially for the interactions between unlike components, the next section is dedicated to
building a quantitative, testable model for the relevant lens protein interactions with the

aid of computer simulations.

2.4 Simulations and model validation

2.41 Model

The proteins are modeled as particles that have a simple short range interaction. Each pro-
tein is treated as an additive hard sphere with square-well (SW) interaction. Consequently,
the interaction potential is defined as:

(

09 1fI<dU,

Ulj(z) = — U5 if dij <xr < dij + )\ij (22)

0 1f$>d2]+/\z]
\

with d;; = (d; + d;)/2 and d;, the diameter of the i-species. The parameters u,;; and
Aij, defining the energy scale and the range of the interactions respectively, are the key
quantities of our model and will be fixed using the experimental spectra.

The interaction potential defined by Eq. 2.2 clearly represents a strong idealization
of the true interaction between the proteins. All the internal degrees of freedom of the
proteins and the directionality of their interaction are ignored.

In principle, an atomistic model that takes into account the internal structure of the two
proteins could be studied by simulations. This approach, however, would be limited by the

computational overhead to just a few proteins. Since we are interested in capturing the
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experimental phenomenology in a semi-quantitative manner, which requires considering
collective properties on length scales much larger than the single proteins, the atomistic
simulation route is not feasible. An atomistic model is also not an option since, while the
structure of the v-crystallins is known, the same is not yet true for the structure of the

a [Blundell et al., 1981; Bettelheim et al., 1999].

A second advantage of our model is that it comprises a minimal set of parameters
necessary to account for the key phase equilibrium and scattering properties observed to
date in aqueous solutions of pure «, pure v and their binary mixtures. Moreover, each
model parameter has a specific physical interpretation. The SW potential, in particular,
has already been successfully used to model the phase behaviour of y-crystallins [Lomakin
et al., 1996]. The choice of SW potential is certainly not unique and other shapes of the
potential could also be considered. However, when the range of a spherically symmetric
model attraction is smaller than the diameter of the particles, the phase diagram, liquid
structure, and dynamics of the system is scarcely dependent on the exact shape of the
potential; the second virial coefficient being the relevant parameter for both statics and
dynamics [Foffi et al., 2002b; Noro and Frenkel, 2000]. Finally, SW potentials permit fast
simulations and simplify significantly the calculations within the perturbative approach

that will be discussed in the last section.

2.4.2 Simulations

We performed standard molecular-dynamics (MD) simulations in a cubic box with periodic
boundary conditions for N=32000 particles (64000 for the pure 7 case). The algorithm
follows the usual event-driven scheme for particles interacting via stepwise potentials, in
which the trajectories of the different components are propagated from one interaction

to the next [Rapaport, 1995]. For each state point, up to 6 initial configurations were
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carefully equilibrated to the desired temperature by coupling the system to a thermostat.
Once the system equilibrated, the production runs were performed by constant energy
simulations. The scattering intensities were then computed from the configurations stored
during these runs. To improve the statistics, the results of different independent runs were
averaged, reducing significantly the error in the calculation of the scattering intensities,
especially at low ¢g-vectors. During the production runs the temperature and pressure were
monitored to check that no phase separation or crystallization was occurring. In some
cases, equilibration was not possible, the system being intrinsically out of equilibrium as
we will see. This was an indication that a spinodal line/surface had been crossed. In this
case, the measured scattering intensities were taken while the system was still coupled to

the thermostat.

Partial structure factors and scattering intensities

Scattering techniques are one of the most important approaches to study the properties
of soft matter. Depending on the length scales to be resolved and the contrast between
suspended particles and solvent, the scattering of neutrons, X-rays or light is used. Exper-
iments performed in the infinite dilute limit, i.e. at very low concentration, give access to
quantities directly related to the size and shape of the suspended particles while, at higher
concentration, we can gain information about particle arrangements and interactions. In
the latter case, the relevant quantity is the static structure factor S(q) that is defined as

the equal time density-density correlation and reads for homogeneous systems:
1 )
- = § : iq:(ri(t)—r; (1))

where the sum runs over the N particles of the system and the density variables in the
g-space are p,(t) =>_. e’ami(t)  This quantity is directly related by Fourier transform to the

radial distribution function g(r). By measuring first the form factor Iy(q), the scattering
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intensity of a dilute sample of Ny particles for which all correlations between the particles
have been minimized, S(q) can be easily evaluated from the scattering intensity I(q) by
computing the ratio [Klein, 2002]:

I(q) N

For a mixture of different components, the scattering experiments provide the total

intensity scattered by the mixture, without distinguishing the contributions of the different
components. In other words, the partial structure factors and the related partial radial
distribution functions cannot be measured straightforwardly.

These quantities, however, can be directly accessed by numerical simulations and in-
tegral equations calculations [Caccamo, 1996] and they are related to the total scattered
intensity measured in the experiments. The scattered intensity, versus scattering vector ¢,

for a mixture of m components can be expressed as [Klein, 2002]:

I(g) = N DY ful@)fil@)Suw(q) (2.5)

p,rv=1
in which f,(q) denotes the form factor of particles of species y1 and S, ,,(q) the partial static

structure factor:

N, Ny

1 )
_ = iq-(rip () —rju (1))
Swle) = (oL ) (26)
For a binary a-v mixture the scattering intensity reads:
I(q
M9 — )80 + £, (2.7
+2fa(0) 1,(0)Say(0)-

In this work, the total scattering intensity has been calculated by Eq. 2.7 with the partial
static structure factors S, (¢) obtained from the simulations and the form factors f,(q) of

the two species measured experimentally.
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Figure 2.2: Concentration-normalized scattered intensities of diluted a-crystallin (squares) and
~v-crystallin (plus) solutions (4 mg/ml and 8 mg/ml) that were used as the experimental form
factors. Also shown are the IFT fits (solid lines).

The static structure factors S, were calculated by averaging over several independent
configurations and runs. To improve the statistics, averages over 300 different wave vectors
q of the same modulus q were also performed. The experimental form factors were fitted
using Indirect Fourier Transformation [Glatter, 1977] (IFT) to get rid of the experimental
noise at high ¢ and Guinier fit to have access to low ¢ vectors [Guinier A., 1955]. The
results are shown in Fig. 2.2. In order to account for the experimental smearing, we derived
a general resolution function resulting from the combined effect of wavelength spread, finite

collimation and detector resolution [Pedersen et al., 1990] (see Appendix A). The simulated
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scattering intensities were convoluted using this resolution function before comparing them

with the SANS data.

2.4.3 Derivation of the model

In this section we shall describe the steps that we have followed to derive the parameters
of the model introduced by Eq. 2.2. We will start by studying the pure solution of the
two proteins. In this way, we will derive the parameters of the pure components, i.e. the
attractive square-well depths (ua, and u.,,) and the ranges (Aao and A,,). The second
more challenging step will be towards modeling the binary mixtures. In this case, no
prior studies were available, the interactions between unlike components were unknown

and could not be inferred from the single component behaviour.

Pure component mixture

The experimental scattering intensity I(q) as a function of the scattering vector ¢ for the a-
pure case is shown in Fig. 2.3. The main features are a low forward scattering (¢ — 0) and
a peak at around g ~ 0.038 A"l In agreement with previous studies [Finet and Tardieu,
2001; Stradner et al., 2004a], we assume the interactions between « crystallins as purely
repulsive, and so we model them as hard spheres. Taking for a-crystallins a molecular
weight of 8 x 10° g/mole and a radius of 81.5 A, consistent with our observations, the
volume occupied per unit weight of a crystallins is found to be 1.7 ml/g, in agreement
with the value reported in previous studies [Veretout et al., 1989] for bovine a-crystallin.
We finally obtained a value of 0.39 for the volume fraction ¢, corresponding to the pure
230 mg/ml stock solution. The effective diameter d, = 163A derived by the comparison
of the SANS results and the MD simulations is compatible with the values found in the
literature [Finet and Tardieu, 2001].
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A satisfactory agreement between the experimental and simulated intensities I(q) is
obtained as shown in Fig. 2.3. In terms of structure, the peak can be interpreted as
the enhanced correlations at the contact distance between the particles. The location of
the peak ¢* varies with the diameter as ¢* ~ 27 /d,. Even though the a-crystallins are
globular proteins composed of many subunits and the solution is expected to be slightly
polydisperse ( 15%) [Stradner et al., 2004al, the assumption of monodispersity used in
this study is sufficient to recover the form of the experimental a-a correlation peak at
this intermediate density. The polydispersity is expected to improve the agreement in the

shape of the contact peak and it could be considered in future developments of the model.

Now we turn our attention to the 7 solutions. Aqueous solutions of v crystallins have
attracted considerable interest in the past years as model system for the study of phase
transition and critical phenomena [Thomson et al., 1987]. These solutions become turbid
when cooled below a certain critical temperature which depends on the experimental buffer.
Strong density fluctuations that occur near a critical point are responsible for a fluid-
fluid phase separation of the solution. More specifically, a coexistence curve divides the
density-temperature plane into a high temperature region, where a single homogeneous
phase exists, and a low temperature one where two liquid phases of different density and
concentration are in equilibrium. Due to the different refractive index of the phases at
high and low concentrations, the solution appears opaque. Previous experiments led to
the determination of the coexistence curve and critical point (¢.,T:.) of the 7 solutions
demonstrating the presence of a second order liquid-liquid phase transition [Thomson et al.,
1987]. While the exact location of the coexistence curve depends on the solvent and on the
particular gamma crystallin being investigated, the solution properties have been found to
scale with the reduced density and the reduced temperature (I'—7,)/T. [Thomson et al.,
1987; Schurtenberger et al., 1989, 1993; Broide et al., 1991].
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Figure 2.3: Neutron scattering intensities for the concentrated, pure o crystallin solution in
the present buffer are well-modeled with use of a hard-sphere potential in molecular dynamics
simulations. SANS intensities (dots) and MD results (line) for hard-spheres at packing fraction
bo = 0.39 are shown. The location of the peak q* ~ 2w /dy = 0.385 nm ™" is also drawn.

The first parameter that we shall set is the range for the v — v interaction. This is fixed
to reproduce the critical density obtained by the experiments. Square well systems have
been intensively studied by means of Monte Carlo (M (') simulations and their coexistence
curve computed for a large spectrum of attraction ranges [Vega et al., 1992]. In our case, a
range \,, = 0.25d, produces the correct critical density. Indeed, MC simulations with this
value of the short range attraction gave good agreement with the experimental coexistence

curve [Lomakin et al., 1996].
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In order to enhance the fluctuations, the experiments were performed at 25° C, close
to T, = 15° C, the critical temperature of v in the present buffer. The concentration of the
~-pure solution used here is close to the critical one, i.e. ¢, = 260 mg/ml, and corresponds
to a packing fraction ¢, = ¢ = 0.184, given a specific volume for the 7-crystallins of

v=0.71cm?/g [Liu et al., 1996].

We performed the numerical simulations at this packing fraction using the A, = 0.25d,,
for the square well potential, with d, = 36A, the effective sphere diameter that reproduces
the volume per molecule of the 7. Setting the energy parameter to w.,, = 1, in units of kp =
1, leaves the temperature 7" as the only free parameter. For T = 0.7875 good agreement
between the experimental and numerical I(g) is found, see Fig 2.4. The intensities show a
strong forward scattering at large length scales (low q vectors) which is a direct consequence
of the strong density fluctuations in the proximity of the critical point. Indeed, the structure
factor S(q) (proportional to I(q) at low q) is defined as the density-density correlation
function in Fourier space and the strong scattering is the result of long wavelength density
fluctuations in the sample. These strong fluctuations are particularly important for the
physiological function of the eye lens proteins which is to ensure the eye lens transparency.
Benedek in his seminal paper — Theory of Transparency of the EFye — demonstrated that
the turbidity of the cataractous eye-lens is related to microscopic spatial fluctuations in
its index of refraction [Benedek, 1971]. In particular, the scattering of light is produced
primarily by those fluctuations whose Fourier components have a wavelength equal or
larger than half the wavelength of light in the medium. The low g-regime relevant for eye
lens transparency is thus defined as ¢ < 0.047nm ™! and particular care has been taken to
reproduce the intensity in this region.

Not surprisingly, the agreement at high g-values is less satisfactory due essentially to
the appearance of a nearest neighbor peak at ¢* ~ 2m/d,, in the simulation data. Contrary

to the a-crystallins, v has been crystallized and its structure has been resolved [Blundell
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Figure 2.4: Neutron scattering intensities for the concentrated, pure v crystallin solutions in

1

the present buffer can be approximated, for wave-vector magnitudes below 1 nm™", with use of

a spherical square-well potential in molecular dynamics simulations. SANS measurements (dots)
and results from molecular-dynamics simulations (line) for square-well particles (A, = 0.25d,,

Uyy =1, T = 0.7875 ) at packing fraction ¢~ = 0.18 are shown.

et al., 1981; Najmudin et al., 1993; Bettelheim et al., 1999; Kumaraswamy et al., 1996]. Tt
consists of two distinct domains that form a slightly elongated ellipsoid. The discrepancy
between simulation and experiment at high q might arise from the simplifying assumption
of a spherical shape. In particular, the contact peak for ellipsoidal particles would be less
pronounced due to the broadened distribution of the contact lengths.

Another essential feature of globular proteins, that is not considered in the present

model and which may well affect the high-q scattering, is the strong directionality of the
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interactions. Proteins are characterized by patchy surfaces that are indeed essential for
their biological roles. This has motivated the introduction of non isotropic models of pro-
tein phase behaviour. Patchy — or aeolotopic — models, that consider protein directional
interactions, have been able to address phenomena such as protein aggregation, crystal-
lization and self-assembly [Lomakin et al., 1999; Sear, 1999; DeMichele et al., 2006].

In this work, however, we shall show that even if an isotropic model of attraction repre-
sents a strong simplification, it is certainly adequate for our purpose since it reproduces the
key features on the longer length scales of interest for transparency. The introduction of
anisotropy, both in shape and interactions, might be an interesting refinement for further

studies.

Binary o~y mixtures

Inferring the microscopic interactions between proteins from scattering experiments be-
comes more complicated when dealing with systems composed of more than one compo-
nent. The factorization of the scattering intensity /(q) into a one-particle property and a
genuine statistical mechanical quantity (see Eq. 2.4), like the structure factor S(q), is no
longer possible. As expressed by Eq. 2.7, the measured intensity is a result of a combi-
nation of the form factors and partial structure factors S, ,(q) of each component. The
latter cannot be isolated by simply knowing I(g). The MD simulations now become es-
sential in the present context for understanding the microscopic interactions between the
components that lead to the observed experimental scattering intensities of the mixtures.

Among the three different mixing ratios (C, = 0.5,0.25,0.125), C, = 0.5 closely re-
sembles the natural a-v crystallin concentration found in the eye lens nucleus [Veretout
et al., 1989]. Therefore the model parameters for the mixtures are derived on this sample
and then tested and confirmed also for the remaining mixing ratios. The temperature T

at which the simulations on the mixtures are performed is fixed by the pure y-case. The
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Figure 2.5: Attraction between o and v crystallins is essential for modeling neutron scattering
intensities of their high concentration mixtures [Stradner et al., 2007]. SANS intensities for the
C, = 0.5 mizture: (dots) and results from molecular-dynamics simulations at T = 0.7875 are
shown for three different values of the interspecies interaction (uay = 0, Uay = 0.55 Uqy = 2

denoted by the dashed, the full and the dotted line respectively).

remaining free parameter is the interaction between unlike proteins u,, that will turn out

to be essential for understanding the stability of the binary mixture.

Since no previous studies of the present type for the interaction between the two crys-
tallin proteins are available, we start with the assumption of a purely repulsive additive
hard-sphere interaction between the two components, i.e. uo, = 0. The striking dis-

agreement between the forward scattering of the numerical results and the experimental
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data for C, = 0.5 is evident in Fig. 2.5. The experimental I(q) resembles closely the
pure « case with a peak at intermediate ¢ range and a highly suppressed forward scat-
tering [Fig. 2.1]. Considering hard-sphere repulsion among the two species only results in
an enormous increase of the scattering intensity at low ¢ which can be understood as an
enhancement of the unstable region of the mixture. Indeed, we were not able to prop-
erly equilibrate the mixture during molecular dynamics simulations. The system began
to phase separate, forming large domains of a-crystallin-rich and v-crystallin-rich regions
as clearly indicated from the snapshots presented later. In the real system, these effects
usually start to emerge in o —y mixtures at temperatures above the ~ critical temperature
that are somewhat lower than those investigated here [Thurston, 2006]. As a consequence
of the high forward scattering, the transparency of the mixture would be lost, in contrast
with the visual appearance of the sample and the SANS data which indicate that under

the present conditions fluctuations at low q are highly suppressed.

It is clear that some elements that stabilize the mixtures have not been considered
in this first model. Consequently, we speculate that a mutual attraction between unlike
proteins might be present to circumvent these long-wavelength fluctuations and to stabilize
the mixtures. We assume this attraction to have the same range as the one used for the

attraction between 7-crystallins (Ap, = Ay, = 0.25d,).

To pin down an effective well depth for this mutual attraction, we performed several
simulations varying .- from the hard sphere limit up to 2. The stability of the binary
mixtures appears to depend on u,, in an extremely sensitive and non-monotonic way.
To illustrate this point we plot in Fig. 2.6 the scattering intensity for a q vector in the
region relevant for transparency (¢* = 0.0467 nm™!) as a function of the a-vy attraction
for C, = 0.5. The system can be equilibrated for 0.5 < u,, < 1 and a low forward
scattering, compatible with the experiments, is obtained for these values of u,,. Outside

this interval, the simulations show a clear sign of phase separation which indicates the
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Figure 2.6: A narrow range of the attraction strength between o and v crystallins is compatible
with avoiding high concentration phase separation instability. Dots show calculated neutron scat-
tering intensities for ¢* = 0.0467 nm ™1, from analysis of molecular dynamics simulations, versus
the o~y attraction square well depth uq~ for the Co = 0.5 mixture (see text). The attraction
range in which the mizture remains stable against phase separation and can be equilibrated is also
drawn. The dark point indicates the value of uq, we used to model the a-y mizture and the dashed

line represents the experimental 1(q*)

crossing of an unstable region. The strong fluctuations at low q, that take place when an
instability boundary is reached, are responsible for the enhancement of 7(¢*). The origin
of these fluctuations and the nature of the phase separation will be investigated in the next

sections.

We found that an interspecies attraction half of ., (uay = 0.55u,,) is sufficient to
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Figure 2.7: The neutron scattering intensities for the Co, = 0.25 (top) and Co = 0.125 (bottom)

mixtures are compatible with the a-y square-well depth determined by comparison of MD simula-

tions with the C, = 0.5 SANS measurements. SANS measurements are represented by dots and
results from molecular-dynamics simulations by full lines. The parameters of the simulated model

are presented in Tables 2.1 and 2.2
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account for the SANS measurements and accurately reproduces the scattering intensities
at low q. The parameters of our model of the a-y mixtures are summarized in Table 2.1.
For this choice, a simulated scattering intensity in good agreement with the experiments
is obtained for C, = 0.5, see Fig. 2.5. Use of this attraction leads to a good description of
the experimental I(g) also for the remaining mixing ratios (C, = 0.25,0.125) as reported
in Fig. 2.7. The agreement for moderate g-vectors is less satisfactory. As for the pure mix-
tures case, this could be due to both polydispersity and anisotropy. In the g-region relevant
for transparency, however, our simplified model gives a good account of the experimental
results.

We have shown that this mutual attraction improves drastically the agreement with
the experimental results. Its origin, however, remains unclear. In general, the exact
origin of short range attraction in globular protein systems including + crystallins and
lysozyme [Muschol and Rosenberger, 1997] is still a challenging and open question. Three-
dimensional protein structures often display large exposed hydrophobic regions, which are
likely to play a prominent role in the interparticle interactions [Piazza, 2000, 2004]. Beside
hydrophobicity, which is still far from being understood and whose contribution is diffi-
cult to evaluate, electrostatics might be important [Stradner et al., 2004b]. At pH = 7,

where the experiments have been performed, o and ~ crystallins are oppositely charged.

dy 1.0 | A, |025d, | uy | 1.0
de | 453 | A | 0.0 Une | 0.0
oy | 2.765

>

oy | 0.25 dy || oy | 0.55

Table 2.1: Parameters of the square well potential used for modeling the a-y miztures. The
diameters d and ranges of the interaction X are given in unit of d, = 36 A and the depth of the

potential u in units of kp = 1. The temperature of the simulations was set to T = 0.7875.
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Ca Pa Oy N

0 - 0.184 -
0.125 || 0.049 | 0.163 104
0.25 0.098 | 0.140 240
0.5 0.195 | 0.093 704
1 0.391 - 32000

Table 2.2: Parameters of the molecular dynamics simulations for the different Comixtures: the
packing fraction of each component ¢, and ¢, and the number of o components N, are given

(with N, + N, =32000).

More specifically, a-crystallins are expected to carry Z, = —180 electronic charges per
molecule at the experimental pH [Bera and Ghosh, 1998] while, for v-crystallins, Z, is
close to +2e [Shand-Kovach, 1992]. This suggests that electrostatic interactions could be
considered as one possible origin of the mutual interaction we have introduced in the model

to reproduce the experimental data.

To further investigate this possibility, if we treat the proteins as charged colloids, we
can use as interaction model a pair-wise screened Coulomb potential where the range of
the electrostatic interactions is characterized by the Debye screening length =1 [Verwey
and Overbeek, 1949; Leunissen et al., 2005]. This approach has often been used in the
study of protein solutions [Chan et al., 1976; Leunissen et al., 2005; Zoetekouw and van
Roij, 2006]. In order to estimate the electrostatic contribution to the expected a — 7
attraction, we evaluated this pair-wise screened Coulomb potential with the experimental

L~ 6A and compared it with the square-well potential we used for

screening length x~
the simulations. We found that this screened Coulomb potential could not account for the

magnitude of the interaction derived from the simulations; in order to recover the same
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second virial coefficient, a Z, of —450e would have been needed.

However, it should be mentionned that this approach is simply a starting point towards
investigating the electrostatic contribution to a-v interactions. It is in fact based on the
hypothesis of a uniform charge distribution on the surface of a sphere, and on the use
of dilute solution approximations to the nature of electrolyte solutions, long recognized to
give inaccurate thermodynamic predictions at higher electrolyte concentrations unless they
are considerably modified [Verwey and Overbeek, 1949; McQuarrie, 1976; Lee and Fisher,
1996; Bostrom et al., 2002]. For proteins, charged groups are far from being uniformly
distributed on the surface, but rather assembled in patches that form a complex mosaic.
Since the Debye length is smaller than the proteins, and, in particular, smaller than the
distance between charge patches on the proteins, the rotationally averaged electrostatic
screened potential would tend to underestimate the attractions. In order to investigate
the origin of the attraction and how it might be influenced by electrostatics, one should
therefore consider anisotropic interprotein potentials [Lomakin et al., 1999; Sear, 1999], as
well as charge regulation [Kirkwood and Shumaker, 1952; Chan et al., 1976]

The ability of the y-crystallins to fit into spaces between « subunits, which are about the
same size as the «’s, could also lower the potential. In this context, taking into account the
multi-subunit character of the a, or introducing some negative additivity ( 2 do, < do+d5)
could also be interesting refinements of the model. Clearly these are all speculations and
the quantitative molecular origins of the mutual attraction remain unknown and are worthy
of further experimental and theoretical investigation.

Before moving to the description of the structural properties, we want to stress that the
intrinsic anisotropic nature of the interactions does not significantly affect our results at low
q, where the fluctuations that disrupt eye lens transparency occur. Indeed in this region, we
can obtain a satisfactory agreement with the experiments by the simple isotropic potential

defined by Eq. 2.2. For q vectors around the a-peak, angular-dependent interactions might
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be considered to improve the results. Moreover, the intrinsic polydispersity of « crystallins,
which has to play a role in the properties of the pure a solution at higher packing, might
also sensibly broaden the peak according to similar intuitive arguments to those given

above in the case of the possible influence of the ellipsoidal shape of the ~ crystallins.

2.4.4 Structural properties

One of the benefits of computer simulations for the study of binary mixtures is that the
partial structure factors and partial radial distribution functions can be predicted. The
partial structure factors quantify Fourier-transformed spatial arrangements of the indi-
vidual protein components in the solution, with respect to each pair of species. Partial
structure factor predictions both augment small-angle neutron scattering data and help
the design of experiments that use selective species labeling or contrast variation to enable

measurement of the partial structure factors.

Partial structure factors S;;(q)

Since our model has been validated by comparison with the experiments, the structural
properties obtained from the simulations can now give important predictions on the spatial
organization of the different species. In Fig. 2.8, we reproduce the three partial structure
factors obtained for the choice of parameters used to model the a-y mixture (Table 2.1).
From the structure factors, it is evident that an increase of the ~ crystallin concentration
fluctuations at large scale, indicated by the enhancement of S.,(q) at low g, is responsible
for the mixture high criticality not only in the pure v case, but also for the binary mixtures.
Compared to the monodisperse 7 solution, the presence of the larger size a’s enhances the
criticality of the ~y-crystallin fluctuations. As observed for the experimental I(g), the

dependence of the critical behaviour on the relative composition of a and ~ crystallins
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Figure 2.8: Predicted partial structure factors obtained from the MD simulations of the various

C,, miztures.

(upper left panel) Saa; (upper right panel) S+~ ; (lower panel) So~ .

is not monotonic. Indeed, for C,, = 0.25 S,,(q) presents the strongest enhancement of

large length scale fluctuations. This non-monotonic dependence of criticality on v — «

composition is consistent with the non-monotonic dependence of cloud temperature on

a-y composition found previously [Thurston, 2006].

Saa(q) also shows enhancement of large length scale fluctuations when increasing the

amount of y-crystallins in the solution, but in a less dramatic way. We also calculated

the partial structure factors for other values of the mutual attraction. Outside the narrow



36 COLLOIDAL MODEL FOR EYE LENS PROTEIN MIXTURES 2.4

interval of attraction strength shown in Fig. 2.6, all the structure factors present a strong
increase at low ¢ that is ultimately responsible for the strong forward scattering in the (q)
spectra. This is illustrated in Fig. 2.5 for the case of weak (u,, = 0) and strong attraction
(Uay = 2).

If we could experimentally modify the a-vy attraction without concomitantly changing
other key interactions, the transparency of the sample in these high and low regimes would
be lost. We anticipate that the nature of long wave-length fluctuations is different in the two
extreme cases of primarily compositional and primarily protein density phase separation,

as will be apparent later by visual inspection of the simulation box.

Partial radial distribution functions g;;(r)

The structure in real space can give better insight into the local composition of the solu-
tions, in particular for the spatial distribution of each species with respect to the other.
For this reason, the partial radial distribution functions (RDF) for the different C, are
presented in Figs. 2.9, 2.10 and 2.11. For the RDF of « crystallins, the pure case ex-
hibits the usual oscillations of a dense hard sphere system: the spatial arrangement of the
components alternates between regions of enhanced and reduced probability of finding a
particle at a certain distance r from another, compared to that for a uniform distribution.

The range of the spatial correlation between as increases when +’s are added to the
solution, as shown by the longer decay of the initial peak in g,.(r) (Fig. 2.9). This more
collective behaviour is a clear sign that the mixtures are becoming closer to criticality.
For the case C, = 0.5, however, the scattering intensity does not show such a long decay
indicating strong fluctuations yet. This is due to the glue effect of the small attractive
proteins that form complexes with the large ones, as indicated by the cartoon in Fig. 2.9,
and, so, prevent demixing. This effect appears more clearly when increasing ., up to

the limit of the stability region (see inset of Fig. 2.9): the a-a contact peak is suppressed
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Figure 2.9: Partial radial distribution functions gaa(r) from MD simulations of concentrated
a-y crystallin miztures, showing neighboring a-a protein distributions as a function of mixing
ratio, C,. Key structural arrangements of the proteins that contribute to different peaks are also
depicted (see text). The goo(r) of the Co = 0.5 mizture for uqa, = 0.55 (line) and uoy = 0.9 (dark

diamonds) are compared in the inset.

while there is a strong enhancement of a-y-a configurations, as depicted in the cartoon of
Fig. 2.9. A similar effect has been observed recently [Liu et al., 2006] in asymmetric binary
Yukawa fluids, where a weak attraction between small and big components leads to the
formation of a shell of small particles around the large particles, which weakens the effective
attraction between the large components and, thus, decreases the critical temperature of

the mixture.
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Figure 2.10: Partial radial distribution functions g(r) from MD simulations of concentrated
a-vy crystallin miztures, showing neighboring v-y protein distributions as a function of mixing
ratio, Co. Key structural arrangements of the proteins that contribute to different peaks are also

depicted (see text).

For the v crystallin RDFs (Fig. 2.10), the attractive wells give rise to a pronounced
enhancement of the probability of finding proteins close to each other: the proteins are
likely to stay closer than the outer range of their attractive well. Moreover, the contact
value of g,,(r) grows with increasing a’s due to the confinement of the small crystallins in
the presence of the bigger a’s. The structural arrangements of the proteins that contribute
to the different peaks are also represented by cartoons in Fig. 2.10. Arrangements of two,

three and four small particles become more probable with increasing concentration of the
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Figure 2.11: Partial radial distribution functions ga(r) from MD simulations of concentrated
a-y crystallin miztures, showing neighboring a-vy protein distributions as a function of mixing
ratio, C,. Key structural arrangements of the proteins that contribute to different peaks are also

depicted (see text).

large component. In particular, for the interspecies go-(r) RDFs presented in Fig. 2.11
there is a sensible increase in the coordination for the case C, = 0.5 with respect to the
other more critical solutions. This enforces the idea that the small proteins act as glue
between the large ones and thereby inhibit demixing. With too much -7 attraction,
however, larger a-y complexes become too stable and strong density fluctuations start to
dominate. In summary, a fine balance of the mutual attraction stabilizes the system against

the two pathological situations.
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2.4.5 Mixture stability tuning the - attraction

For a precise study of the nature of the instabilities that are driving the phase separation
of the different protein mixtures, one should really consider their thermodynamics and
investigate their phase diagram. This will be done in details in Chapter 4. However, a visual
inspection of the simulation box can provide already some very interesting informations.
In Fig. 2.12, snapshots taken from simulations of the C, = 0.5 mixture with different
values of the mutual attraction are presented. Since the full simulation box is extremely
crowded, we present only slabs of thickness equal to the diameter of the large particles.
For strong and weak u,, attraction, the system is out of equilibrium (see Fig. 2.6) and the
configurations were taken while the system was still coupled to a thermostat, at the end
of a long MD run.

For weak attractions, the snapshots reveal the coexistence of two different phases,
one composed essentially of the smallest proteins and another where mainly the o are
present: this is a demixing transition. Introducing an attraction between unlike proteins
first counterbalances and efficiently suppresses segregation of the two proteins into large
domains. An homogeneous and stable mixture is obtained for intermediate values of the
mutual attraction. As discussed before, if the attraction is further increased, the mixture
becomes again unstable. Contrary to the weak attraction regime, where concentration
fluctuations seemed to dominate, the density inhomogeneities are now responsible for the
instability. This is evident in the snapshots for strong attractions where large regions of
high and low density dominate. Thus, upon increasing the u,, parameter one passes from
a de-mixed state where a-rich and ~-rich phases coexist, to a stable one-phase region, and
finally to another de-mixed state where a solvent-rich phase coexists with a higher density,

protein-rich phase.
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Figure 2.12: Molecular dynamics snapshots showing the progression from segregation of a-
crystallin and y-crystallin by type (uqay = 0, Upper Left), through one phase, stable mizing (uo, =
0.55, Middle Left), to separation of a dense phase of both proteins (un, = 2.0, Lower Right).
Simulations performed at T = 0.7875.
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2.5 Conclusions

In this chapter, we have derived a colloidal model of o and ~ crystallin proteins that is able
to account for the experimental scattering intensities of both pure solutions and mixtures
of these proteins. Very good agreement on the length scale important for the lens trans-
parency was obtained. We found that the transparency of concentrated crystallin mixtures
is maintained by introducing a weak, short-range attraction between « and ~ crystallins.
This attraction considerably decreases the critical fluctuations due to the attraction be-
tween v crystallins and the tendency of highly asymmetric mixture to demix. Due in part
to its small magnitude, the molecular origin of the inferred net short range attraction be-
tween unlike crystallins remains a challenging and open question, as it is for short range
attraction of many globular proteins including v crystallins and lysozyme [Piazza, 2000,
2004]. Moreover, an increase or a decrease in the short range attraction between unlike

crystallins could have pathological effects on the lens transparency.

In this context, it is interesting to note that the existence of a mutual non-covalent
attraction between « and ~ crystallins has been recently found by microequilibrium dial-
ysis and plasmon resonance experiments performed at low concentrations [Takemoto and
Ponce, 2006; Ponce et al., 2006]. Moreover, those authors found that this non-covalent at-
traction seems to decrease with aging of the lens. The present work confirms the existence
of a- v attraction at high densities typical of the eye-lens, and demonstrates molecular
mechanisms by which either loss or gain of a-v attraction could lead to phase separation
and opacification in cataract disease. The former possibility is intriguing in light of the
finding that a- ~ attraction seems to decrease with aging. The present findings also suggest
that it would now be of great interest to measure the strength of v-a attraction in cases

of known cataractogenic mutations that affect the sequence of either v or a crystallin.

The derivation of a colloidal model of o — v lens protein solutions, compatible with
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the available experimental data, opens up the possibility of performing a thermodynamic
analysis of the stability of such mixtures in the full parameter space where experiments
and simulations have not been performed. The thermodynamic stability and the phase be-
haviour of the a-y mixture will be studied in Chapter 4 using thermodynamic perturbation
theory (PT'). However, before applying to the crystallins mixture the PT formalism which
is known to account correctly for the phase behaviour of one component solutions, we will
first test in Chapter 3 the ability of perturbation theory to describe the phase diagram of

mixtures of two components as well.






CHAPTER 3

Phase behaviour of binary mixtures

Summary

In this chapter we will use thermodynamic perturbation theory (PT') to study the stability
of binary mixtures of simple interacting particles made of an hard core plus an attractive
potential. The idea consists in deriving the equation of state of the interacting system by
treating the attractive potential u;;(r) as a perturbation of the hard-sphere potential u%(r).
This leads to an expression for the Helmholtz free energy, which can then be analyzed to
find the instability boundary and the phase diagram. In a first part, the expression for the
free energy will be derived in the framework of the perturbation theory. The conditions of
thermodynamic stability will be explicited. Within PT the determination of the instability
surface (the spinodal) is straightforward and it gives already important insights into the

coexistence boundaries (the binodal). The later, which is computationally more involved,

45
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can be determined as well. As a first application of PT to the calculation of binary mixtures
phase diagrams, the phase behaviour of the binary symmetric mixture of hard core Yukawa
(HCY') particles will be determined. This model mixture has been widely investigated in
the last years and our calculations will assess the validity of PT to describe the phase
diagram of such mixtures. In a second step, binary mixtures with a slight asymmetry in
the size of the two components will be studied. PT will prove to be really suitable to
evaluate their instability and phase behaviour. This preliminary study will open the way
to study the phase diagram of the eye lens protein model mixtures derived in Chapter 2

and its implications for cataract disease.

3.1 Introduction

Moving from one component fluid to binary mixtures considerably enhances the complexity
of the phase behaviour. In addition to the liquid-vapor phase separation observed in
one component systems, binary mixtures can also undergo a demixing transition. The
phase diagram is thus determinated by the competition between liquid-vapor and mixing-
demixing phase separation [Pini et al., 2003]. The presence of an additional degree of
freedom, the concentration of the two species, considerably widens the spectrum of critical
behaviours: tricritical points, critical end points, four phase points and critical lines replace
the simple critical point and triple point found in one component fluids.

The first attempt to classify the rich variety of phase diagrams of binary mixtures
was performed by van Konynenburg and Scott [van Konynenburg and Scott, 1980]. Their
qualitative study, based on the van der Waals mean field expression for the equation of state
is still the only systematic work on the phase behaviour of binary mixtures. Their work
shows that the phase diagram topology is very sensitive to the precise combination of the

parameters that characterize the interactions between the components. For interactions
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between particles of different species ¢ and 7 modelled as the sum of a spherical repulsive
hard core and a longer-range attractive tail, the relevant parameters are given by the hard-

sphere diameters d,;, the strength of the attractive interaction w;; and the range of the

ij>
attraction \;; (4,7 = 1,2).

The application of reliable liquid state methods to determine the phase diagram of
general binary mixture is certainly more involved than the simple van der Waals analysis
and the number of free parameters definitely larger. Thus, more quantitative investigations
of the phase diagram of general binary mixtures, and, eventually comparison with Monte-
Carlo simulations, are still lacking. A first attempt to study the phase behaviour of binary
mixtures on a quantitative level has been to reduce drastically the parameter space and
consider the so-called symmetric mixture. In this class of systems, the two components
have the same radius (d;; = dag = djo = d), the interaction strengths between like particles
are equal (u1; = use = u), but a ratio of the interaction strengths between unlike species
0 = uj2/u is introduced. Important results have been obtained for these particular mixtures
from the Self-Consistent Ornstein Zernike (SCOZA) approximation and the Hierarchical
Reference Theory (HRT) for Yukawa fluid [Scholl-Paschinger and Kahl, 2003; Pini et al.,

2003]. However, the drawback of these methods is certainly their difficult generalization

to more sophisticated mixtures.

In colloidal systems, important results have also been obtained by thermodynamic per-
turbation theory. Applying this theory to monodisperse short-range fluids, Gast, Hall and
Russel were able to describe the phase diagram of colloidal particles interacting by deple-
tion interactions [Gast et al., 1983]. More recently thermodynamic perturbation theory
was used to understand the interplay between phase coexistence and the glass line [Foffi
et al., 2002b]. If the perturbative approach is known to give quantitatively imprecise re-
sults near phase boundaries and near criticality, the method can be in principle applied to

very general mixtures for which the convergence of integral equation based methods is still
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out of reach. Perturbation theory is thus well suited to study the stability of the modeled
asymmetric crystallins mixtures.

In a first part, we will describe the first order thermodynamic perturbation theory
that we used to determine the free energy of two components mixtures. The conditions
under which these mixtures might become unstable will be explicited. The instability
boundary (or spinodal surface), which is a local quantity, can be easily determined within
this approach, while the binodal surface, which is the set of coexisting states, can also be
computed.

As a validation of the perturbative approach to describe the phase diagram of binary
mixtures, we will consider the symmetric mixtures of Yukawa particles. We shall show
that the main topologies obtained from HRT, Mean Spherical Approximation (MSA) or
Grand Canonical Monte Carlo (GCMC) approaches [Pini et al., 2003; Kofinger et al., 2006;
Wilding et al., 1998] can be reproduced within perturbation theory. In a second step we will
consider symmetric mixtures of Yukawa particles which belong to the different classes of
phase diagram and introduce a slight asymmetry in the diameters of the two components.
This size asymmetry, which suppresses some artificial topologies of the symmetric cases,
lead to an interesting variety of phase diagrams that are, at the moment, very difficult to

assess from other liquid states methods or computer simulations techniques.

3.2 Thermodynamic perturbation theory

The traditional descriptions of liquids or colloidal systems take advantage of the fact that
the intermolecular pair potential can be naturally split into two parts: a steep, short range
repulsion and a smoothly varying longer range attraction. It is now well accepted that
the way in which the molecular hard cores pack determines the structure of most simple

liquids, at least at high density, while the attractive interactions give rise to a uniform
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background potential which provides the cohesive energy of the liquid, but has little effect
on its structure [Hansen and McDonald, 1986]. A further simplification consists in modeling
the steep repulsion present when the distance between the particles is small by effective
hard sphere interactions. In this way, the liquid properties can be related to those of the
hard sphere fluid, whose structural properties and thermodynamics are well known, and the
attractive part of the interaction is treated as a perturbation of the reference system. The
representation of a liquid as hard spheres moving into an uniform attractive background
provides the basis of the famous Van der Waals equation of state. However, at that time,
little was known about the reference hard sphere fluid at high density and the excluded
volume was taken into account only approximately, giving rise to the following equation of

state that diverges at ¢ — 0.25, well below the fluid solid transition (¢ ~ 0.49):

P 1
6/)0 = =4 (3.1)

where Py is the pressure of the hard sphere fluid, p the density and ¢ the packing fraction

(¢p = m/6d p for a sphere of diameter d). In the sixties, Widom showed that an equa-
tion of state thermodynamically consistent and compatible with the uniform attractive

background is necessarily of the form:

6—P = %— pa (3.2)

p

where a is a positive constant which accounts for the fact that, when the density increases,
the space available for inserting a new particle (i.e. the chemical potential) is lowered by
an amount that is proportional to the density [Widom, 1963]. A first improvement of the
Van der Waal’s expression consisted in replacing the equation of state by a more accurate

expression for hard spheres, like the Carnahan-Starling equation of state [Carnahan and
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Starling, 1969]. The next step toward a substantial improvement of Van der Waals’s theory

was the derivation of the so called perturbation methods that we will describe now.

3.2.1 Perturbation theory and the )\ expansion

Perturbation theory is based on the division of the pair potential into:

u(1,2) = up(1,2) +w(1,2) (3.3)

where ug(1, 2) is the pair potential of the reference system, and w(1, 2) the perturbation. We
assume that the interactions between particles are pair-wise additive and that the system
is homogeneous. Perturbation theory consists in computing the effect of the perturbation
on the thermodynamics and the pair distribution function of the reference system via an
expansion in power of the inverse temperature (the so called A expansion) [Hansen and
McDonald, 1986].

Consider a pair potential of the form:

ur(1,2) = up(1,2) + Aw(1,2) (3.4)

where ) is a parameter that varies between 0 and 1 and gives the degree of perturbation:
for A = 0 the potential reduces to that of the reference system, whereas for A = 1 the
potential of the system of interest is obtained. Let Ux(A) be the total potential energy of

a system interacting through 3.4:

Un(A) = > ua(ij) (3.5)

i=1 j>i



3.2 THERMODYNAMIC PERTURBATION THEORY 51

The corresponding excess free energy, which gives the contribution to the free energy arising

from the interactions between the particles is by definition:

Zn(A)

F(\) = —kgTln N (3.6)
where Zy is the configuration integral defined as:
Zn(\) = / exp(—BUN(N))dr™ (3.7)

Zy simplifies to V¥ in absence of interaction between the components (Uy()\) = 0). The
derivation of the Helmoltz excess free energy with respect to the coupling parameter A

yields:

8 1 / N
65}7’()\) = 290N exp(—LBUN(N)BUN(N)dr (3.8)
= BUNM)A

where Uj(A) = OUpn(A)/OX and the bracket denotes a canonical ensemble average for the
system characterized by uy(1,2). For the potential defined in 3.5, Uy (\) = S, Zj\; w(i,j) =

Wy . Integrating 3.8 yields:

BF(\) = BR+0 /0 (W)adA (3.9)

with the excess free energy of the reference system Fy = F\—y. If we expand the ensemble

average (Up (M) around A = 0 we obtain:

Wads = (Wrco + Ast(Wihslaco (3.10)
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with:

0
8/\<

which gives, by insertion into 3.9 :

Wi = =BUWN)x — (Wr)3) (3.11)

BE = BEy+ AW — 5 B(WR)o — (Wa) +O(F) (312)

This series was first derived by Zwanzig [Zwanzig, 1954] and is a true high temperature
expansion when the system of reference is a hard sphere fluid and the canonical ensemble
average depends only on density. For other reference systems, the averages are in general
also functions of temperature and the A expansion can not be reduced to a Taylor series
in T~!. The assumption of pairwise additivity of the potential including the perturbation

leads to an expression for the free energy of the form:

F F
% = &—1—— d)\// w(l,2)d1d2 (3.13)

where p(f)(l, 2) is the pair density for the system with potential uy(1,2) that can be ex-

panded in powers of A:

)
pP1,2) = o, 2)+)\a>\p/\

The first order term in the high-temperature expansion of the free energy is obtained by

(1,2)[r=0 + O(N?) (3.14)

inserting the term of zeroth order in A of the expansion of the pair density in 3.13:

W - %/ / po (1, 2)w(1,2)d1d2 (3.15)

= %/go(r)w(r)dr
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where go(r) is the radial distribution function of the reference system. It is clear from this
expression that the structure of the fluid is not influenced by the perturbation and that
perturbation theory is indeed a mean field like theory.

Perturbation theory has been generalized to multi-components mixtures following the
same arguments [Barker and Henderson, 1967]. The expression for the Helmholtz free
energy F in terms of the averages of fu;;(r) and its powers taken over the unperturbed

binary hard-sphere fluid ensemble reads for the first order case:

F — F 1 2
Nk:bTO = P > Ii“’j/uij(r)g%(r)errO(ﬁ?)

3,7=1

(3.16)

where Fy and g%(r) are the free energy and the partial radial distribution function of
the unperturbed system. A binary mixture of spherical particles of radius d; and ds is
unequivocally defined by giving the number of particles of each kind, N; (i = 1,2) and
the volume V' occupied by the system. The overall number density is then defined by
p = (N1 + Ny)/V and the mole fraction, which gives the relative concentration of the two
species, by x = N;/N.

We used the Boublik-Mansoori-Carnahan-Starling-Leland (BM CSL) equation of state
for the free energy of the binary hard-sphere reference mixture Fy [Carnahan and Star-
ling, 1969; Boublik, 1970; Mansoori et al., 1971] and the partial radial distribution g7;(r)
functions were computed solving the Ornstein-Zernike equations with the partial direct
correlation functions ¢;;(r) of the binary mixture obtained by Lebowitz within the Percus-
Yevick (PY) approximation [Lebowitz, 1964]. In order to correct the shortcomings of the
PY hard sphere distribution functions (the values at contact g%(dij) and the slopes g?j’ (dij)
are both too small in magnitude) we used the Grundke-Henderson procedure, a generaliza-

tion to mixtures of the Verlet-Weis modifications [Verlet and Weis, 1972; Henderson and
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Grundke, 1975]. Details of the calculation of the g%(r)s are presented in Appendix B.

Approximations for the second and higher order terms have also been proposed [Barker
and Henderson, 1967; Gil-Villegas et al., 1997; Paricaud, 2006]. For one component sys-
tems, this perturbative approach gives qualitatively good results even if, for short ranges of
the attraction, it overestimates the liquid-vapor critical temperature 7T, and underestimate
the critical number density p.. Taking into account the second order correction gives slight
improvements in (p., T;.) with respect to MC simulation results, but a quantitative discrep-
ancy remains [Vega et al., 1992]. Thus the general stability picture of the binary mixture
is expected not to depend on the approximations used and a first order approximation is

certainly sufficient for the purpose of the present study.

3.2.2 Stability criteria: the spinodal

The condition of thermodynamic stability of the binary mixtures is obtained by considering
the Helmholtz free energy F' and its minima. It is convenient to scale F' and the other
extensive variables, V and N; (i = 1,2), by the total number of particles N = N; + Na.
The reduced free energy f is then a function of the volume per particle v = p~! and the
mole fraction z, as in Eq. 3.16. The conditions of equilibrium and stability will be derived
in terms of these scaled quantities.

For equilibrium at a point on the f—x—uv surface, at a given temperature, it is necessary
that the tangent plane lies below the surface at that point. In other words, any fluctuation
in mole fraction or volume per particle from an equilibrium state should not lead the system
out of this equilibrium. This condition of local stability of an equilibrium state is fulfilled
if the second order differential of the thermodynamic potential (the Helmholtz free energy
f for the choice of the v and x variables) at constant T is a positive definite quadratic form

at that state:
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S 2 0’ f
Sf* = 2[(01)2 TJ(SU +2 00w Tévéx

+(ﬁ)“6a:2] > 0 (3.17)

This condition of stability might be rewritten introducing [f], the stif fness matriz [Tisza,

1966] of the Helmholtz free energy f:

52 = fo0v? + 2f,0002 + frn00? (3.18)
f’l)'U f’Um 5U
= ( v ox ) >0
f’l}x fiﬂfﬂ 5‘7’1

where f,, =1 (;:gy)T and f,, =3 (%)TV (u,v = v,x). Such a quadratic form is most

conveniently discussed by reduction to the diagonal form :

1

= 5 PRI (3.19)
k=1

This is achieved by a non-unique singular linear transformation of the variables which,
thus, gives different set of diagonal elements ),. Usually an orthogonal transformation is
used for the diagonalization of a quadratic form but the eigenvalues obtained in this way
are not directly related to physical quantities. Thus, it is preferable to consider a different,
non-orthogonal transformation which allows one to relate the eigenvalues of the quadratic
form to physically meaningful quantities [Tisza, 1966; Ursenbach and Patey, 1994].
Factorizing with respect to f,, and completing the square in Eq. (3.17) yields:

Jaa
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where :

06 = (55E+E V)

The conditions for a system to be thermodynamically stable (or metastable) can thus be

written either

2

Joz >0 and  f,, — ﬁ >0 (3.22)
or,
2
foo >0 and  for — fW >0 (3.23)

when computing the factorization with respect to f,,.

The second-order derivatives of a scaled thermodynamic potential with respect to a
scaled extensive variable must be positive for a system to be stable. Moreover, even if the
considered transformations take place at constant mole fraction and volume per particle, it
is possible to consider slightly different thermodynamic potentials and express the stability
criteria in terms of their derivatives, in which all variables held constant are intensive
variables [Ursenbach and Patey, 1994]. Indeed, instead of the Helmholtz free energy one
might consider the Gibbs free energy g or the quantity f' = f — x(ug — 1) (with p;, the
chemical potential of species 1) and express the condition of stability in terms of the partial

derivatives of these potentials :
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The stability criteria previously derived require these two quantities to be positive.
An interesting point is that the derivatives in which all variables held constant are inten-
sive, and which are usually named primary stability indicators, are always less than or
equal to corresponding derivatives with some extensive variables held constant (secondary
indicators). In one-component systems, the inverse of the isothermal compressibility
x7' = (0%f/0v?)r is a primary indicator and vanishes as the instability is reached. This
instability, called mechanical instability, occurs when density fluctuations become infinite
in the system and allows the nucleation of low and high density phases that then coexist.
This instability is responsible for the usual liquid-vapor phase transition encountered in
one component systems.

In binary mixtures, the system might become mechanically unstable without the inverse
of the corresponding compressibility x7., = (9°f/0v?)r, vanishing since it follows from
(3.24) that the only required condition is instead, that x7.,, . = (> f'/Ov®) 1y, go€s
to zero. In other words the isothermal compressibility, the mechanical stability indicator
in one component solution, is no longer a unique quantity in binary mixtures. Besides
mechanical instability, strong concentration fluctuations can lead to demixing, i.e. a sep-

aration of the system into phases of different concentration. In this case (9*f/0x?)r,, is
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a material stability indicator that diverges as the instability boundary is reached and the
corresponding primary stability indicator is provided by (9%g/d2%)r p. Except in special

cases, both mechanical and material instabilities will in general appear simultaneously.

3.2.3 Main fluctuations driving the instability

In order to determine to which degree the instability is driven mainly by largest mechanical
or material fluctuations (i.e. density-density or concentration-concentration fluctuations)
it is useful to consider the diagonalization of the stability matrix f through, this time, an
orthogonal change of basis [Chen and Forstmann, 1992]. In this case the eigenvalues are
given by:

1

A = §tr[f]j:%\/tr[f]2—4det[f} (3.25)

and the normalized eigenvectors can be written:

T+

zZL = (326)
Y+
with:
fvv_/\:l: 2
YL = _:L_ifvv_)\i
Joz

In this orthogonal basis the quadratic forms can be expressed as:

§f2 = A omi+ A on; (3.28)
with the d7; obtained as linear combinations of the fluctuations in volume and concentra-
tion:

oy = x v+ yox (3.29)

o = x_0v+y_ox
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The instability can be characterized defining the angle «

a = arctan (x—) (3.30)

Y_

with the argument that simplify to

S - (3:31)

Y- fvv - )\—

When an instability is reached, the stiffness matrix becomes singular (3.24) and the de-
terminant det[f] = A_A; vanishes, condition that is independent of the basis chosen to
diagonalize the quadratic form. The border of a stability region is thus indicated by the

smaller eigenvalue A\_ going to zero:

T foa
lim — = — .32
P Y- Jo (3:32)
_ _fa
Joe

These relations state for [f] non diagonal ( f,, # 0). In the particular case where f,, = 0,
fluctuations in density and volume fraction will just be independent. With this definition
of a, the instability will be predominantly of demixing type when « is close to 0 and of

condensation type when « is close to /2.

3.2.4 Phase coexistence: the binodal

Within our approach we do not have access directly to the coexisting (binodal) surface.
In order to build the whole coexisting surface we have to pass through the determination
of (all) the coexisting phases and related tie lines in the system. Two phases (I and II)
coexist if the pressure and the chemical potential of each species (1 and 2) are equal in

both phases, i.e:
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Figure 3.1: Schematic view of the orthonormal vectors zy and the stability indicator a. The
instability will be predominantly of demixing type when a is close to 0 and of condensation type

when « is close to £m/2

p) = pUD (3.33)
)= i

I 11
) = 10

We use a Newton-Raphson algorithm to solve these equations and compute the binodal.
At a critical point, the tie lines that join coexisting phases become the tangent to the curve

bounding the instable region. This condition can be expressed as:

P Y Y S
fCDCEIE Sf:ca:v(fvv) + SfIUU(va) UUU(va) 0 (334)
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The critical lines are then computed by determining on the spinodal surface the loci where

this condition is satisfied.

3.3 The symmetric binary mixtures

In this section we will use the free energy obtained from first order thermodynamic pertur-
bation theory to investigate the phase diagram of symmetric binary mixtures as a function
of 9, the unlike to like interaction ratio. The microscopic interaction between the compo-
nent consists in a hard core repulsion plus attractive Yukawa potential with a screening
length z = 1.8. In the last years, numerous authors have studied the phase behaviour of
symmetrical binary mixtures using liquid state theory or computer simulations, but their in-
vestigations have been limited to the equimolar plane of the phase diagram (x=1/2) [Wild-
ing et al., 1998; Antonevych et al., 2002; Scholl-Paschinger and Kahl, 2003]. From these
investigations, different topologies of phase behaviour have been obtained and they are in
agreement with the mean field predictions. The values of 9 marking the exact boundaries
between the different topologies depend on the degree of accuracy of the theory considered.
Indeed, the key issue is the capability to account for the long-range fluctuations that are
important for the description of critical phenomena and phase separation.

Relatively few studies of the more general case of non equimolar concentrations can
be found in the literature. Only recently, insights into the complexity of the entire phase
diagram of the symmetric binary mixture have been obtained using the Hierarchical Refer-
ence Theory (HRT) [Pini et al., 2003]. This highly accurate theory introduces long range
density and concentration fluctuations via a renormalization-group like procedure where
the long wavelength Fourier components of the microscopic interaction are gradually in-
troduced in the Hamiltonian of the mixture [Parola and Reatto, 1985, 1991]. Their study

was complemented with mean field calculations. The inclusion of long range fluctuations
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preserves the correct convexity of the free energy in the whole thermodynamic space, which
is of particular relevance when one tries to determine the binodal surface. Whenever phase
separation takes place, no instability domains are found as in the mean field approximation.
The conditions of thermodynamic equilibrium are enforced by the theory itself and there
is no need to impose the conditions of coexistence afterwards using a Maxwell construction

(as described above).

A systematic investigation of the full phase diagram for one of the archetype of the
symmetric binary mixture phase diagram, based on the Mean Spherical Approximation
(MSA) and complemented with Grand Canonical Monte Carlo (GCMC) simulations, has
also been recently presented [Kofinger et al., 2006]. Even if MSA is less accurate than
advanced liquid state theories, particularly in the critical regions, semiquantitative agree-
ment with the MC simulations was obtained. Their study confirmed in a more detailed

way the results obtained previously via HRT and MF.

The next challenging step in this field is certainly to extend the study of the symmetric
binary mixture to encompass the more general case of asymmetric mixtures. HRT is al-
ready very laborious to implement for the symmetric mixture and is also computationnaly
expensive. Moreover its generalization for non symmetric binary mixture is not straightfor-
ward. The convergency of the semi-analytical MSA is also not guaranteed when moving to
binary mixtures highly asymmetric in size. For these reasons we calculated the free energy
from first order perturbation theory to study the phase diagram of binary mixtures. As
a first step, we validate the perturbative approach using the previous results on the sym-
metric binary mixtures. In this way the accuracy of PT', which is expected to be slightly
inaccurate in the critical regions, can be tested also on binary mixtures whose phase dia-
grams have been already determined from advanced liquid state theory [Pini et al., 2003].
This step is certainly necessary since, up to now, PT has been only used to compute the

phase diagram of one component systems. We will show that the main topologies of phase
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diagram are correctly reproduced within PT also for binary mixtures. This study is a
first step towards the investigation of more sophisticated mixtures. Indeed, the final goal
of this work is the determination of the phase diagram of the model crystallin proteins
mixtures that we derived in Chapter 2. Beside the interparticle interactions, the peculiar-
ity of the a-y mixture is also the important size ratio between the two crystallin proteins
(do/d, = 4.53). Thus, among the numerous parameters that can be varied in a binary
mixture (range, depth or strength of the different interactions, size of the components,
kind of potential, ...) we choose to extend the study of the symmetric binary mixtures by
considering mixtures with increasing diameter ratios A = dy/d;. Starting from the differ-
ent archetypes of phase diagrams known for the symmetric case, the effect on the phase

behaviour when increasing A will also be studied.

3.3.1 Model

The particles interact via the Hard Core Yukawa (HCY) pair potential u;;(r). The inter-
action between like particles is the same (u1; = ugg), while unlike particles have a weaker
energy of interaction ujo(r) = duy;(r), with § < 1. The HCY potential has been adopted in
several studies of the symmetric mixtures based on the Self-Consistent Ornstein Zernicke
Approximation (SCOZA) [Scholl-Paschinger and Kahl, 2003], MSA [Kéfinger et al., 2006]
or HRT [Pini et al., 2003]. The particles are additive hard spheres and their attractive tail

is given by an attractive Yukawa potential:

Ui \T) = .
—Eijdijeiz(r/dijil)/T ifr > dij

The parameters ¢;; and z, define the energy scale and the range of the interactions re-

spectively. The inverse range of the interaction has been fixed to z=1.8 for both like and
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unlike species. This value of the screening length has been used by the authors in the
aformentionned studies on HCY symmetric binary mixtures [Scholl-Paschinger and Kahl,
2003; Pini et al., 2003; Kofinger et al., 2006]. Indeed, it has been shown that HCY potential
provides a reasonable description of simple fluid for z = 1.8, as well as colloidal suspen-
sions, where typically z > 1. The symmetric binary mixture is composed of particles that
have the same size di; = dos = dip = d = 1. In a second step, mixtures of particles with
size ratio A = dy/d; different from one will be considered. In that case dyj; = d = 1 is kept

fixed while the size of the second component is increased (dsg > d and dis = 1/2(d + da2)).

3.3.2 Phase behaviour at x = 1/2

The phase diagram of symmetric binary mixtures has been first studied focusing on the par-
ticular plane of equal species concentration (x=1/2) [Wilding et al., 1998; Scholl-Paschinger
and Kahl, 2003]. In this simplified case, when the parameter ¢ varies from 0 to 1, three
different topologies of phase diagrams, arising from the competition between gas and mixed-
fluid (G-MF) transition and demixing transition, have been observed and classified. The
mean field phase diagram at equal species concentration presents both a first-order coex-
istence boundary between a low density fluid and a high density one, and the so called A
line of mixing demixing critical points: when crossing the A line, the fluid demixes into
two phases of same density but with concentrations 7 and 1 — x. Depending on the loci
where the A line crosses the G-MF transition, three types of phase diagrams have been
defined (archetypes I,IT and III) [Wilding et al., 1998; Scholl-Paschinger and Kahl, 2003;
Pini et al., 2003]. This classification is based on the projection of the phase diagram on
the x = 1/2 plane. The calculation of the phase diagram on the whole x — p plane reveals
the presence of two subtypes for the archetype II of phase diagrams [Kofinger et al., 20006]

as it will be shown.
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We will present now the phase diagrams of symmetric binary mixtures we obtained
from perturbation theory: we start with the description of the three different topologies of
symmetric phase diagrams based on their projection on the z = 1/2 plane. These diagrams

are presented in Fig. 3.2.

Type | at x=1/2

The first topology corresponds to high values of § (6; < § < 1 with ¢; = 0.708 within mean
field) and is depicted in the upper left panel of Fig. 3.2 for 6 = 0.8 : at low temperature
(T} on the figure) a gas at x = 0.5 coexists with two demixed fluids of same density but
opposite relative composition (Z and 1 — 7). Indeed, when crossing the A line, the system
separates into a component 1-rich phase and a component 2-rich phase. The coexistence
between a gas and a mixed fluid (that we will call now on a liquid-vapor LV coexistence) is
also present, but metastable with respect to the previous one. At higher temperature (75)
the gas and the homogeneous fluid (z = 0.5) coexist and their coexistence curve ends into
a liquid-vapor critical point (C'P). The X line intersects the L-V coexistence curve well
below the L-V critical point at Togp, in what appears to be a critical end point (CEP),
i.e a point where a critical liquid coexists with a non critical gas. The presence of a CEP
has been obtained by different authors within MF and SCOZA calculations [Pini et al.,
2003; Scholl-Paschinger and Kahl, 2003]. However, the determination of the critical lines
on the whole p — x space will asses, as we will show in the next sections, that this is not
a critical end point, in agreement with HRT and modified hypernetted chain (MHNC)
calculations [Pini et al., 2003; Antonevych et al., 2002].

Type lll at x=1/2

By decreasing ¢, the propension of the mixture to demix is enhanced, and the L-V co-

existence curve moves to lower temperature. At small § (0 < § < d9, with d2 = 0.605
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Figure 3.2: PT phase diagram of the symmetric binary mizture at x = 0.5 representing the pos-

sible topologies of phase diagrams (I II-a, II-3 and III for § = 0.8,0.65,0.7 and 0.5 respectively).

Beyond the \-line, the fluid demizes in two phases of same density but with concentrations T

and 1 — T. Depending on ¢, critical points (CP), critical end points (CEP), tricritical points

(I'CP) and triple points (T'P) can occur. The tendency for the solution to demix is enhanced

when lowering 0.

within MF) the point at which the coexistence curve intersect the A line coincides with

its critical point. Critical point means here: the locus where the homogeneous low density
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gas become critical. This point is called tricritical point (T’C'P): on approaching it from
low temperature, the simultaneous coalescence of three phases is observed, namely a low
density and homogeneous gas and two demixed high density fluids. There is now no first
order L-V transition between the gas and the mixed fluid (the corresponding coexistence
curve being metastable) and also no L-V critical point. This topology of phase diagram is

shown in the lower right panel of Fig. 3.2 for 6 = 0.5.

Type ll-o and -5 at x=1/2

Intermediate topology (type II) is found in a narrow interval (d; < § < d1). An example
is presented in the upper right panel of Fig. 3.2 (subtype II-5 with § = 0.7). At low
temperature, T}, an homogeneous gas coexists with two demixed fluids, as in archetype I.
The X line intersects the L-V coexistence just below the critical point of the L-V transition,
which is also present as in type 1. At Trp, we observe the occurrence of a triple point where
a gas, a mixed liquid at intermediate density and a 1-rich and a 2-rich liquid at high density
coexist. By increasing the temperature up to Trcp, the homogeneous liquid and the two
demixed fluid become critical at the same tricritical point (as in type III). A second subtype
(I1-cv) is also found for slightly lower ¢ and the phase diagram is drawn on the lower left
panel of Fig. 3.2 (6 = 0.65). Except for the relative location of the T'C'P with respect to
the C'P, the distinction between the II-av and II-3 subtypes is not possible from the x=1/2
cuts, but the difference will become clear when considering the phase diagram on the entire
x — p space and the connection between the different critical lines, as we will see in the

next sections.

Accuracy of PT for the symmetric binary mixture

Before moving to the determination of the phase diagram on the whole x — p plane we will

test the accuracy of PT in predicting the critical loci of the symmetric binary mixture.
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Figure 3.3: Projection of the critical lines in the p — x plane (upper panel) and x — T plane
(lower panel) for 6 = 0.5 as obtained from perturbation theory, HRT and MF calculations. The
PT critical lines lay in between MF and the more accurate HRT results in both projections. The
stability indicator « is also drawn on the PT critical line (0 < |a| < 7/2). For a = 0, fluctuations
in concentration x are driving the phase separation and demizing is found, as observed at x=1/2.
When |a| = 7/2, the system becomes critical because of density fluctuations and L-V transition

occurs, as found in the one component limits (x =0 and z =1).
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Fig. 3.3 shows the projections of the HRT, MF and PT critical lines on both the p —z and
the x — T planes for type III phase diagram (6 = 0.5). This value of § is small enough to
give the same topologies of the critical lines in H RT, mean-field theory and also PT. The
PT critical lines are found to fall in between the results of HRT and M F'. For the pure
species, it is known, from the comparison with accurate simulation data for the critical
point of the Yukawa fluid with the same z = 1.8 inverse range considered here [Pini et al.,
1998b], that PT underestimates by about 10% the critical density and overestimates by
about 5% the critical temperature. It has been shown that HRT provides a very good
determination of the critical point for Lennard-Jones like fluids [Parola and Reatto, 1995]
and we found for the critical loci of the binary system the same differences between PT
and the accurate H RT, as for the pure fluid case. The relative long range of the attraction
(z=1.8) is responsible, at least in part, for this accuracy: it is well known that the error
within PT on the location of the critical density for one component systems become smaller
and smaller when the range of the potential increases [Vega et al., 1992]. But our results
provide an evident improvement with respect to others mean field theories and PT is

certainly a valuable method to study the phase behaviour of binary mixtures.

The stability indicator «, defined in Fig. 3.1, which indicates the kind of fluctuations
that are driving the phase separation process is also drawn on the critical line in Fig. 3.3.
For the pure one component solutions, fluctuations in density (|a| = /2, red) are lead-
ing to L — V phase separation, while at x = 1/2, along the A-line, pure fluctuations in
concentration (a = 0, blue) are responsible for the demixing of the solution. The value of
«, which gives the direction of the order parameter of the transition, will be drawn also
in the next figures on the different critical lines, using the same definition for the colours

associated with the possible values of a as presented in Fig. 3.3..
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3.3.3 Phase behaviour in the = — p plane

We will describe now the phase behaviour of symmetric binary mixtures on the whole x —p
plane. The critical lines and the phase behaviour of the different type of phase diagrams
that were defined in the preceding section will be determined. We start the investigation
by a careful study of subtype II, thus focusing on the set of interparticle strength for which
the phase diagram at equal concentration exhibits both a liquid-vapor critical point and
a tricritical point. MSA results for this topology of phase diagrams showed two possible
subtypes [Kofinger et al., 2006]. Following the definitions introduced by these authors, we
present now a detailed study of subtype II-3. The other phase diagrams will be then also

presented, but more briefly.

Phase diagram of type lI-5

The phase diagram of type II-5 is depicted in Fig. 3.4. Four critical lines C'L; can be
distinguished. Each critical line spans along a well defined coexistence surface S;. C'L; is
the A line, the critical line of the symmetrical demixing surface S; present at high density.
At the tricritical point, C'L; bifurcates and gives raise to two critical lines, C'Ly and C'Ls,
that cross the surfaces Sy and S5 (composed of the green small dots). These critical lines
terminate in critical end points (CEP) when reaching the fourth coexistence surface Sy
which spans along the whole concentration range. CL4, the critical line related to Sy,
connects the pure component liquid-vapor critical points and is totally disconnected from
the A line. Some other aspects of the phase behaviour of the subtype II-5 (cuts of the
spinodal surface at different temperature and the stability indicator on the critical line)
are also depicted in the upper right panel of Fig. 3.5.

The critical lines presented on Fig. 3.4 were obtained solving eq. 3.34 on the instability

surface. Using this efficient method to compute the critical lines, we found two peculiar
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Figure 3.4: Projection of the PT phase diagram of the § = 0.7 symmetric binary mizture onto
the x — p plane. The critical lines (CL;) are drawn in red and the 4 coexistence surfaces (S;) are
represented schematically in light blue dashed lines. In order to obtain the coexistence surface, we
calculated coezisting states (two or three phases can coexist). Some tie lines joining the coezisting
phases are drawn (dash thin lines). The green dots (and green line) are coexisting phases that
join at CLy and CLs, and the critical end points (CEP) of CLy and CLs are also drawn (blue
squares). The dashed red line is the mixing-demizing X\ line (C'Ly). The dashed lines (Ly and Ls)
are solution of Eq. 3.34 but located below the coexistence surface. The large red dots represent the

triple line.
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critical loops at intermediate concentration and density, made of C'Ly, C'L3 and of two low
density branches (Ls and L3). In a second step, the coexistence surfaces were determined
and, from the extrapolation of the coexistence points, we verify the location of the critical
lines previously calculated. In this way, we found that C'Ly and C'Ls ends in CEP, while
Lo and L3 are located below the coexistence surface S; and, thus, are metastable. It
is still not clear to us why Ly and L3 appear like critical lines, but we note a very good
correspondence between these lines and the location in the x — p plane of two triple lines in
MSA calculations [Kofinger et al., 2006]. These triple lines were defined by the intersection
of coexisting surfaces (in this case where Sy intersect S, and S3). The triple lines are not
critical lines, but they are located on the binodal surface. A possible explanation could be
that the condition of tangency of the tie lines to the unstable region, which is explicited in
Eq. 3.34, is fullfilled at the intersection of two coexistence regions when, in addition, the
instability surface is located very close in temperature to the binodal surface, as it is the

case here.

Phase behaviour of the remaining type (ll-o, | and Ill)

A second subtype of phase diagram II has been also defined and is depicted in the lower left
panel of Fig. 3.5 for 6 = 0.65: for this subtype II-«, the A line bifurcates at the tricritical
point into two critical lines which pass through minima and connect to the liquid-vapor
critical points of the pure phases. This, indeed, is in contrast with subtype 8 where C'Ly,
the critical line arising from the pure component critical points, is totally disconnected
from the A line, and it leads to the distinction between the two subtypes. Within PT the
transition between the two topologies is found around 6 = 0.6694.

A peculiar solution for the loci of critical points is obtained for subtype « as well. In
that case, a loop of points, solution of Eq. 3.34, is found around x = 0.5, but, from the

analysis of the coexistence points, only the lower part corresponds to a critical line, in
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Figure 3.5: The four different archetypes of phase diagrams for the symmetric binary mixture
are depicted (6 = 0.8,0.7,0.65,0.5). The projection of the critical lines onto the x — p plane and
cuts of the instability surface for different temperatures (0.8 to 1.24 by steps of 0.02) are shown.
The transition between the two subtypes of topology II (6 = 0.70 and § = 0.65) is found around
0 = 0.6694. The critical end points are represented by small squares. The value of the stability

indicator o on the critical lines is also shown (according to the scale introduced on Fig. 3.3).
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agreement with the MSA study [Kofinger et al., 2006]. Thus, the determination of the
spinodal and the critical loci from Eq. 3.34 is certainly a very efficient tool to map the
topology of the phase diagram but it should be complemented by the computationally
more involved determination of the coexisting points. The necessity of computing also the
set of coexisting points and tie lines will become crucial when dealing with more complex
binary mixtures. We will show that for the o~y crystallin mixture a slight change in the
mutual attraction between the two components lead to a completely different composition
of the coexisting phase, while the spinodal instability and even the coexistence surface
have almost the same shape. Thus, if the location of the instability boundary (a high/low
temperature) depends strongly on the mutual attraction, the composition of the coexisting

phases will be even more sensible to uq..

Phase behaviours corresponding to the remaining topologies (type I and III) are also de-
picted in Fig. 3.5. Interestingly, from the calculations of the critical lines for the § = 0.8
case, it appears that the A-line does not end in a CEP at x=1/2, contrary to what the
analysis at x = 1/2 tends to show. The mixture is still in the intermediate regime (II-3),
with the occurrence of a tricritical point and the presence of very tiny coexistence surfaces
(S2 and S3) and their connected critical lines. We do not observed the clear occurrence of
a CEP at x=1/2 up to 0 = 0.9, the central loops made of C'Ls, Ly and CL3,L3 becoming
just narrower. These results are in qualitative agreement with studies based on HRT and
MHNC which did not find the presence of critical end point at equimolar species up to at
least 0 = 0.8 [Pini et al., 2003; Antonevych et al., 2002]. For higher §, the intermediate
coexistence surfaces become so small that their presence is very difficult to assess. Instead,
simulations performed on square well potentials found the CEP characteristic of topology
I already at around § = 0.7 [Wilding et al., 1998]. Thus, the specific interaction used in

the model might play a role on the phase behaviour of the symmetric mixture, at least
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when sophisticated liquid state theories like HRT are considered.

The important conclusion we can draw at this point, is that the phase diagrams of the
binary symmetric mixtures are well reproduced by perturbation theory and we can rely
on it to investigate the phase diagrams of more realistic mixtures, as it will be done in
the next chapter for the a-vy protein mixture. The space of parameters of binary mixtures
is extremely wide and a systematic investigation is certainly not within the scope of this
thesis. Nevertheless we have discussed the qualitative and quantitative predictive power of
PT and demonstrated that this method provides a clear improvement with respect to stan-
dard M F approaches. Our final goal is to describe the phase behaviours of a few specific
mixtures of simple interacting components, in the framework of the mixtures derived for
the a and v crystallin proteins. One particularity of this system is certainly the important
asymmetry between the diameter of the two components. As a first step in this direction,
we will study the effect, on the phase diagram, of introducing an asymmetry A = dy/d;

into the binary mixtures.

3.3.4 Asymmetric binary mixtures with d; # d,

In this section, we present an overview of the phase behaviour of the different phase diagram
topologies presented above when introducing a slight asymmetry in the diameter of the
two components. The spinodal instability and the critical lines are determined for the
different mixtures and give a first insight into their phase diagram. This study should be
complemented by a more careful determination of the coexistence surfaces which will also
asses the location of the true critical lines and critical end points. The goal is here to test

our numerical approach towards non symmetric mixtures.

We consider the same HCY interaction between the two components (3.35) as for the
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symmetric case. The inverse screening length is kept fixed (z = 1.8) and we only increase
the diameter of the second component d,. In this way, the effective range of interaction
between the components of kind 2 is reduced, and the critical point of the pure mixture
of component 2 should move correspondingly to lower 7" and higher ¢ when increasing A.
However, for the HCY with z = 1.8 the change in the range of the second component is
almost negligible: for the highest ratio A = 1.25 considered in this study, the location of
the critical point changes by less than 0.2% with respect to A = 1. Thus, changes to the
phase behaviour of the binary mixtures observed when increasing A are caused essentially

by the size asymmetry and not by the change in the interactions between the components.

Phase behaviour of type Il-o

For subtype Il-a, two interesting features appear when A increases and the symmetry
with respect to z = 1/2 is broken (Fig. 3.6). First, the A line of the demixing transition is
connected to the liquid vapor critical point of the pure solution of the smallest component
only, as soon as d; # ds, forming a single critical line denoted by C'Ls on the panels with
A # 1. The critical line C'L3 of the second and bigger component ends in a critical end
point at intermediate density and composition, near the locus where the A line bifurcates
into C'Ly, and CL3 at A = 1. The determination of the exact location of this end point
would require the computation of the coexistence points (for the reasons explained above).
Second, as dy increases further, the critical line C'L3 arising from the critical point of the
pure large component mixture extends towards lower densities and, at around A = 1.15,
detached from its intermediate density branch (C'Lsg) to join the critical line that comes
from the liquid vapor critical point at x = 1/2 and that was already present in the case
of the symmetric mixture. This gives raise to a new critical line C'L34 as shown on the
lower left panel. The small coexistence surface around C'Lsp is present at A = 1.15 but

will disappear at larger asymmetry.
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Figure 3.6: Phase behaviour of type Il-a phase diagram (6 = 0.65) of the symmetric mixture
for different A = dg/dy ratios. The projection of the critical lines onto the x — p plane and cuts
of the instability surface for different temperatures (0.8 to 1.24 by steps of 0.02) are shown for
A =1,1.03,1.1,1.15 as indicated on the panels. The A-line of the demizing transition is connected
to the LV critical point of the pure small component solution (x = 1) for A > 1. The squares are

estimates of the critical end points CEP locations.
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Figure 3.7: Phase behaviour of archetype II-3 phase diagram (6 = 0.7) of the symmetric mizture
for different A = dg/dy ratios. The projection of the critical lines onto the x — p plane and cuts
of the instability surface for different temperatures (0.8 to 1.24 by steps of 0.02) are shown for
A =1,1.03,1.2,1.25 as indicated on the panels. The squares show the critical end points (CEP).

For A = 1.25 the X\ line connects the LV critical point of the pure small component solution

(x=1).
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Phase behaviour of type II-5

The phase behaviours for subtype II-4 are depicted in Fig. 3.7. For A # 1, the A line
detaches from the critical line C'L3 that crosses the coexistence surface S3 for the symmetric
mixture (as defined on Fig. 3.4) and connects to C'Ly only. This critical line, called now on
C'L,, expands when increasing A towards lower densities and larger x (i.e. towards the pure
mixture of small components), coming closer and closer to C'Ly which, in turn, exhibits a
strong bending (see the kink around (z, p) = (0.8,0.3) in the A = 1.20 panel). Moreover,
the detached C'L3 has now two critical end points. At A = 1.25, the critical point of the
pure small component mixture finally connects to C'Ly and C'Ly expands finally from the
former A line present at A = 0 to the pure mixture of component 1, as it is found in the
a subtype for A > 1. The critical line C'Ls is still present but will disappear for larger A.

The phase behaviours for 6 = 0.8 are presented in the upper panels of Fig. 3.8. We
observe qualitatively the same phase behaviour as for type 11I-3, as expected from the study

of the symmetric mixture.

Phase behaviour of type lll

The phase behaviour of type III is less rich and interesting than the previous ones (see
lower panels of Fig. 3.8). The critical point of the pure solution of large particles is totally
disconnected from the A line as soon as A > 0 and a critical end point is present. The A
line connects to the LV critical points of the pure solution of small components (C'Ly on

the lower left panel).

In conclusion, we observed that for sufficiently large asymmetry (the value of A required
depends on §) the A-line always connects the critical point of the smallest component

pure mixture and never the critical line of the large component. Because of the attrac-
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Figure 3.8: Phase behaviour of archetype III (e;; = 0.5) is depicted in the lower panels for A =
1,1.15 (left and right respectively). The e;; = 0.8 case is shown in the upper panels (A =1,1.25,
left and right respectively). The projection of the critical lines onto the x — p plane and cuts of
the instability surface for different temperatures (0.6 to 1.6 by step of 0.03 for €12 = 0.8 and 0.88
to 1.24 by steps of 0.02 for type I11) are drawn.

tive interaction between the particles, the system is expected to undergo a liquid-vapor

transition for suitable x, p and T'. This happens already in the symmetric case at low or
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high concentration x, where one of the components do not influence the L-V transition
of the other species. Moreover, since €;; < €;, the internal energy will tend to promote
demixing between the two components. At sufficiently high density, the loss of entropy
induced by demixing might be overcome by the increase in the internal energy. In that
case, the system undergoes a mixing-demixing transition, as we observed in all symmetric
mixtures investigated. In the case of A # 1, the propension for the mixture to demix while
increasing the concentration of the largest component becomes stronger and stronger with
increasing asymmetry, for all values of €;5. From the same argument we just mentionned,
it is clear that when dy > d; and €15 < €, the loss in internal energy when adding some
components-2 to a solution of components-1 is more important than for the equal size case,
since more energetically favorable 1—1 contacts are lost. Thus, the tendency of the mixture
to demix is enhanced and the corresponding critical line moves to higher concentrations
and lower densities. Oppositely, the mixing-demixing transition is less favored in a solution
made principally of the large components (at small x) when adding small components. The
situation might change for large A (A ~ 5), when depletion induced interactions between

the largest components might also appear [Biben and Hansen, 1991; Louis, 2001].

3.4 Conclusions

In this chapter we used thermodynamic perturbation theory to study the phase behaviour
of symmetric binary mixture interacting via a hard core Yukawa potential. We showed
that PT is not only suited for describing the phase diagram of one component system but
it accounts also well for the phase diagram of binary mixtures. The main topologies of
the symmetric binary mixtures phase diagram were correctly reproduced within PT', in
agreement with advanced liquid state theories, like HRT. We discussed also the qualita-

tive and predictive capacity of PT and demonstrated that this method provides a clear
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improvement with respect to standard mean field approaches.

As a first step towards the asymmetric a-y mixture of crystallin proteins (d, = 4.53d,) we
showed in the last part of the chapter that perturbation theory can be straightforwardly
extended to mixtures that are not symmetric in size. Interestingly, when the energy of
interaction between unlike particles is weaker than the interaction between like particles
(6 < 1), the propension for a solution of two components to demix becomes stronger when

the asymmetry A = d;/dsy increases.



CHAPTER 4

Phase behaviour of the binary a-v mixture of eye lens proteins

Summary

In this chapter we will apply perturbation theory and all the formalism presented in Chap-
ter 3 to study the phase behaviour of the colloidal model of eye lens proteins derived in
Chapter 2. The statistical-thermodynamic perturbation theory for a-y mixtures is devised
based on the coarse-grained model developed by comparison of molecular dynamics with
experiment. The instability boundaries appear very sensitive to the strength of the attrac-
tion between the two proteins: in the case of either weak or strong attractions, these eye
lens mixtures are thermodynamically unstable at much higher temperatures. Interestingly,
attraction strengths that correspond closely to those of proteins isolated from the living
lens fall right within the stable region of the phase diagram. This non-monotonic stabil-

ity suggests new molecular mechanisms for eye lens opacification in cataract. Moreover,
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the determination of the tie lines shows that a decrease in the u,, attraction between the
crystallins is certainly the most probable mechanism which could destabilize the binary
mixture and lead to the phase separation of a-y crystallin mixtures. The resulting demix-
ing of the binary mixture would produce dense and almost pure phases of vs. Since there
are considerable evidences that in certain forms of cataract the condensed phase is enriched

in ~-crystallins, the phase separation observed here is particularly interesting.

4.1 Introduction

In Chapter 2, we have presented the derivation of a coarse-grained model of aqueous a-
and ~y-crystallin mixtures based on Molecular Dynamics simulations (MD) and Small Angle
Neutron Scattering (SANS) experiments performed at high protein concentrations [Strad-
ner et al., 2007]. We showed that the stability of these high concentration crystallin mix-
tures depends strongly and in a non monotonic manner on u,,: strong or weak attraction
results in a spectacular enhancement of the forward scattering intensity. The fluctuations
of density and/or concentration responsible for such strong forward scattering take place
on length scales comparable to the light wavelength, leading to a loss of the transparency
of these eye lens protein mixtures. These strong fluctuations are usually encountered
when a thermodynamic instability boundary is reached and mixtures start to phase sepa-
rate. We will study now the points where these fluctuations become unbounded, i.e. the
spinodal surfaces. To do so, we will use the perturbative approach described in Chap-
ter 3 and determine first the instability boundary of the binary mixture of crystallins as
a function of the strength of the mutual attraction [Dorsaz et al., 2009b]. The deriva-
tion of statistical-thermodynamic perturbation theory for a-v mixtures will be guided by
the validated coarse-grained model developed by comparison of molecular dynamics with

experiments. In a second step we will determine the binodal surface of the binary a-v
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mixture and the composition of the coexisting phases as a function of ug..

4.2 Spinodal surface

The instability or spinodal surface indicates the temperature T below which the binary
mixture cannot exist as a homogeneous phase. Indeed, when crossing the spinodal, it
becomes thermodynamically more favorable for the system to split in two or more coexisting
phases. The spinodal surface provides an indication of the coexistence surface (the binodal)
since the latter will be located at slightly higher temperature, except for critical lines, where

binodal and spinodal merge.

The scattering intensities can be used as a qualitative estimate of how distant from the
unstable region of the binary mixture the experimental conditions are: the pure v solution
is already highly critical, being just above the critical point. With addition of as, keeping
the temperature constant, the scattering intensity increases first (C,, = 0.12,0.25) but then
fluctuations are suppressed by further addition of as (see Fig. 2.1). Quite consistent with
previous findings [Thurston, 2006], these data suggest that, by increasing the « concentra-
tion, the system first gets closer to the instability boundary and subsequently moves away

from it.

From the simulations it appears, however, that this behaviour depends strongly on
the value of the mutual attraction (see Fig. 2.6). It is important to test whether our
perturbative scheme can reproduce this behaviour. If this is achieved, we will be able to
study the stability of the system in the whole parameter space, something that cannot be

achieved by experiments and MD simulations.



86 PHASE BEHAVIOUR OF THE BINARY «-y MIXTURE OF EYE LENS PROTEINS 4.2

4.2.1 3D spinodal surfaces

We shall present our results in the (¢,-¢,-1") space, where ¢, and ¢, are the partial packing
fractions defined as ¢, = %di px (= a,7) . This is the best way to graphically represent
the spinodal surface due to the strong size asymmetry of the mixture under study. Fig 4.1
shows the spinodal surfaces of three different mixtures corresponding to three values of
the u,, attraction, u,,=0,1,2. In order to compute the instability surface according to
Eq. 3.17, we determined the derivatives of the Helmholtz free energy by finite differences
up to 7 points. To better visualize the shape of the spinodal surfaces, we display in Fig. 4.2

several cuts at constant ¢, of the full diagram of Fig. 4.1.

Let us first consider the spinodal of the pure-y mixture, i.e. a mixture of square well
particles with range A, = 0.25d,. This is represented by the open dots on Fig. 4.1. In this
one component limit, the condition of stability simplifies to (0% f/0v?)r > 0. We determine
also the coexistence curve shown in the upper left panel of Fig. 4.2. We find a critical
packing fraction qﬁSPT = 0.236 and a critical temperature 7777 = 0.895, in agreement with
previous studies which have shown that perturbation theory slightly overestimates 7 and
the corresponding critical density [Scholl-Paschinger et al., 2005; Vega et al., 1992]. As
expected, by gradually increasing ¢, the spinodal surface always develops starting from
the pure-v spinodal curve (¢, = 0), but, as we shall see, its shape will strongly depend on

the value of the attraction between unlike species.

The peculiarity of the spinodal for the purely repulsive (u,, = 0) mixture, presented
in Fig. 4.1, is the strong enhancement of 7% upon increasing, even only slightly, ¢,. When
this happens the stability boundary moves to higher temperatures. In particular, it ap-
pears clearly from the 2D-cuts presented in Fig. 4.2 that the destabilization is much more
pronounced at high ¢.,. This seems to support the idea that, for the repulsive case, the

instability is caused, at least in part, by the depletion interaction that was first encountered
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Figure 4.1: Attraction between o« and v lens crystallins affects the thermodynamic stability of
their concentrated mixtures in a non-monotonic fashion. The red surface shows the highly elevated
spinodal for hard-sphere interactions between o and 7y, while the black and blue surfaces show,
respectively, the suppressed and then re-elevated surfaces for square-well depths 1 and 2 kgT. The
spinodal of the pure ~y-mixture is also drawn (open dots). The lines at the bottom of the figure
indicate ¢, values for the 2d-cuts of the stability boundary surface presented in Fig. 4.2. The
dark squares correspond to the mizing ratios Cy, of the miztures on which the SANS experiments

were performed and the experimental plane (dark rectangle) is also drawn.
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Figure 4.2: 2D-cut at constant ¢, of the instability surfaces for different values of the inter-
action uqy = 0, 1, 2. The values of ¢ are indicated in each panel. The upper left panel shows
the coezistence curve of the one component y-mixture (dots) and the spinodal lines of the three

mixztures are superimposed (dark line).

in asymmetric hard sphere mixtures with size ratios larger than 5:1 [Biben and Hansen,
1991; Louis, 2001]. Depletion is an effective attraction of purely entropic origin between
the larger components in binary mixtures with a strong size asymmetry. In particular,
the strength of the attraction increases with the density of the small components and can
even induce demixing between the two species. This looks very similar to the demixed
configurations observed in the MD simulations in absence of interaction between a and

v crystallins (see Fig. 2.12). However, we will show in the following that the demixing
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is certainly enhanced by the a-v size asymmetry, but more for energetic than entropic
reasons. Moreover, we note that the MCSL equation of state [Mansoori et al., 1971] used
for the reference hard sphere mixture does not predict the coexistence of two fluid phases

for binary hard sphere mixtures, even for size ratio larger than 1:5.

In the derivation of an effective interaction between v and v crystallins consistent with
the SANS data, we tried to stabilize the mixtures against the strong low ¢ fluctuations
observed in the MD simulations when modeling the interaction between the unlike crys-
tallins as only repulsive, by introducing a small u,, attraction. Following the same line of
reasoning as for the MD simulations, we introduce an interspecies attraction u,, with the
same range as for the v crystallins (A,, = 0.25d,). The spinodal of a mixture with u,, =1
is represented in Fig. 4.1. This value of the attraction was found to be the one that most
lowered the location of the stability boundary. The mixture remains stable at temperatures
equivalent to the ones found for the pure v mixture. The behaviour of the spinodal appears
to be quite independent of the concentration of the larger components (see Fig. 4.2). Thus,
the attraction efficiently counterbalances the propensity of the mixture to segregate and

the demixing is reduced.

On further increasing the attraction, the spinodal surface moves again to higher tem-
peratures but in a different way than for the hard sphere case. The occurrence of a very
localized maximum at intermediate values of ¢, and ¢, is observed in Fig. 4.1 for the
instability surface of a mixture with u,, = 2. Interestingly, the mixture is also more crit-
ical than the previous two at low ¢, while no enhancement of the instability at high ¢,
is found (Fig. 4.2). This is not surprising since a strong interspecies attraction induces
mechanical instability. In this case, the system tends to split into regions of very different
density, similar to what is observed for the one component attractive case. At low density
this tendency will be promoted, due to the free space available, while at high density the

mixture is already highly packed and no additional effect will be observed.
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4.2.2 Spinodals on the experimental plane

The SANS experiments have been performed by mixing different amounts of a pure-«

= 0.391) and a pure-y solution (¢, = 0.183). The different mixing ratios

solution (¢ N

a
Cq = 0,0.125,0.25,0.5,1 are thus distributed along a line on the ¢,- ¢, plane. In order
to test the validity of our method, we investigate the instability with more attention to
the cut of the parameter space represented by a plane in Fig. 4.1. As already discussed,
perturbation theory tends to misestimate the location of the critical point. Then, to be
consistent with the fact that the experiments took place near the pure-gamma critical point,
we consider the pure v solution to be at qbgPT = 0.236, i.e. the critical packing fraction

as obtained from the theory, instead of 57. In this way we are sure that the perturbation

model for the pure v-solution is indeed at the critical density.

The instability boundaries on this particular cut of the parameter space are presented
in Fig. 4.3 for different values of the u,, attraction. A specific trend emerges. With no
or low interspecies attraction, the spinodal lines move quickly to high temperature when
increasing the concentration of o’s. This tendency is suppressed for intermediate values of
the attraction and for u,, = 1 the spinodal temperatures of the mixtures are always lower
than T5PT. As expected, the spinodal lines move again to higher temperature for stronger

Interactions.

From these calculations, we notice that with an attraction around u,, = 0.5 the best
description of the experimental behaviour is obtained, i.e. a maximum of 7™ between
C, = 0.125 and 0.25 and a decrease of the spinodal temperature for the C, = 0.5 case,
in very good agreement with the shape of the phase boundaries found previously for a-
v mixtures [Thurston, 2006]. This is also in agreement with the results from the MD
simulations where an attraction u,, = 0.55 gives the best agreement with the experimental

data. With weaker attraction, a maximum of the instability temperature 7™ is obtained
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Figure 4.3: 2D-section of the instability surface on the experimental aa—qbgPT line drawn in
Fig. 4.1. The temperature T™ at which the mixtures become unstable is presented as a function of

the relative mizing ratio Co for values of uq~ ranging from the hard sphere limit up to 2.5.

for C,, = 0.35 and the mixture is still unstable for C, = 0.5. Increasing the interaction
makes the mixture highly unstable for all C,, = 0.125,0.25,0.5 and 7™ is larger than 7777

for mixing ratios much beyond C,, = 0.5.

With this theoretical approach we can extract the spinodal temperature T*. Since
the scattering intensity at low q will diverge approaching the instability boundary, we
report 1™ as a function of the u,, attraction for the different mixing ratios (Fig. 4.4) and
confront it with the results of the MD simulations for the C, = 0.5 mixture, for which

I(g* = 0.0467nm™1') as a function of u,, was plotted in Fig. 2.6. The same non monotonic
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behaviour as in the M D simulations is observed for all three mixtures. Moreover, the
stability region that emerges from the simulations is in good correspondence with the
minimum of 7% with respect to u,,. From what we discussed above, it can be argued that
while perturbation theory gives only a qualitative agreement for the location of the spinodal
temperature and critical densities, it provides the right value of the interspecies attraction

to reproduce the stabilization effect observed in the experiments and the simulations.

Now that the comparisons of the spinodals with the experimental and M D data have
successfully validated the PT approach for the asymmetric a-y mixture, we can recon-
sider the instability boundaries of the three mixtures previously studied (u,, = 0,1 and
2) and look at the point where the MD simulations for C, = 0.5 have been performed.
The spinodals are represented in Fig. 4.5. For intermediate o — ~y attraction strength,
the simulated protein mixture is at temperatures well above the perturbation theory spin-
odal, consistent with the low forward scattering observed in the experiments and the M D
simulations. However, as a consequence of the strong rise in the instability temperature
for the mixtures with either no attraction (u,, = 0) or strong attraction u,, = 2.0, the
simulation conditions turn out to be under the spinodal, within the unstable region[Dorsaz
et al., 2009a]. Thus, with the calculation of the PT spinodals we formally assess that phase
separation is responsible for the strong forward scattering measured in the simulations of
the corresponding mixtures, as supposed in Chapter 2 and that a weak u,, attraction
stabilizes the mixture against phase separation on the whole p-x plane. We note that the
mixture with the lower stability boundary was presented here (u,., >~ 1), but, as we al-
ready shown, the description of the experimental behaviour is reproduced within PT" with
a weaker attraction (un, =~ 0.5).

Our model gives good results for the spinodal of the binary mixtures and opens the
possibility to explore the full phase diagram. In this sense, a special property of the a — ~y

mixture is that their phase separation process involves substantial segregation by protein
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Figure 4.4: Temperature of instability T as a function of the interaction strength u.. for the
mizing ratios Co, = 0.125,0.25,0.5 (dashed line on Fig. 4.3). The stable region obtained from the
MD simulations for the Cy, = 0.5 case and the critical temperature of the pure ~y-mizture (dashed
line) are also drawn. Fig. 2.6 is reproduced in the inset for comparison: the dots are here the

calculated scattering intensities at low q vector (¢* = 0.0467 nm™=") for the C,, = 0.5 mizture.

type, as well as by concentration [Thurston, 2006]. The experimental liquid-liquid phase
separation tie lines indicate the coexistence of dilute phases, rich in a-crystallins, and
dense phases with predominance of y-crystallins. This gives rise to the tilted tie line pairs

reported in Fig. 4.6 and taken from the experiments reported in Ref. [Thurston, 2006].
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oy

Figure 4.5: The spinodal surface changes dramatically as the o — v attraction strength, ua-,

increases. If uay is slightly too low (left) or slightly to high (right), MD simulations (cube) that
are otherwise appropriate for modeling oo — vy miztures ( center) were found to be unstable. This
finding is consistent with the fact that these unstable simulation conditions are indeed under the

perturbation theory spinodals as shown.

Until now we have limited our investigation to the spinodal stability of the mixtures.
The spinodal is always located below the coexistence surface and can give already a valid
indication of the shape of the tie lines. Cuts of the spinodal surface at a temperature
slightly below the critical temperature of the pure-y mixture are presented in Fig. 4.6. The
perturbative spinodal surface with weak attraction seems compatible with the scenario of
these extremely tilted experimental tie lines (see in particular the u,, = 0.5 mixture).
However, despite these encouraging results, the determination of the binodal surface is
necessary to go a step beyond in the comparison of PT calculations with the experimental
cloud point data available. It would be particularly valuable to understand how the 4,

attraction affects the composition of the coexisting phases when the binary a-y mixtures
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Figure 4.6: 2D-Cut of the spinodal surface at T = 0.98T$PT for uqy, = 0,0.5,1,2. The

experimental tie lines pairs (full circles and dashed lines) were taken from [Thurston, 2006].

separate.

4.3 Coexistence surfaces and tie-lines

With the MD simulations presented in Chapter 2, we showed that for too weak or too strong
Uq~ attraction, the mixtures phase separate already at high temperature, well above the
critical temperature of the pure v solution. In the last section, we demonstrated that the
points in the parameter space that resulted unstable from M D are indeed located under the

perturbation theory spinodals: the spinodal surface shifts from high to low temperatures
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depending on u,, in an extremely sensitive way. The cuts of the spinodal surface near
T$PT gave us a first idea of the shape of the binodal (Fig. 4.6) but the composition of the
coexisting phases has still to be determined. The latter is particularly relevant since we
expect the composition to depend strongly on the attraction between as and s, and this
could be compared with the composition of the pathological aggregates found in cataractous

lenses [Lerman et al., 1966; Siezen et al., 1985].

As mentionned in Chapter 3, the conditions of coexistence have to be implemented
afterwards within the perturbative scheme. The convergence of the Newton Raphson
searching method that we use relies on good initial guesses for the coexisting phases,
and, given the large size asymmetry of the o — v crystallin mixture (d, = 4.53d,), the
initial starting point has to be really close to the solutions, especially in the limit of the
pure 7 solution, where the tie-lines connecting coexisting phases can be very tilted for some
values of 14, as soon as ¢, increases. Moreover, the algorithm may fail to converge when
approaching the critical points/lines, due to the flatness of the searching landscape and the
limited numerical accuracy of the free energy and its derivatives . For these reasons, the
set of critical points couldn’t be calculated from Eq. 3.34 and were obtained, for a given

temperature T, by extrapolation of the coexisting points at T.

We will determine now the exact shape of the coexistence surface and the composition
of the coexisting states as a function of u,,. To do so, we will focus on a particular
set of mixtures. In the last sections, looking at the instability temperatures 7™ of the
different experimental mixing ratios C, (Fig. 4.4) we found that the 7% were reduced for
intermediate value of 1., in good agreement with the MD results which showed that the
forward scattering of mixtures with weak u,, attractions is compatible with the forward
scattering of the a-v crystallin mixture. Furthermore, the calculation of the whole spinodal
surface reveals that in a narrow range around u,, = 1, the maximum in 7™ is found at

the critical point of the pure v solution, the instability temperatures of the binary mixture
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Figure 4.7: The stability diagram presented in Fig. 4.4 is reproduced here: the instability
temperature T as a function of the interaction strength uqs~ for the mizing ratios Co = 0.25,0.5
(dashed line on Fig. 4.3) is shown. The stable region obtained from the MD simulations for the
Co = 0.5 case and the critical temperature of the pure y-mixture (dashed line) are also drawn.
We investigate the coexistence surface of four different miztures (denoted A, B, C and D with
Uay = 1.2,1.1,1.0 and 0.85 respectively). These uq~y values fall in the stable region defined by
the PT calculations of the spinodal surface, i.e. their instability boundary is located at very low
temperature. Moreover, the spinodal of miztures A, B and C is almost identical and the mazximum

spinodal temperature is found close to T$PT for all three mixtures.

being always less than TS77.

We will consider now three of these highly stable mixtures labeled by A ;B and C in
Fig. 4.7, which have interaction strengths of u,, = 1.2,1.1 and 1.0 respectively. Their
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spinodals, presented in Fig. 4.8, are very similar and the maximum spinodal temperature
is found close to T’ fPT. This allows also a direct comparison of the cuts of the binodal
surface since a quench performed at a particular temperature T would result at the same
depth inside the instability region for all three mixtures. It will be shown that even if the
difference in wu,, is extremely tiny, their phase behaviour will be totally different. Cuts of
the coexistence surfaces at temperature slightly below T$PT = 0.9 for mixtures A, B and
C are presented on Fig. 4.9. To facilitate the discussion, we define (¢}, ¢!) and (¢}, ¢1')
the composition of phases I and II, where the branch of coexisting states corresponding to
phase I reaches the low density part of the pure 7 spinodal (see Fig. 4.9). In a second step,
the binodal of a fourth mixture, whose attraction is closer to the natural attraction between

the a and 7 crystallins, will also be studied (mixture D with w,, = 0.85 on Fig. 4.7).

Binodal and tie lines of the stable mixtures

As presented on Fig. 4.8, mixtures A B and C have very similar spinodal surfaces. In
Fig. 4.9 cuts of the coexistence surfaces at T' = 0.844 show that the A, B and C binodals
are almost identical as well. So, if for mixtures with larger differences in u,,, we got
a first insight into their different phase behaviour already from the spinodal calculation
(as shown in the last section), for the small range of u,, we are considering now, even the
determination of the binodal is not sufficient to understand what would be the composition
of the three mixtures when they undergo phase separation. In order to show how the
determination of the tie lines joining the different states is now essential to understand the
phase separation process, let us prepare the three mixtures in the same high temperature
and homogeneous state (49, ¢3) = (0.22,0.075), as shown on Fig 4.9. When the A, B and
C mixtures are quenched from this initial state to 7" = 0.844 (into their unstable region),
they separate in totally different ways as illustrated by the corresponding T'L 4, T'Lg and
T L¢ tie lines in Fig. 4.9. The striking result is certainly the opposite tilt of T'L 4 and T'L¢,
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Figure 4.8: Cuts of the spinodal surface for miztures A-B-C defined in Fig. 4.7 (uay = 1.2,1.1
and 1.0 respectively) at different temperatures (T=0.89, 0.87, 0.85, 0.82, 0.8). The 3D plot of
the spinodals is also presented in the last panel. Closed to T,YCPT = 0.9 the A-B-C spinodals are
very similar and the maximum instability temperature is located close to the critical point of the

pure v solution for all miztures.
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Figure 4.9: Cut of the coezistence surface at T = 0.844 (slightly below T$PT = 0.9) for
miztures A-B-C defined in Fig. 4.7. The tie lines (TLs,TLp and T L¢) obtained quenching the
three miztures from the same initial state (qﬁg, #°) are shown. For mizture A, high density mized
phases (phase II) coexist with low density mized phases (phase I). For uqa, = 1.1 the tie lines are
almost parallel to the ¢., axis. By decreasing ua~ slightly more (mizture C) tie lines with opposite
tilts with respect to mizture A are found: almost pure and dense v (II) coexist with mized oy

phases of lower density (I). While the phase separation process of the three miztures is totally

different, the cuts of the coexistence surface are almost indistinguishable.

while the tie line of mixture B is almost parallel to the ¢, axis. We discuss now in more
details these tie lines and the underlying phase separation process that takes place in the
different mixtures. To better visualize the composition of the different coexisting states,

we also draw the snapshots corresponding to the different phases for each mixture.
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Figure 4.10: Cut of the coezistence surface at T = 0.844 (slightly below T$PT = 0.9) for mizture
A defined in Fig. 4.7. High density mized phases (phase II) coexist with low density mized phases
(phase I). The composition of phases I and II for tie line T'L 4 is represented in the snapshots.

Both as and s are present in the two phases.
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Mixture A (u,, = 1.2)

The cut at T' = 0.844 of mixture A binodal is presented in Fig. 4.10. As soon as ¢! raises,
the packing fraction of the large o component in phase I (¢X!) increases strongly. Thus,
dense mixed phases (of kind II) are in equilibrium with low density mixed phases (of kind
I), as illustrated with the snapshots of phases I and II for tie line T'L4. In this case, both
components are present in phases I and II, with the packing fraction of a crystallins larger
in the high density phase than in phase I. The phase separation process involves mainly
fluctuations in the total density p of the mixture, i.e in both p, and p,. This corresponds
to a condensation-like phase separation.

To complement the study of mixture A, other cuts of the binodal surface are also
reproduced in Fig. 4.11. By extrapolation of the coexisting points, the location of the
critical point for each temperature T is calculated (square on the figure). This forms a line
of critical points which moves towards lower ¢, and higher ¢, when lowering T. The tilt
of the tie lines becomes also more pronounced (i.e. leading to a larger difference between
the density of phases I and II) at lower temperature or, when increasing further w,,. We
found also that for larger ., the line of critical points exhibit a maximum in temperature
and the location of this maximum moves towards lower ¢, and higher ¢, with increasing
Uqy, i agreement with the calculation of the spinodal surface for strong u,. attractions,

as presented in the previous section.

Mixture B (u,, = 1.1)

Mixture B has a slightly lower attraction than case A but the small difference in w4, is
sufficient to change completely the phase separation. Indeed, the important tilt of the tie
lines found for mixture A totally disappears, as shown on Fig. 4.12: the packing fraction

of as in the high density and in the low density phase is almost the same (¢% ~ ¢I). This
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Figure 4.11: The phase behaviour of mizture A defined in Fig. 4.7 is shown. The cuts of the
coexistence surface have been performed at temperatures slightly below T$PT = 0.9. The full circles
represent the cuts of the binodal surface at T = 0.82,0.83,0.84,0.86, and the corresponding cut of
the spinodal are also drawn (small dots). Some tie lines (dashed lines) connecting coexisting states
are shown. For each temperature cut, the critical point (square) is determined by extrapolation of
the coexisting points and their intersection with the spinodal. This forms a line of critical points

that moves towards higher ¢, and lower ¢., when the temperature is reduced.

means that the tie lines are almost parallel to the ¢, axis. The snapshots corresponding to

tie line T'Lg are also depicted in Fig. 4.12. With respect to the composition of T'L 4, the
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two coexisting phases of T'Lp have almost the same ¢, while ¢! is slightly smaller than
the corresponding ¢, of the pure v solution for the same temperature (T=0.844). This
means that a condensation with an equal amount of as crystallins in the high and in the
low density phases takes place. Thinking in terms of a quench of the binary mixture from
high temperature, the packing fraction of as in the two low T phases is the same as the
initial ¢,. Thus, for mixture B, the as act almost as spectators of the phase separation of
the s and the transition is driven by fluctuations in the density of the s only, as for the
pure v solution. The presence of the as just lower qby .

It is particularly instructive that the thermodynamically most stable binary mixture
for our colloidal model of crystallin proteins (see cuts of the spinodal in Fig. 4.8) is the one
whose phase separation process involves solely one of the components (the ), while the
mutual attraction is such that the second component (the a)) do not influence at all the
transition. Within our approach, the strength of the attraction between ~s is fixed and the
phase separation due to .. will always take place. The presence of the second component
can only raise the instability temperature. With a mutual attraction of u,, = 1.1 the
binary mixture can be stabilized up to the v phase separation limit and mixture B is the

most stable mixture that can be obtained, given the size ratio of the two components.

Mixture C (u,, = 1.0)

Weaker attraction results in a clearly demixed situation as illustrated in Fig. 4.13 for tie
line TL¢ of mixture C: almost pure v phases (¢! ~ 0) coexist with mixed phases that
are very rich in as. The difference in the composition of the two coexisting phases, with
respect to the former mixtures, is clear on the snapshots that are also drawn on Fig. 4.13.
The cut of the binodal surface is here at a temperature just below T$PT. This demixing
situation is even more pronounced if the mixture is quenched to lower temperature, or for

mixtures with smaller u..
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Figure 4.12: Cut of the coexistence surface at T = 0.844 (slightly below TSPT = 0.9) for mizture
B defined in Fig. 4.7. The tie lines are almost parallel to the ¢~ axis. The snapshots representing
the two coexisting phases of T'Lp are drawn. Both components are present in the two phases and

I~ ¢ Fluctuations in p~ only are responsible for the phase transition.
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Figure 4.13: Cut of the coezistence surface at T = 0.844 (slightly below T$PT = 0.9) for mixture
C defined in Fig. 4.7. Tie lines with opposite tilts with respect to mixture A are found: almost
pure and dense v (type I1I) coexist with mized -y phases of lower density (type I). The snapshots

representing the two coexisting phases of T Lo are drawn.
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Figure 4.14: Cuts of the coexistence surface of mixture D at temperatures T=0.82, 0.88, 0.89
and 0.91 are presented (circles) with the corresponding spinodal (full and dotted lines) and some
of the tie lines (dashed lines). The spinodals for higher T (up to T=0.93) are also shown
(dashed lines). The experimental tie lines pairs (full diamonds and dashed lines) were taken
from [Thurston, 2006]. Estimations of the critical points (squares) are shown as well. The criti-

cal points are shifting towards higher ¢, and ¢ with increasing temperature.

Mixture D (u,, = 0.85)

The value of u,, we derived by comparison of the MD simulations with the SANS was

at the lower boundary of the stable region and, thus, the natural a-v crystallin mixture
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which is by definition stable has an instability boundary that is located on average at
higher temperatures with respect to the A, B and C mixtures. This is also in agreement
with the cloud point determination which shows an important rise of the instability tem-
perature when moving in the phase diagram towards high packing fractions of both «
and s [Thurston, 2006]. Thus, to make a step further towards the natural a-v crystallin
binodal, the coexistence surface of a fourth mixture with weaker u,, attraction (mixture
D with u,, = 0.85 defined in Fig. 4.7) was also determined. Mixture D falls indeed in
the stable region, as the previous one, but its spinodal rises to higher temperatures when
entering the phase diagram away from the pure 7 solution and the mixture separates at
temperatures above TfPT = 0.9 as well. Cuts of the binodal surface at temperatures be-
low and above T$PT are presented in Fig. 4.14 with some tie lines and the corresponding
spinodals. The experimental tie lines taken from [Thurston, 2006] are also drawn in the

last panel.

For temperatures below TSP7 (see T = 0.82 in the first and 7' = 0.88 in the second
panel) the propensity to demix is strong: the shape of the binodal is also different with re-
spect to mixture C since phase II expands towards higher gbg and ¢!! is about 0. At higher
temperature, ¢L! is slightly bigger, but the tie lines remain highly tilted. We note that,
in the limit of no attraction between unlike proteins, coexistence of almost pure phases
(¢f] ~ 0 and ¢! =~ 0) is also obtained for temperatures above T.°P* (consistent with the
spinodal for u, = 0 presented in Fig. 4.1). For mixture D, the calculation of coexisting
points above TfPT in the close vicinity of the line of critical points was not possible, but
from the few points calculated and the shape of the spinodal, we found that the line of
critical points expands from the critical point of the < solution to higher ¢, and T', as

shown by the squares on Fig. 4.14.

The study of the symmetric and asymmetric mixtures in Chapter 3 gave us some interest-
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ing clues to understand the demixing situation that we observed for u,, < 1.1: since the
interaction between unlike particles is weaker than that between 7s (even zero in the hard
sphere limit), the internal energy will tend to promote demixing between the two species.
The gain in internal energy is expected to overcome easily the loss in entropy implied by
the demixing, especially at high density. Thus, quenching the mixture at a given ¢, will
result in a strong (respectively weak) demixing at high (respectively low) ¢,. The demixed
situation that we hypothesized looking at the snapshot of the MD simulations for weak
attraction (upper right panel of 2.12) is thus confirmed.

Moreover, according to the same intuitive arguments we just mentioned, demixing is
clearly enhanced by the large size asymmetry between the two crystallins and, for a given
(weak) attraction, the instability boundary will be located at higher temperature when
the size asymmetry increases. Thus, the sensitivity of the thermodynamic stability of a~y
binary mixture to their mutual attraction is also a consequence of their important size
asymmetry and we expect binary mixtures of v and ( crystallins, that might be studied in
the future, to be less sensitive to their mutual interaction since d, < dg < d,. However, the
size asymmetry contributes to the demixing situation for reasons that are more energetic
than entropic: depletion induced interaction between the o might be present in the binary
mixture of crystallins (or when the system is simulated) and, thus, might contribute to
the demixing, but it is primarily the difference between u,, and u,, that is responsible for
the demixing. This appears already in our investigation of the symmetric and asymmetric
binary mixtures in Chapter 3. And indeed, by changing the size of the as, keeping uq, = 0,
we found spinodals consistent with a very strong demixing even for d, = d,.

The determination of the tie lines from perturbation theory gave interesting insights
when combined with the experimental tie-lines of mixture of a-vy crystallins. The a-y mix-
ture phase separation was found to involve substantial segregation by protein type [Thurston,

2006] as shown by the important tilt of the tie lines on Fig. 4.14. The same behaviour
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is obtained within perturbation theory when lowering u,, slightly below 1.1 (the value of
the attraction for which the binary mixture is the most stable). From a thermodynamic
point of view, a little increase in the attraction between the two crystallins would stabilize
even more the mixtures against demixing. This means that the natural a-y attraction is
located at the boundary of the stable region and the unstable region towards demixing.
Even if the phase diagram of the natural a-v crystallin mixture is dominated by demixing
(as we found from the comparison of the experimental and the PT tie lines), the weak -
attraction is strong enough to keep the instability boundary to low temperatures. Thus,
the stability picture obtained from MD simulations and summarized in Fig. 2.6 is now

formally derived from the coexistence behaviour on the whole parameter space.

A decrease in the binding affinity of vs and as with ageing is the scenario that involves
the smallest energy change in the attraction between the crystallins and could produce
sufficient inhomogeneities to lead to the opacification of the lens. Moreover, there are con-
siderable evidences that the condensed phase present in some forms of cataract is enriched
in y-crystallins [Lerman et al., 1966; Siezen et al., 1985]. This has been the motivation for
many studies of the phase separation of v crystallin solution and has led the conclusion that
~v-crystallins and the possible phase separation of s play an essential role in the formation
of many forms of cataract. Within our perturbative approach, we show that the occurrence
of an almost pure gamma dense phase might result from demixing in a binary a-v mixture
when w, is only slightly weakened. In light of our PT calculations and recent experiments
on the binding affinity between « and v crystallins [Takemoto and Ponce, 2006], we believe

that a decrease of the a-v attraction with ageing is very likely the most probable scenario.
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4.4 Conclusions

This chapter was dedicated to the calculation of the stability boundary of the binary
mixture in the full parameter space via a thermodynamic perturbation theory approach.
Perturbation theory turns out to be well-suited to study the instability of asymmetric bi-
nary square well mixtures. All the critical behaviour expected from the SANS experiments
was correctly predicted, at least qualitatively. We also obtained quantitative agreement
with the results of the M D simulations for the determination of the strength of the mutual
attraction. This theoretical approach allowed us to confirm the validity of the model we
built for the mixture of crystallin proteins from a totally different route. The calculation of
the spinodal surface in the full parameter space gave also a better insight into the different

mechanisms responsible for the instability in the binary mixture.

The study of the instability boundaries of our colloidal model for crystallin mixtures
recognizes two new molecular mechanisms by which altered eye lens crystallin protein
interactions can potentially lead to cataract disease. First, concentrated mixtures of o and
~ crystallin become unstable with respect to protein composition-type phase separation if
the a-v attraction is too weak. On the other hand, when the a-v attraction is strong, the
-7 mixtures become unstable with respect to protein concentration-type phase separation.
The determination of the binodal surfaces and the tie lines shows that, among these two
scenarios, a destabilization of the a-y mixture due to a decrease in the u,, attraction
involves the smaller energy change. Moreover the composition of the coexisting phases are
extremely sensitive to u,,. In combination with recent work [Thurston, 2006], the present

study further underlines the role of size disparity between o and vy-crystallins.

It is very important to recognize that each of these crystallin instability mechanisms
can potentially contribute to cataract at temperatures well above those at which thermo-

dynamic instability occurs. Indeed, it has been shown that near the phase separation of
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~ crystallins alone [Schurtenberger et al., 1989, 1993; Fine et al., 1996; Thurston, 2006],
critical density fluctuations will dramatically increase light scattering at temperatures well
above phase separation, still in the single-phase region of the phase diagram. Moreover,
the very reason for enhanced light scattering, namely the enhancement of spontaneous
local concentration fluctuations, can also accelerate nucleation and growth of protein ag-
gregates [ten Wolde and Frenkel, 1997]. It is clearly important to identify specific molecular
factors that mediate both the strength of v-« attraction and the size disparity between
these proteins, and to identify the effects of shape and orientation-dependent interactions,
not considered here, on y-a mixture instability.

This work has explored only one out of the three principal binary crystallin mixtures.
Each of them can serve as a base study for the more realistic case of v, o and [ crystallin
mixtures. For this reason it represents a step to understand the specific relation between

lens proteins interactions and eye lens transparency.



CHAPTER b

Conclusions

In the present work we have developed a colloidal model for o and  crystallins which are
two among the three existing families of eye lens proteins. The properties of their mixtures
were understood combining numerical simulations and experimental neutron scattering
data. A weak short range attraction between the two crystallins was essential to maintain
the stability of the mixture and reproduce the experimental behaviour of a-vy crystallin so-
lutions. Indeed, slightly too strong or slightly too weak attraction resulted in a spectacular
enhancement of the forward scattering intensity and, thus, would lead to the opacification
of the protein solution.

We then used thermodynamic perturbation theory to study the phase behaviour of binary
mixtures of simple interacting particles made of a hard core plus an attractive potential.
We showed that such theory reproduces all the known phase diagram topologies of the

symmetric binary mixtures and constitutes a real improvement with respect to standard

113
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mean field approaches. Moreover, we could extend this theory to mixtures where the two
components differ in size.

Finally, the instability boundaries and the coexistence surfaces of the binary a-y mixture
were determined as a function of u,., within perturbation theory and we were able to re-
late the high forward scattering obtained in the simulations to the location of the spinodal
surface. The phase diagram of asymmetric o~y mixtures is extremely sensitive to the uq,
attraction: the mixture becoming unstable with respect to protein composition-type phase
separation, for too weak a-vy attraction, or to protein concentration-type phase separation
for too strong a-v attraction. The two scenarios lead to coexisting phases of totally differ-

ent composition.

From a general point of view, we have demonstrated how a colloidal approach and the
application of concepts from soft matter physics to complex protein mixtures provide new
insights into the stability of eye lens protein mixtures. The numerical and theoretical
methods we developed could be applied in the future to other mixtures of crystallins pro-
teins using new scattering data or cloud points measurements as inputs. Moreover, the
determination of crystallin mixture phase diagrams could also help design more targeted
experimental protocols and, thus, reduce significantly the needed amount of protein and

the beam time for the scattering experiments.

The present findings lay also the groundwork for studying the corresponding proteins of
the human lens. Until now, experiments have been only performed on calf lens proteins.
However, the extreme sensitivity of the phase boundaries to apparently minor molecular
changes indicates clearly that, in order to understand the basis of cataract disease in man,

it is crucial to shortly investigate solutions of specific human proteins as well.
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From a theoretical point of view, the determination of the coexisting phase compositions
provided by perturbation theory is certainly highly useful when coupled with cloud points
measurements. However, the implementation of more advanced liquid state theories, like
for instance HRT, to investigate the phase behaviour of the different mixtures of crystallins

proteins could push the comparison to a more quantitative level in the future.

In order to account for complex phenomena like protein aggregation or protein phase
separation which involve a large number of components, it is essential to devise effective
interaction potentials, as we did in this study by deriving an isotropic attraction between
the proteins. However, it is well known that the crystallins and proteins in general have
strong spatial variations of the interactions on their surface and that isotropic models
are not always capable to address correctly phenomena like protein aggregation or self-
assembly. At the same time, an appealing confluence of the chaperone and the phase
transition approaches to opacification is suggested by the presence of hydrophobic spots
on a-crystallins which enable them to bind to other proteins. The elaboration of such ae-
olotopic models of interaction would permit the simultaneous investigation of the physical

factors that influence both the chaperone effect and phase separation.






Appendiz A

Resolution Function

In order to account for the experimental smearing, we derived a general resolution function
resulting from the combined effect of wavelength spread (w), finite collimation (c¢) and
detector resolution (d). The resolution function R(q, (q)) describes the distribution of the
radiation with scattering vector q contributing to the scattering for the setting (q). The

measured intensity at (q) is then proportional to:

@) = [ a5 @ag (5.1

where do(q)/d2 is the scattering cross section. We followed the method proposed by
Pedersen et al. [Pedersen et al., 1990] in which the different contributions to the resolution
function are all approximated by Gaussian functions and are derived separately for each
contribution, assuming the other ones to be negligible.

1 _ (a—(q))?
2

R(q,(a)) = N (5.2)
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The Gaussian functions are determined by calculating the width o of the distribution and
are defined to have the same full width at half maximum (F'W H M) value as the distribu-
tion they approximate. In the following, A\ will denote the F'W HM of the wavelength
distribution and A the FWHM of the distribution of (s — (s)), where (s) is the distance
from the beam centre at the detector to the point on the detector with scattering angle
(26). The combined resolution function due to all three contributions is then calculated
assuming them to be independent and can be approximated by a Gaussian with a width

o given by 0% = 02 + 03 + 02 where

ABy

o. = (k) COS(G)W (5.3)
oq = (k)cos(f) cos%%}@ (5.4)
ou A1 (5.5)

DN 22m(2))s

and 6 = arcsin(Aq/27), with wavelength \ for g-vector ¢, with r; being the radius of the
source aperture, ro the radius of the sample aperture, L the source-sample distance, [ the

detector-sample distance, and defining a; = r1(L + [/ cos*(26)) ™!, as = ry cos®(20) where:

r 1 T% cos? (20) ¢ 2
Aby = 24— 5= .
G L 2r PPL (L+ COS<29>> no
1 cos?(26)
Abr = (g +—F—
b1 TQ(L T )
17?1 1 <
_—_— “ ¢
273 L cos?(20)(L + gy) o

When the scattering pattern is circularly symmetric, the two dimensional integration in-

volved in the convolution of the cross section and the resolution function can be replaced
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by a one dimensional integration:

M) = [ Rt t) e (5.7

Ruola.(0) = / " Riq. (q))ado (5.8)

q _(@=@?

= G hala)o™)

in which I, is the modified Bessel function of first kind and zeroth order and o = /02 + 03 + 2.






Appendiz B

Partial radial distribution function of hard spheres

Perturbation theory relies on an accurate description of the reference system, for which we
have chosen a binary mixture of hard sphere particles. In particular, the partial radial dis-
tribution functions g?j that appears in the expression for the Helmholtz free energy must be
evaluated. We compute the g%(r) solving the Ornstein-Zernike integral equations with the
Percus-Yevick (PY) closure using the partial direct correlation functions ¢;;(r) of the binary
mixture obtained by Lebowitz within the Percus-Yevick (PY) approximation [Lebowitz,
1964]. In order to correct the shortcomings of the PY hard sphere distribution functions
(the values at contact g};(d;;) and the slopes g} '(d;;) are both too small in magnitude) we
used the Grundke-Henderson procedure, a generalization to mixtures of the Verlet-Weis
modifications [Verlet and Weis, 1972; Henderson and Grundke, 1975]. We will present now
the details of the calculation of the g7;(r)s.
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Ornstein-Zernike equations with Percus-Yevick closure for binary hard sphere mixtures

The OZ equation is an integral equation that was first introduced by L.S. Ornstein and F.
Zernike in their investigation of the density fluctuations near the critical point. It relates
the total correlation function h(r) = g(r)—1 to the direct correlation function ¢(r) [Hansen
and McDonald, 1986]. For a one component system, homogeneous and isotropic, the OZ

relation can be written as:

h(r) = c(r) + p/c(| r—r'|)h(r)dr (5.9)

This expression, which can be solved recursively, describes the fact that the total spatial
correlation is due in part to the direct correlation, but also to the indirect correlation
propagated via increasingly large number of intermediate positions. From the analysis of
graphical expansions [Hansen and McDonald, 1986] it is very likely that the range of ¢(r)
is comparable with the range of the pair potential v(r) while, because of the effects of the
indirect correlation, h(r) can be much longer ranged, especially in the vicinity of a critical
point.

The Fourier transform of the OZ equation yields:
h(k) = c(k)+ ph(k) c(k) (5.10)

which gives an algebraic relation between h(k) and c(k):

c(k)

R T

(5.11)

For homogeneous and isotropic multicomponent systems, the Fourier transform of the

OZ relations become:

has(k) = cap(k) + Z P~Cary(k) hgy (k) (5.12)
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For a binary mixture of species 1 and 2, the following system must be solved:

hu(k) = cn(k)+ prein(k) by (k) + pacia(k) ha (K)
hao(k) = can(k) + prear(K) hua(k) + pacas(k) hoo (k)
hio(k) = cra(k) + preiy (k) hua(k) + pacia(k) hoo (k)

(5.13)

with ¢, (k) = ¢, (k) and hq (k) = h, (k). In order to solve this set of linear equations

we define
Rl(k> = plcu(k)—l
Ry(k) = pacia(k)
Ri(k) = picia(k)
R4(k) = pQCQQ(k)—l
(5.14)
and
Sl(k) = _612(k)+g;83022(k) (515)

Salk) = (k) = 5 T ) — (k) (k)

The solution of OZ equations can be cast:

hi1(k) = Rll(k) [—cn(k) — gzgg Sa(k)]
hia(k) = Rgl(k) Sy(k)
hi(k) = Bs (k) Si(k)

(5.16)
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In order to calculate h;j(k), the partial direct correlation functions ¢;;(k) must be de-
termined. The ¢;;(r) of binary hard sphere mixtures have been obtained analytically by
Lebowitz within the PY approximation (relations 37 to 40 in [Lebowitz, 1964]) . Starting
from these expressions of ¢;;(r), we calculated their Fourier Transform (FT) ¢;;(k)), which
are still analytical, and then solved the previous relations.

The last step for determining the radial distribution function of binary hard sphere
mixtures involves the calculation of the inverse FT' of the h;j(k). However, within the
PY approximation, the h;;(r) show discontinuities for r = d,;, and trying to compute the
inverse F'T" numerically gives rise to large oscillations (Gibbs oscillations) at the contact
value.

To overcome this defect, let’s write h;;(r) as:

hij(r) = hy(r) + A O(Ry; — 1) — Ay O(Ri; — )
= hj(r) = Ay ©(Ry —7)
(5.17)

where Aj; = g;;(d;;) (the contact value of the RDF) and © is the Heaviside step function.
The FT of h;; can be determined from the FT of ©(R;; — r):

~

hijla) = hiz(a) + Ay O(K) (5.18)

with
6(k) = FT{6(Ry—1)}
4 (o)
= r sin(kr)O(R;; — r)dr
k Jo
4
- k—g[sm(R,.jk) — Ryjk cos(Ry;k)]

(5.19)
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and the IFT of hj;(q), which now shows no discontinuity, can be computed. From A;(r)

we recover g;;(r) = h;j(r) + 1.

Grundke-Hendersen correction

The OZ relations were solved using the PY closure for binary hard sphere mixtures.
However, PY hard sphere distribution functions have two major shortcomings with respect
to the values at contact g;;(d;;) and the slopes g;;(d;;), both of which are too small. Verlet
and Weis gave a procedure to approximately overcome these defects in the pure fluid case,
and Grundke and Hendersen generalized this procedure for mixtures [Verlet and Weis,

1972; Grundke and Henderson, 1972].

T T
gis(=—m) = gﬁy(d—,) + Agy;(r)
1] 1%
Ay
Agi(r) = TJGXP(—bij(T —djj)) X
COS(bZ‘j (7” — dz]))
(5.20)

with the packing fraction 7 and

(5.21)

The slight change in sphere diameter in the argument of g”’¥ (1) produces a small correction
in the phase of the oscillations of the distribution function. The purpose of the A;; coeffi-
cients is to raise the value of ¢g(r) at contact. Since Ag,;; must oscillate and the PY solution
gives a good approximation for the radial distribution function at large r, a trigonometric

factor which is damped by Lexp(b;;(dij — 7)) is included.
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According to the M CSL equation of state the pressure is given by a linear combination
of the pressure obtained from the PY integral equation for the RDF following the compress-
ibility and the virial routes: pM“5% = 2pIY 4 2pI"  The PY radial distribution function at
contact will give, by definition, the p/™ when used in the pressure equation. Moreover, the
Scaled Particle Theory (SPT) for mixtures also reproduces pﬁ Y via the pressure equation.
The contact value of the radial distribution function can then be written as:

1 2
gij(dij) = ggf;y(dij)"‘ggijT(dij)

This postulate determined the A;; coefficients and forced the distribution functions to give

pMESL when used in the pressure equation:
1 2 d;;
Ay = [zo5 (Ln) + 3057 (Ln) = g (5 mldy

]

The pressure consistency can also be generalized to provide the b;;s [Grundke and
Henderson, 1972]. Lee and Levesque gave the following approximation [Lee and Levesque,
1973], which avoids the numerically involved computation of Zipf from the compressibility
equation:

Aij

PY

bij ~ 28—
! 77/91] (1777,)d22]
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The stability diagram presented in Fig. 4.4 is reproduced here: the insta-
bility temperature 7™ as a function of the interaction strength u,, for the
mixing ratios C, = 0.25,0.5 (dashed line on Fig. 4.3) is shown. The stable
region obtained from the MD simulations for the C, = 0.5 case and the
critical temperature of the pure y-mixture (dashed line) are also drawn. We
investigate the coexistence surface of four different mixtures (denoted A, B,
C and D with u,, = 1.2,1.1,1.0 and 0.85 respectively). These u,- values fall
in the stable region defined by the PT' calculations of the spinodal surface,
i.e. their instability boundary is located at very low temperature. Moreover,
the spinodal of mixtures A, B and C is almost identical and the maximum

spinodal temperature is found close to T’ ,YCPT for all three mixtures. . . . . . 97

Cuts of the spinodal surface for mixtures A-B-C defined in Fig. 4.7 (uq, =
1.2,1.1 and 1.0 respectively) at different temperatures (T=0.89, 0.87, 0.85,
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Closed to T’ $PT = 0.9 the A-B-C spinodals are very similar and the maximum
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solution for all mixtures. . . . . . . . .. 99
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Cut of the coexistence surface at T = 0.844 (slightly below T$PT = 0.9)
for mixtures A-B-C defined in Fig. 4.7. The tie lines (T'L4,TLp and T L¢)
obtained quenching the three mixtures from the same initial state ( 2, ®°)
are shown. For mixture A, high density mixed phases (phase II) coexist with
low density mixed phases (phase I). For u,, = 1.1 the tie lines are almost
parallel to the ¢, axis. By decreasing u,, slightly more (mixture C) tie lines
with opposite tilts with respect to mixture A are found: almost pure and
dense v (II) coexist with mixed a-vy phases of lower density (I). While the
phase separation process of the three mixtures is totally different, the cuts

of the coexistence surface are almost indistinguishable. . . . . . . . .. ..

Cut of the coexistence surface at 7' = 0.844 (slightly below T$PT = 0.9) for
mixture A defined in Fig. 4.7. High density mixed phases (phase II) coexist
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in the two phases. . . . . . . . . ...

The phase behaviour of mixture A defined in Fig. 4.7 is shown. The cuts of
the coexistence surface have been performed at temperatures slightly below
T$PT = 0.9. The full circles represent the cuts of the binodal surface at
T = 0.82,0.83,0.84,0.86, and the corresponding cut of the spinodal are
also drawn (small dots). Some tie lines (dashed lines) connecting coexisting
states are shown. For each temperature cut, the critical point (square) is
determined by extrapolation of the coexisting points and their intersection
with the spinodal. This forms a line of critical points that moves towards
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Cut of the coexistence surface at T = 0.844 (slightly below T$PT = 0.9)
for mixture B defined in Fig. 4.7. The tie lines are almost parallel to the
¢~ axis. The snapshots representing the two coexisting phases of T'Lp are
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Fluctuations in p., only are responsible for the phase transition. . . . . ..
Cut of the coexistence surface at T' = 0.844 (slightly below T$PT =0.9) for
mixture C defined in Fig. 4.7. Tie lines with opposite tilts with respect to
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coexisting phases of T'Ls are drawn. . . . . . . . . . .. ...
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and dotted lines) and some of the tie lines (dashed lines). The spinodals for
higher T (up to T=0.93) are also shown (dashed lines). The experimental
tie lines pairs (full diamonds and dashed lines) were taken from [Thurston,
2006]. Estimations of the critical points (squares) are shown as well. The
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perature. . . . ... L L e e e e e e e e

2.0



Bibliography

V. J. Anderson and H. N. W. Lekkerkerker. Insights into phase transition kinetics from
colloid science. Nature, 416:811-815, 2002.

O. Antonevych, F. Forstmann, and E. Diaz-Herrera. Phase diagram of symmetric binary
fluid mixtures: first-order or second-order demixing. Phys Rev E Stat Nonlin Soft Matter
Phys, 65(6 Pt 1):061504, Jun 2002.

N. Asherie, J. Pande, A. Lomakin, O. Ogun, S. R. Hanson, J. B. Smith, and G. B. Benedek.
Oligomerization and phase separation in globular protein solutions. Biophys Chem, 75

(3):213-227, Dec 1998.

J. A. Barker and D. Henderson. Perturbation theory and equation of state for fluids: The
square-well potential. The Journal of Chemical Physics, 47(8):2856-2861, 1967. URL
http://link.aip.org/1link/?JCP/47/2856/1.

S. Bassnett. On the mechanism of organelle degradation in the vertebrate lens. FEzp

137


http://link.aip.org/link/?JCP/47/2856/1

138 BIBLIOGRAPHY 5.0

FEye Res, Sep 2008. doi: 10.1016/j.exer.2008.08.017. URL http://dx.doi.org/10.

1016/7.exer.2008.08.017.
G. B. Benedek. Theory of transparency of the eye. Applied Optics, 10(3):459-473, 1971.

G. B. Benedek. Cataract as a protein condensation disease: the Proctor Lecture. Invest

Ophthalmol Vis Sci, 38(10):1911-1921, Sep 1997.

S. Bera and S. K. Ghosh. Interaction of h-+-ions with [alphal-crystallin: solvent accessi-
bility of ionizable side chains and surface charge. Biophysical Chemistry, 70(2):147—
160, Feb. 1998. URL http://www.sciencedirect.com/science/article/

B6TFB-3SR3CN5-6/1/6£37bbb905bclbbca78ct71345a0d1le4.

C. R. Berland, G. M. Thurston, M. Kondo, M. L. Broide, J. Pande, O. Ogun, and G. B.
Benedek. Solid-liquid phase boundaries of lens protein solutions. Proc Natl Acad Sci U
S A, 89(4):1214-1218, Feb 1992.

F. A. Bettelheim, R. Ansari, Q.-F. Cheng, and J. S. Zigler. The mode of chap-
eroning of  dithiothreitol-denatured [alphal-lactalbumin by [alpha]-crystallin.
Biochemical and Biophysical Research Communications, 261(2):292-297, Aug.
1999. URL http://www.sciencedirect.com/science/article/

B6WBK—-45K1D1V-1P1/2/15b1c04d6e78b92cbde8049a032ddd70.

T. Biben and J.-P. Hansen. Phase separation of asymmetric binary hard-sphere fluids.

Phys. Rev. Lett., 66:2215-2218, 1991.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu.
Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys
Mol Biol, 86(3):407-485, Nov 2004. doi: 10.1016/j.pbiomolbio.2003.11.012. URL http:

//dx.doi.org/10.1016/7.pbiomolbioc.2003.11.012.


http://dx.doi.org/10.1016/j.exer.2008.08.017
http://dx.doi.org/10.1016/j.exer.2008.08.017
http://www.sciencedirect.com/science/article/B6TFB-3SR3CN5-6/1/6f37bbb905bc1b6ca78cf71345a0d1e4
http://www.sciencedirect.com/science/article/B6TFB-3SR3CN5-6/1/6f37bbb905bc1b6ca78cf71345a0d1e4
http://www.sciencedirect.com/science/article/B6WBK-45K1D1V-1P1/2/15b1c04d6e78b92cbde8049a032ddd70
http://www.sciencedirect.com/science/article/B6WBK-45K1D1V-1P1/2/15b1c04d6e78b92cbde8049a032ddd70
http://dx.doi.org/10.1016/j.pbiomolbio.2003.11.012
http://dx.doi.org/10.1016/j.pbiomolbio.2003.11.012

5.0 BIBLIOGRAPHY 139

T. Blundell, P. Lindley, L. Miller, D. Moss, C. Slingsby, I. Tickle, B. Turnell, and G. Wis-
tow. The molecular structure and stability of the eye lens: X-ray analysis of [gammal-
crystallin ii. Nature, 289(5800):771-777, Feb. 1981. URL http://dx.doi.org/10.
1038/289771a0.

M. Bostrom, D. Williams, and B. Ninham. The influence of ionic dispersion potentials
on counterion condensation on polyelectrolytes. J. Phys. Chem. B, 106(32):7908-7912,
2002. URL http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.
1021/3jp0256084.

T. Boublik. Hard-sphere equation of state. J. Chem. Phys., 53:471-472, 1970.

D. Boyle, S. Gopalakrishnan, and L. Takemoto. Localization of the chaperone binding site.
Biochem Biophys Res Commaun, 192(3):1147-1154, May 1993. doi: 10.1006/bbrc.1993.
1536. URL http://dx.doi.org/10.1006/bbrc.1993.1536.

M. L. Broide, C. R. Berland, J. Pande, O. O. Ogun, and G. B. Benedek. Binary-liquid
phase separation of lens protein solutions. Proc Natl Acad Sci U S A, 88(13):5660-5664,
Jul 1991.

C. Caccamo. Integral equation theory description of phase equilibria in classical fluids.

Phys. Rep., 274:1-105, 1996.

F. Cardinaux, T. Gibaud, A. Stradner, and P. Schurtenberger. Interplay between spinodal
decomposition and glass formation in proteins exhibiting short-range attractions. Phys

Rev Lett, 99(11):118301, Sep 2007.

N. Carnahan and K. Starling. Equation of state for nonattracting rigid spheres.

J. Chem. Phys., 51:635-636, 1969.


http://dx.doi.org/10.1038/289771a0
http://dx.doi.org/10.1038/289771a0
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp0256084
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp0256084
http://dx.doi.org/10.1006/bbrc.1993.1536

140 BIBLIOGRAPHY 5.0

D. Chan, T. W. Healy, and L. R. White. Electrical double layer interactions under regula-
tion by surface ionization equilibriaUdissimilar amphoteric surfaces. J. Chem. Soc. Fara-

day Trans. 1, 72:2844 — 2865, 1976.

X. S. Chen and F. Forstmann. The demixing and gas-liquid instability of a binary yukawa
fluid. The Journal of Chemical Physics, 97(5):3696-3703, 1992.

P. Csermely. Chaperone overload is a possible contributor to ’civilization diseases’. Trends

Genet, 17(12):701-704, Dec 2001.

L. C. D. Pitts, J. Jose, S. Lorman, E. Moss, S. Varma, S. Zigler, S. Zigman, and J. Zuclich.
Optical Radiation and Visual Health. CRC Press, Boca Raton, FL, 1986.

K. A. Dawson, G. Foffi, F. Sciortino, P. Tartaglia, and E. Zaccarelli. Mode-coupling theory
of colloids with short-range attractions. J. Phys,: Condens. Matt., 13:9113, 2001.

M. Delaye and A. Tardieu. Short-range order of crystallin proteins accounts for eye lens

transparency. Nature, 302(5907):415-417, 1983.

C. DeMichele, S. Gabrielli, P. Tartaglia, and F. Sciortino. Dynamics in the presence
of attractive patchy interactions. J. Phys. Chem. B, 110(15):8064-8079, Apr. 2006.
ISSN 1520-6106. URL http://pubs3.acs.org/acs/journals/doilookup?

in_doi=10.1021/9p056380y.

N. Dorsaz, G. Thurston, A. Stradner, P. Schurtenberger, and G. Foffi. Spinodal surface of
a free energy model for eye lens protein mixtures: Relevance for cataracts. volume 1091,
pages 246-248. AIP, 2009a. doi: 10.1063/1.3082294. URL http://link.aip.org/
link/?APC/1091/246/1.

N. Dorsaz, G. M. Thurston, A. Stradner, P. Schurtenberger, and G. Foffi. Colloidal charac-

terization and thermodynamic stability of binary eye lens protein mixtures. The Journal


http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp056380y
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp056380y
http://link.aip.org/link/?APC/1091/246/1
http://link.aip.org/link/?APC/1091/246/1

5.0 BIBLIOGRAPHY 141

of Physical Chemistry B, 113(6):1693-1709, 2009b. URL http://pubs.acs.org/
doi/abs/10.1021/35p807103F

I. Ferris, Frederick L. and J. M. Tielsch. Blindness and visual impairment: A public health
issue for the future as well as today. Arch Ophthalmol, 122(4):451-452, 2004. URL

http://archopht.ama-assn.org.

B. M. Fine, A. Lomakin, O. O. Ogun, and G. B. Benedek. Static structure factor and
collective diffusion of globular proteins in concentrated aqueous solution. The Journal of
Chemical Physics, 104(1):326-335, 1996. doi: 10.1063/1.470904. URL http://link.
aip.org/link/?JCP/104/326/1.

S. Finet and A. Tardieu. 7-crystallin interaction forces studied by small angle x-ray scat-

tering and numerical simulations. Journal of Crystal Growth, 232(1-4):40-49, 2001.

G. Foffi, K. A. Dawson, S. V. Buldyrev, F. Sciortino, E. Zaccarelli, and P. Tartaglia.
Evidence for unusual dynamical arrest scenario in short ranged colloidal systems.

Phys. Rev. E, 65:050802(R), 2002a.

G. Foffi, G. D. McCullagh, A. Lawlor, E. Zaccarelli, K. A. Dawson, F. Sciortino,
P. Tartaglia, D. Pini, and G. Stell. Phase equilibria and glass transition in colloidal
systems with short-ranged attractive interactions: Application to protein crystallization.

Phys. Rev. E, 65:31407, 2002b.
D. Frenkel. Playing tricks with designer “atoms”. Science, 296:65-66, 2002.

D. C. G Pellicane and C. Caccamo. Theory and simulation of short-range models of
globular protein solutions. Journal of Physics: Condensed Matter, 16(42):54923-S4936,
2004. URL http://stacks.iop.org/0953-8984/16/54923.


http://pubs.acs.org/doi/abs/10.1021/jp807103f
http://pubs.acs.org/doi/abs/10.1021/jp807103f
http://archopht.ama-assn.org
http://link.aip.org/link/?JCP/104/326/1
http://link.aip.org/link/?JCP/104/326/1
http://stacks.iop.org/0953-8984/16/S4923

142 BIBLIOGRAPHY 5.0

A. P. Gast, W. B. Russell, and C. K. Hall. Polymer-induced phase separations in nonaque-
ous colloidal suspensions. J. Colloid Interface Sci., 96:251-67, 1983.

A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess.
Statistical associating fluid theory for chain molecules with attractive potentials of
variable range. The Journal of Chemical Physics, 106(10):4168-4186, 1997. URL

http://link.aip.org/link/?JCP/106/4168/1.

O. Glatter. A new method for the evaluation of small-angle scattering data. Journal
of Applied Crystallography, 10(5):415-421, Oct 1977. doi: 10.1107/S0021889877013879.
URL http://dx.doi.org/10.1107/50021889877013879.

J. N. Goldman and G. B. Benedek. The relationship between morphology and transparency
in the nonswelling corneal stroma of the shark. Invest Ophthalmol, 6(6):574-600, Dec
1967.

E. W. Grundke and D. Henderson. Distribution functions of multi-component fluid
mixtures of hard spheres. Molecular Physics, 24(2):269-281, 1972. URL http:
//www.informaworld.com/10.1080/00268977200101431.

F. G. Guinier A. Small-angle sctattering of X-rays. New York: Wiley, 1955.

J.-P. Hansen and I. R. McDonald. Theory of Simple Liquids. Academic Press, London,
2nd edition, 1986.

D. Henderson and E. W. Grundke. Direct correlation function: Hard sphere fluid.
J. Chem. Phys., 63:601-607, 1975.

J. Horwitz. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U

S A, 89(21):10449-10453, Nov 1992.


http://link.aip.org/link/?JCP/106/4168/1
http://dx.doi.org/10.1107/S0021889877013879
http://www.informaworld.com/10.1080/00268977200101431
http://www.informaworld.com/10.1080/00268977200101431

5.0 BIBLIOGRAPHY 143

J. G. Kirkwood and J. B. Shumaker. The influence of dipole moment fluctuations on
the dielectric increment of proteins in solution. Proceedings of the National Academy of

Sciences, 38(10):855-862, 1952. URL http://www.pnas.org.

R. Klein. Neutrons, x-rays and light: Scattering methods applied to soft condensed matter,
2002.

V. S. Kumaraswamy, P. F. Lindley, C. Slingsby, and I. D. Glover. An Eye Lens Protein—
Water Structure: 1.2 A Resolution Structure of ~vB-Crystallin at 150 K. Acta Crystal-
lographica Section D, 52(4):611-622, Jul 1996. doi: 10.1107/S0907444995014302. URL
http://dx.doi.org/10.1107/S0907444995014302.

J. Kofinger, N. B. Wilding, and G. Kahl. Phase behavior of a symmetrical binary fluid
mixture. J Chem Phys, 125(23):234503, Dec 2006. doi: 10.1063/1.2393241. URL http:
//dx.doi.org/10.1063/1.2393241.

J. L. Lebowitz. Exact solution of generalized percus-yevick equation for a mixture of hard

spheres. Phys. Rev., 133:A895-A899, 1964.

B. P. Lee and M. E. Fisher. Density fluctuations in an electrolyte from generalized debye-
h&uuml;ckel theory. Phys. Rev. Lett., 76(16):2906—, Apr. 1996. URL http://link.

aps.org/abstract/PRL/v76/p2906.

L. L. Lee and D. Levesque. Perturbation theory for mixtures of simple liquids. Molec-
ular Physics, 26(6):1351-1370, 1973. URL http://www.informaworld.com/10.
1080/00268977300102531.

S. Lerman, S. Zigman, and W. F. Forbes. Properties of a cryoprotein in the ocular lens.

Biochem Biophys Res Commun, 22(1):57-61, Jan 1966.


http://www.pnas.org
http://dx.doi.org/10.1107/S0907444995014302
http://dx.doi.org/10.1063/1.2393241
http://dx.doi.org/10.1063/1.2393241
http://link.aps.org/abstract/PRL/v76/p2906
http://link.aps.org/abstract/PRL/v76/p2906
http://www.informaworld.com/10.1080/00268977300102531
http://www.informaworld.com/10.1080/00268977300102531

144 BIBLIOGRAPHY 5.0

M. E. Leunissen, C. G. Christova, A.-P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof,
M. Dijkstra, R. van Roij, and A. van Blaaderen. Ionic colloidal crystals of oppositely
charged particles. Nature, 437(7056):235-240, Sept. 2005. ISSN 0028-0836. URL http:
//dx.doi.org/10.1038/nature03946.

J. N. Liang and X. Y. Li. Interaction and aggregation of lens crystallins. Fxp Eye Res, 53
(1):61-66, Jul 1991.

C. N. Likos. Effective interactions in soft condensed matter physics. Physics Reports, 348:
267-439, 2001.

C. Liu, N. Asherie, A. Lomakin, J. Pande, O. Ogun, and G. B. Benedek. Phase separation
in aqueous solutions of lens gamma-crystallins: special role of gamma s. Proc Natl Acad

Sci U S A, 93(1):377-382, Jan 1996.

C. Liu, J. Pande, A. Lomakin, O. Ogun, and G. B. Benedek. Aggregation in aqueous
solutions of bovine lens gamma-crystallins: special role of gamma(s). Invest Ophthalmol

Vis Sci, 39(9):1609-1619, Aug 1998.

J. Liu, N. B. Wilding, and E. Luijten. Simulation of phase transitions in highly asymmetric
fluid mixtures. Physical Review Letters, 97(11):115705, 2006. doi: 10.1103/PhysRevLett.

97.115705. URL http://link.aps.org/abstract/PRL/v97/e115705.

A. Lomakin, N. Asherie, and G. B. Benedek. Monte carlo study of phase separation in
aqueous protein solutions. The Journal of Chemical Physics, 104(4):1646-1656, 1996.
URL http://link.aip.org/link/?JCP/104/1646/1.

A. Lomakin, N. Asherie, and G. B. Benedek. Aeolotopic interactions of globular proteins.
Proc Natl Acad Sci U S A, 96(17):9465-9468, Aug 1999.


http://dx.doi.org/10.1038/nature03946
http://dx.doi.org/10.1038/nature03946
http://link.aps.org/abstract/PRL/v97/e115705
http://link.aip.org/link/?JCP/104/1646/1

5.0 BIBLIOGRAPHY 145

A. A. Louis. Effective potentials for polymers and colloids: beyond the van der waals
picture of fluids? Phil. Trans. R. Soc. A, 359(1782):939-960, May 2001. URL http:
//dx.doi.org/10.1098/rsta.2000.0804.

M. Malfois, F. BonnetAl, L. Belloni, and A. Tardieu. A model of attractive interactions
to account for fluid-fluid phase separation of protein solutions. Journal of Chemical

Physics, 105(8):3290-3300, 1996.

G. A. Mansoori, N. F. Carnahan, K. E. Starling, and J. T. W. Leland. Equilibrium ther-
modynamic properties of the mixture of hard spheres. The Journal of Chemical Physics,

54(4):1523-1525, 1971. URL http://link.aip.org/link/?JCP/54/1523/1.
D. Maurice. J. Physiol., 136:263, 1957.
D. A. McQuarrie. Statistical Mechanics. Number Sec. 15-1. 1976.

M. Muschol and F. Rosenberger. Liquid-liquid phase separation in supersaturated
lysozyme solutions and associated precipitate formation/crystallization. The Journal
of Chemical Physics, 107(6):1953-1962, 1997. doi: 10.1063/1.474547. URL http:

//link.aip.org/link/?JCP/107/1953/1.

S. Najmudin, V. Nalini, H. P. Driessen, C. Slingsby, T. L. Blundell, D. S. Moss, and P. F.
Lindley. Structure of the bovine eye lens protein gammab(gammaii)-crystallin at 1.47
a. Acta Crystallogr D Biol Crystallogr, 49(Pt 2):223-233, Mar 1993. doi: 10.1107/
S0907444992007601. URL http://dx.doi.org/10.1107/50907444992007601.

M. Noro and D. Frenkel. Extended corresponding-states behavior for particles with variable

range attractions. J.Chem.Phys., 113:2941, 2000.

P. Paricaud. A general perturbation approach for equation of state development: appli-

cations to simple fluids, ab initio potentials, and fullerenes. J Chem Phys, 124(15):


http://dx.doi.org/10.1098/rsta.2000.0804
http://dx.doi.org/10.1098/rsta.2000.0804
http://link.aip.org/link/?JCP/54/1523/1
http://link.aip.org/link/?JCP/107/1953/1
http://link.aip.org/link/?JCP/107/1953/1
http://dx.doi.org/10.1107/S0907444992007601

146 BIBLIOGRAPHY 5.0

154505, Apr 2006. doi: 10.1063/1.2181979. URL http://dx.doi.org/10.1063/
1.2181979.

Parola and Reatto. Hierarchical reference theory of fluids and the critical point. Phys Rev

A, 31(5):3309-3322, May 1985.

Parola and Reatto. Microscopic approach to critical phenomena in binary fluids. Phys Rev

A, 44(10):6600-6615, Nov 1991.

A. Parola and L. Reatto. Liquid state theories and critical phenomena. Advances in

Physics, 44:211, 1995.

J. S. Pedersen, D. Posselt, and K. Mortensen. Analytical treatment of the resolution
function for small-angle scattering. Journal of Applied Crystallography, 23(4):321-333,
Aug 1990. doi: 10.1107/S0021889890003946. URL http://dx.doi.org/10.1107/
S50021889890003946.

R. Piazza. Interactions and phase transitions in protein solutions. Current Opinion in

Colloid and Interface Science, 5(1-2):38-43, 2000.

R. Piazza. Protein interactions and association: An open challenge for colloid science.

Current Opinion in Colloid and Interface Science, 8(6):515-522, 2004.

V. Pigaga and R. A. Quinlan. Lenticular chaperones suppress the aggregation of the
cataract-causing mutant t5p gamma c-crystallin. Ezp Cell Res, 312(1):51-62, Jan 2006.
doi: 10.1016/j.yexcr.2005.09.014. URL http://dx.doi.org/10.1016/7.yexcr.
2005.09.014.

D. Pini, G. Stell, and N. B. Wilding. A liquid-state theory that remains successful in the
critical region. Mol. Phys., 95:483-494, 1998b.


http://dx.doi.org/10.1063/1.2181979
http://dx.doi.org/10.1063/1.2181979
http://dx.doi.org/10.1107/S0021889890003946
http://dx.doi.org/10.1107/S0021889890003946
http://dx.doi.org/10.1016/j.yexcr.2005.09.014
http://dx.doi.org/10.1016/j.yexcr.2005.09.014

5.0 BIBLIOGRAPHY 147

D. Pini, M. Tau, A. Parola, and L. Reatto. Phase diagram of symmetric binary mixtures
at equimolar and nonequimolar concentrations: a systematic investigation. Phys Rev E

Stat Nonlin Soft Matter Phys, 67(4 Pt 2):046116, Apr 2003.

A. Ponce, C. Sorensen, and L. Takemoto. Role of short-range protein interactions in lens

opacifications. Mol Vis, 12:879-884, 2006.

W. Poon. PHYSICS: Colloids as Big Atoms. Science, 304(5672):830-831, 2004. doi:
10.1126/science.1097964. URL http://www.sciencemag.org.

T. Putilina, F. Skouri-Panet, K. Prat, N. H. Lubsen, and A. Tardieu. Subunit exchange
demonstrates a differential chaperone activity of calf alpha-crystallin toward beta LOW-
and individual gamma-crystallins. J Biol Chem, 278(16):13747-13756, Apr 2003. doi: 10.
1074/jbc.M208157200. URL http://dx.doi.org/10.1074/9bc.M208157200.

D. C. Rapaport. The Art of Molecular Dynamic Simulation. Cambridge University Press,
1995.

E. Scholl-Paschinger and G. Kahl. Self-consistent ornstein—zernike approximation for a
binary symmetric fluid mixture. The Journal of Chemical Physics, 118(16):7414-7424,

2003. URL http://link.aip.org/link/?JCP/118/7414/1.

Schurtenberger, Chamberlin, Thurston, Thomson, and Benedek. Observation of critical

phenomena in a protein-water solution. Phys Rev Lett, 63(19):2064-2067, Nov 1989.

P. Schurtenberger, R. A. Chamberlin, G. M. Thurston, J. A. Thomson, and G. B. Benedek.
Observation of critical phenomena in a protein-water solution. Phys. Rev. Lett., 71(20):

3395, Nov. 1993. URL http://link.aps.org/abstract/PRL/v71/p3395.

E. Scholl-Paschinger, A. L. Benavides, and R. Castanieda-Priego. Vapor-liquid equilibrium

and critical behavior of the square-well fluid of variable range: a theoretical study. J


http://www.sciencemag.org
http://dx.doi.org/10.1074/jbc.M208157200
http://link.aip.org/link/?JCP/118/7414/1
http://link.aps.org/abstract/PRL/v71/p3395

148 BIBLIOGRAPHY 5.0

Chem Phys, 123(23):234513, Dec 2005. doi: 10.1063/1.2137713. URL http://dx.

doi.org/10.1063/1.2137713.

R. P. Sear. Phase behavior of a simple model of globular proteins. J. Chem. Phys, 111:
48004806, 1999.

I. Shand-Kovach. PhD thesis, M.I.T., 1992.

R. J. Siezen, M. R. Fisch, C. Slingsby, and G. B. Benedek. Opacification of gamma-
crystallin solutions from calf lens in relation to cold cataract formation. Proc Natl Acad

Sci U S A, 82(6):1701-1705, Mar 1985.

A. Spector, T. Freund, L. K. Li, and R. C. Augusteyn. Age-dependent changes in the
structure of alpha crystallin. Invest Ophthalmol, 10(9):677-686, Sep 1971.

A. Stradner, V. Lobaskin, P. Schurtenberger, and G. Thurston. Structure and interactions
of lens proteins in dilute and concentrated solutions. 2004a. URL http://dx.doi.
org/10.1007/93990.

A. Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon, S. U. Egelhaaf, and P. Schurten-
bergerpiazza. Equilibrium cluster formation in concentrated protein solutions and
colloids.  Nature, 432(7016):492-495, Nov 2004b. doi: 10.1038/nature03109. URL
http://dx.doi.org/10.1038/nature031009.

A. Stradner, G. Foffi, N. Dorsaz, G. Thurston, and P. Schurtenberger. New insight into
cataract formation: enhanced stability through mutual attraction. Phys Rev Lett, 99

(19):198103, Nov 2007.

L. J. Takemoto and A. A. Ponce. Decreased association of aged alpha crystallins with
gamma crystallins. Exp Fye Res, 83(4):793-797, Oct 2006. doi: 10.1016/j.exer.2006.03.
020. URL http://dx.doi.org/10.1016/7.exer.2006.03.020.


http://dx.doi.org/10.1063/1.2137713
http://dx.doi.org/10.1063/1.2137713
http://dx.doi.org/10.1007/b93990
http://dx.doi.org/10.1007/b93990
http://dx.doi.org/10.1038/nature03109
http://dx.doi.org/10.1016/j.exer.2006.03.020

5.0 BIBLIOGRAPHY 149

T. Tanaka and G. B. Benedek. Observation of protein diffusivity in intact human and

bovine lenses with application to cataract. Invest Ophthalmol, 14(6):449-456, Jun 1975.

P. R. ten Wolde and D. Frenkel. Enhancement of protein crystal nucleation by critical

density fluctuations. Science, 277:1975-1978, 1997.

J. A. Thomson, P. Schurtenberger, G. M. Thurston, and G. B. Benedek. Binary liquid
phase separation and critical phenomena in a protein/water solution. Proc Natl Acad

Sci U S A, 84(20):7079-7083, Oct 1987.

G. M. Thurston. Liquid-liquid phase separation and static light scattering of concentrated
ternary mixtures of bovine alpha and gamma b crystallins. The Journal of Chemi-
cal Physics, 124(13):134909, 2006. URL http://link.aip.org/link/?2JCP/124/
134909/1.

G. M. Thurston, D. L. Hayden, P. Burrows, J. I. Clark, V. G. Taret, J. Kandel, M. Couro-
gen, J. A. Peetermans, M. S. Bowen, D. Miller, K. M. Sullivan, R. Storb, H. Stern, and
G. B. Benedek. Quasielastic light scattering study of the living human lens as a function

of age. Curr Eye Res, 16(3):197-207, Mar 1997.
L. Tisza. Generalized Thermodynamics. Cambridge, MIT, MA, 1966.

C. P. Ursenbach and G. N. Patey. Stability of binary mixtures: Supersaturation limits
of aqueous alkali halide solutions. The Journal of Chemical Physics, 100(5):3827-3842,
1994.

P. van Konynenburg and R. Scott. Critical lines and phase equilibria in binary van der
waals mixtures. Royal Society of London Philosophical Transactions Series A, 298:495—
540, 1980.


http://link.aip.org/link/?JCP/124/134909/1
http://link.aip.org/link/?JCP/124/134909/1

150 BIBLIOGRAPHY 5.0

L. Vega, E. de Miguel, and L. F. Rull. Phase equilibria and critical behavior of square-well
fluids of variable width by gibbs ensemble monte carlo simulation. J. Chem. Phys., 96
(3):2296-2305, 1992.

F. Vérétout and A. Tardieu. The protein concentration gradient within eye lens might
originate from constant osmotic pressure coupled to differential interactive properties of

crystallins. Eur Biophys J, 17(2):61-68, 1989.

F. Veretout, M. Delaye, and A. Tardieu. Molecular basis of eye lens transparency. Osmotic
pressure and X-ray analysis of alpha-crystallin solutions. J Mol Biol, 205(4):713-728,
Feb 1989.

L. Verlet and J.-J. Weis. Equilibrium theory of simple liquids. Phys. Rev. A, 5:939-952,
1972.

E. J. W. Verwey and J. T. G. Overbeek. Theory of the stability of lyophobic colloids. the
interaction of particles having an electric double layer. Journal of Polymer Science, 4:

413-414, 1949.

WHO. Global initiative for the elimination of avoidable blindness : action plan 2006-2011.
WHO Library Cataloguing-in-Publication Data, 2007.

B. Widom. Some topics in the theory of fluids. The Journal of Chemical Physics, 39
(11):2808-2812, 1963. doi: 10.1063/1.1734110. URL http://link.aip.org/link/
?JCP/39/2808/1.

N. B. Wilding, F. Schmid, and P. Nielaba. Liquid-vapor phase behavior of a symmetrical
binary fluid mixture. Phys. Rev. F, 58(2):2201—, Aug. 1998. URL http://link.aps.
org/abstract/PRE/v58/p2201.


http://link.aip.org/link/?JCP/39/2808/1
http://link.aip.org/link/?JCP/39/2808/1
http://link.aps.org/abstract/PRE/v58/p2201
http://link.aps.org/abstract/PRE/v58/p2201

5.0 BIBLIOGRAPHY 151

E. Zaccarelli. Colloidal gels: equilibrium and non-equilibrium routes. Journal of Physics:
Condensed Matter, 19(32):323101 (50pp), 2007. URL http://stacks.iop.org/
0953-8984/19/323101.

S. Zigman and S. Lerman. A cold precipitable protein in the lens. Nature, 203(4945):
662663, Aug. 1964. URL http://dx.doi.org/10.1038/203662a0.

B. Zoetekouw and R. van Roij. Nonlinear screening and gas-liquid separation in sus-
pensions of charged colloids.  Physical Review Letters, 97(25):258302, 2006. doi:
10.1103/PhysRevLett.97.258302. URL http://link.aps.org/abstract/PRL/

v97/e258302.

R. Zwanzig. High-temperature equation of state by a perturbation method. i. nonpolar
gases. The Journal of Chemical Physics, 22(8):1420-1426, 1954. doi: 10.1063/1.1740409.

URL http://link.aip.org/link/?JCP/22/1420/1.


http://stacks.iop.org/0953-8984/19/323101
http://stacks.iop.org/0953-8984/19/323101
http://dx.doi.org/10.1038/203662a0
http://link.aps.org/abstract/PRL/v97/e258302
http://link.aps.org/abstract/PRL/v97/e258302
http://link.aip.org/link/?JCP/22/1420/1




Acknowledgments

Above all, T would like to thank prof. Baldereschi and prof. Giuseppe Foffi who gave me the
opportunity to do research at IRRMA during the last five years. I am also very grateful to both
of them to allow me to participate to so many conferences and summerchools around Europe that
have contributed to my scientic and personal development. I thank Giuseppe for the great work
together: I really learned a lot and enjoyed that period, from both a personal and a professional
point of view. I would also thank Prof. Baldereschi for his support during this thesis.

Thanks also to Anna Stradner and Prof. Peter Schurtenberger for the continuous and fruitful
collaboration and lots of interesting discussions in the coffee room of their department in Fribourg.
I would also thank Prof. George Thurston for interesting and always enthousiastic discussions,
and also for its careful re-reading of a quite long draft.

I thank Prof. Paolo de Los Rios and Francesco Piazza for an interesting collaboration, motivating
discussions and enjoyable lunches or coffe breaks on the seventh floor. It was also a pleasure to
work with Cristiano de Michele at IRRMA for few months and visit him in Rome. I thank also

prof. Kahl for hosting me in Vienna to learn more on the phase diagram of binary mixtures.



154 BIBLIOGRAPHY 5.0

A special thanks also to all the people I met at IRRMA in the last four year (Fabien, Julien G.,
Audrius, Peter, Zeljko, Feliciano, Vincenzo, Costas, Andreas and Prof. Pasquarello) who made
the atmosphere of the quite dark PPH more lively, with a special thanks to Vladan with whom
I shared the office in the old PPH. I also thank for their help our secretary Noemi Porta and
Florence Hagen, our system administrator. I would like to thank the last arrived in the GR-FO,
Francesco and Davide, who made the writing period of this thesis more lively and cheerful, and
also Carlo, Andy, Julien for enjoyable breaks in the 7 floor after our relocation to the BSP. Finally,

I thank the Maggica for some great games at lunch time.



Curriculum Vitae

Nicolas Dorsaz
17/05/1981
Swiss and Italian

EPFL SB IRRMA-GE

BSP 124 (Bat. Sc. Phys. UNIL)
CH-1015 Lausanne

Switzerland

nicolas.dorsaz@epfl.ch
+41 (0)79 372 96 17

ACADEMIC FORMATION

2005 - 2009 PhD in Computational Statistical Physics at the Institut Romand de
Recherche Numérique en Physique des Matériaux (IRRMA),

Ecole Polytechnique fédérale de Lausanne (EPFL)
2000 - 2005 Master of Science in Physics, EPFL

1996 - 2000 High School, Maturité scientifique, College de Saussure, Geneva

RESEARCH EXPERIENCE

2005 - 2009 PhD studies: A colloidal approach to Eye Lens protein miztures: Relevance

for cataract formation
2005 - 2006 Experimental research in weightlessness: Cawvitation studies in Microgravity,

European Space Agency (ESA)
2004 - 2005 Master Thesis in Statistical Biophysics: Simplified Model of Water on Lattice

Institute of Theoretical Physics [ITP], EPFL
2003 Summer project of two months: Analysis of radio-astronomic data, Max Planck

Institt fur Radioastronomie, Bonn (D)

CONTRIBUTED and INVITED TALKS

e CECAM Workshop 2009, New Trends in Simulating Colloids: from Models to Appli-
cations (Lausanne, July 15-18, 2009)

e 10" Granada Seminar on Computational and Statistical Physics, Modeling and Sim-
ulation of New Materials (Granada, Sept. 15-19 2008)

e XII Sitges Conference on Statistical Mechanics, Statistical Mechanics of Molecular
Biophysics (Sitges, June 2-6 2008)

e Annual meeting of the Swiss Physical Society (SPS) (Zurich, Feb. 2007)



SCHOOLS AND CONFERENCES

Bombannes school on Scattering Methods applied to Soft Condensed Matter (Bom-
bannes, June 7-14 2008)

21st Conference of the European Colloid and Interface society, Ecis 2007 (Geneva,
Sept. 10-14 2007)

XXIIT TUPAP International Conference on Statistical Physics, Stat. Phys. 23 (Gen-
ova, July 9-13 2007)

Satellite conference of Stat. Phys. 23, Statics and Dynamics of Granular Media and
Colloidal Suspensions (Napoli, July 4-6 2007)

V™€ Séminaire Transalpin de Physique: Dynamics and Statistics in Complex Systems
(Torino, February 26-March 2, 2007)

Workshop on Dynamical Arrest of Soft Matter and Colloids (Lugano, April 6-8 2006)

IV™¢ Séminaire Transalpin de Physique: Nonequilibrium Statistical Mechanics
(Champex , March 5-11, 2006)

Advanced Marie Curie course: Understanding Molecular Simulations (University of
Amsterdam , October 24 - November 4, 2005)

Summerschool : Ageing and the Glass Transition (University of Luxembourg, Septem-
ber 18-24, 2005)

PUBLICATIONS

1.

N. Dorsaz, G. Thurston, A. Stradner, P. Schurtenberger and G.Foffi, - gm'lsc"%ﬂ
Colloidal characterization and thermodynamic stability of bi-

nary eye lens protein mixtures , J. Phys. Chem. B, 113, 1693
(2009) See also JPCB Cover (Vol.113, Iss.6) L -

N. Dorsaz, G. Thurston, A. Stradner, P. Schurtenberger and G.Foffi, Spinodal sur-
face of a free energy model for eye lens protein mixtures: Relevance for
cataract, ATIP Conf. Proc., Volume 1091, pp. 246-248 (2009)

P. Kobel, D. Obreschkow, A. de Bosset, N. Dorsaz and M. Farhat, Techniques for
generating centimetric drops in microgravity and application to cavitation
studies, Exp. in Fluids, 4151403 (2009)

A. Stradner, G.Foffi, N. Dorsaz, G. Thurston and P. Schurtenberger,
New insight into cataract formation: FEnhanced stability
through mutual attraction, Phys. Rev. Lett. 99, 198103 (2007)
See also Physical Review Focus


http://pubs.acs.org/action/showLargeCover?issue=335335128
http://focus.aps.org/story/v20/st16

5. D. Obreschkow, P. Kobel, N. Dorsaz, A. de Bosset, C. Nicollier, and M. Farhat,
Cavitation Bubble Dynamics inside Liquid Drops in Microgravity,
Phys. Rev. Lett. 97, 094502 (2006). See also Cavitation in Microgravity (Movie)

6. G. Foffi, N. Dorsaz and C. De Michele, Gel and Glass Transitions in Short-range
Attractive Colloidal Systems, in Food Colloids: Self-Assembly and Material Sci-
ence, E.Dickinson and M. Leser, RSC publishing (2006)

IN PREPARATION

1. N. Dorsaz, C. de Michele, F. Piazza, P. de Los Rios and G.Foffi, Crowding effects
in diffusion limited reaction, to be submitted

2. N. Dorsaz, G.Foffi et al., Phase coexistence of binary mixtures of eye lens
proteins in preparation

ACADEMIC VISITS

e Prof. Kahl, Soft Matter Theory Group, ITP, Vienna University of Technology (Vi-
enna, 30 Oct. - 5 Nov. 2008)

e Dr. De Michele, Group. Prof. Sciortino, Dipartimento di Fisica, Univ. La Sapienza
(Roma, 28 May - 4 June 2007)

LANGUAGES
e French native
e Italian bilingual
e English fluent
e German high school level

COMPUTER SKILLS

e Languages: C, C++, Fortran
e Operating systems: Unix/Linux, Windows

e Software: Mathematica, Matlab


http://www.youtube.com/watch?v=gR0YBAhY2PQ&feature=related

	Title
	Abstract
	Résumé
	Introduction
	Eye lens and transparency
	 crystallin and cataract as a protein folding disease
	 crystallin and cold cataract


	Colloidal model for eye lens protein mixtures
	Introduction
	Eye lens crystallin proteins
	Experiments
	Simulations and model validation
	Model
	Simulations
	Derivation of the model
	Structural properties
	Mixture stability tuning the - attraction

	Conclusions

	Phase behaviour of binary mixtures
	Introduction
	Thermodynamic perturbation theory 
	Perturbation theory and the  expansion
	Stability criteria: the spinodal
	Main fluctuations driving the instability
	Phase coexistence: the binodal

	The symmetric binary mixtures
	Model
	Phase behaviour at x = 1/2
	Phase behaviour in the x- plane
	Asymmetric binary mixtures with d1=d2

	Conclusions

	Phase behaviour of the binary - mixture of eye lens proteins
	Introduction
	Spinodal surface
	3D spinodal surfaces
	Spinodals on the experimental plane

	Coexistence surfaces and tie-lines
	Conclusions

	Conclusions
	Appendix A:  Resolution function
	Appendix B:  Partial radial distribution function of hard spheres 
	List of Figures
	Bibliography
	Acknowledgements
	Curriculum Vitae



