
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Suisse
2009

Prof. D. Bonvin, président du jury
Prof. R. Longchamp, Dr A. Karimi, directeurs de thèse

Prof. H. Bleuler, rapporteur 
Prof.  L. Guzzella, rapporteur 
Prof. M. Steinbuch, rapporteur 

Frequency-Domain Controller Design by 
Linear Programming

Marc Kunze

THÈSE NO 4370 (2009)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 15 mai 2009

À LA FACULTé SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE D'AUTOMATIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION





i

A mes parents, à Annick





Remerciements

La thèse relatée dans cet ouvrage est le fruit de cinq années pas-
sées au sein du Laboratoire d’Automatique de l’Ecole Polytechnique
Fédérale de Lausanne. Cette période très riche professionnellement
m’a permis d’acquérir de solides bases dans le domaine de l’auto-
matique. C’est pourquoi, j’aimerais saisir l’occasion de remercier les
personnes qui ont contribué à cette réussite.

Tout d’abord, je tiens à remercier les professeurs Roland Long-
champ et Dominique Bonvin ainsi que le Dr. Denis Gillet de m’avoir
accueilli au sein du laboratoire. Cette thèse a également pu être réa-
lisée grâce aux nombreux conseils de mes directeurs de thèse Roland
Longchamp et Alireza Karimi. Je tiens tout particulièrement à re-
mercier Ali qui m’a toujours accueilli dans son bureau pour de nom-
breuses discussions et qui a su me motiver lors de certains moments
difficiles.

Je tiens également à remercier vivement le président du jury Do-
minique Bonvin ainsi que les professeurs Hannes Bleuler, Lino Guz-
zella et Maarten Steinbuch pour avoir accepté d’examiner mon tra-
vail.

Ce travail est également le résultat d’une étroite collaboration
que j’ai eue avec ETEL S.A. Je remercie donc tous les collaborateurs



iv

de cette entreprise avec qui j’ai pu avoir de très nombreux échanges :
Ralph Coleman, Michel Mathia, Vincent Very et Max Bögli.

J’espère enfin que cette thèse ne comporte pas trop d’erreurs
d’anglais. En tous les cas, de nombreuses erreurs ont pu être évitées
grâce à la relecture attentive d’Ale. Un grand merci pour tout ce
temps investi !

Si ce travail a pu se réaliser sans aucune tracasserie administra-
tive, c’est grâce au soutien du secrétariat. Merci donc à Marie-Claire,
Ruth, Francine, Homeira et Sol.

Ces années ont passé à une vitesse folle, ceci grâce à l’excellente
atmosphère qui a toujours régné au labo. Merci donc à tous mes
collègues pour ces très bons moments. Un merci tout particulier à
Basile, Damien, Daniel, Klaske, Philippe, Pierre, Sylvain et Yvan.
Si le temps a paru si court c’est aussi grâce à mes amis de l’EPFL
avec qui j’ai partagé mes pauses de midi, mais surtout les apéros du
vendredi soir. Merci donc à Ben, Nico, André, Fabien, Steve, Pierrick
et Pascal.

Merci enfin à Christophe, mon collègue et ami pour les nom-
breuses discussions sur les mille et une façons de rénover une maison.
Merci à Sébastien avec qui j’ai partagé le bureau quelque temps dans
une très bonne atmosphère mais surtout avec qui j’ai partagé la folle
aventure de la patrouille.

Un grand merci également à Mark mon collègue de bureau, ami et
compagnon de rando avec qui j’ai partagé de très bons moments. J’es-
père que l’on aura encore l’occasion d’en partager beaucoup d’autres
ensemble.

Durant ces années, je me suis également découvert une nouvelle
passion : le ski de randonnée et ceci grâce à Gorka. Merci beaucoup
au petit Basque pour l’initiation et pour toutes les sorties organisées.
L’aventure de la patrouille restera gravée à jamais dans ma mémoire !
J’espère que l’on pourra encore vivre dans l’avenir d’autres aventures
fortes !

Finalement je tiens à remercier de tout coeur Annick pour le
soutien qu’elle m’a apporté durant toute la thèse et plus particuliè-
rement pour la patience qu’elle a eue ce dernier hiver lorsque mon



v

temps était principalement consacré à la rédaction de thèse, aux joies
du ski et à la rénovation de la maison.





Abstract

In this thesis, a new framework to design controllers in the frequency
domain is proposed. The method is based on the shaping of the open-
loop transfer function in the Nyquist diagram. A line representing
a lower approximation for the crossover frequency and a line repre-
senting a new linear robustness margin guaranteeing lower bounds for
the classical robustness margins are defined and used as constraints.
A linear programming approach is proposed to tune fixed-order lin-
early parameterized controllers for stable single-input single-output
linear time-invariant plants. Two optimization problems are pro-
posed and solved by linear programming. In the first one, the new
robustness margin is maximized given a lower approximation of the
crossover frequency, whereas in the second one, the closed-loop per-
formance in terms of load disturbance rejection, output disturbance
rejection and tracking is maximized subject to constraints on the
new robustness margin. The method can directly consider multi-
model systems. Moreover, this new framework can be used directly
with frequency-domain data. Thus, it can also consider systems with
frequency-domain uncertainties.

Using the same framework, an extension of the method is pro-
posed to tune fixed-order linearly parameterized gain-scheduled con-
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trollers for stable single-input single-output linear parameter varying
plants. This method directly computes a linear parameter varying
controller from a linear parameter varying model or from a set of
frequency-domain data in different operating points and no interpo-
lation is needed. In terms of closed-loop performance, this approach
leads to extremely good results. However, the global stability cannot
be guaranteed for fast parameter variations and should be analyzed
a posteriori.

Nevertheless, for certain classes of switched systems and linear
parameter varying systems, it is also possible to guarantee the sta-
bility within the design framework. This can be accomplished by
adding constraints based on the phase difference of the characteris-
tic polynomials of the closed-loop systems.

This frequency-domain methodology has been tested on numer-
ous simulation examples and implemented experimentally on a high-
precision double-axis positioning system. The results show the effec-
tiveness and simplicity of the proposed methodologies.

Keywords: robust controller; gain-scheduled controller; linear pro-
gramming; Nyquist diagram; frequency-domain data; quadratic sta-
bility.



Résumé

Dans cette thèse, une nouvelle méthodologie est proposée afin de
synthétiser des régulateurs dans le domaine fréquentiel. La méthode
est basée sur le façonnage de la fonction de transfert en boucle ou-
verte dans le diagramme de Nyquist. Une droite représentant une
approximation inférieure de la fréquence de croisement et une droite
représentant une nouvelle marge linéaire de robustesse garantissant
des bornes inférieures pour les marges de robustesse classiques sont
définies et utilisées comme contraintes. Une approche par program-
mation linéaire est proposée afin de synthétiser des régulateurs linéai-
rement paramétrisés d’ordre fixe pour des systèmes linéaires, stables,
monovariables et stationnaires. Deux problèmes d’optimisation sont
proposés et résolus par programmation linéaire. Dans le premier, la
nouvelle marge de robustesse est maximisée pour une approximation
inférieure de la fréquence de croisement donnée, alors que dans le
deuxième, la performance en boucle fermée en termes de rejet de per-
turbations et d’asservissement est maximisée avec des contraintes sur
la nouvelle marge de robustesse. La méthode peut directement consi-
dérer des systèmes multi-modèles. De plus, cette nouvelle méthodo-
logie peut être directement utilisée avec des données fréquentielles.
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Ainsi, elle peut aussi considérer des systèmes avec des incertitudes
fréquentielles.

En utilisant la même méthodologie, une extension est proposée
afin de synthétiser des régulateurs linéairement paramétrisés à gains
programmés d’ordre fixe pour des systèmes linéaires, stables, mono-
variables et à paramètres variants. Cette méthode synthétise direc-
tement un régulateur linéaire à paramètres variants à partir d’un
système linéaire à paramètres variants ou à partir d’un ensemble de
données fréquentielles dans différents points de fonctionnement et
ceci sans qu’aucune interpolation ne soit nécessaire. Cette approche
donne d’excellents résultats en terme de performance en boucle fer-
mée. Cependant, la stabilité globale n’est pas garantie pour des va-
riations rapides des paramètres et devrait être analysée a posteriori.

En revanche, pour certaines classes de systèmes à structure va-
riable et de systèmes linéaires à paramètres variants, il est aussi pos-
sible de garantir la stabilité en utilisant la même méthodologie. Cela
peut être accompli en ajoutant des contraintes basées sur la différence
de phase des polynômes caractéristiques des systèmes en boucle fer-
mée.

Cette méthodologie basée dans le domaine fréquentiel a été tes-
tée sur de nombreux exemples par simulation et implémentée expéri-
mentalement sur un système de positionnement à deux axes de haute
précision. Les résultats montrent l’efficacité et la simplicité des mé-
thodologies proposées.

Mots-clés : régulateur robuste ; régulateur à gains programmés ;
programmation linéaire ; diagramme de Nyquist ; données fréquen-
tielles ; stabilité quadratique.
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Introduction

1.1 Motivation

The first application of feedback control dates back to about 300 B.C.
with the water clocks. Since this time, more and more systems use
feedback control. Nowadays, automatic control systems are present
everywhere: in cars, in houses, in computers, basically in any modern
device. For this reason, automatic control has been the subject of
many researches since the middle of the 19th century. Numerous
different methods have been proposed and are still proposed to design
the feedback loop of a system automatically.

Despite the large amount of methods and controller structures
available, hand-tuned Proportional-Integral-Derivative (PID) con-
trollers are still used in a lot of applications, because of their ex-
treme simplicity and the intuitive effect of each term of the con-
troller. In many cases, using an automatic design method or another
controller structure could bring improvements in the performances.
However, these more complex methods and controller structures are
not widespread, because they are too complicated and not intuitive
enough to be used by an operator. For example, in the development
stage of a high-precision positioning system, the controllers can be
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computed by engineers using complex control theories. Once the sys-
tem is used in the production line, some adjustments of the param-
eters of the controller always need to be done because, for example,
of changes in dynamics due to ageing of components or because of
changes of the task. If the method used is too complicated, the oper-
ator cannot do it himself. Consequently, the presence of an engineer
is required giving rise to a cost increase.

In order to have a method easily implementable on a real system
and applicable by an operator, there are a few points that should be
considered. First of all, measurement-based methods are easier to
use than model-based methods. It means that, if possible, the con-
trollers should be computed using directly data in the time domain
or frequency domain. Building physical models of systems based on
first principles is complex and time consuming, in addition to be-
ing source of many errors. Furthermore, identifying and validating
control-oriented parametric models based on the measurements is a
non-trivial effort requiring iterative procedures. Moreover, the mis-
match between the plants and the parametric models can sometimes
lead to poor performance.

Secondly, the method should compute controllers such that the
closed-loop systems are robust with respect to uncertainties, dis-
turbances and noise that are always present. Thus, it should be
possible to design controllers to get closed-loop systems with a cer-
tain level of robustness. Moreover, closed-loop systems should fulfil
some performance requirements in terms of bandwidth, disturbance
rejection time, steady state errors, etc. The frequency domain offers
several ways to measure these robustness and performance require-
ments. For example, robustness can be measured by gain, phase
and modulus margins. Therefore, the method should preferably be
frequency-domain based.

Thirdly, it would be interesting to have a method capable of de-
signing controllers for systems having multi-model uncertainties. Of-
ten, systems have dynamics slightly changing for different operating
points. This kind of changes can be expressed by multi-model un-
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certainties. Only a few methods are available that consider this type
of uncertainties.

Finally, it should be possible to design fixed-order controllers. As
the controllers have to be implemented on computers with limited
amount of memory and limited amount of computing power, the or-
der of the controllers cannot be too large. Often, methods compute
controllers having at least the same order as the plant models. Al-
though techniques exist to reduce the order of the controllers once the
design is finished, by fixing the order of the controllers beforehand,
the number of steps needed for the design is reduced.

To sum up, in order to be appropriate for the industry, a method
to design controllers should preferably be measurement-based, work
in the frequency domain, be able to deal with multi-model uncer-
tainties and design fixed-order controllers.

1.2 State of the Art

The work reported in this thesis gives contributions in the three fol-
lowing domains: controller design based on frequency-domain data,
gain-scheduled controller design and quadratic stability conditions.
The following sections present separately the state of the art of each
one of these subjects.

1.2.1 Frequency-domain data-based methods

The first controller design method based on frequency-domain data
can be found at the beginning of the years 1940 with the Ziegler-
Nichols method [45]. This method proposes to measure the critical
gain and critical oscillation period of systems in closed-loop, which
are then used to calculate the parameters of PID controllers by means
of some empirical formulas. This method, while being appreciated
by its simplicity, often leads to poor results in terms of robustness
and performance. Therefore, some methods propose to reformulate
the Ziegler-Nichols tuning rules [17].
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In order to measure the critical gain and critical oscillation pe-
riod, the system must be brought to the limit of stability, which is
a difficult task. In [22] a method is proposed to measure the crit-
ical gain and critical oscillation period automatically using a relay.
This method is commonly called the standard relay method. Thus,
automatic tuning of controllers can be realized. The standard re-
lay method measures only one frequency point, which is sometimes
not enough to fulfil the requirements for complex systems. Different
enhancements of the standard relay method are proposed to mea-
sure more than one frequency point [4, 41]. For example, in [16],
it is proposed to measure the gain and phase margins, but also the
infinity-norm of the sensitivity function and complementary sensitiv-
ity function using a relay. A frequency criterion is defined based on
these measured values. Then, a controller minimizing this frequency
criterion is computed iteratively using the Gauss-Newton algorithm.
The problem is that an initial controller is needed. Moreover, this
optimization problem is not convex. Therefore, there is no guarantee
about the convergence of the criterion to the global optimum.

Given that all the above mentioned methods are based on a few
number of frequency points, they often lead to poor results in case of
complex systems having resonances. Non-parametric models of sys-
tems based on frequency-domain data contain many points on a wide
range of frequencies and are easily obtained. A method that exploits
either non-parametric or parametric models is the one proposed by
Bode [5]. This well-known method, contained in all classical text-
books, proposes a graphical powerful tool based on the Bode plots
to analyze and design control systems.

Another method, called the Quantitative Feedback Theory (QFT)
[19] also offers the possibility to compute controllers with robust
performance using frequency-domain data or transfer functions with
parametric or non-parametric uncertainty models. QFT is based on
the translation of robust performance specifications and uncertainty
models into so-called QFT bounds. These bounds, displayed on a
Nichols chart, serve as a guide for shaping the nominal loop trans-
fer function. Nevertheless, the success of the design depends on the
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experience of the user. In order to avoid these problems, some auto-
matic loop-shaping methods have been proposed [9,43,46]. In [9] for
example, it is proposed to convert the open-loop QFT bounds into
closed-loop QFT bounds and to transform them such that they can
be written using linear inequalities. A controller is then automati-
cally tuned by linear programming. The drawback of this method is
that the closed-loop poles have to be fixed a priori. It is therefore
impossible to use it to address multi-model problems.

Other methods have been proposed for tuning controllers based
on frequency-domain data. An example of the last is [25], where
a method for digital PID and first order controller synthesis is de-
veloped. In this method all stabilizing controllers are determined
using only frequency-domain data. In [11], a method using a sam-
pled version of the H∞ and H2 problems is proposed in order to
perform optimal controller synthesis using non-parametric models.
The Youla parameter is introduced to convexify the problem and
map the set of stabilizing controllers onto the set of stable transfer
functions. The main innovation presented in this paper is to pro-
pose relations on the frequency response coefficients of the Youla
parameter in order to guarantee both stability and causality using
Cauchy’s residue theorem. This method can unfortunately not treat
multi-model cases.

To the best of our knowledge, no other significant method using
directly frequency-domain data exists. In contrast, there exist a lot
of frequency-domain methods using parametric models including, for
example, the H2 and H∞ methods [44].

1.2.2 Gain-scheduling methods

In the case of some mechatronic systems, such as the double-axis
positioning system studied in this thesis, the dynamics changes as
a function of some scheduling parameters. Often, these changes are
neglected and robust model-based or data-based controllers are de-
signed. Nowadays, systems are required to be more and more accu-
rate, it is therefore no longer possible to neglect changes in dynamics.
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Instead, it is interesting to take those directly into account by making
the controllers dependent on the scheduling parameters in order to
improve the perfomances. The corresponding synthesis procedure is
commonly referred as gain-scheduling (see the survey papers [29,36]).
Basically two classes of methods can be distinguished: the classical
gain-scheduling methods and the direct Linear Parameter Varying
(LPV) controller design methods.

The classical gain-scheduling methods proceed in two steps. First,
a finite grid of operating points is chosen within the whole range of
operating points and a controller is designed for each of these se-
lected operating points based on the local model. An interpolation
between the controllers is subsequently made in order to get a gain-
scheduled or LPV controller. Usually, the gain-scheduled controller
is obtained by interpolation between the parameters of the local con-
trollers. However, different methods exist. For example in [34] an
affine interpolation between the poles, zeros and gains of the local
controllers is made, resulting in an affine state-space representation
of the LPV controller. Classical gain-scheduling methods give good
closed-loop performance and are simple to use; no LPV model is
needed; controllers can be designed easily using for example a clas-
sical loop-shaping method; the implementation of the controller is
straightforward. The major drawback lies in the fact that the global
stability of the closed-loop system is not always assured, in particular
for fast variations of the scheduling parameters.

Direct LPV controller design methods are based on LPV mod-
els. These approaches are different from the classical gain-scheduling
methods since they involve the direct synthesis of a controller rather
than its construction from a family of local linear controllers designed
by Linear Time-Invariant (LTI) methods. The direct methods can
be divided into two main categories: methods using a small-gain
Linear Fractional Transformation (LFT) approach [2] and methods
using a Lyapunov-based approach [3]. The major advantage of these
methods is that they assure the global stability of the closed-loop
system. Unfortunately, they are more conservative than the classical
gain-scheduling methods, leading to poorer closed-loop performance.
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Moreover, as mentioned in [42], they are often affected by numerical
conditioning and by practical implementation problems.

1.2.3 Quadratic stability conditions

As explained above, Lyapunov-based approaches are often used to
guarantee global stability of LPV systems when designing the con-
trollers or to analyze it after the design. These approaches use either
quadratic Lyapunov functions or parameter-dependent quadratic
Lyapunov functions to take into account the maximum rate of vari-
ation of the scheduling parameters and thus reduce conservatism.
The quadratic stability of switched systems is guaranteed or ana-
lyzed similarly (see the survey papers [31,32]). Several methods pro-
pose conditions to guarantee the existence of a Common Quadratic
Lyapunov Function (CQLF). For example, in [30], a condition based
on the Lie algebra is proposed. Namely, the switched systems are
stable if the associated matrix Lie algebra is solvable. In [37], alge-
braic conditions are derived for the existence of a CQLF for a finite
number of stable second-order LTI systems. Unfortunately, none of
these methods are frequency-domain based.

1.3 Organization and Contributions of the Thesis

A new framework to design controllers in the frequency domain is
presented in Chapter 2. This new framework is based on the shaping
of the open-loop transfer function in the Nyquist diagram by linear
programing. First of all, it is shown that, by using a linearly parame-
terized controller, every point of the open-loop transfer function can
be written as a linear function of the controller parameters in the
Nyquist diagram. Then, it is observed that optimization methods
with constraints on the classical robustness margins (the gain, phase
and modulus margins) lead to nonconvex optimization problems [21].
In order to avoid this disadvantage, a new linear robustness margin
represented by a line is defined to replace the classical robustness
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margins. For the same reason, the crossover frequency is replaced
by a line corresponding to its lower approximation. Using the new
robustness margin and the lower approximation of the crossover fre-
quency as constraints, optimization problems using linear program-
ming are defined to design fixed-order linearly parameterized con-
trollers. The first optimization problem proposes to maximize the
new robustness margin while the second proposes to maximize the
closed-loop performance in terms of load disturbance rejection, out-
put disturbance rejection and tracking. The method is able to di-
rectly consider multi-model systems. Moreover, this new framework
can be used directly with frequency-domain data, which is a clear
advantage. Consequently, it also allows to consider systems with
frequency-domain uncertainties.

A large class of nonlinear systems has dynamics varying as a func-
tion of some scheduling parameters and thus belongs to the class of
LPV systems. For this reason, an extension of the framework to de-
sign gain-scheduled controllers for LPV systems is very useful and
is proposed in Chapter 3. Once again, the key idea is to design
a linearly parameterized gain-scheduled controller. With this pa-
rameterization, every point of the open-loop transfer function can
be written as a linear function of the controller parameters in the
Nyquist diagram. Therefore, all the concepts defined in Chapter 2
can be used to design gain-scheduled controllers. The method either
needs frequency-domain data in different operating points or LPV
models.

So far, quadratic stability when designing controllers for multi-
model systems or global stability when designing gain-scheduled
controllers for LPV systems are not considered. These two sub-
jects are addressed in Chapter 4. First of all, a theorem making
the link between quadratic stability and Strictly Positive Realness
(SPRness) properties is established. Subsequently, SPRness proper-
ties are transformed into linear constraints in the Nyquist diagram.
These new constraints allow quadratic stability of switched systems
composed of up to three subsystems and certain classes of LPV sys-
tems to be guaranteed. It should be noted that, in order to guarantee
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quadratic stability, parametric models of the systems are absolutely
necessary.

In Chapter 5, the new framework is used to design controllers for a
real industrial system that is a high-precision double-axis positioning
system. First of all, a robust controller is designed. A gain-scheduled
controller is then designed to improve the robustness margin. The
results obtained prove that this new method is easily applicable on
a real system.

Finally, Chapter 6 concludes the manuscript and gives a number
of perspectives associated to the design framework developed in this
thesis.

It should be noted that, in Chapters 2, 3 and 4, the theory
is developed for continuous-time models. However, the proposed
approach can also be applied to discrete-time models straightfor-
wardly.





2

Frequency-Domain Robust Controller

Design by Linear Programming

2.1 Introduction

In this chapter, a new framework for designing controllers is pre-
sented, based on the shaping of the open-loop transfer function in
the Nyquist diagram. The idea is to use the advantages provided
by the Nyquist diagram to propose a new method that is easy to
use and easy to implement. The above mentioned advantages are
the simplicity of interpreting the classical robustness margins and
the crossover frequency. Unfortunately, if these robustness and per-
formance specifications are used as constraints to design controllers,
they lead to nonconvex optimization problems. Consequently, they
are replaced by lines, corresponding to lower bounds on these specifi-
cations, in order to use them as constraints in optimization problems
solved by linear programming.

This chapter is organized as follows: in Section 2.2 the class of
models, controllers and the control objectives are defined. Section
2.3 introduces a new linear stability margin, a lower approximation
for the crossover frequency and presents the linear optimization prob-
lems. Simulation results are given in Section 2.4. Finally, Section
2.5 gives some concluding remarks.
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2.2 Preliminaries

2.2.1 Plant model

The class of LTI Single-Input Single-Output (SISO) systems with no
pole in the Right Half-Plane (RHP) is considered. It is assumed that
a set of non-parametric models in the frequency domain is available.
This set can be obtained either by spectral analysis from several iden-
tification experiments at different operating points or from paramet-
ric models in the form of rational transfer functions with pure time
delay. It is supposed that the dynamics of the system is captured by
a finite number of frequency points N . The number of models in the
set is m and so the model set can be represented by:

M = {Gi(jωk) | k = 1, . . . , N ; i = 1, . . . , m} (2.1)

2.2.2 Controller parameterization

The class of linearly parameterized controllers is considered:

K(s) = ρT φ(s) (2.2)

where:

ρT =
[

ρ1 ρ2 . . . ρnp

]

(2.3)

φT (s) =
[

φ1(s) φ2(s) . . . φnp
(s)

]

(2.4)

np is the number of controller parameters and φi(s), i = 1, . . . , np

are rational basis functions with no RHP pole. With this parame-
terization, every point on the Nyquist diagram of K(jω)Gi(jω) can
be written as a linear function of the controller parameters ρ:

K(jωk)Gi(jωk) = ρT φ(jωk)Gi(jωk) = ρTRi(ωk)+jρTIi(ωk) (2.5)

where Ri(ωk) and Ii(ωk) are respectively the real and the imaginary
part of φ(jωk)Gi(jωk).
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It should be mentioned that PID controllers are a special case of
this parameterization with for example:

ρT =
[

Kp Ki Kd

]

(2.6)

φT (s) =
[

1 1
s

s
1+Tf s

]

(2.7)

where Tf (supposed to be known) is the time constant of the filter
applied to the derivative term.

2.2.3 Design specifications

Optimizing load disturbance rejection is considered as the desired
performance for the closed-loop system. In general, in order to re-
ject low frequency disturbances, the controller permanent gain at
low frequencies must be maximized. For a rational continuous-time
controller of order nc with fixed denominator R(s),

K(s) =
knc

snc + . . . + k1s + k0

R(s)
(2.8)

this corresponds to maximizing k0. According to (2.2) , k0 is a
linear combination of the parameters of the linearly parameterized
controller:

k0 =

np
∑

i=1

γiρi (2.9)

where γi are the coefficients of the linear combination which depend
on the basis functions φi(s). For the particular case of the denomi-
nator containing only one integrator, maximizing k0 corresponds to
minimizing the Integrated Error (IE) defined by:

IE =

∫

∞

0

e(t)dt (2.10)

where e is the error between the reference and the output of the
plant. This can be proved by assuming that in (2.8) R(s) = sR′(s)
where:
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R′(s) = 1 + r1s + . . . + rnc−1s
nc−1. (2.11)

Then, the control law becomes:

u(t) + r1
du(t)

dt
+ . . . + rnc−1

d(nc−1)u(t)

dt(nc−1)
=

k0

∫

∞

0

e(t)dt + k1e(t) + . . . + knc

d(nc−1)e(t)

dt(nc−1)
(2.12)

where u is the control signal. Furthermore, it is assumed that the
error is initially zero (e(0) = 0) and that a unit step disturbance is
applied at the process input. Since the closed-loop system is stable
and has integral action, the control error will go to zero at infinity
(e(∞) = 0). Thus:

u(∞) − u(0) = k0

∫

∞

0

e(t)dt (2.13)

Since the disturbance is applied at the process input, the change in
control signal is equal to the change of the disturbance:

u(∞) − u(0) = 1 (2.14)

Using (2.13) and (2.14), IE becomes:

IE =
1

k0
(2.15)

Thus, if k0 is maximized, the integrated error IE is minimized. For
the special case of a PID controller, k0 corresponds to Ki. As a result
maximizing Ki corresponds to minimizing IE. It should be mentioned
that IE is a good approximation of the Integrated Absolute Error
(IAE) for well-damped systems.

It should be noted that by maximizing k0 not only the IE of the
load disturbance rejection is minimized but also the IE of the out-
put disturbance rejection and the IE of the tracking. The IE of the
output disturbance rejection and the IE of the tracking can be good
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approximations of, respectively, the IAE of the output disturbance
rejection and the IAE of the tracking since, in these cases, the oscil-
lations can be decreased by increasing the modulus margin. Thus,
by maximizing the low frequency gain of the controller, the load dis-
turbance rejection, the output disturbance rejection and the tracking
are improved.

The crossover frequency ωc and the robustness margins (gain,
phase and modulus margins) are also design specifications.

2.3 Controller Design by Linear Programming

The classical robustness indicators such as the gain, phase and mod-
ulus margins as well as the performance indicator, the crossover
frequency ωc, are nonlinear functions of the controller parameters.
Moreover, the optimization methods with constraints on these val-
ues lead to nonconvex optimization problems [21] and cannot be
solved efficiently. In this section, a new stability margin together
with a lower approximation for the crossover frequency will be de-
fined. This lead to linear constraints for the optimization problems
in which robustness and/or performance are maximized. These opti-
mization problems can be solved efficiently by a linear programming
approach.

For sake of simplicity, the optimization problems will be defined
for one model. In the multi-model case, only the number of con-
straints must be increased by a factor m and the problems can still
be solved by linear programming.

2.3.1 Linear robustness margin

Let us consider a straight line d1 in the complex plane crossing the
negative real axis between 0 and -1 with an angle α ∈ (0◦, 90◦] (see
Fig. 4.2). The new linear stability margin ℓ ∈ (0, 1) is the distance
between the critical point −1 and d1 where it crosses the negative real
axis. If the Nyquist curve of the open-loop transfer function lies on
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-1-1

Ml

Φl

d1

α

ℓ Re

Im

Fig. 2.1. New linear margin ℓ with respect to the classical robustness
margins. The lower bounds for the phase and modulus margins are Φl and
Ml respectively.

the right side of d1, the following lower bounds on the conventional
robustness margins are ensured (see Fig. 4.2):

Gm ≥ 1

1 − ℓ
(2.16)

Φm ≥ Φl = arccos
(

(1 − ℓ) sin2 α + cosα

√

1 − (1 − ℓ)2 sin2 α

)

(2.17)

Mm ≥ Ml = ℓ sin α (2.18)

where Gm, Φm and Mm are respectively the gain, phase and modu-
lus margins [27] and Φl and Ml respectively the lower bounds for the
phase and modulus margins. For a fixed value of α, all lower bounds
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are increasing functions of the new margin ℓ. Therefore, ℓ can be
used as a measure of robustness and can be maximized to optimize
the robustness of the system. On the other hand, for a fixed value of
ℓ, the phase and modulus margins increase with increasing α. As the
modulus margin increases, the maximum of the sensitivity function
decreases and consequently the system becomes better damped, but
the bandwidth may decrease. This is due to the Bode sensitivity
integral relation also called the area formula [12]. Thus, α can pos-
sibly be used as a design variable for tradeoff between the damping
and the bandwidth of the closed-loop system. If two of the three
conventional margins are given, it is easy to find the corresponding
values for the linear margin. For example, if the gain margin must
be equal to 3 and the modulus margin equal to 0.6, (2.16) imposes ℓ
= 0.66 and (2.18) imposes α = 64.16◦. Generally, the typical values
for the gain, phase and modulus margins are respectively between 2
and 5, 30◦ and 60◦ and 0.5 and 0.77 [39]. Using (2.16), the above
mentioned values lead to a typical value of ℓ between 0.5 and 0.8. If
the same values are used in (2.17) and (2.18), a typical value of α
between 37◦ and 90◦ is obtained.

2.3.2 Lower approximation of the crossover frequency

Let us consider another straight line d2 in the complex plane tangent
to the unit circle centered at the origin which crosses the negative
real axis with an angle β. The part of d2 between d1 and the imag-
inary axis is a linear approximation of the unit circle in this region.
Now, assuming that the open-loop Nyquist curve intersects d2 at a
frequency called ωx; it is clear from Fig. 2.2 that the crossover fre-
quency ωc is always greater than or equal to ωx. Hence, ωx which is a
lower approximation of the crossover frequency can be used as a mea-
sure of the time-domain performance (i. e. greater ωx means faster
disturbance rejection and smaller rise time for tracking response).
In order to prevent the Nyquist curve approaching the critical point
from the left side at frequencies lower than ωx, β should be chosen
such that:
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β ≤ arcsin(
1

ℓ + 1
) (2.19)

in order to prevent deterioration of the gain margin assured by d1

and:
β ≤ arcsin(1 − ℓ sinα) (2.20)

in order to prevent deterioration of the modulus margin assured by
d1. For example if ℓ is equal to 0.6 and α to 60◦, β should be smaller
than 28.71◦.

β

ωx

ωc

d1

d2

α

II

III

IV

I

ℓ Re

Im

-1

Fig. 2.2. Linear constraints for robustness and performance, with four
regions: I, II, III and IV. The crossover frequency and the lower approxi-
mation of the crossover frequency are respectively ωc and ωx.
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2.3.3 Optimization for robustness

Before explaining the optimization problem, it should be noted that
the number of integral terms in the open-loop transfer function L(s)
determines where the low frequency points of L(s) are located. For
instance, if L(s) contains two integral terms, the low frequency part
of the Nyquist diagram will be located in region III (see Fig. 2.2).
The number of integral terms will determine the constraints of the
optimization problem.

In this subsection, it is supposed that a desired crossover fre-
quency ωc is given and the objective is to find the best controller in
terms of the robustness margins. The design variables for the opti-
mization problem are ωx, α and β. In order to guarantee an achieved
crossover frequency greater than the desired one, ωx is chosen equal
to ωc. As explained in Subsection 2.3.1, α is generally chosen be-
tween 37◦ and 90◦ depending on the control objective. In order to
have a good linear approximation of the unit circle β = 30◦ can be
chosen (care should be taken to respect the inequalities (2.19) and
(2.20)).

The design method is the same whether the open-loop transfer
function L(s) contains one or two integrators. The Nyquist diagram
of L(jω) at very low frequencies is located in region III or IV (de-
pending on the number of integrators in L(s)) whereas at very high
frequencies it is located in region I (see Fig. 2.2). In order to ensure
a certain distance from the critical point, the Nyquist curve should
not enter region II. On the other hand, the Nyquist curve necessarily
intersects d2 at ωx. As a result, the open-loop Nyquist curve L(jω)
should lie in either region III or IV for frequencies less than ωx and
in region I for frequencies larger than ωx. Thus, the following linear
optimization problem is considered:
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max
ρ

ℓ

Subject to:

ρT (cotα I(ωk) −R(ωk)) + ℓ ≤ 1 for ωk > ωx (2.21)

ρT (cosβ I(ωk) + sin β R(ωk)) > −1 for ωk > ωx

ρT (cosβ I(ωk) + sin β R(ωk)) ≤ −1 for ωk ≤ ωx

The first line corresponds to the constraint that the Nyquist curve
has to be below d1 for ωk > ωx, the second line corresponds to the
constraint that the Nyquist curve has to be above d2 for ωk > ωx and
the third line corresponds to the constraint that the Nyquist curve
has to be below d2 for ωk ≤ ωx.

This optimization problem leads to the controller parameters that
cancel the integral term if there is any in the controller (reducing the
integral action increases the robustness of the closed-loop system).
Therefore, in order to preserve the integral effect of the controller,
for example in a PID controller, an additional constraint Ki > Kmin

can be added.

2.3.4 Optimization for performance

Another control objective is to consider some constraints for the ro-
bustness margins and optimize the closed-loop performance in terms
of the load disturbance rejection, the output disturbance rejection
and the tracking. The last can be achieved by maximizing k0 (Ki for
PID controllers) which also leads to minimizing the integrated error
IE for the controller containing one integrator. The design variables
are limited to the linear robustness margin ℓ and α. When L(s) con-
tains only one integrator, the open-loop Nyquist curve should lie in
region I or IV, thus a simple optimization problem can be defined as
follows:
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max
ρ

k0

Subject to:

ρT (cotα I(ωk) −R(ωk)) + ℓ ≤ 1 ∀ωk

(2.22)

For the case of two integrators in L(s), the constraints should
be modified such that L(jω) at low frequencies can be located in
region III. This can be obtained using a straight line on the complex
plane. The line d2 can be used again to divide the complex plane in
four regions. Once again β should be chosen in order to respect the
inequalities (2.19) and (2.20). The optimization problem can then
be formulated as:

max
ρ

k0

Subject to:

ρT (cotα I(ωk) −R(ωk)) + ℓ ≤ 1 for ωk > ωx (2.23)

ρT (cosβ I(ωk) + sin β R(ωk)) ≤ −1 for ωk ≤ ωx

where ωx is this time a lower bound for the crossover frequency rather
than a lower approximation, as it can be located anywhere in region
IV, and not necessarily at the intersection with d2. A good choice
for ωx, in this case, is the open-loop bandwidth.
Remarks:

• The robustness and performance can be optimized simultaneously
with a mixed criterion in the form of:

max
ρ

k0 + λ ℓ (2.24)

where λ is a weighting factor to be chosen.
• The case of three integrators in L(s) will be studied when the

application is considered (see Chapter 5).
• The approach proposed to design controllers does not take into

consideration the input sensitivity function U(s):
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U(s) =
K(s)

1 + K(s)G(s)
(2.25)

It is therefore possible that the control input becomes too large
when the closed-loop bandwidth is chosen much greater than the
open-loop bandwidth. Two possibilities exist to solve this prob-
lem:
– Filter the reference signal with a first order filter of the form

1/(1+Ts) in order to take out the high frequency part of the
signal.

– Introduce additional constraints to prevent the input sensitiv-
ity function from being too large at high frequencies. Let us
first suppose that K(s)G(s) is much smaller than 1 at high
frequencies. Then, in order to limit U(s) at high frequencies,
additional constraints can be introduced to limit the magni-
tude of K(s). To keep the method linear, the constraints are
added on the real and imaginary parts of K(s) instead of on
its magnitude:

−Ku < ρTRφ(ωk) < Ku for ωk > ωu

−Ku < ρTIφ(ωk) < Ku for ωk > ωu
(2.26)

where Rφ(ωk) and Iφ(ωk) are respectively the real and the
imaginary part of φ(jωk). Ku is the limit of the absolute
value of the real and imaginary part of K(s) and ωu is the
frequencies above which the constraints are applied.

• A lower bound for the modulus margin Ml is guaranteed as a
function of the linear robustness margin ℓ that is used as a con-
straint. It follows from the circle criterion [26] that the closed-
loop system will remain stable with a static nonlinearity in the
loop, provided that the nonlinearity is bounded by two straight
lines with slopes 1/(1 + Ml) and 1/(1 − Ml). In the special case
of a vertical new linear stability margin (α = 90◦), the nonlin-
earity has to be bounded by two straight lines with slopes 0 and
1/(1 − ℓ).
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2.4 Simulation Results

The design method is tested on two different examples taken from [35]
to illustrate its properties.

2.4.1 System with delay

Let us consider the following parametric plant model:

G1(s) =
1

(s + 1)3
e−5s (2.27)

This model captures typical dynamics with long dead time encoun-
tered in the process industry. Different PID controllers are designed
and compared with those obtained with the method proposed by [35].
Panagopoulos’ method is chosen to make the comparison, since it
also designs PID controllers by optimizing the load disturbance re-
jection with constraints on the modulus margin. The particular-
ity of Panagopoulos’ method is that it uses a set point weight and
also filters the reference signal with a first-order filter. To do a fair
comparison between these two methods, the first-order filter used in
Panagopoulos’ method is also used in the proposed method.

It should be noted that the Ziegler-Nichols’ method gives very
poor results for this example [39] (pages 145-146). For this reason
this method is not considered in the current comparison.

First of all, the frequency response of G1 is evaluated at N = 8000
equally spaced frequency points between 0 and 80 rad/s. Then PID
controllers are designed for this plant using the optimization problem
(2.22) to optimize the load disturbance rejection. The controller
designed using Panagopoulos’ method has a modulus margin equal
to 0.5. A first controller is designed with ℓ fixed to 0.707 and α to
45◦ to obtain the same specification for the modulus margin. Then
a second controller is designed with ℓ fixed to 0.5 and α to 90◦ to
see the effect of α on the closed-loop responses. The time constant
of the derivative part of the PID controllers Tf is set to 0.1 s.
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The Nyquist plots of the open-loop transfer functions obtained
with the proposed method and with Panagopoulos’ method are
shown in Fig. 2.3. It can be observed that the Nyquist plots obtained
by the proposed method (solid and dashed) respect the constraint
represented by the linear margin. The responses of the closed-loop
systems to a set point change and load disturbance are compared in
Fig. 2.4. It can be seen that for the proposed method with ℓ = 0.707
and α = 45◦, the overshoot of the load disturbance rejection is about
the same as the one obtained with Panagopoulos’ method, but the
response is slower. The tracking response is significantly improved
by the proposed method with ℓ = 0.5 and α = 90◦.

Now, let the control objective be to maximize the robustness of
the closed-loop system at the cost of reducing the crossover frequency
from 0.17 to 0.1 rad/s. The constraints of (2.21) together with the
mixed criterion (2.24) are used. In this approach, four parameters
must be chosen. In order to have a crossover frequency of at least 0.1
rad/s, the lower approximation of the crossover frequency ωx is set
to 0.1 rad/s. To have a well-damped system, α = 60◦ is chosen. To
proceed one can start with β = 20◦ then according to the results this
value can be slightly adapted to respect the inequalities (2.19) and
(2.20). Finally λ is tuned for the tradeoff between robustness and
performance of the load disturbance rejection (for this example λ =
50 is chosen). The Nyquist plots of the open-loop transfer functions
obtained with the proposed method using the mixed criterion and
with Panagopoulos’ method are shown in Fig. 2.5. It can be noticed
that the Nyquist plot obtained by the proposed method satisfies the
constraints imposed by d1 and d2 and leads to a linear margin ℓ of
0.750 and a crossover frequency of 0.1 rad/s. The responses of the
closed-loop systems to a set point change and load disturbance are
compared in Fig. 2.6. Although the robustness is improved, the load
disturbance rejection capability is still acceptable.

For the sake of simplicity of the comparison between these con-
trollers, the details of the designs, the related performances and ro-
bustness achieved are shown in Table 2.1, where ωc stands for the
crossover frequency (in [rad/s]), os for the overshoot (in [%]), ts for
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Fig. 2.3. Nyquist plots of the open-loop transfer functions for G1 (solid:
proposed method with ℓ = 0.5 and α = 90◦, dashed: proposed method
with ℓ = 0.707 and α = 45◦, dashed-dotted: Panagopoulos’ method).

the settling time to 1% (in [s]), IAEs for the integrated absolute er-
ror of the set point change, od for the overshoot (in [%]), td for the
settling time to 1% (in [s]) and IAEd for the integrated absolute error
of the load disturbance.

2.4.2 Non-minimum phase system

Let us consider the following non-minimum phase system:

G2(s) =
1 − 2s

(s + 1)3
(2.28)
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Fig. 2.4. Set point and load disturbance responses for G1 (solid: proposed
method with ℓ = 0.5 and α = 90◦, dashed: proposed method with ℓ =
0.707 and α = 45◦, dashed-dotted: Panagopoulos’ method).

Although a zero in the RHP is uncommon in process control, this
model is considered with the aim of demonstrating the wide applica-
bility of the method.

The first step is to evaluate G2 in N = 8000 equally spaced fre-
quency points between 0 and 80 rad/s. Next two PID controllers
for optimization of the load disturbance rejection are designed us-
ing the same specifications considered for G1. The Nyquist plots of
the open-loop transfer functions obtained with the proposed method
and with Panagopoulos’ method are shown in Fig. 2.7. It can be
observed that the Nyquist plots obtained by the proposed method
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Fig. 2.5. Nyquist plots of the open-loop transfer functions for G1 (solid:
proposed method with the mixed criterion (α = 60◦, β = 20◦, ωx = 0.1
rad/s, λ = 50), dashed: Panagopoulos’ method).

(solid and dashed) respect the constraint represented by the linear
margin. The responses of the closed-loop systems to a set point
change and load disturbance are compared in Fig. 2.8. It can be
seen that for the proposed method with ℓ = 0.707 and α = 45◦,
the overshoot of the load disturbance rejection is once again about
the same as the one obtained with Panagopoulos’ method, but the
response is slower. The tracking response is significantly improved
by the proposed method with ℓ = 0.5 and α = 90◦. To facilitate
the comparison between the different controllers, the details of the
designs are shown in Table 2.2.
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Table 2.1. Properties of the controllers obtained for the system G1.

Method Panagopoulo’s Max Ki Max Ki Max Ki + 50ℓ

method ℓ = 0.707 ℓ = 0.5 α = 60◦

α = 45◦ α = 90◦

Kp 0.555 0.241 0.608 0.263
Ki 0.173 0.127 0.139 0.106
Kd 0.966 0.678 1.039 0.640
Mm 0.50 0.57 0.50 0.66
ωc 0.17 0.12 0.14 0.10
os 21.68 17.83 2.04 7.75
ts 41.70 53.37 30.57 40.52
IAEs 14.21 13.83 9.16 13.00
od 94.50 94.88 94.27 94.92
td 44.31 59.79 37.02 46.95
IAEd 9.10 12.20 7.54 11.38

Table 2.2. Properties of the controllers obtained for the system G2.

Method Panagopoulo’s Max Ki Max Ki

method ℓ = 0.707 ℓ = 0.5
α = 45◦ α = 90◦

Kp 0.542 0.247 0.541
Ki 0.262 0.196 0.208
Kd 0.428 0.278 0.428
Mm 0.50 0.56 0.51
ωc 0.28 0.19 0.23
os 10.19 14.08 0.15
ts 17.71 30.45 12.69
IAEs 7.92 8.09 5.85
od 107.34 97.74 103.02
td 18.94 34.18 16.67
IAEd 6.11 8.23 6.10
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Fig. 2.6. Set point and load disturbance responses for G1 (solid: proposed
method with the mixed criterion (α = 60◦, β = 20◦, ωx = 0.1 rad/s, λ =
50), dashed: Panagopoulos’ method).

In a general way, the proposed method gives about the same
results as Panagopoulos’ method in terms of load disturbance re-
jection. On the other hand, it gives better results in terms of set
point tracking when the design parameters α is increased. Further-
more, this method is easier to implement, since it uses a linear pro-
gramming approach compared to the nonconvex optimisation used
by Panagopoulos’ method.

In these two examples, 8000 frequency points are used. This
shows that the linear programming approach can work with a high
number of constraints. However, it should be noted that the number
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Fig. 2.7. Nyquist plots of the open-loop transfer functions for G2 (solid:
proposed method with ℓ = 0.5 and α = 90◦, dashed: proposed method
with ℓ = 0.707 and α = 45◦, dashed-dotted: Panagopoulos’ method).

of frequency points could be drastically reduced without changing
the results.

The proposed method has been tested on two simple examples
to show clearly how it works. However, it should be noted that, in
Chapter 5, the method will be applied to a real application where its
capability to deal with multi-model systems will be highlighted.
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Fig. 2.8. Set point and load disturbance responses for G2 (solid: proposed
method with ℓ = 0.5 and α = 90◦, dashed: proposed method with ℓ =
0.707 and α = 45◦, dashed-dotted: Panagopoulos’ method).

2.5 Conclusions

In this chapter, robust fixed-order controller design is formulated
as a linear optimization problem. The proposed method is based
on frequency loop-shaping in the Nyquist diagram. The classical
robustness and performance specifications are represented as lin-
ear constraints in the Nyquist diagram. Therefore, there are only
a few design variables which are directly related to the robustness
(linear margin ℓ and α) and performance (lower approximation of
the crossover frequency ωx) of the closed-loop systems. The con-
trol objective is to maximize the robustness margin or optimize the
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closed-loop performance in terms of load disturbance rejection, out-
put disturbance rejection and tracking. The method is very simple
and requires only the frequency response of the plants. This fre-
quency response can be obtained either from a parametric model or
directly from frequency-domain data. Multi-model systems or sys-
tems with frequency-domain uncertainties can be taken into account
straightforwardly. The method is very appropriate to design PID
controllers, yet it can also be applied to design higher-order linearly
parameterized controllers in discrete or continuous time with fixed
denominators. Simulation results show that the method can be ap-
plied to systems with large time-delay as well as non-minimum phase
systems.



3

Frequency-Domain Gain-Scheduled

Controller Design by Linear Programming

3.1 Introduction

A large class of nonlinear systems can be represented by a set of linear
models that approximate the dynamics of the systems in different
operating points. The dynamic behavior of such systems varies as
a function of some scheduling parameters. Many electromechanical
systems, such as for example components mounters, H-drives and
electromagnetic levitation systems belong to this class of systems.
For such examples, the scheduling parameter is the position, as their
dynamics change as a function of the position. In order to improve
the performances of these systems, gain-scheduled or LPV controllers
are designed. In these controllers, controller parameters are functions
of the scheduling parameters.

In this chapter, it is proposed to extend the design framework
presented in the last chapter to design gain-scheduled controllers for
this large class of systems. The design is also based on loop-shaping
in the Nyquist diagram, since it is shown that the constraints on the
robustness and performance are linear even with gain-scheduled con-
trollers. This method has two advantages: one is to design directly
gain-scheduled controllers without an interpolation step, the other is
that parametric models are not necessary.
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This chapter is organized as follows: in Section 3.2 the class of
models and controllers are defined. Section 3.3 shows the extensions
of the optimization problems to design gain-scheduled controllers.
Simulation results are given in Section 3.4. Finally, Section 3.5 gives
some concluding remarks.

3.2 Preliminaries

3.2.1 Plant model

The class of SISO LPV systems, varying according to a nθ-dimensional
vector θ of scheduling parameters, is considered. The linear systems
for frozen scheduling parameters are supposed to have no RHP pole.
It is assumed that a set of frequency-domain data is available. This
set is obtained either from an LPV parametric model or by doing
several non-parametric identification experiments for different val-
ues of θ. It is supposed that the dynamics of the system is captured
by a finite number of frequency points N and that a sufficiently large
number m of models is available to have a fine grid with respect to
θ. Then, the set can be presented by:

M = {G(jωk, θl) | k = 1, . . . , N ; l = 1, . . . , m}, (3.1)

where ωk and θl are, respectively, particular values of the frequency
ω and of the scheduling parameters θ.

3.2.2 Controller parameterization

The class of linearly parameterized controllers is considered:

K(s, θ) = ρT (θ)φ(s), (3.2)

where
ρT (θ) =

[

ρ1(θ) ρ2(θ) . . . ρnp
(θ)

]

. (3.3)
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Given that the aim is to design an LPV controller, the controller
parameters depend on θ. Let us assume that ρi(θ) is a polynomial
in θ of order pc, i.e.:

ρi(θ) = (ρi,pc
)T θpc + . . . + (ρi,1)

T θ + (ρi,0)
T
1, (3.4)

where 1 is an nθ-dimensional vector of ones and θk denotes element-
by-element power of k of vector θ. The controller is therefore com-
pletely characterized by the real vectors ρi,pc

, . . ., ρi,1, ρi,0.
As an example, the parameterization of a PID controller depend-

ing on a scalar θ can be expressed as:

ρT (θ) =
[

Kp(θ) Ki(θ) Kd(θ)
]

, (3.5)

φT (s) =
[

1 1
s

s
1+Tf s

]

, (3.6)

where Tf (which is supposed to be known) is the time constant of
the filter applied to the derivative term. The parameters could be
polynomials in θ of order 2:

Kp(θ) = Kp,2θ
2 + Kp,1θ + Kp,0, (3.7)

Ki(θ) = Ki,2θ
2 + Ki,1θ + Ki,0, (3.8)

Kd(θ) = Kd,2θ
2 + Kd,1θ + Kd,0. (3.9)

The parameterization of the controller (see (3.2)) allows us to
write every point on the Nyquist diagram of the open-loop L(jω, θl) =
K(jω, θl)G(jω, θl) as a linear function of the parameters of the vec-
tors ρi,pc

, . . ., ρi,1, ρi,0:

K(jωk, θl)G(jωk, θl) = ρT (θl)φ(jωk)G(jωk, θl)

= ρT (θl)R(ωk, θl) + jρT (θl)I(ωk, θl)

= (Mθ̄l)
TR(ωk, θl) + j(Mθ̄l)

T I(ωk, θl),

(3.10)

where
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M =







(ρ1,pc
)T . . . (ρ1,1)

T (ρ1,0)
T

...
. . .

...
...

(ρnp,pc
)T . . . (ρnp,1)

T (ρnp,0)
T






, (3.11)

θ̄l =
[

θpc

l . . . θl 1
]T

, (3.12)

R(ωk, θl) and I(ωk, θl) are, respectively, the real and the imaginary
parts of φ(jωk)G(jωk, θl).

3.3 Extension to Design Gain-Scheduled

Controllers

Every point of the open-loop L(jω, θl) can be written on the Nyquist
diagram as a linear function of the parameters of the controllers.
Therefore, the same tools as used in Chapter 2 can be used in order to
design gain-scheduled controllers. The LPV plants considered must
have a fixed number of integral terms for all θ, since the number of
integral terms in the open-loop transfer function L(s, θl) determine
the constraints of the optimization problems.

3.3.1 Optimization for robustness

In this subsection, it is supposed that a desired crossover frequency
ωc is given and the objective is to find the best controller in terms
of the robustness margins. The design variables for the optimization
problem are ωx, α and β (see Fig. 2.2). In order to guarantee
an achieved crossover frequency larger than the desired one, ωx is
chosen equal to ωc. The design method is the same whether the
open-loop transfer function L(s, θl) contains one or two integrators.
The Nyquist diagram of L(jω, θl) at very low frequencies is located
in region III or IV and at very high frequencies in region I (see
Fig. 2.2). In order to ensure a certain distance from the critical
point, the Nyquist curve should not enter region II. On the other
hand, the Nyquist curve necessarily intersects d2 at ωx. As a result,
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the open-loop Nyquist curve L(jω, θl) should lie in region III or IV
for frequencies less than ωx and in region I for frequencies greater
than ωx. Consequently, the following linear optimization problem is
considered:

max
M

ℓ

subject to:

(Mθ̄l)
T (cotα I(ωk, θl) −R(ωk, θl)) + ℓ 6 1

for ωk > ωx, l = 1, . . . , m,

(Mθ̄l)
T (cos β I(ωk, θl) + sin β R(ωk, θl)) > −1

for ωk > ωx, l = 1, . . . , m,

(Mθ̄l)
T (cos β I(ωk, θl) + sin β R(ωk, θl)) 6 −1

for ωk 6 ωx, l = 1, . . . , m.

(3.13)

3.3.2 Optimization for performance

Another control objective is to consider some constraints for the ro-
bustness margins and maximize the closed-loop performance in terms
of the load disturbance rejection, the output disturbance rejection
and the tracking. This can be done by maximizing

Kmin = min
l=1,...,m

k0(θl) = min
l=1,...,m

np
∑

i=1

γiρi(θl), (3.14)

which is the minimum of the controller permanent gain at low-
frequency between all the operating points. The design variables
are limited to the linear robustness margin ℓ and α. When L(s, θl)
contains only one integrator, the open-loop Nyquist curve should lie
in region I or IV. Thus a simple optimization problem can be defined
as follows:
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max
M

Kmin

subject to:

(Mθ̄l)
T (cotα I(ωk, θl) −R(ωk, θl)) + ℓ 6 1

∀ωk, l = 1, . . . , m,
np
∑

i=1

γiρi(θl) − Kmin > 0 for l = 1, . . . , m,

(3.15)

For the case of two integrators in L(s, θl), the constraints should
be modified such that L(jω, θl) at low frequencies can be located in
region III. This can be obtained using a straight line in the complex
plane. The line d2 can be used again to divide the complex plane in
four regions. The Nyquist diagram of L(jω, θl) should lie in region I
or IV for the frequencies larger than ωx and in region III or IV for the
frequencies less than ωx. The optimization problem can therefore be
formulated as

max
M

Kmin

subject to:

(Mθ̄l)
T (cotα I(ωk, θl) −R(ωk, θl)) + ℓ 6 1

for ωk > ωx, l = 1, . . . , m,

(Mθ̄l)
T (cosβ I(ωk, θl) + sin β R(ωk, θl)) 6 −1

for ωk 6 ωx, l = 1, . . . , m,
np
∑

i=1

γiρi(θl) − Kmin > 0 for l = 1, . . . , m,

(3.16)

where ωx is this time a lower bound for the crossover frequency rather
than a lower approximation as it can be located anywhere in region
IV, and not necessarily at the intersection with d2.
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3.3.3 LPV parametric model

When a set of non-parametric models is available, the optimization
methods presented above can be directly applied to compute an LPV
controller as the number of models and the number of frequency
points are finite. On the other hand, if an LPV parametric model is
available, the number of models corresponding to different values of
the scheduling parameters and the number of frequency points are
infinite, leading to an infinite number of linear constraints if using the
proposed method. In order to solve this problem, the first step is to
go from an infinite number of frequency points to a finite number of
frequency points by gridding the frequency domain. If the gridding
of the frequency domain is not desired, it is still possible to use
the generalized Kalman-Yakubovich-Popov (KYP) method proposed
in [18] at the cost of more complexity. At this point the number of
constraints is still infinite, since the number of models corresponding
to different values of the scheduling parameters θ is still infinite. This
problem can be solved using two different ways:

• Gridding θ. If the number of parameters in θ is not large, this
approach is feasible since the linear programming method handles
efficiently a very large number of constraints.

• Discretizing θ using a randomized approach [8,13]. This method
allows getting a finite number of constraints. It means that the
solution found satisfies the original set of constraints (infinite
number of constraints) with a certain probabilistic level.

There are two advantages for the use of LPV parametric models:

• One can use a finer grid on the operating points to be sure that
between the identified models the constraints are satisfied.

• The global stability can be analyzed a posteriori as it will be
shown in Chapter 5 or guaranteed within the design framework
as it is explained in the next chapter.
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3.4 Simulation Results

The design method is applied to a system having a resonance whose
frequency changes as a function of a scheduling parameter θ. Con-
sider the following LPV plant model:

G(s, θ) =
ω2

0(θ)

s2 + 2ζω0(θ)s + ω2
0(θ)

, (3.17)

where
ω0(θ) = 2 + 0.2θ, (3.18)

ζ = 0.1, (3.19)

θ ∈ [−1, 1]. (3.20)

This model could represent the dynamics of a mechatronic sys-
tem, where the frequency of the resonance is a function of the moving
mass. The objective is to design a PID controller with the following
structure

K(s) =
Kds

2 + Kps + Ki

s(1 + Ts)
(3.21)

that maximizes the robustness of the closed-loop system with a
crossover frequency of about 3.3 rad/s. This crossover frequency is
chosen because it is about 20% larger than the crossover frequency
of the nominal model (θ = 0) in open-loop.

First, a PID controller is designed for the nominal model using
the optimization problem (2.21). The design variable ωx is specified
at 3.3 rad/s, α at 90◦ and β at 20◦. In order to soften the con-
straints to a certain extent, a tolerance on ωx is used, meaning that
the frequencies near ωx (up to 2.5 %) can be anywhere and not nec-
essarily in region I, III or IV. The time constant T of the filter of
the PID controller is set to 0.1 s. G(s, 0) is evaluated at N = 3000
equally spaced points between 0 and 30 rad/s. The Nyquist plot of
the open-loop transfer function obtained by the design is shown in
Fig. 3.1. It can be observed that the Nyquist plot respects the con-
straints represented by the two lines and leads to a linear margin ℓ of
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0.743. The response of the closed-loop system to a set point change
is shown in Fig. 3.2. It can be seen that the response is satisfactory
(small overshoot). The PID controller obtained by the design for
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Fig. 3.1. Nyquist plot of the open-loop transfer function of the PID con-
troller and the nominal model of G.

the nominal model is the following:

K(s) =
0.8447s2 + 0.2132s + 3.2891

s(1 + 0.1s)
(3.22)

Now, a robust PID controller is designed for the LPV model using
the same design variables. 21 equally spaced discrete values of θ are
taken between -1 and 1. Once again, for each discretized value θl,
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Fig. 3.2. Set point response of the PID controller and the nominal model
of G.

G(s, θl) is evaluated at N = 3000 equally spaced points between 0 and
30 rad/s. No solution is obtained from the optimization problem for
the whole range of θ. A solution is obtained only if θ ∈ [−0.18, 0.18].
This shows the relevance to design a gain-scheduled controller.

Thus, a gain-scheduled PID controller with the following form

K(s, θ) =
1

s(1 + Ts)

[

(Kd,1θ + Kd,0)s
2 + (Kp,1θ + Kp,0)s

+ (Ki,1θ + Ki,0)
]

(3.23)

is designed using the optimization problem (3.13) with the same de-
sign variables. As it can be seen in (3.23), the order pc of the poly-
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nomial in θ describing the parameters of the controller is set to 1. As
before, 21 equally spaced discrete values of θ are taken between -1
and 1 and G(s, θl) is evaluated at N = 3000 equally spaced points be-
tween 0 and 30 rad/s. The gain-scheduled PID controller parameters
are shown in Table 3.1. The Nyquist plots of the open-loop transfer
functions obtained by the design are shown in Fig. 3.3 for three par-
ticular values of θ (-1, 0 and 1). It can be observed that the Nyquist
plots respect the constraints represented by the two lines and lead to
a linear margin ℓ of 0.733. The responses of the closed-loop system
to a set point change using the gain-scheduled PID controller are
shown in Fig. 3.4 for three particular values of θ (-1, 0 and 1). It can
be seen that the responses to a set point change are very good (small
overshoots). The response of the closed-loop system to a set point
change using the PID controller designed for the nominal model is
also shown in Fig. 3.4 for θ = -1. The response is more oscillatory,
which justifies the use of the gain-scheduled controller. Thanks to
the gain-scheduled PID controller, it is possible to have about the
same performances and robustness for different values of θ, which is
not possible using a robust PID controller.

Table 3.1. Parameters of the gain-scheduled PID controller.

Kd,1 Kd,0 Kp,1 Kp,0 Ki,1 Ki,0

-0.1832 0.8825 0.0049 0.2156 -0.1017 3.4154

3.5 Conclusions

In this chapter, gain-scheduled fixed-order linearly parameterized
controller design is formulated as a linear optimization problem. The
proposed method uses the design framework developed in Chapter
2. Thus, it is also based on frequency loop-shaping in the Nyquist



44 3 Gain-Scheduled Controller Design

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

Real axis

Im
ag

in
ar

y 
ax

is

Fig. 3.3. Nyquist plots of the open-loop transfer functions of the gain-
scheduled PID controller and G for θ = -1 (solid), θ = 0 (dashed) and θ

= 1 (dashed-dotted).

diagram. The control objective is either to maximize the robustness
margin with constraint on the lower approximation of the crossover
frequency or to maximize the closed-loop performance with con-
straint on the linear robustness margin. This method requires either
the frequency response of LPV plants in different operating points
or discrete or continuous-time LPV models and needs no interpola-
tion to get the LPV controllers, which constitutes a real advantage,
since the procedure of designing local controllers and interpolating
between them can be very difficult.
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Fig. 3.4. Set point responses of the gain-scheduled PID controller and G

for θ = -1 (solid), θ = 0 (dashed) and θ = 1 (dashed-dotted) compared
to the set point response of the PID controller designed for the nominal
model and G for θ = -1 (dotted).

Simulation results show that the method can compute gain-
scheduled controllers with robustness margins that are unachievable
with classical robust controllers.

This method is better than the classical gain-scheduling methods
since it reduces the number of step needed to design the controllers,
but is similar in the sense that the global stability of the closed-loop
systems is not guaranteed.
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Guaranteeing Quadratic Stability

4.1 Introduction

The method proposed in Chapter 2 can directly compute controllers
for multi-model systems assuring robust stability. Nevertheless, this
frequency-domain method can not be applied to switched systems
because it does not ensure quadratic stability. It means that the
closed-loop systems are stable for anyone of the model belonging to
the systems set as long as this model is fixed during operation. If
the model varies during operation (which is the case for switched
systems), the stability is no longer guaranteed.

The method proposed in Chapter 3 to design gain-scheduled con-
trollers also does not guarantee global stability of the closed-loop
systems. For slow variations of the scheduling parameters, the sys-
tems may be globally stable but, for fast variations of the scheduling
parameters, the systems are certainly not globally stable.

In order to guarantee the quadratic stability of switched sys-
tems or LPV systems, some frequency-domain constraints have to
be added in the Nyquist diagram. To do it, a theorem making the
link between quadratic stability using Lyapunov theory and SPRness
properties is used. Indeed, this theorem shows the link between
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time-domain conditions and frequency-domain conditions to obtain
quadratic stability. This type of analysis needs a parametric model.
So, in this chapter, it is supposed that the parametric models of the
systems are available.

This chapter is organized as follows. In Section 4.2, the quadratic
stability of two systems is studied. First of all, the theorem used
to make the link between time-domain and frequency-domain con-
ditions for quadratic stability is presented. Then, the linear con-
straints to guarantee the quadratic stability of two systems, rising
from this theorem, are presented. Finally, it is proposed to use these
constraints to guarantee the quadratic stability of certain classes of
LPV systems. In Section 4.3, the method is extended to guarantee
the quadratic stability of three systems. Simulation results to show
the effectiveness of the method are given in Section 4.4. Finally,
Section 4.5 gives some concluding remarks.

4.2 Quadratic Stability of Two Systems

4.2.1 Quadratic stability and positive realness

Let a stable monic polynomial of order n be defined as:

c(s) = sn + c1s
n−1 + . . . + cn. (4.1)

We can assign to this polynomial a vector C:

C =
[

c1 c2 . . . cn

]

(4.2)

and a matrix A:

A =















−c1 −c2 . . . −cn−1 −cn

1 0 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0















. (4.3)
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Then the relation between SPRness and the quadratic stability can
be stated in the following theorem, which is directly related to the
equivalence between bounded real lemma and positive real lemma [1].
This result may be known by the experts in the domain. However,
to the best of the author’s knowledge, the way that it is formulated
is new.

Theorem 4.1 Consider c1(s) and c2(s), two stable polynomials of
order n, then the following statements are equivalent:

1.
c1(s)

c2(s)
and

c2(s)

c1(s)
are SPR.

2. | arg(c1(jω)) − arg(c2(jω))| <
π

2
∀ω.

3. A1 and A2 are quadratically stable meaning that:
∃P = PT > 0 ∈ R

n×n such that
AT

1 P + PA1 < 0,
AT

2 P + PA2 < 0.

Proof: (1) ⇔ (2): This equivalence is immediate. It comes
from the definition of SPR transfer function: c1(jω)

c2(jω) is in the RHP, so
−π

2 < arg(c1(jω))− arg(c2(jω)) < π
2 ∀ω. For more details see [20].

(1) ⇒ (3): Consider the transfer function c1(s)
c2(s)

:

c1(s)

c2(s)
= 1 +

c1(s) − c2(s)

c2(s)
. (4.4)

Using a controllable canonical form, (4.4) leads to the following state
space realization:

[

A2 B
C1 − C2 1

]

(4.5)

with B =
[

1 0 . . . 0
]T

.
Using the KYP lemma, (4.5) is SPR iff [40]:

∃P = PT > 0 s.t.
[

AT
2 P + PA2 PB − (C1 − C2)

T

BT P − (C1 − C2) −2

]

< 0. (4.6)
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Using the Schur lemma, we have:

AT
2 P + PA2 +

1

2
[PB − (C1 − C2)

T ][BT P − (C1 − C2)] < 0. (4.7)

Adding and substracting 1
2PB(C1−C2)+

1
2 (C1−C2)

T BT P to (4.7),
we get:

(A2 − B(C1 − C2))
T P + P (A2 − B(C1 − C2))+

1

2
(PB + (C1 − C2)

T )(BT P + (C1 − C2)) < 0. (4.8)

Knowing that A1 = A2 − B(C1 − C2) gives:

AT
1 P + PA1 +

1

2
[PB − (C2 − C1)

T ][BT P − (C2 − C1)] < 0. (4.9)

Since the third terms in (4.7) and (4.9) are positive semi-definite, we
obtain AT

1 P + PA1 < 0 and AT
2 P + PA2 < 0. This proves that A1

and A2 are quadratically stable.
(3) ⇒ (1): This equivalence is proved using the bounded real

lemma. If A1 and A2 are quadratically stable, it means that the
following matrix is stable:

A1 + A2

2
+ γB

C2 − C1

2
(4.10)

for all values of γ between -1 and 1. According to the bounded real
lemma we have [44]:

(

A1 + A2

2

)T

P + P

(

A1 + A2

2

)

+ PBBT P+

(

C2 − C1

2

)T (

C2 − C1

2

)

< 0. (4.11)

It is well known that the bounded real lemma is equivalent to the
positive real lemma with [1]:
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Ā = A − BC =
A1 + A2

2
− B

C2 − C1

2
= A2, (4.12)

B̄ = B, (4.13)

C̄ = −2C = C1 − C2, (4.14)

D̄ = 1 (4.15)

and
P̄ = 2P. (4.16)

Thus, we get:

∃P̄ = P̄T > 0 s.t.

[

ĀT P̄ + P̄ Ā P̄ B̄ − C̄T

B̄T P̄ − C̄ −D̄ − D̄T

]

=

[

AT
2 P̄ + P̄A2 P̄B − (C1 − C2)

T

BT P̄ − (C1 − C2) −2

]

< 0. (4.17)

This inequality is the same as (4.6). Thus, we can conclude that
c1(s)
c2(s)

is SPR. Using the properties of SPR systems, the inverse, c2(s)
c1(s)

,
is also SPR.

This theorem is useful to create new linear constraints in the
Nyquist diagram in order to ensure the quadratic stability of switched
systems composed of two subsystems.

It should be noted that this theorem is valid for continuous-time
systems. However, a similar theorem can be stated for discrete-time
systems. This theorem is developed in Appendix A.

4.2.2 Linear constraints to assure quadratic stability of

two systems

The idea is to transform the second property of Theorem 4.1, which
is a frequency-domain condition, into linear constraints on the open-
loop transfer function in the Nyquist diagram. Then, quadratic sta-
bility is obtained by adding these new constraints in the linear pro-
gramming method presented in Chapter 2.
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Main idea

Let us consider the following ratio:

1 + K(s)G1(s)

1 + K(s)G2(s)
=

(Kd(s)Gd,1(s) + Kn(s)Gn,1(s))

(Kd(s)Gd,2(s) + Kn(s)Gn,2(s))

Gd,2(s)

Gd,1(s)
(4.18)

where Kn(s) and Kd(s) are respectively the numerator and denom-
inator of the controller, Gn,1(s) and Gd,1(s) the numerator and de-
nominator of G1(s) and Gn,2(s) and Gd,2(s) the numerator and
denominator of G2(s). It should be noted that Kd(s)Gd,1(s) +
Kn(s)Gn,1(s) is the characteristic polynomial of one of the stable
closed-loop system thus, it can be replaced by c1(s) and Kd(s)Gd,2(s)
+ Kn(s)Gn,2(s) is the characteristic polynomial of the other stable
closed-loop system and can be replaced by c2(s). Therefore, (4.18)
can be written as:

1 + K(s)G1(s)

1 + K(s)G2(s)
=

c1(s)

c2(s)

Gd,2(s)

Gd,1(s)
, (4.19)

leading to:
c1(s)

c2(s)
=

1 + K(s)G1(s)

1 + K(s)G2(s)

Gd,1(s)

Gd,2(s)
. (4.20)

Using the second property of Theorem 4.1, the closed-loop system is
quadratically stable iff:

| arg(1 + K(jω)G1(jω)) − arg(1 + K(jω)G2(jω))+

arg(Gd,1(jω)) − arg(Gd,2(jω))| <
π

2
∀ω. (4.21)

Replacing arg(Gd,1(jω)) − arg(Gd,2(jω)) by ∆(ω), we have:

− π

2
− ∆(ω) < arg(1 + K(jω)G1(jω))−

arg(1 + K(jω)G2(jω)) <
π

2
− ∆(ω) ∀ω. (4.22)
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It should be noted that ∆(ω) is known since the parametric models of
the systems are known. These inequalities can be simply transformed
into linear constraints in the Nyquist diagram.

Let us consider the simple case when ∆(ω) is zero for all frequen-
cies (the denominators of the two systems are identical), thus (4.22)
becomes:

| arg(1 + K(jω)G1(jω)) − arg(1 + K(jω)G2(jω))|
<

π

2
∀ω. (4.23)

Im

Re

K(jω)G1(jω)

K(jω)G2(jω)

ℓ

γ

α

dl

du

d1

-1

Fig. 4.1. Linear constraints for quadratic stability when ∆(ω) = 0 (du,
dl) and for robust stability (d1).



54 4 Guaranteeing Quadratic Stability

In this case, the idea is to add, to the line d1 assuring the robust
stability, two perpendicular lines du and dl passing through the −1
point to assure the quadratic stability (see Fig. 4.1). If K(jω)G1(jω)
and K(jω)G2(jω) are between these two lines, γ, the difference be-
tween the arguments of 1 + K(jω)G1(jω) and 1 + K(jω)G2(jω), is
always less than π/2, thus respecting Inequality (4.23). It should
be noted as well that Fig. 4.1 is a good illustration of the restric-
tions added by the quadratic stability. Indeed, the region where
K(jω)G1(jω) and K(jω)G2(jω) can be placed to assure robust and
quadratic stability is smaller than the region assuring only robust
stability.

Since the open-loop transfer functions are strictly proper, it is
impossible to respect the constraints defined by du and dl at high
frequencies as depicted in Fig. 4.1. At high frequencies, the region
defined by du and dl should include the origin of the Nyquist diagram.
This problem is solved by defining the lines du and dl as a function of
the frequency. To do it, a desired open-loop transfer function Ld(s)
is introduced. For each frequency, du and dl are defined such that
the vector 1 + Ld(jω) is the angle bisector of the two lines. In other
words, dl and du have a phase difference of, respectively, −π/4 and
π/4 with respect to 1 + Ld(jω).

The choice of Ld(s) plays a crucial role since the constraints de-
pend on it. There are some simple choices that usually lead to good
results for simple models. For example Ld = wc/s is an appropri-
ate choice for low-order stable systems having one integrator in their
open-loop transfer function.

This idea works for the simple case when ∆(ω) equals zero. How-
ever, for the more general case when ∆(ω) is different from zero,
K(jω)G1(jω) and K(jω)G2(jω) have to be located in different re-
gions. Examining Inequality (4.22), these regions should have an
offset of ∆(ω) between them. This is why K(jω)G1(jω) should be
between the lines dl,1 and du,1 (dl,1 and du,1 have a phase difference
of, respectively, −π/4 − ∆(ω)/2 and π/4 − ∆(ω)/2 with respect to
1 + Ld(jω)) and K(jω)G2(jω) between the lines dl,2 and du,2 (dl,2
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and du,2 have a phase difference of, respectively, −π/4+∆(ω)/2 and
π/4 + ∆(ω)/2 with respect to 1 + Ld(jω)) (see Fig. 4.2).

Im

Re

Ld(jω)

∆(ω)

dl,1

du,1

dl,2

du,2

-1

∆(ω)

π
4 −

∆
(ω

)2

Fig. 4.2. Linear constraints to ensure quadratic stability in the Nyquist
diagram.

Representing by linear constraints

The line du,1 can be described by:

y − mu,1(ω)x − mu,1(ω) = 0 (4.24)
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where x and y are, respectively, the coordinates of the real and imagi-
nary axes and mu,1(ω) the slope of du,1 at the frequency ω. Depend-
ing on the value of ∆(ω) the constraints for K(jω)G1(jω) will be
changed. Two cases should be considered. In the first case, when
−3π/4 < ∆(ω)/2 < π/4, K(jω)G1(jω) and Ld(jω) must be on the
same side of du,1. This can be expressed by the following linear
constraint:

(ILd
(ω) − mu,1(ω)RLd

(ω) − mu,1(ω))

(ρT (I1(ω) − mu,1(ω)R1(ω)) − mu,1(ω)) ≥ 0
(4.25)

where ILd
(ω) and RLd

(ω) are, respectively, the imaginary and real
parts of Ld(jω). This case is shown in Fig. 4.2. In the second case,
when π/4 < ∆(ω)/2 < 5π/4, K(jω)G1(jω) and Ld(jω) must not be
on the same side of du,1, consequently ≥ in Inequality (4.25) should
be replaced by ≤. For the sake of simplicity, the following function
is defined:

f1(∆(ω)) = sgn
(

cos

(

∆(ω)

2
+

π

4

))

(4.26)

which is negative when π/4 < ∆(ω)/2 < 5π/4. Thus, the following
linear constraint is defined regardless of the value of ∆(ω)/2:

f1(∆(ω))[ILd
(ω) − mu,1(ω)RLd

(ω) − mu,1(ω)]

[ρT (I1(ω) − mu,1(ω)R1(ω)) − mu,1(ω)] ≥ 0

(4.27)

For similar reason we define:

f2(∆(ω)) = sgn
(

cos

(

∆(ω)

2
− π

4

))

(4.28)

Thus, linear constraints can be written for lines dl,1, du,2 and dl,2:

f2(∆(ω))[ILd
(ω) − ml,1(ω)RLd

(ω) − ml,1(ω)]

[ρT (I1(ω) − ml,1(ω)R1(ω)) − ml,1(ω)] ≥ 0 (4.29)
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f2(∆(ω))[ILd
(ω) − mu,2(ω)RLd

(ω) − mu,2(ω)]

[ρT (I2(ω) − mu,2(ω)R2(ω)) − mu,2(ω)] ≥ 0 (4.30)

f1(∆(ω))[ILd
(ω) − ml,2(ω)RLd

(ω) − ml,2(ω)]

[ρT (I2(ω) − ml,2(ω)R2(ω)) − ml,2(ω)] ≥ 0 (4.31)

where ml,1(ω), mu,2(ω) and ml,2(ω) are, respectively, the slopes of
dl,1, du,2 and dl,2 at the frequency ω. It should be noted that when
one of these lines is vertical at a particular frequency, the slope be-
comes infinity. Thus, the inequalities given above should not be used.
For example, (4.27) should be replaced by:

f1(∆(ω))[RLd
(ω) + 1][ρTR1(ω) + 1] ≥ 0. (4.32)

These new constraints assure the quadratic stability between two
systems. Thus, they should simply be added to the optimization
problems defined in Chapter 2 in order to guarantee the quadratic
stability of systems with two subsystems in the set. For this purpose,
a sufficient number of frequencies should be chosen between 0 and
infinity. For example, when the quadratic stability is needed, the
optimization problem (2.22) becomes:

max
ρ

k0

subject to:

ρT (cotα Ii(ωk) −Ri(ωk)) + ℓ ≤ 1 ∀ωk, i = 1, 2

f1(∆(ωk))[ILd
(ωk) − mu,1(ωk)RLd

(ωk) − mu,1(ωk)]

[ρT (I1(ωk) − mu,1(ωk)R1(ωk)) − mu,1(ωk)] ≥ 0 ∀ωk

f2(∆(ωk))[ILd
(ωk) − ml,1(ωk)RLd

(ωk) − ml,1(ωk)]

[ρT (I1(ωk) − ml,1(ωk)R1(ωk)) − ml,1(ωk)] ≥ 0 ∀ωk

f2(∆(ωk))[ILd
(ωk) − mu,2(ωk)RLd

(ωk) − mu,2(ωk)]

[ρT (I2(ωk) − mu,2(ωk)R2(ωk)) − mu,2(ωk)] ≥ 0 ∀ωk

f1(∆(ωk))[ILd
(ωk) − ml,2(ωk)RLd

(ωk) − ml,2(ωk)]

[ρT (I2(ωk) − ml,2(ωk)R2(ωk)) − ml,2(ωk)] ≥ 0 ∀ωk

(4.33)
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In the theory developed above, the same controller is used for the
two systems, but it should be noted that each system can have its
own controller only with minor changes in the optimization problem,
as long as the controllers have the same denominator. If it is not the
case, the definition of ∆(ω) must be replaced by:

∆(ω) = arg(Gd,1(jω)) + arg(Kd,1(jω))

− arg(Gd,2(jω)) − arg(Kd,2(jω)) (4.34)

4.2.3 Linear constraints to assure quadratic stability of

certain classes of LPV systems

The new linear constraints presented in the last subsection can also
be used to guarantee the quadratic stability of LPV systems whose
closed-loop characteristic polynomials have an affine dependancy
on one scheduling parameter. In this case, in order to ensure the
quadratic stability of these systems, it is sufficient to impose the
quadratic stability constraints on the two open-loop systems corre-
sponding to the extremities of the range of the scheduling parameter.
In particular, this class of systems is composed by:

• LPV systems with affine dependency on one scheduling parameter
with fixed controllers.

• LPV systems with affine dependency on one scheduling param-
eter only in the denominator with LPV controllers with affine
dependency on one scheduling parameter. For example, to guar-
antee the global stability of this class of system, the optimization
problem (3.15) becomes:
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max
M

Kmin

subject to:

(Mθ̄l)
T (cotα I(ωk, θl) −R(ωk, θl)) + ℓ 6 1

∀ωk, l = 1, . . . , m
np
∑

i=1

γiρi(θ1) − Kmin > 0

np
∑

i=1

γiρi(θm) − Kmin > 0

f1(∆(ωk))[ILd
(ωk) − mu,1(ωk)RLd

(ωk) − mu,1(ωk)]

[ρT (I(ωk, θ1) − mu,1(ωk)R(ωk, θ1)) − mu,1(ωk)]

≥ 0 ∀ωk

f2(∆(ωk))[ILd
(ωk) − ml,1(ωk)RLd

(ωk) − ml,1(ωk)]

[ρT (I(ωk, θ1) − ml,1(ωk)R(ωk, θ1)) − ml,1(ωk)]

≥ 0 ∀ωk

f2(∆(ωk))[ILd
(ωk) − mu,2(ωk)RLd

(ωk) − mu,2(ωk)]

[ρT (I(ωk, θm) − mu,2(ωk)R(ωk, θm)) − mu,2(ωk)]

≥ 0 ∀ωk

f1(∆(ωk))[ILd
(ωk) − ml,2(ωk)RLd

(ωk) − ml,2(ωk)]

[ρT (I(ωk, θm) − ml,2(ωk)R(ωk, θm)) − ml,2(ωk)]

≥ 0 ∀ωk

(4.35)

An example is given in Section 4.4 to illustrate the method.

It should be noted that for other classes of LPV systems, these
additional constraints do not guarantee the quadratic stability. Nev-
ertheless, they guarantee that the systems corresponding to the ex-
tremities of the range of the scheduling parameter are quadratically
stable, which is a necessary but not sufficient condition for quadratic
stability of LPV systems.



60 4 Guaranteeing Quadratic Stability

4.3 Quadratic Stability of Three Systems

4.3.1 Basic idea

As it is explained in Subsection 4.2.2, the new linear constraints
guarantee the quadratic stability of switched systems composed of
two subsystems. A question directly arises: is it possible to ex-
tend this result to more than two subsystems? In other words, is
the equivalence between SPRness and quadratic stability presented
in Subsection 4.2.1 for two stable polynomials extensible to three
polynomials? The answer to this question is given in [37] where it
is proved that the SPRness of the ratio of each pair of polynomi-
als is not sufficient to guarantee the quadratic stability of the three
systems associated with these polynomials. In other words, pairwise
quadratic stability of three systems is not sufficient to guarantee their
quadratic stability.

The question that arises from this fact is: what is the region in
the space of the coefficients of the polynomials that is quadratically
stable if the three systems are pairwise quadratically stable? The
theorem presented below answers to this question.

Theorem 4.2 Consider c1(s), c2(s) and c3(s), three stable polyno-
mials of order n and A1, A2 and A3, their associated matrix. If

the ratio of each pair of polynomials, c1(s)
c2(s)

, c1(s)
c3(s)

and c3(s)
c2(s)

, is SPR,

then the three matrices A4, A5 and A6 associated with the stable
polynomials c4(s), c5(s) and c6(s) are quadratically stable, where

c4(s) = c1(s)+c2(s)
2 , c5(s) = c2(s)+c3(s)

2 and c6(s) = c3(s)+c1(s)
2 .

Proof: Define P1 as the common Lyapunov matrix for A1 and
A2, P2 as the common Lyapunov matrix for A2 and A3 and P3 as
the common Lyapunov matrix for A3 and A1. Consider the transfer
function c2(s)

c1(s)
. Using the KYP lemma, c2(s)

c1(s)
is SPR iff [40]:

∃P1 = PT
1 > 0 s.t.

[

AT
1 P1 + P1A1 P1B − (C2 − C1)

T

BT P1 − (C2 − C1) −2

]

< 0. (4.36)
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For the same reason, c3(s)
c1(s)

is SPR iff;

∃P3 = PT
3 > 0 s.t.

[

AT
1 P3 + P3A1 P3B − (C3 − C1)

T

BT P3 − (C3 − C1) −2

]

< 0. (4.37)

By adding (4.36) and (4.37), we get:

[

AT
1 (P1 + P3) + (P1 + P3)A1

BT (P1 + P3) − (C2 + C3 − 2C1)

(P1 + P3)B − (C2 + C3 − 2C1)
T

−4

]

< 0. (4.38)

Dividing (4.38) by 2, we get the condition for (c2(s)+c3(s))/2
c1(s)

to be
SPR. According to the results of Theorem 4.1, it means that P1 +P3

is a Lyapunov matrix for (A2 + A3)/2. Additionally, P2 is also a
Lyapunov matrix for (A2 + A3)/2, thus P1 + P2 + P3 is a Lyapunov
matrix for (A2 +A3)/2. Similarly, we can show that P1 +P2 +P3 is a
Lyapunov matrix for (A1+A2)/2 and (A1+A3)/2. Since (A2+A3)/2
is A5, (A1 + A2)/2 is A4 and (A1 + A3)/2 is A6, the three matrices
A4, A5 and A6 are quadratically stable.

Remarks:

• This theorem is graphically represented in Fig. 4.3. The dashed
triangle has polynomials at each corner whose associated systems
are pairwise quadratically stable, while the associated systems of
all polynomials in the filled triangle are quadratically stable.

• This theorem can be extended to more than three systems using
the same idea. The problem is that, with more systems, the
region of quadratic stability becomes very small, leading to a
very conservative result.

• As Theorem 4.1, this theorem is developed for continuous-time
systems. Once again, a similar theorem can be stated for discrete-
time systems. This theorem is developed in Appendix A.
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c1(s)

c2(s)

c3(s)

c4(s)

c5(s)

c6(s)

Fig. 4.3. Region of quadratic stability (filled) in the space of the coeffi-
cients of the polynomials.

4.3.2 Linear constraints to assure quadratic stability of

three systems

As it is explained in the previous subsection, in order to guarantee
the quadratic stability of three systems having A4, A5 and A6 as state
matrices, it is sufficient to constrain the systems having A1, A2 and
A3 as state matrices to be pairwise quadratically stable. This can
be done using the linear constraints presented in Subsection 4.2.2.
In order to use these constraints, the transfer functions G1(s), G2(s)
and G3(s) representing the open-loop systems have to be built given
G4(s), G5(s) and G6(s). To do it, consider the relation between
c4(s), c5(s) and c6(s) and c1(s), c2(s) and c3(s):





c4(s)
c5(s)
c6(s)



 =





1/2 1/2 0
0 1/2 1/2

1/2 0 1/2









c1(s)
c2(s)
c3(s)



 (4.39)

The inversion of the matrix (4.39) yields:
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



c1(s)
c2(s)
c3(s)



 =





1 −1 1
1 1 −1
−1 1 1









c4(s)
c5(s)
c6(s)



 (4.40)

Using the property that ci(s) is the characteristic polynomial of the
closed-loop system having Ai as state matrix, we can write:

c1(s) = c4(s) − c5(s) + c6(s)

= Kd(s)Gd,4(s) + Kn(s)Gn,4(s)

− Kd(s)Gd,5(s) − Kn(s)Gn,5(s)

+ Kd(s)Gd,6(s) + Kn(s)Gn,6(s)

= Kd(s)(Gd,4(s) − Gd,5(s) + Gd,6(s))

+ Kn(s)(Gn,4(s) − Gn,5(s) + Gn,6(s))

= Kd(s)Gd,1(s) + Kn(s)Gn,1(s)

(4.41)

Thus, the transfer function G1(s) is:

G1(s) =
Gn,4(s) − Gn,5(s) + Gn,6(s)

Gd,4(s) − Gd,5(s) + Gd,6(s)
(4.42)

Similarly:

G2(s) =
Gn,4(s) + Gn,5(s) − Gn,6(s)

Gd,4(s) + Gd,5(s) − Gd,6(s)
(4.43)

G3(s) =
−Gn,4(s) + Gn,5(s) + Gn,6(s)

−Gd,4(s) + Gd,5(s) + Gd,6(s)
(4.44)

It should be noted that G1(s), G2(s) and G3(s) are not necessarily
stable, even if G4(s), G5(s) and G6(s) are stable. Considering that
this frequency-domain method only applies to stable systems, the
stability of G1(s), G2(s) and G3(s) should be tested a priori. If
G1(s), G2(s) or G3(s) are not stable, the method can not be applied.

In order to guarantee the quadratic stability of switched systems
composed of three subsystems G4(s), G5(s) and G6(s), it is now suffi-
cient to use the constraints presented in Subsection 4.2.2 on the pairs
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{K(s)G1(s), K(s)G2(s)}, {K(s)G1(s), K(s)G3(s)} and {K(s)G2(s),
K(s)G3(s)}.

As for the previous case, each subsystem (G4(s), G5(s) and
G6(s)) can have its own controller (K4(s), K5(s) and K6(s)).
In this case, the linear constraints should be applied to the
pairs {K1(s)G1(s), K2(s)G2(s)}, {K1(s)G1(s), K3(s)G3(s)} and
{K2(s)G2(s), K3(s)G3(s)} where:

K1(s)G1(s) =

Kn,4(s)Gn,4(s) − Kn,5(s)Gn,5(s) + Kn,6(s)Gn,6(s)

Kd(s)(Gd,4(s) − Gd,5(s) + Gd,6(s))

(4.45)

K2(s)G2(s) =

Kn,4(s)Gn,4(s) + Kn,5(s)Gn,5(s) − Kn,6(s)Gn,6(s)

Kd(s)(Gd,4(s) + Gd,5(s) − Gd,6(s))

(4.46)

K3(s)G3(s) =

−Kn,4(s)Gn,4(s) + Kn,5(s)Gn,5(s) + Kn,6(s)Gn,6(s)

Kd(s)(−Gd,4(s) + Gd,5(s) + Gd,6(s))

(4.47)

Once again, if the denominators of the controllers are different, (4.34)
must be used.

An interesting result in [37] should be noted: Nm stable second
order LTI systems are quadratically stable if every three-tuple of
systems is quadratically stable. As we can constrain three systems
to be quadratically stable, we can constrain Nm second-order systems
to be quadratically stable.

The design of controllers for a switched system composed of three
subsystems is illustrated in the next section.

4.4 Simulation Results

4.4.1 Switched system with two subsystems

To show the effectiveness of the method, it is applied to the following
switched system composed of two subsystems:
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G1(s) =
0.5

s2 + 0.2s + 0.5
, G2(s) =

1.5

s2 + 0.2s + 1.5
.

The objective is to design a PID controller with the following
structure:

K(s) =
Kds

2 + Kps + Ki

s(1 + Ts)
(4.48)

for each subsystem maximizing the performance in terms of tracking.
Two cases are addressed: first, two controllers will be designed with-
out taking care of quadratic stability, then two controllers will be de-
signed with the additional linear constraints, thus assuring quadratic
stability.

For the first case, the linear programming approach that maxi-
mizes the performance in terms of tracking is used to design the two
controllers. The design variables ℓ is set to 0.8 and α to 75◦ to get
a good modulus margin and a well-damped closed loop-system. The
time constant T of the filter in the PID controller is set to 0.1. To be
able to use the proposed method, the subsystems G1(s) and G2(s)
are evaluated at 50 logarithmically spaced points between 0.1 and
100 rad/s. Table 4.1 shows the parameters of the PID controllers
K1(s) and K2(s) obtained for, respectively, the systems G1(s) and
G2(s). The Nyquist plots of the open-loop transfer functions of the
two subsystems with the two controllers are shown in Fig. 4.4. It
can be observed that the Nyquist plots respect the linear robustness
constraint (red line). The responses of the closed-loop subsystems to
a set point change are shown in Fig. 4.5.

Table 4.1. Parameters of the PID controllers K1(s) and K2(s) designed
for G1(s) and G2(s).

Kd Kp Ki

K1(s) 9.815 1.589 5.2
K2(s) 3.281 0.5179 5.135
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Fig. 4.4. Nyquist plots of the open-loop transfer functions K1(jω)G1(jω)
(solid) and K2(jω)G2(jω) (dashed).
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Fig. 4.5. Set point response for G1 (solid) and G2 (dashed).
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Finally, the phase difference between the two characteristic poly-
nomials of the two closed-loop subsystems is shown in Fig. 4.6. It
can be observed that for certain frequencies, the phase difference is
greater than π/2. This means that the switched system composed of
these two subsystems is not quadratically stable. This is confirmed
by the fact that no common Lyapunov function could be found for
the two subsystems.
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Fig. 4.6. Phase difference between the two characteristic polynomials of
the closed-loop subsystems.

For the second case, the same optimization problem is used with
the difference that the constraints to ensure the quadratic stability
are added. In order to add these constraints, a desired open-loop
transfer function Ld(s) has to be chosen. Ld(s) is chosen equal to
ωc/(s(1 + Ts)) where ωc is equal to 2.5 rad/s. This value is the
largest for which the optimization problem is feasible.

Table 4.2 shows the parameters of the PID controllers Kqs,1(s)
and Kqs,2(s) obtained for, respectively, the systems G1(s) and G2(s)
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assuring quadratic stability. The Nyquist plots of the open-loop
transfer functions of the two subsystems with the two controllers
are shown in Fig. 4.7. It can be observed that the Nyquist plots
respect the linear robustness constraint (red line). The responses of
the closed-loop subsystems to a set point change are shown in Fig.
4.8. It can be seen that the responses are a little more oscillatory
than the responses of the first case (see Fig. 4.5).

Table 4.2. Parameters of the PID controllers Kqs,1(s) and Kqs,2(s) de-
signed for G1(s) and G2(s) assuring quadratic stability.

Kd Kp Ki

Kqs,1(s) 8.94 3.262 3.903
Kqs,2(s) 2.867 1.2 3.356

Finally, the phase difference between the two characteristic poly-
nomials of the two closed-loop subsystems is shown in Fig. 4.9. It
can be observed that for all the frequencies, the phase is smaller
than π/2 in absolute value. This means that the switched system is
quadratically stable. This is confirmed by the fact that a matrix P
could be found satisfying the quadratic stability conditions:

P =









0.0177 0.0176 0.0588 0.0137
0.0176 0.8221 0.4975 0.6571
0.0588 0.4975 2.1600 0.7830
0.0137 0.6571 0.7830 1.8765









(4.49)

4.4.2 Switched system with three subsystems

To illustrate the theory developed for switched systems composed
of three subsystems, consider a system with a pair of complex poles
whose frequency takes three different values depending on the condi-
tions of use (ω0,4 =

√
0.8, ω0,5 =

√
1 and ω0,6 =

√
1.2). The damping
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Fig. 4.7. Nyquist plots of the open-loop transfer functions K1(jω)G1(jω)
(solid) and K2(jω)G2(jω) (dashed) guaranteeing quadratic stability.
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Fig. 4.8. Set point response for G1 (solid) and G2 (dashed) guaranteeing
quadratic stability.
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Fig. 4.9. Phase difference between the two characteristic polynomials of
the closed-loop subsystems guaranteeing quadratic stability.

coefficient ζ is fixed to 0.1. Thus, the three different subsystems com-
posing the switched system are:

Gss,4(s) =
ω2

0,4

s2 + 2ζω0,4s + ω2
0,4

=
0.8

s2 + 0.18s + 0.8
(4.50)

Gss,5(s) =
ω2

0,5

s2 + 2ζω0,5s + ω2
0,5

=
1

s2 + 0.2s + 1
(4.51)

Gss,6(s) =
ω2

0,6

s2 + 2ζω0,6s + ω2
0,6

=
1

s2 + 0.22s + 1.2
(4.52)

The objective is to design a PID controller with the following
structure:

K(s) =
Kds

2 + Kps + Ki

s(1 + Ts)
(4.53)

for each subsystem that maximizes the performance in terms of track-
ing. Two cases are addressed: first, three controllers (K4(s), K5(s)
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and K6(s)) are designed without considering quadratic stability, then
three controllers (Kqs,4(s), Kqs,5(s) and Kqs,6(s)) are designed with
the additional linear constraints assuring quadratic stability.

For the first case, the linear programming approach that max-
imizes the performance in terms of tracking is used to design each
controller. This corresponds to the optimization problem (2.22). The
design varaible ℓ is set to 0.8 and α to 75◦ to get a good modulus
margin and a well-damped closed-loop system. The time constant T
of the filter in the PID controller is set to 0.1. To be able to use the
proposed method, the subsystems Gss,4(s), Gss,5(s) and Gss,6(s) are
evaluated at 100 logarithmically spaced points between 0.1 and 100
rad/s. Table 4.3 shows the parameters of the PID controllers K4(s),
K5(s) and K6(s) obtained by the design method. The Nyquist plots
of the open-loop transfer functions are shown in Fig. 4.10. It can
be seen that the Nyquist plots respect the linear robustness margin.
The responses of the closed-loop subsystems to a set point change
are shown in Fig. 4.11.

Table 4.3. Parameters of the PID controllers K4(s), K5(s) and K6(s)
designed for Gss,4(s), Gss,5(s) and Gss,6(s).

Kd Kp Ki

K4(s) 6.039 1.087 5.06
K5(s) 4.114 0.6825 5.055
K6(s) 4.897 0.8191 5.07

As explained in Subsections 4.3.1 and 4.3.2, quadratic stability
is achieved if the absolute value of the phase difference between all
possible pairs of characteristic polynomials of the closed-loop systems
K1(s)Gss,1, K2(s)Gss,2 and K3(s)Gss,3 is less than 90◦. K1(s)Gss,1,
K2(s)Gss,2 and K3(s)Gss,3 are computed using (4.45), (4.46) and
(4.47). These phase differences are plotted in Fig. 4.12. It is imme-
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Fig. 4.10. Nyquist plots of the open-loop transfer functions
K4(jω)Gss,4(jω) (solid), K5(jω)Gss,5(jω) (dashed) and K6(jω)Gss,6(jω)
(dashed-dotted).

diately seen that, for certain frequencies, the phase difference is larger
than 90◦. Thus, the switched system is not quadratically stable.

It is then meaningful to design three controllers Kqs,4(s),
Kqs,5(s) and Kqs,6(s) guaranteeing quadratic stability. In order
to fulfil this requirement, the same optimization problem is used
with the additional constraints on the pairs {Kqs,1(s)Gss,1(s),
Kqs,2(s)Gss,2(s)}, {Kqs,1(s)Gss,1(s), Kqs,3(s)Gss,3(s)} and
{Kqs,2(s)Gss,2(s), Kqs,3(s)Gss,3(s)}. It should be noted that
Gss,1, Gss,2 and Gss,3 are stable consequently, the proposed method
can be applied. To use the aditionnal constraints, a desired
open-loop transfer function Ld(s) has to be chosen. Ld(s) is chosen
equal to ωc/(s(1 + Ts)) where ωc is equal to 4.3 rad/s, the crossover
frequency obtained with the first design.
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Fig. 4.11. Set point response of the closed-loop systems K4(s)Gss,4(s)
(solid), K5(s)Gss,5(s) (dashed) and K6(s)Gss,6(s) (dashed-dotted).

Table 4.4 shows the parameters of the PID controllers Kqs,4(s),
Kqs.5(s) and Kqs,6(s) obtained by the design. The Nyquist plots
of the open-loop transfer functions are shown in Fig. 4.13. The
Nyquist plots respect the linear robustness margin. Moreover they
are similar with the Nyquist plots of the first design (see Fig. 4.10).
The responses of the closed-loop subsystems to a set point change
are shown in Fig. 4.14. They are more oscillatory than the responses
obtained by the first design. This is due to the constraints added to
guarantee quadratic stability.

Finally, the phase difference between all possible pairs of char-
acteristic polynomials of the closed-loop systems Kqs,1(s)Gss,1(s),
Kqs,2(s)Gss,2(s) and Kqs,3(s)Gss,3(s) are shown in Fig. 4.15. As
expected, the absolute values are smaller than 90◦, proving the
quadratic stability. This is confirmed by the fact that a matrix P
could be found satisfying the quadratic stability conditions:
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Fig. 4.12. Phase difference between the characteristic polynomi-
als of the closed-loop systems K1(s)Gss,1(s), K2(s)Gss,2(s) (solid),
K1(s)Gss,1(s), K3(s)Gss,3(s) (dashed) and K2(s)Gss,2(s), K3(s)Gss,3(s)
(dashed-dotted).

Table 4.4. Parameters of the PID controllers Kqs,4(s), Kqs,5(s) and
Kqs,6(s) designed for Gss,4(s), Gss,5(s) and Gss,6(s) assuring quadratic
stability.

Kd Kp Ki

Kqs,4(s) 5.92 1.329 4.904
Kqs,5(s) 3.9 1.107 4.272
Kqs,6(s) 4.583 1.443 4.466
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Fig. 4.13. Nyquist plots of the open-loop transfer functions
Kqs,4(jω)Gss,4(jω) (solid), Kqs,5(jω)Gss,5(jω) (dashed) and
Kqs,6(jω)Gss,6(jω) (dashed-dotted) guaranteeing quadratic stability.

P =









0.0236 0.0243 0.0723 0.0083
0.0243 1.2866 0.8864 1.1123
0.0723 0.8864 2.8807 1.1272
0.0083 1.1123 1.1272 3.2211









(4.54)

4.4.3 LPV system

In order to show the effectiveness of the method, let us consider a
mass-spring-damper system where the mass changes as a function of
a scheduling parameter θ. The transfer function of this system is:

G(s, θ) =
1

m(θ)s2 + cs + k
(4.55)

where m is the mass, c the damping coefficient and k the stiffness
coefficient. The mass is an affine function of θ:
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Fig. 4.14. Set point response of the closed-loop systems K4(s)Gss,4(s)
(solid), K5(s)Gss,5(s) (dashed) and K6(s)Gss,6(s) (dashed-dotted) guar-
anteeing quadratic stability.

m(θ) = 1 + 0.5θ (4.56)

where
θ ∈ [−1, 1]. (4.57)

The damping coefficient c is equal to 0.2 and the stiffness coefficient
k is equal to 1.

The objective is to design a gain-scheduled PID controller, whose
parameters depend affinely on θ, maximizing the performance in
terms of tracking. Thus, the controller has the following form:

K(s, θ) =
1

s(1 + Ts)
[(Kd,1θ + Kd,0)s

2

+ (Kp,1θ + Kp,0)s + (Ki,1θ + Ki,0)] (4.58)
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Fig. 4.15. Phase difference between the characteristic polyno-
mials of the closed-loop systems Kqs,1(s)Gss,1(s), Kqs,2(s)Gss,2(s)
(solid), Kqs,1(s)Gss,1(s), Kqs,3(s)Gss,3(s) (dashed) and Kqs,2(s)Gss,2(s),
Kqs,3(s)Gss,3(s) (dashed-dotted).

Two cases are addressed: first a PID controller is designed without
considering quadratic stability, then a PID controller is designed with
the additional linear constraints presented in Subsection 4.2.3, thus
assuring quadratic stability.

For the first case, the optimization problem (3.15) is used. To
have a finite number of constraints, G(s, θ) is evaluated in 21 equally
spaced discrete values of θ between -1 and 1 and in 100 logarithmi-
cally spaced discrete values of ω between 0.1 and 100 rad/s. The
design variable α is set to 75◦ and ℓ to 0.8 to have a good robustness
margin. The time constant T of the filter in the PID controller is set
to 0.1. Table 4.5 shows the parameters of the gain-scheduled PID
controller obtained by the design. The Nyquist plots of the open-
loop transfer functions are shown in Fig. 4.16 for three particular
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values of θ (-1, 0 and 1). It can be observed that the Nyquist plots
respect the robustness constraint represented by the line. The set
point responses of the closed-loop system are shown in Fig. 4.17.

−2 −1.5 −1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

Real axis

Im
ag

in
ar

y 
ax

is

Fig. 4.16. Nyquist plots of the open-loop transfer function
K(jω, θ)G(jω, θ) for θ = -1 (solid), θ = 0 (dashed) and θ = 1
(dashed-dotted).

Table 4.5. Parameters of the gain-scheduled PID controller.

Kd,1 Kd,0 Kp,1 Kp,0 Ki,1 Ki,0

2.4576 4.8377 -0.0936 0.9449 0 5.0111

Finally, the phase difference between the characteristic polynomial
of the closed-loop system in θ = -1 and in θ = 1 can be observed in
Fig. 4.18. As it can be seen, the absolute value of this difference is



4.4 Simulation Results 79

larger than 90◦ for certain frequencies. According to Theorem 4.1, it
means that the closed-loop system is not quadratically stable. This
is confirmed by the fact that no common Lyapunov function could be
found for this closed-loop LPV system. Thus, depending on the rate
of variation of θ the system can become unstable. In order to assure
the quadratic stability, it is necessary to use the linear constraints
presented in Subsection 4.2.3.
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Fig. 4.17. Set point response of the closed-loop system for θ = -1 (solid),
θ = 0 (dashed) and θ = 1 (dashed-dotted).

For the second case, the optimization problem (4.35) is used. To
use the additional constraints guaranteeing the quadratic stability, a
desired open-loop transfer function Ld(s) has to be chosen. Ld(s) is
chosen equal to ωc/(s(1 + Ts)) where ωc is equal to 2.5 rad/s. This
value is the largest for which the optimization problem is feasible.

Table 4.6 shows the parameters of the gain-scheduled PID con-
troller obtained by the design assuring quadratic stability. The
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Fig. 4.18. Phase difference between the characteristic polynomial of the
closed-loop system in θ = -1 and in θ = 1.

Nyquist plots of the open-loop transfer functions are shown in Fig.
4.19 for three particular values of θ (-1, 0 and 1). It can be observed
that they respect the robustness constraint represented by the line.

Table 4.6. Parameters of the gain-scheduled PID controller assuring
quadratic stability.

Kd,1 Kd,0 Kp,1 Kp,0 Ki,1 Ki,0

2.1093 4.3846 0.2988 1.4431 0.3386 3.4692

The set point responses of the closed-loop system are shown in Fig.
4.20. It can be observed that they are similar with the first case, al-
though some additional constraints to guarantee quadratic stability
are added. Finally, the phase difference between the characteristic
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Fig. 4.19. Nyquist plots of the open-loop transfer function
K(jω, θ)G(jω, θ) for θ = -1 (solid), θ = 0 (dashed) and θ = 1
(dashed-dotted) guaranteeing quadratic stability.

polynomial of the closed-loop system in θ = -1 and in θ = 1 can
be observed in Fig. 4.21. Since the absolute value of this difference
is smaller than 90◦ for all frequencies, it proves that the quadratic
stability is achieved. This is confirmed by the fact that a matrix P
could be found satisfying the quadratic stability conditions:

P =









0.0143 0.0150 0.0517 0.0129
0.0150 0.6800 0.4328 0.6520
0.0517 0.4328 1.8361 0.6717
0.0129 0.6520 0.6717 1.8731









(4.59)
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Fig. 4.20. Set point response of the closed-loop system for θ = -1 (solid), θ

= 0 (dashed) and θ = 1 (dashed-dotted) guaranteeing quadratic stability.

4.5 Conclusions

In this chapter, it is proposed to add new linear constraints to the
optimization problems defined in Chapters 2 and 3. These new con-
straints allow the quadratic stability of switched systems composed
of two or three subsystems and certain classes of LPV systems to be
guaranteed within the design framework.

These constraints are derived from a theorem making the link
between quadratic stability and SPRness properties and are based on
the phase difference of two characteristic polynomials of the closed-
loop systems. Thus, the discrete or continuous-time models of the
systems are needed to guarantee the quadratic stability. Therefore,
this method cannot be applied on frequency-domain data as it is the
case with the methods presented in Chapters 2 and 3.

Simulation results show that the method can be easily used to
guarantee quadratic stability of switched systems or LPV systems.
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Fig. 4.21. Phase difference between the two characteristic polynomials
of the closed-loop system for θ = -1 and θ = 1 guaranteeing quadratic
stability.





5

Application to an Industrial Double-Axis

Positioning System

5.1 Introduction

Modern mechanical systems, such as machine tools, semiconductor
manufacturing equipments and automatic inspection machines, of-
ten require high-speed, high-acceleration and high-accuracy linear
motion. Traditionally, these motions are realised using rotary mo-
tors connected to reduction gears and lead screws. Such mechanical
transmissions, however, reduce the achievable linear motion speed,
the dynamic response, introduce large frictional and inertial loads,
backlash and structural flexibility. These last two points limit the
accuracy of the system.

The alternative is to use linear motors. These motors are increas-
ingly used in applications where high performances are needed. They
have the following advantages:

• Higher acceleration and deceleration capabilities due to low iner-
tia.

• No mechanical transmission chains and backlash, which gives
higher accuracy and reduced friction.

• Higher mechanical stiffness so, higher natural frequencies.
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However, mechanical transmission chains, which are used with
rotary motors, reduce the effect of model uncertainties such as pa-
rameters variations (e.g. mass and inertia variations) and external
disturbances. Such uncertainties have therefore greater effect on lin-
ear motors. Furthermore, linear motors with iron cores suffer from
another disadvantage: they are subject to an important ripple force.
This force has a direct effect on the motion of the load. Thus, in or-
der to take advantage of the high-speed, high-acceleration and high-
accuracy capabilities of linear motors, a control system is required
to take these uncertainties, nonlinearities and disturbances into ac-
count.

The application considered in this thesis is a double-axis Linear
Permanent Magnet Synchronous Motor (LPMSM) system manufac-
tured by ETEL SA. The main objective is to improve the system’s
trajectory tracking performance whilst maintaining robust stability
using data-driven methods.

The strategy of control is to use a two-degree of freedom con-
troller and thereby allow tuning of the feedback loop and the pre-
compensator individually. To design the feedback loop, the meth-
ods proposed in this thesis are used in order to take into consider-
ation the parameter variations, unmodeled dynamics, nonlinearities
and disturbances. Moreover, the use of a precompensator allows the
closed-loop tracking performance to be improved without affecting
the closed-loop properties.

This chapter focuses only on the design of the feedback loop.
In order to design the precompensator using data-driven techniques
see [6,7] that use methods based on iterative learning control and [23]
that uses a model-free precompensator tuning approach.

The outline of this chapter is the following: the system is de-
scribed in Section 5.2. Section 5.3 is dedicated to the non-parametric
identification of the system. In Section 5.4 robust and gain-scheduled
controllers are designed and tested on the real system. A stability
analysis is carried out in Section 5.5. Finally Section 5.6 gives some
concluding remarks.
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5.2 Description of the System

The high-precision positioning system, studied in this thesis, is com-
posed of two LPMSMs positioned perpendicularly one above the
other (see Fig. 5.1). Each motor has a stroke of 0.32 m. The

xy

Fig. 5.1. Double-axis linear permanent magnet synchronous motor system
(with courtesy of ETEL).

outputs of the system are the position of the higher axis, x, and
of the lower axis, y. The positions are measured using analog po-
sition encoders whose resolution, with the help of interpolation, is
0.24 nm. The inputs consist of the desired currents. These desired
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currents are transformed into desired currents for each phase of the
motors. These desired phases’ currents are tracked independently us-
ing current loops at a sampling frequency of 72 kHz. The positions
are controlled using two-degree of freedom controllers operating at a
sampling frequency of 18 kHz.

The particularity of this application is that the dynamics of each
axis vary with the position of the two axes. For example, it is clear
that the dynamics of the lower axis change as a function of the po-
sition of the moving part of the higher axis. If the moving part of
the higher axis is at an extremity, it is connected to the lower axis
with a different rigidity from the case that the moving part is at the
center. Thus, this system can be considered as an LPV system whose
scheduling parameters are x and y, respectively the positions of the
higher and lower axes.

For the sake of succinctness, only the identification, control design
and stability analysis of the higher axis is detailed.

5.3 Non-Parametric Identification

In order to measure the Frequency Response Functions (FRFs), the
stroke of each axis is divided into 16 equally spaced partitions which
gives a grid of 289 nodes. The higher axis is excited with a sum of
sinusoidal signals from 4.4 to 9000 Hz at each position and thus 289
non-parametric models in the frequency domain are obtained. The
magnitude Bode diagram of the non-parametric models of the higher
axis is shown in Fig. 5.2. At low frequencies (between 10 and 100
Hz), the higher axis behaves as a single mass system, namely the
amplitude plot shows a slope of -40 dB/decade. At very low frequen-
cies, the effect of friction appears, meaning that the slope changes to
−20 dB/decade. Due to the difference in the friction coefficients, the
effect does not appear exactly at the same frequency. Between 100
and 140 Hz, the first decoupling of mass depending on the position
can be seen (zeros, poles). At 500 and 900 Hz the same phenomenon
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happens. From 1000 Hz, the magnitude Bode diagram is not plot-
ted, since it has mainly a slope of -40 dB/decade with no important
informations. In order to be convinced that the first decoupling of
mass depends on the position, Fig. 5.3 and 5.4 show respectively the
magnitude Bode diagram of the non-parametric models of the higher
axis when x = 0 m and y varies from -0.16 m to 0.16 m and when
x varies from -0.16 m to 0.16 m and y = 0 m. Both figures show
clearly the above mentioned dependancy.
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Fig. 5.2. Magnitude Bode diagram of 289 identified non-parametric mod-
els of the higher axis.
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Fig. 5.3. Magnitude Bode diagram of 17 identified non-parametric models
of the higher axis at x = 0 m and y in the interval [-0.16, 0.16] m with
increments of 0.02 m.

5.4 Controller Design and Experimental Results

5.4.1 Robust controller design and experimental results

First of all, the aim is to design a discrete-time controller that is
robust with respect to the parameter variations and high frequency
uncertainties and that maximizes the load disturbance rejection at
the plant input. Therefore, the controller should contain an integra-
tor. Let the following structure be considered for the feedback part
of the controller:

K(z−1) =
S(z−1)

R(z−1)
(5.1)

where:
S(z−1) = s0 + s1z

−1 + · · · + snc
z−nc (5.2)
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Fig. 5.4. Magnitude Bode diagram of 17 identified non-parametric models
of the higher axis at x in the interval [-0.16, 0.16] m with increments of
0.02 m and y = 0 m.

and the polynomial R(z−1) is fixed to:

R(z−1) = 1 − z−1 (5.3)

In general, to maximize the load disturbance rejection, the low fre-
quency gain is maximized. For a rational discrete-time controller
with fixed denominator, it corresponds to maximizing the sum of
the controller parameters

∑

j sj . When the denominator contains
only one integrator, maximizing the sum of the controller parame-
ters corresponds to minimizing IE.

The optimization problems defined in Chapter 2 to maximize the
load disturbance rejection have to be adapted to design discrete-time
controller and to the case of open-loop transfer functions containing
three integrators (the system contains approximately two integrators
and the controller one). Thus, the optimization problem (2.23) is
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adapted as follows. At very low frequencies the Nyquist diagram
will be located in region II (see Fig. 2.2) but very far from the
critical point. Let us suppose that the Nyquist diagram intersects
d2 in ωl. Thus, for frequencies lower than ωl the open-loop transfer
function is not subject to any constraint. At different frequencies, the
constraints used in the optimization problem (2.23) are conserved.
Thus, at middle frequencies (frequencies between ωl and ωx), the
Nyquist diagram is below d2 (in regions III and IV) and at high
frequencies in region I. Hence, the following optimization problem is
considered:

max
ρ

nc
∑

j=0

ρj

Subject to:

ρT (cotα Ii(ωk) −Ri(ωk)) + ℓ ≤ 1 for ωk > ωx,

i = 1, . . . , 81

ρT (cosβ Ii(ωk) + sinβ Ri(ωk)) ≤ −1 for ωl < ωk ≤ ωx,

i = 1, . . . , 81

(5.4)

where:
ρT =

[

s0 s1 . . . snc

]

(5.5)

Ri(ωk) = Re[φ(e−jωkh)Gi(e
−jωkh)] (5.6)

Ii(ωk) = Im[φ(e−jωkh)Gi(e
−jωkh)] (5.7)

φT (e−jωkh) =
1

1 − e−jωkh

[

1 e−jωkh . . . e−jncωkh
]

(5.8)

Gi represents the non-parametric identification of the higher axis at
one position and h the sampling period (1/18000 s).

First of all, a second-order controller (equivalent to a discrete-
time PID controller) is designed. The specifications regarding the
linear robustness margin are set to: ℓ = 0.4 and α = 30◦. These
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values lead to a minimal modulus margin of 0.2, a minimal phase
margin of 12.54◦ and a minimal gain margin of 1.67. The lower
bound of the crossover frequency ωx is set to 170 Hz and ωl to 80
Hz. Finally β is set to 30◦ in order to respect the inequalities (2.19)
and (2.20). The optimization problem (5.4) is then solved using 81
non-parametric models. It should be noted that for the identification
procedure 289 non-parametric models have been identified. Given
that these models do not differ significantly, it is sufficient to use
only 81 models for the controller design procedure (the stroke of each
axis is divided into 8 equally spaced partitions which gives a grid of
81 nodes). The Nyquist plots of the open-loop transfer function for
the 81 models obtained with this method are shown in Fig. 5.5. It
can be noticed that the constraints are respected, thus a minimal
robustness margin and a minimal bandwidth are assured for all the
models. The load disturbance response of the second-order controller
at the middle of the grid is shown in Fig. 5.6 (dashed-dotted line).
The load disturbance response is generated by the addition of a step
disturbance at the input of the system, simulating an external force
disturbance of 5.87 N. This disturbance, while not being realistic, is
the only way to test the designed controller. The set point response is
not included, since a two-degree of freedom controller is used for this
application. Thus, the feedforward part still needs to be designed.

In order to improve the result in terms of load disturbance rejec-
tion, a higher-order controller (fourth-order) is designed. The same
specifications as for the second-order controller are used. The result
is shown in Fig. 5.6 (dashed line). The load disturbance rejection is
really improved, since the overshoot due to the disturbance is divided
by more than 2.

Now, suppose that the load disturbance rejection and the
crossover frequency of the second-order controller are satisfactory,
but that it is required to increase the linear robustness margin. In
order to fulfil this requirement, a higher order controller (fourth-
order) is designed using the optimization problem (2.21) with some
minor modifications. In this optimization problem, the limit rep-
resented by ωx between the low and high frequencies is extremely
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Fig. 5.5. Nyquist plots of the open-loop transfer function for the 81 models
obtained with the second-order controller (max

P

j
ρj).

hard to respect. Frequencies larger than ωx have to be in region I,
whereas frequencies lower than ωx have to be in region III or IV (see
Fig. 2.2). Since in this optimization problem 81 models are used,
the limit between low and high frequencies cannot be respected for
all the models, thus it can be softened by adding a margin for ωx.
Frequencies over ωx + m have to be in region I, whereas frequencies
under ωx−m have to be in region III or IV. The second modification
is due to the open-loop transfer function containing three integrators:
the Nyquist diagram at very low frequencies will be located in region
II (see Fig. 2.2). Thus, as for the previous optimization problem,
no constraints are considered for frequencies lower than ωl. Finally
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an additional constraint on the sum of the parameters is also added
in order to preserve the load disturbance rejection achieved with the
second-order controller. Hence, the following optimization problem
is considered:
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max
ρ

ℓ

Subject to:

ρT (cotα Ii(ωk) −Ri(ωk)) + ℓ ≤ 1 for ωk > ωx + m,

i = 1, . . . , 81

ρT (cosβ Ii(ωk) + sin β Ri(ωk)) > −1 for ωk > ωx + m,

i = 1, . . . , 81

ρT (cosβ Ii(ωk) + sin β Ri(ωk)) ≤ −1 for ωl < ωk ≤ ωx − m,

i = 1, . . . , 81
nc
∑

j=0

ρj ≥ Kmin (5.9)

Given that the crossover frequency obtained with the second-order
controller is equal to about 200 Hz, the lower approximation of the
crossover frequency ωx is set to 180 Hz. Then, ωl is set to 80 Hz, α
to 30◦ and β to 30◦ (in order to satisfy the inequalities (2.19) and
(2.20)). Finally, Kmin is equal to the sum of the parameters achieved
by the second-order controller. The load disturbance rejection of
the designed controller is shown in Fig. 5.6 (solid line). In order
to facilitate the comparison, the details of the designs are shown
in Table 5.1, where ωc stands for the crossover frequency (in [Hz]),
Mm,min for the minimum modulus margin of the 81 models, od for the
overshoot of the load disturbance response (in [µm]) and td for the
settling time to 1 % of the biggest overshoot (in [s]). It can be seen
that the controller designed to optimize the robustness margin has
about the same load disturbance rejection capability as the second-
order controller. This is normal, since they have the same sum of
parameters. It should also be noted that the controller designed
to maximize the linear robustness margin has a smaller modulus
margin. Thus, maximizing the linear robustness margin does not
lead automatically to a bigger modulus margin.
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Table 5.1. Properties of the robust controllers obtained for the higher
axis.

Method Max
P

j
ρj Max

P

j
ρj Max ℓ with

P

j
ρj > Kmin

(order 2) (order 4) (order 4)

ωc 198.89 215.87 200.20
Mm,min 0.37 0.44 0.36
ℓ 0.4 0.4 0.61
P

j ρj 0.0019 0.0054 0.0019

od 2.07 0.91 1.88
td 0.056 0.020 0.017
IAEd 0.0146 0.0061 0.0103
IEd 0.0093 0.0031 0.0097

5.4.2 Gain-scheduled controller design

As explained in Section 5.3, the dynamics of the system depend on
the position of the lower (y) and higher (x) axis. Thus, designing
a gain-scheduled controller certainly improves the robustness and
performance of the closed-loop system. As an illustration, a gain-
scheduled controller is designed for the higher axis when x is around
0 m and y varies between -0.16 m to 0.16 m. The 17 non-parametric
models shown in Fig. 5.3 are thus used to design this controller. The
aim is to design a low-order controller that maximizes the robustness
with a closed-loop bandwidth of 180 Hz. Thus, a gain-scheduled
controller with the following form

K(z−1, y) =
S(z−1, y)

R(z−1)
(5.10)

with

S(z−1, y) = s0(y) + s1(y)z−1 + s2(y)z−2,

R(z−1) = (1 − z−1)

is designed, where y is the scheduling parameter. The order pc of
the polynomial in y describing the parameters of the controller is
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set to 2. A modified version of the optimization problem (3.13)
is used. The modifications are due to the three integrators of the
open-loop transfer functions (as before, for frequencies lower than ωl

no constraints are applied) and to design a discrete-time controller.
Moreover, when the robustness is maximized, this may lead to a
vanishing integral action of the controller. To be sure to keep the
integral action (which is needed to reject the load disturbances), the
following constraints are added:

s0(y) + s1(y) + s2(y) > Kmin (5.11)

for y in the interval [-0.16, 0.16] m with increments of 0.02 m. The
design variables are ωx, ωl, α, β and Kmin. The lower bound of the
crossover frequency ωx is set to 180 Hz and ωl to 80 Hz. The value
of 30◦ is used for α and β. By practical expertise, Kmin is set to
0.004. It should also be noted that, a tolerance of 5 % on ωx is used
to soften the constraints, meaning that the frequencies near ωx (up
to 5 %) can be anywhere and not necessarily in region I, III or IV.

The Nyquist plots of the open-loop transfer functions obtained
by the design are shown in Fig. 5.7 for three particular values of
y (-0.16 m, 0 m and 0.16 m). It can be observed that the Nyquist
plots respect the constraints represented by the two lines and lead to
a linear margin ℓ of 0.520. If a robust controller is designed with the
same specifications, the linear robustness margin ℓ obtained is equal
to 0.498. Thus, the gain-scheduled controller allows an improvement
of the linear robustness margin of 4.6 %.

Unfortunately, this gain-scheduled controller could not be tested
on the real application, since the firmware used does not support
gain-scheduled controllers.

5.5 Stability Analysis

The idea is to analyze the stability of the higher axis in closed-loop
with the designed gain-scheduled controller. To be able to do it, an
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Fig. 5.7. Nyquist plots of the open-loop transfer functions of the gain-
scheduled controller and the system for y = -0.16 m (solid), y = 0 m
(dashed) and y = 0.16 m (dashed-dotted).

LPV parametric model of the higher axis is needed. Since the gain-
scheduled controller is designed for x around 0 m and y between
-0.16 m and 0.16 m, the LPV parametric model is also computed for
x around 0 m and y between -0.16 m and 0.16 m.

5.5.1 LPV Parametric identification

In order to compute the LPV parametric model, the procedure pro-
posed by Steinbuch et al. [38] is used, that is: (i) measuring the
FRF at different positions giving non-parametric models, (ii) fitting
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a discrete parametric model on each non-parametric model, (iii) com-
bining these models by linking parameters via a polynomial fit as a
function of the position. The first step of the procedure is presented
in Section 5.3. 17 non-parametric models are available at the posi-
tions: x = 0 m and y in the interval [-0.16, 0.16] m with increments
of 0.02 m.

To find parametric models from frequency domain data, the
method of Levy is used in continuous-time (see [33] for more de-
tails). From Fig. 5.3 it can be seen that the higher axis has a double
integrator behavior as well as three resonances. Only the first one is
important for control. Hence, a fourth order continuous-time model
is used to fit these curves. Moreover, two poles are set to 0 to repre-
sent the double integrator effect. These models are then discretized
using a sampling frequency of 2000 Hz (the Nyquist frequency is
thus about 10 times greater than the resonance). Fig. 5.8 shows the
Bode diagram of the discrete parametric model at x = 0 m and y =
0.14 m compared to the non-parametric model. It can be observed
that the first resonance is well identified. Such a parametric model is
computed for the 17 non-parametric models. Thus, the parametric
models obtained have the following form:

G(z−1) =
b4 + b3z

−1 + b2z
−2 + b1z

−3 + b0z
−4

1 + a3z−1 + a2z−2 + a1z−3 + a−4
0

(5.12)

The last step for the obtention of an LPV model is to combine
these models by linking parameters via a polynomial fit as a function
of the position. Fig. 5.9 shows one parameter of the numerator (b0)
and one parameter of the denominator (a1) of the parametric models
in function of y and the polynomials obtained by interpolation. It
can be seen that a1 is well fitted by a second-order polynomial. Ad-
ditionally b0 is fitted by a linear function. All the parameters of the
denominator as well as the parameters of the numerator b1, b2 and
b3 are also fitted by a second-order polynomial, whereas b4 is fitted
by a linear function. It should be noted that the parametric model
obtained for y = -0.10 m does not fit adequately the corresponding
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Fig. 5.8. Bode diagram of the non-parametric (solid) and discrete para-
metric (dashed) models for the higher axis at x = 0 m and y = 0.14 m.

non-parametric model, thus it is not taken into account to compute
the polynomial fit. Fig. 5.10 shows the magnitude Bode diagram
of the LPV model obtained for the higher axis at x = 0 m and y ∈
[-0.16, 0.16] m. It can be observed that this model looks similar to
the non-parametric models of Fig. 5.3, especially the first resonance.

It should be noted that some parameters of the LPV model de-
pend on y and y2. Thus, this LPV system does not belong to the
class of LPV systems described in Chapter 4 for which the quadratic
stability can be assured directly within the design. For this LPV
system, the stability can only be verified after the design.
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5.5.2 Stability analysis using Lyapunov theory

Once the LPV model is identified, the stability can be analysed.
With this objective, Lyapunov stability theory is used. A closed-
loop LPV system is globally stable if:

∃P > 0 such that:

A(θ)T PA(θ) − P < 0 ∀θ
(5.13)

Since the number of Linear Matrix Inequalities (LMIs) is infinite, the
problem is not directly solvable. If the LPV model can be written in
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Fig. 5.10. Magnitude Bode diagram of the LPV model for the higher axis
at x = 0 m and y ∈ [-0.16, 0.16] m.

an affine or polytopic form, the number of LMIs is finite. Another
solution to solve approximately the problem consists of gridding the
scheduling parameter θ. Thus, the problem (5.13) becomes:

∃P > 0 such that:

A(θl)
T PA(θl) − P < 0 for l = 1, . . . , m

(5.14)

If such constraints are satisfied, the LPV system is stable whatever
the speed of the scheduling parameter is. For some applications, the
maximal speed of the scheduling parameter is known. Thus, this
information can be taken into account to reduce the conservatism of
the result by using a parameter dependent Lyapunov matrix. Thus,
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the stability problem becomes:

∃P0 + θlP1 > 0 for l = 1, . . . , m such that:

A(θl)
T (P0 + θl+nP1)A(θl) − (P0 + θl+nP1) < 0 for l = 1, . . . , m

(5.15)

n is related to the maximal speed of the scheduling parameter: it is
the maximal number of discrete scheduling values that can be reached
at the next sampling time. In our case, the scheduling parameter is
y, the position of the lower axis. Thus, the closed-loop LPV model
is evaluated in 21 equally spaced discrete values of y between -0.16
m and 0.16 m. Then, the problem (5.15) is solved recurrently to
find the maximal speed for which the system is stable. The stability
could be proven for a motion of 0.08 m with a maximal speed of 9
m/s. For this application, a typical motion has an amplitude of 0.025
m and a maximal speed of 0.5 m/s. Thus, the stability obtained is
sufficient.

5.6 Conclusions

In this chapter, the methodologies presented in this thesis are ap-
plied successfully to a high-precision double-axis positioning systems.
Through this application, the advantages of the methodologies can
be highlighted. The major advantage is that the method works di-
rectly with frequency-domain data. This is particularly useful for an
industrial application, since parametric identification can be complex
and time consuming. On the other hand frequency-domain data are
easily obtained. The second major advantage is that the method
is really simple and can be easily implemented. This is especially
important for methods used on real applications.

The above mentioned advantages have convinced ETEL SA to
incorporate this methodology in their products to design controllers.
Previous to this work, a trial and error procedure was employed by
ETEL SA for the design of controllers. Thus, this method provides
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an enormous improvement in terms of time needed to design the
controllers.





6

Conclusions and Perspectives

6.1 Contributions

In this thesis a new framework for the design of fixed-order linearly
parameterized controllers is proposed. It consists of shaping the
open-loop transfer functions in the Nyquist diagram by optimiza-
tion under robustness and performance constraints. In order to solve
this optimization problem by linear programming, the classical ro-
bustness margins are replaced by a line and the crossover frequency
by another line representing a lower approximation. Subsequently,
either the closed-loop performance in terms of load disturbance re-
jection, output disturbance rejection and tracking or the robustness
margin are maximized. This new design framework provides tools
to design controllers for systems using either parametric models or
directly frequency-domain data. Moreover, it can also treat directly
multi-model systems and systems with frequency-domain uncertain-
ties.

An extension of this framework is proposed to design gain-
scheduled controllers for LPV systems. This method uses either
frequency-domain data obtained in different operating points or LPV
models of the systems and needs no interpolation to get the LPV
controllers.
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Finally, the addition of new frequency-domain constraints to the
design framework is proposed in order to guarantee the quadratic
stability when designing controllers for switched systems composed
of two or three subsystems or when designing controllers for certain
classes of LPV systems.

This methodology is tested on numerous simulations and applied
to an industrial plant that of a double-axis high-precision positioning
system. The simulations and the application illustrate the efficiency
of the method.

6.2 Perspectives

The extension of the new design methodology is the subject of present
research undertaken by the Laboratoire d’Automatique of the Ecole
Polytechnique Fédérale de Lausanne. The subject of this research is:

• Extension of the method to design controllers for multiple-input
multiple-output systems.

• Extension of the method to design controllers for unstable sys-
tems.

• Extension of the method to satisfy H∞ robust performance con-
ditions.

These extensions are the subject of different papers [14, 15, 24].
Nevertheless, there are still a number of interesting extensions

that could be considered in future research. These are briefly pre-
sented below:

• The optimization problems defined in this thesis have a finite
number of frequency-domain constraints for a finite number of
frequency points. Thus, between two frequency points, there is
no guarantee that the open-loop transfer functions satisfy the
robustness and performance constraints. From a practical point
of view, a sufficiently large number of frequency points should
simply be considered. Nevertheless, from a theoretical point of
view, it would be interesting to study this issue.
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• In Chapter 4, frequency-domain conditions are presented to guar-
antee the quadratic stability of switched systems composed of
two or three subsystems. The methodology used to define these
constraints can be enlarged to guarantee quadratic stability of
switched systems composed of more than three subsystems. Nev-
ertheless, the results become very conservative. Thus, it would be
interesting to search for less conservative new frequency-domain
conditions to guarantee quadratic stability of switched systems
composed of more than three subsystems.

• The different methods propose the design of linearly parameter-
ized controllers, meaning that the denominators of the controllers
are chosen a priori to the optimization procedure. From a the-
oretical point of view this is not a problem, since every transfer
function can be approximated by a finite impulse response of suf-
ficiently large order. However, from a practical point of view, it is
preferred to use low-order controllers. Thus, the extension of the
method to design also the denominators of the controllers would
be interesting to design directly low-order controllers.

• Systems with parametric uncertainties cannot be treated by the
proposed methods. Since a lot of systems have parametric un-
certainties, it would be interesting to extend the methods to this
kind of uncertainties.





A

Quadratic Stability and Positive Realness

in Discrete Time

A.1 Quadratic Stability of Two Systems in

Discrete Time

The theorem detailed in this section is the discretized version of
Theorem 4.1.

Let a stable monic polynomial of order n be defined as:

c(z) = zn + c1z
n−1 + . . . + cn. (A.1)

We can assign to this polynomial a vector C:

C =
[

c1 c2 . . . cn

]

(A.2)

and a matrix A:

A =















−c1 −c2 . . . −cn−1 −cn

1 0 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0















. (A.3)

Then the relation between SPRness and the quadratic stability
in discrete time can be stated in the following theorem, which is
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directly related to the equivalence between bounded real lemma and
positive real lemma [1]. This result may be known by the experts
in the domain. However, to the best of the author’s knowledge, the
way that it is formulated is new.

Theorem A.1 Consider c1(z) and c2(z), two stable polynomials of
order n, then the following statements are equivalent:

• c1(z)

c2(z)
and

c2(z)

c1(z)
are SPR.

• | arg(c1(e
jωh)) − arg(c2(e

jωh))| <
π

2
∀ω

• A1 and A2 are quadratically stable meaning that:
∃P = PT > 0 ∈ R

n×n such that
AT

1 PA1 − P < 0,
AT

2 PA2 − P < 0.

Proof: (1) ⇔ (2): This equivalence is immediate. It comes

from the definition of SPR transfer function: c1(e
jωh)

c2(ejωh)
is in the RHP,

so −π
2 < arg(c1(e

jωh)) − arg(c2(e
jωh)) < π

2 ∀ω. For more details
see [27].

(1) ⇒ (3): Consider the transfer function c1(z)
c2(z) :

c1(z)

c2(z)
= 1 +

c1(z) − c2(z)

c2(z)
. (A.4)

Using a controllable canonical form, (A.4) leads to the following state
space realization:

[

A2 B
C1 − C2 1

]

(A.5)

with B =
[

1 0 . . . 0
]T

. Using the KYP lemma for discrete-time
systems, (A.5) is SPR iff [28]:

∃P = PT > 0 s.t.
[

AT
2 PA2 − P AT

2 PB − (C1 − C2)
T

BT PA2 − (C1 − C2) −2 + BT PB

]

< 0. (A.6)
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Using the Schur lemma, we have:

AT
2 PA2 − P−

[AT
2 PB − (C1 − C2)

T ][−2 + BT PB]−1[BT PA2 − (C1 − C2)] < 0.
(A.7)

With simple matrix manipulations, we can have:

[A2 − B(C1 − C2)]
T P [A2 − B(C1 − C2)] − P−

[(A2 − B(C1 − C2))
T PB − (C2 − C1)

T ][−2 + BT PB]−1

[BT P (A2 − B(C1 − C2)) − (C2 − C1)] < 0 (A.8)

Knowing that A1 = A2 − B(C1 − C2) gives:

AT
1 PA1 − P−

[AT
1 PB − (C2 − C1)

T ][−2 + BT PB]−1[BT PA1 − (C2 − C1)] < 0.
(A.9)

Since the third terms in (A.7) and (A.9) are negative semi-definite,
we obtain AT

1 PA1 − P < 0 and AT
2 PA2 − P < 0. This proves that

A1 and A2 are quadratically stable.
(3) ⇒ (1): This equivalence is proved using the bounded real

lemma. If A1 and A2 are quadratically stable, it means that the
following matrix is stable:

A1 + A2

2
+ γB

C2 − C1

2
(A.10)

for all values of γ between -1 and 1. According to the discrete-time
bounded real lemma we have [10]:
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(

A1 + A2

2

)T

P

(

A1 + A2

2

)

− P+

(

A1 + A2

2

)T

PB(I − BT PB)−1BT P

(

A1 + A2

2

)

+

(

C2 − C1

2

)T (

C2 − C1

2

)

< 0 (A.11)

It is well known that the bounded real lemma is equivalent to the
positive real lemma with [1]:

Ā = A − BC =
A1 + A2

2
− B

C2 − C1

2
= A2, (A.12)

B̄ = B, (A.13)

C̄ = −2C = C1 − C2, (A.14)

D̄ = 1, (A.15)

and
P̄ = 2P. (A.16)

Thus, we get:

∃P̄ = P̄T > 0 s.t.

[

ĀT P̄ Ā − P̄ ĀT P̄ B̄ − C̄T

B̄T P̄ Ā − C̄ −D̄ − D̄T + B̄T P̄ B̄

]

=

[

AT
2 PA2 − P AT

2 PB − (C1 − C2)
T

BT PA2 − (C1 − C2) −2 + BT PB

]

< 0. (A.17)

This inequality is the same as (A.6). Thus, we can conclude that
c1(z)
c2(z) is SPR. Using the properties of SPR systems, the inverse, c2(z)

c1(z) ,
is also SPR.
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A.2 Quadratic Stability of Three Systems in

Discrete Time

The theorem detailed in this section is the discretized version of
Theorem 4.2

Theorem A.2 Consider c1(z), c2(z) and c3(z), three stable poly-
nomials of order n and A1, A2 and A3, their associated matrix. If

the ratio of each pair of polynomials, c1(z)
c2(z) ,

c1(z)
c3(z) and c3(z)

c2(z) , is SPR,

then the three matrices A4, A5 and A6 associated with the stable
polynomials c4(z), c5(z) and c6(z) are quadratically stable, where

c4(z) = c1(z)+c2(z)
2 , c5(z) = c2(z)+c3(z)

2 and c6(z) = c3(z)+c1(z)
2 .

Proof: Define P1 as the common Lyapunov matrix for A1 and
A2, P2 as the common Lyapunov matrix for A2 and A3 and P3 as
the common Lyapunov matrix for A3 and A1. Consider the transfer
function c2(z)

c1(z) . Using the KYP lemma, c2(z)
c1(z) is SPR iff [28]:

∃P1 = PT
1 > 0 s.t.

[

AT
1 P1A1 − P1 AT

1 P1B − (C2 − C1)
T

BT P1A1 − (C2 − C1) −2 + BT P1B

]

< 0. (A.18)

For the same reason, c3(z)
c1(z) is SPR iff;

∃P3 = PT
3 > 0 s.t.

[

AT
1 P3A1 − P3 AT

1 P3B − (C3 − C1)
T

BT P3A1 − (C3 − C1) −2 + BT P3B

]

< 0. (A.19)

By adding (A.18) and (A.19), we get:

[

AT
1 (P1 + P3)A1 − (P1 + P3)

BT (P1 + P3)A1 − (C2 + C3 − 2C1)

AT
1 (P1 + P3)B − (C2 + C3 − 2C1)

T

−4 + BT (P1 + P3)B

]

< 0. (A.20)
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If we divide (A.20) by 2, we get the condition for (c2(z)+c3(z))/2
c1(z) to be

SPR. According to the results of Theorem A.1, it means that P1 +P3

is a Lyapunov matrix for (A2 +A3)/2. On the other hand, P2 is also
a Lyapunov matrix for (A2 +A3)/2, thus P1 +P2 +P3 is a Lyapunov
matrix for (A2 +A3)/2. Similarly, we can show that P1 +P2 +P3 is a
Lyapunov matrix for (A1+A2)/2 and (A1+A3)/2. Since (A2+A3)/2
is A5, (A1 + A2)/2 is A4 and (A1 + A3)/2 is A6, the three matrices
A4, A5 and A6 are quadratically stable.
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