
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS’08 March 1–5, 2008, Seattle, Washington, USA.
Copyright © 2008 ACM 978-1-59593-958-6/08/0003…$5.00.

Predictor Virtualization

Ioana Burcea* Stephen Somogyi† Andreas Moshovos* Babak Falsafi†‡

*Department of Electrical and Computer Engineering, University of Toronto
†Computer Architecture Laboratory (CALCM), Carnegie Mellon University

‡School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne
{ioana, moshovos}@eecg.toronto.edu ssomogyi@ece.cmu.edu babak@cmu.edu

Abstract
Many hardware optimizations rely on collecting information
about program behavior at runtime. This information is stored
in lookup tables. To be accurate and effective, these
optimizations usually require large dedicated on-chip tables.
Although technology advances offer an increased amount of
on-chip resources, these resources are allocated to increase the
size of on-chip conventional cache hierarchies.

This work proposes Predictor Virtualization, a technique that
uses the existing memory hierarchy to emulate large predictor
tables. We demonstrate the benefits of this technique by
virtualizing a state-of-the-art data prefetcher. Full-system,
cycle-accurate simulations demonstrate that the virtualized
prefetcher preserves the performance benefits of the original
design, while reducing the on-chip storage dedicated to the
predictor table from 60KB down to less than one kilobyte.

Categories and Subject Descriptors B.3.2 [Memory
Structures]: Design Styles — Cache memories

General Terms Performance, Design.

Keywords Predictor virtualization, caches, memory
hierarchy, metadata.

1. Introduction

Architecture research has produced a wide variety
microarchitectural, predictor-based optimizations, including
value prediction [16,17,24] instruction reuse [26], hardware
prefetching [4,7,13,14,18,25,31,27,32], dynamic program
optimization [1,19,23,35], pointer caching [8], and cache
replacement policies, e.g., [20]. These techniques collect
metadata information at runtime about the application’s
behavior and store it in on-chip buffers or lookup tables. The
information stored in these tables (referred to as predictors
hereafter) is used to anticipate future program behavior and to
apply optimizations accordingly. Despite considerable effort to
understand, design and tune these optimizations, general-
purpose processors implement only very few of them. For

example, in the case of prefetching, currently, only the
simplest proposals are implemented in hardware, e.g., [28].

Adopting prediction techniques is difficult due to several
factors. First, the intrusive nature of some optimizations calls
for significant changes in the processor design. Second, these
techniques often require a considerable amount of dedicated
on-chip resources that are too expensive to provide. Even
worse, several such optimizations have been shown to achieve
increasing performance with larger table sizes [8,26]. As
applications data and instruction footprints grow, often
predictor tables need to scale accordingly to remain effective.
Moreover, in a world moving towards chip-multiprocessors,
where several cores are packaged together on the same chip,
the resources required by these techniques multiply by the
number of cores. Third, general-purpose processors are used,
as their name suggests, for a wide spectrum of application
domains. These applications often exhibit different runtime
characteristics that require different optimizations. Dedicating
considerable chip resources to implement a specific set of
optimizations may not be the best design option. Instead, the
extra chip resources are usually dedicated to increase the
capacity of conventional cache hierarchies, a trend motivated
by large footprint applications and high off-chip memory
latency. This research addresses the latter two factors.

This work introduces Predictor Virtualization (PV), a
technique that aims at breaking on-chip limitations for storing
predictor information. PV considerably reduces the dedicated
on-chip resources necessary to implement predictor-based
optimizations, while preserving their effectiveness. PV takes
advantage of the existing memory hierarchy, including caching
capabilities, without requiring intrusive modifications. PV
relies on the memory hierarchy to transparently store predictor
metadata and employs a small dedicated on-chip cache to
record the active entries of the predictor. Whenever this cache
is not enough to store the content of the predictor, the predictor
metadata is spilled to the memory hierarchy. The spilling
process uses normal memory requests, injected on the backside
of the L1. Thus, predictor data is naturally stored in caches and
can optionally be stored in main memory. As discussed in
Section 2.4 some predictors can be virtualized easily. For other
predictors it is necessary to revisit their design with
virtualization in mind. Fortunately, predictor virtualization
offers several opportunities for compensating for the variable
access latency it introduces.

Existing technology trade-offs suggest that PV can be
meaningful and feasible. Specifically, off-chip and on-chip
memory hierarchy capacities have become sufficiently large to
accommodate allocating, on demand, a small percentage of
their resources for caching predictor information. Moreover,

depending on the application, increased on-chip cache sizes
show diminishing returns, calling for a better utilization of the
available capacity.

The main contribution of this work is twofold. First, it
introduces predictor virtualization as a technique meant to
break on-chip resource limitations in hardware optimizations
and to promote the implementation of such optimizations.
Second, it presents an example of predictor virtualization,
applying the method to a state-of-the-art data prefetcher. In
more detail, the contributions of this work are:

• It presents Predictor Virtualization, a technique that uses
the existing memory hierarchy to emulate large predictor
tables. PV considerably reduces the amount of dedicated
on-chip resources, while preserving the effectiveness of
the original optimization. PV does not require any
modification of the memory hierarchy other than the
ability to inject memory requests to last level caches.

• It demonstrates the benefits of PV by virtualizing the
spatial memory streaming prefetcher (SMS) [27]. Using
Flexus [12], a full-system, cycle-accurate simulator to
model a quad-core architecture, and a set of eight
commercial benchmarks, this work shows that the
virtualized prefetcher matches the performance of the
original scheme, while reducing the dedicated on-chip
predictor table from 60 kilobytes to less than one kilobyte.

The rest of this paper is organized as follows. Section 2
introduces predictor virtualization by presenting a general
architecture for virtualized predictors. Section 3 discusses a
virtualized design for SMS. Section 4 presents the
experimental analysis of this design. Section 5 reviews related
work, while Section 6 concludes the paper.

2. Predictor Virtualization

PV enables hardware optimizations to use large predictor
tables without dedicating precious on-chip resources. Instead
of storing all predictor information in a large, dedicated table,
PV stores the predictor table in the memory space. To maintain
the illusion of a large, dedicated table, PV delivers predictor
entries on-demand to a small cache that is tightly-coupled to
the processor.

Figure 1 presents the PV architecture where we start with a
hardware optimization technique comprising an optimization
engine, and a predictor table, as shown in part (a). Under PV,
as shown in part (b), the optimization engine remains
unchanged but the predictor table is replaced by two
components: the PVTable, and the PVProxy. The next two
subsections describe these two components in detail.

2.1 PVTable
The PVTable is the predictor table stored in the main memory
address space. There are multiple alternative design options for
storing the predictor table. One option is to reserve a portion of
the physical address space to be used by the predictor table. A
second option is to rely on operating system support to manage
a set of either virtual or physical addresses to map the
PVTable. This work assumes the first option where a small
chunk of the physical memory space is reserved for the
PVTable. Each core has its own predictor table, and, hence, its
own chunk of reserved physical memory address space. This
approach does not require OS support. Alternatively, multiple
cores can share the same virtualized PVTable.

The start address for each PVTable is fixed and the physical
memory space dedicated to the predictor is reserved, without
declaring the corresponding physical addresses to the OS.
Thus, the OS is oblivious to the physical space dedicated to the
predictor.

In our design, we store the start address of the table in a special
per-core control register (PVStart). Depending on how the
predictor space is managed, this register may be included in
the architectural state of the processor and saved on context
switches. For example, if sharing the predictor table among
applications is detrimental, independent tables can be
preserved by allocating different chunks of main memory to
different applications via the PVStart registers. In this work,
we assume a shared predictor table per core and the PVStart
registers are not part of the architectural state.

2.2 PVProxy
The interface between the optimization engine and the original
predictor table is preserved in the virtualized architecture. The
predictor table stores information for future reference which is
retrieved by the optimization engine to make predictions. The
PVProxy provides the optimization engine with two basic
operations: 1) store an entry in the prediction table, and
2) retrieve an entry. For both operations, the optimization
engine provides an index to the PVProxy. This is the index
normally used to identify the entry requested from the
predictor table.

The PVProxy contains a small structure used to store a few of
the predictor entries (PVCache). Upon receiving a request
from the optimization engine, the PVProxy uses the requested
index to check whether the corresponding entry is in the
PVCache. If it is, the operation is performed as requested. If it
is not, the PVProxy initiates a request to bring the entry. The
address for this memory request is computed using the start
address of the in-memory predictor table (PVStart) and the
index provided by the optimization engine. The request is
stored in an MSHR-like structure. In this work, the PVProxy

Figure 1. a) Optimization engine and non-virtualized predictor
table; b) The architecture of the virtualized predictor table

a)

b)

Optimization
Engine

prediction

entry index

PVCache

MSHR

PVProxy
Main Memory

PVTable

L2 Cache

PVStart

index

indexentry

prediction

Predictor
Table

Optimization
Engine

sends its requests to the L2 cache. When the reply from the
memory system arrives, the predictor entry is installed in the
PVCache and the request from the optimization engine is
completed as usual. Alternatively, the PVProxy may report a
predictor miss to the optimization engine.

Upon installation of a new entry in the PVCache, another entry
needs to be evicted, if all entries are occupied. The PVCache
keeps a dirty bit per entry to record whether the information
stored has been modified. Upon eviction, a modified entry is
sent to the memory hierarchy. Non-modified entries are
discarded.

The memory requests generated by the PVProxy do not differ
from the requests generated by the conventional L1 caches
and, thus, the rest of the memory hierarchy is oblivious to the
data it transfers and stores. Moreover, as a natural
consequence, predictor entries are stored in the L2 or latter
caches leading to reduced latency for delivering the prediction
to the optimization engine. The only required modification to
the memory hierarchy is to allow the PVProxy to communicate
with the L2 cache. Arbitration is necessary between the L1
caches and the newly introduced PVProxy. Application
requests initiated by the L1 caches can be prioritized over
PVProxy requests. In this work, we did not prioritize
application requests over PV requests.

It is desirable that several entries of the predictor be packed in
a memory block equal to the size of the L1 cache block for two
reasons. First, the footprint of the PV data in the caches is
minimized. Second, multiple predictor entries can be brought
in with one memory request. Consequently, the latency of
fetching a predictor entry from memory can be amortized over
several predictions, provided spatial locality in the predictor
space exists.

As a design option, the main memory backend storage can be
completely eliminated by making the caches virtualization
aware (e.g., via a bit per block or by exposing the PVStart
register to the hierarchy). Upon eviction, dirty lines that belong
to the predictor are propagated only on chip, but not off-chip.
Thus, the predictor entries that are not hot enough to stay on
chip are lost. Since the prediction mechanism is of advisory
nature, this approach affects only the effectiveness of the
optimization, not its correctness. This design option avoids any
increase in off-chip memory bandwidth. In this work entries
are propagated off-chip.

2.3 Advantages of Virtualization
Beside reducing the on-chip storage dedicated to predictors,
PV presents several advantages when compared to traditional
on-chip lookup tables. In particular:

• The size of the predictor table can be configured at
runtime, based on the observed behavior of the
application, as long as it does not exceed the space
reserved in physical memory. Using virtual memory to
store the predictor table alleviates this requirement.

• If a feedback mechanism is in place, the optimization can
be turned on and off, depending on the application’s
behavior. The predictor entries that are stored in caches
are going to be silently replaced if they are not accessed.
In the traditional approach, when the optimization is
turned off, the space occupied by the large on-chip
predictor is entirely wasted.

• The predictor table can be configured to belong to a
process, a set of applications, a core, or a set of cores.
Since predictor entries are accessed based on the start
address of the in-memory table, it is sufficient to provide
the proper start address in the control register to enable
shared or independent tables. The traditional approach
usually provides per core tables, without the ability of
having per-process or per set of applications predictors.
Per-process predictor tables eliminate inter-process
interference in multi-programmed environments.
However, adding this feature needs OS support. Since the
required OS support is minimal, adding more flexibility to
the virtualization may prove a better alternative. We defer
the analysis of this trade-off to future work.

• Recently, virtual machine (VM) research [2] and
technology [29] received a lot of attention. Live virtual
machine migration [6] is a vital aspect of this technology.
VM migration involves transparently moving a virtual
machine on a different hardware platform. As part of the
migration process, the physical memory content is moved
from one host to another. PV enables transparently
moving predictor information as part of VM migration. In
the traditional design, on a VM migration, all information
from the predictor tables would be lost, suffering a
performance penalty since these tables may require long
training periods.

• PV offers a way for applications to influence predictor
behavior provided the virtualized predictor lives in the
process’s virtual space. The process can update predictor
entries by simply writing to the corresponding memory
locations. The PVCache needs to be coherent for
guaranteed delivery of these updates.

• Because virtualized tables live in the memory space it
may be possible to make them semi-persistent, thus
having subsequent invocations of an application benefit
from previously collected predictor metadata.

2.4 To Virtualize or Not To Virtualize?
A virtualized predictor exhibits non-uniform access latency.
For virtualization to be effective the optimization engine must
tolerate this non-uniform latency. This may not be possible for
all predictors. The latency of the predictor depends on the
PVCache hit-rate and whether the PV data remains stored on
chip, in the cache hierarchy. Predictor virtualization offers
several opportunities for compensating for the non-uniform
access latency.
First, some predictors are inherently tolerant of longer access
latencies for two reasons: Either a single prediction entry
generates several speculative actions, or because the prediction
is for a much longer latency operation. Section 3 discusses one
such predictor that associates multiple prefetching predictions
with a single predictor entry.
Second, PV can exploit temporal locality just as caches do. As
predictors rely on repetition in program behavior (e.g.,
program counter values or data addresses), some predictors
will exhibit short-term repetition which will lead to reuse of
predictor data. Timely reuse of predictor data makes the PV
entries hot in the caches, and, thus, predictor data remains
stored on chip.
Third, since PV communicates with the memory hierarchy
using cache blocks it should be possible to fetch multiple
entries with a single cache transfer. This provides us with an

opportunity to benefit from spatial locality in the predictor
access stream. Spatial locality is determined by the way the
predictor information is stored and accessed, and is highly
influenced by the predictor design: what information is stored
in each entry, how the table is indexed, how entries are
clustered and brought together into the PVCache. Any a priori
knowledge about predictor entry correlation can be exploited
by packing entries in the virtualized table such that a single
access brings in several temporally correlated predictor entries,
amortizing the extra incurred latency.

Finally, any a priori knowledge about predictor entry
correlation can also be exploited by anticipating future
prediction accesses. Since multiple entries are packed into a
single cache block, it is sufficient to guess only the appropriate
cache block and not necessarily the exact predictor entry.

If the PVCache hit-rate is high, PV is preferable over a large
dedicated predictor also because it reduces predictor lookup
latency for the common case. Because the PVCache is much
smaller than a large dedicated predictor, its latency will also be
smaller.

The details of the virtualization design are particular to each
individual hardware optimization. This includes design
decisions such as the PVCache geometry and the packing of
entries in contiguous memory blocks. In order for the PV to
effective, these design decisions have to be carefully
considered for each hardware optimization.

3. Virtualizing a state-of-the-art data prefetcher

This section reviews the Spatial Memory Streaming data
prefetcher [27], and explain how it can be virtualized.

3.1 Spatial Memory Streaming
Spatial memory streaming (SMS) is a data prefetcher that
extracts spatially-correlated memory access patterns over large
regions of memory at runtime and uses them to predict future
access patterns. SMS streams the predicted data blocks via the
level two cache and into the level one cache as fast as available
bandwidth and resources allow. This section briefly explains
how SMS works.

Applications exhibit spatial relationships among the cache
blocks they access. At runtime, SMS records the memory
accesses of the application, discovers the spatial relationships
among them, and uses these spatial patterns to predict the
cache blocks accessed by the application in the near future.

The memory accessed by the application is split into
contiguous regions called spatial regions. A spatial region
contains a fixed number of blocks. A spatial pattern is a bit
vector that records which blocks within a region were
accessed. The first access in a spatial region generation is
called a triggering access. A spatial region generation ends
when any block within the region accessed during the
generation is removed from the cache by replacement or
invalidation. The next access to the same spatial region will
start a new generation for that region (i.e., the next access is a
triggering access).

SMS uses two main hardware structures: the active generation
table (AGT), and the pattern history table (PHT). The PHT
consumes the bulk of the physical resources needed by SMS.
The PHT stores the spatial patterns discovered by the AGT.
The AGT records spatial patterns for active regions as the
processor accesses memory. A region is active as long as all
blocks that have been accessed since the triggering access are
still in the cache. For each spatial pattern, the AGT stores the
PC of the triggering access and the offset within the spatial
region of the block referred to by this access. At the end of a
generation (eviction or invalidation of any block accessed
during the generation), the spatial pattern from the AGT is
transferred to the PHT and the AGT entry is freed.

Figure 2 depicts the PHT and the prediction process. The table
is indexed by a combination of the PC and the block offset of
the triggering access. The PHT is used to predict the memory
blocks accessed within a generation. Thus, the PHT is accessed
at the start of each spatial generation. If the PHT contains a
pattern corresponding to the triggering access, the spatial
pattern is used to predict the memory blocks that are going to
be accessed during that generation. The region base address
and the bitvector pattern are used to generate the stream of
prefetch addresses.

Although the AGT is conceptually a single table, in practice, it
is implemented as two tables: the accumulation table and the
filter table. The filter table records the spatial region tag, the
PC and the block offset for all triggering accesses. Once a
spatial region records an access different than its triggering
one, the corresponding entry from the filter table is transferred
to the accumulation table where the spatial pattern is being
built. Thus, the filter table reduces the pressure on the
accumulation table by filtering out all spatial regions that have
only one access during a generation. The accumulation table
contains all the active regions that have at least two different
blocks set in their pattern.

Figure 2. Pattern History Table: prediction and prefetching process.

11100

10100

11101

10101

11100

11000

Tag Pattern Tag Pattern
Trigger Access

PC Address
region base offset

Tag index

Pattern History Table

11100

Pattern Region Base Address

Prefetch Address Stream

The PHT is implemented as a set-associative table indexed by
a combination of the PC and the block offset of the triggering
access. This table is the predictor table that we are virtualizing,
together with the two operations supported by the table: store
and retrieve patterns. The two tables of the AGT and their
functionality remain the same as in the original SMS design.

3.2 Virtualizing SMS
To provide accurate predictions, the PHT needs to be large.
The original SMS study [27] uses a 16-way set-associative
table with 16K entries (i.e., 1K sets) for the PHT. Considering
spatial regions of 32 blocks and 16 bits from the PC used as
index, the space required for the PHT is 86KB (64KB of data
and 22KB of tag space). Virtualization can achieve the same
performance improvements with less than a kilobyte worth of
dedicated on-chip space. The virtualization is applied to the
PHT table only. The PHT is by far the most resource-hungry
among the tables used in the SMS prefetcher (the AGT needs
less than one kilobyte of storage). The rest of the prefetcher
remains identical to the original design.

In this section we describe the virtualization of the SMS
prefetcher. The virtualization is implemented following the
architecture discussed in Section 2. In the virtualized version
of the SMS, the PHT is stored in main memory (PVTable). The
on-chip mechanism (PVProxy) insures proper delivery of the
PHT predictions to the prefetching engine. In our design, we
assume a two-level on-chip cache hierarchy. Next, we detail
the implementation of the two main components of the
virtualized prefetcher: PVTable and PVProxy.

3.2.1 PVTable
There are multiple alternatives for mapping the content of the
PHT to memory storage. We choose to pack all entries within
one set (both tags and data) of the PHT into a contiguous block
of memory equal in size to the L1 cache block (64 bytes), such
that we can bring into the PVCache an entire set of the
predictor table with only one L2 request. By adjusting the
PHT’s associativity, we are able to fit a PHT set to a cache
block. Grouping the entries within a set into a cache block
helps reducing the footprint of the PV in the caches. In
Subsection 4.2, we show that adjusting the associativity of the
PHT as required for virtualization does not reduce the
prefetching performance potential. In the case of SMS, the

entries within a cache block have little spatial or temporal
correlation.

Figure 3a shows how entries within a set of the predictor are
packed into a 64 byte contiguous memory block. The PHT
table chosen for virtualization contains 1K sets, each set with
11 ways. The index used for the table is composed from
concatenating 16 bits from the PC with five bits representing
the block offset of the triggering access in a spatial region of
32 blocks. Since the table contains 1K sets, 10 bits from the
21-bit table index are used for the set index. The remaining 11
bits are stored as tag in the table. A spatial pattern needs 32
bits to record the access to the 32 blocks in a spatial region.
Thus, there are 43 bits to be stored per predictor entry. After
packing 11 entries of 43 bits each in a 64 byte block, there are
some trailing unused bits. These bits could be used for LRU
information, or could be reserved for further optimizations.

3.2.2 PVProxy
The PVProxy acts as a mediator between the prefetcher and the
in-memory PVTable. All the requests that would normally go
to the PHT table in the original design are sent to the PVProxy.

The PVProxy contains a dedicated cache (PVCache) in which a
few sets from the PVTable are stored at a time. In the
implementation evaluated the PVCache is fully associative. A
tag identifies the PVTable set that is stored in each entry. Upon
receiving a request, the PVProxy checks its PVCache. On a hit,
the request is satisfied as in the non-virtualized case. On a
miss, the PVProxy sends a memory request to the L2 cache to
bring the PHT set in its PVCache.

Figure 3b shows how the memory address for the request is
computed. The PVProxy receives an index that uniquely
identifies the entry in the PHT. This index contains 21 bits, 16
bits from the PC of the triggering access and 5 bits from the
block offset. The 10 lower bits are used to compute the set
index within the 1K entry PHT table. To obtain the memory
address, the set index is padded with six zeros (since each set
is stored in a 64-byte contiguous memory block) and added to
the start address of the PVTable. The PVProxy requests sent to
the memory hierarchy are similar to the ones generated by the
L1 cache. The L2 is oblivious to the existence of a different
entity besides the L1 cache. Several optimizations regarding
these memory requests are possible. The priority of these
requests could be lower so that they do not interfere with the
normal execution of the application. Given the advisory nature
of the prefetcher, the requests could bypass the cache
coherence. We have not implemented any of these
optimizations in our current system.

Once the data is brought in the PVCache, the request is
completed as in the original design. If the predictor set
contains a pattern, the pattern is used to generate the stream of
prefetches as in the non-virtualized design.

4. Experimental Analysis

This section quantitatively shows that SMS benefits from
predictor virtualization. Our goal is to demonstrate the
feasibility of virtualization and its benefits, and not that SMS
is the best possible prefetcher.

This section is organized as follows: Subsection 4.1 describes
the simulation methodology. Subsection 4.2 compares the
prefetching potential with different predictor table sizes
demonstrating that large predictors outperform small

Figure 3. a) One set of the PHT is packed in 64 bytes of
contiguous memory in the PVTable. b) Memory address

calculation for the PVProxy memory request.

0 10 11 42 43 53 54 85
tagpattern pattern

unused
a)

tag pattern tag

PC
16 bits

block offset
 5 bits

0000010 bits

PV Start Address

Memory Addressb)

predictors by a great margin. This result motivates the
virtualization of large predictors. Subsection 4.3 discusses the
impact of PV on the memory system. Subsection 4.4
demonstrates that applying PV to SMS offers virtually
identical performance compared to the original design,
considerably reducing the dedicated on-chip resources.
Finally, Subsection 4.5 discusses the sensitivity of
virtualization with respect to L2 cache size and latency.

4.1 Methodology
We simulate a four-core CMP with a shared L2 cache based on
the Piranha cache design [3] using the Flexus simulator [12].
Table 1 shows the core and system configuration used in most
experiments. We explicitly mention in the text whenever one
of these parameters is varied.

Each core implements a next-line instruction prefetcher. The
baseline configuration does not contain any form of data
prefetching. This allows us to isolate the performance
improvements obtained by the original SMS prefetcher and its
virtualized design.

The SMS prefetcher was simulated using an AGT with 64
entries in the accumulation table and 32 entries in the filter
table. Spatial regions contain 32 blocks. These parameters are
the tuned values from the original SMS study [27]. We also
verified that these values are still the best choice for the chip-
multiprocessor architecture we simulate. The geometry of the
predictor table (PHT) is varied throughout the experiments as
specified. Each core has its own SMS prefetcher. Prefetching
is performed directly into the L1 cache, without any
intermediate buffering. For the virtualized configurations, each
core has its own PVProxy and PVTable.

Table 2 describes the simulated workloads. These include:
(1) The TPC-C v.3.0 online transaction processing workload
running on both IBM DB2 v8 ESE and Oracle 10g Enterprise
Database Server. (2) Four queries from the TPC-H DSS
workload running on IBM DB2 v8 ESE. (3) The SPECweb99
benchmark running with Apache HTTP Server v2.0 and Zeus
Web Server v4.3, respectively. The web servers were driven
with separate simulated client systems; however, client activity
is not included in the reported results.

All results except the execution time results presented in
Subsection 4.4 and Subsection 4.5 are measured using
functional simulation of two billion cycles. We use the first
billion cycles as warm-up period and present measurements for
the second billion cycles. Two workloads, TPC-H queries 2
and 17, complete in less than two billion cycles; thus, for these
queries, we take measurements for 209 million and 259 million
cycles, respectively, after the warm-up period of one billion
cycles.

The speedup results presented in Subsection 4.4 and
Subsection 4.5 use the Flexus cycle-accurate, full-system
simulator with the SMARTS sampling methodology [34]. Each
sample measurement involves 100K cycles of detailed
warming followed by 50K cycles of measurement collection.
Results are reported with error bars for a 95% confidence
interval. We used matched-pair sampling [9] to measure
performance variation. Performance is measured as the
aggregate number of user instructions committed each cycle
(i.e., committed user instructions summed over the four
processor cores divided by the number of total elapsed cycles).
This aggregate measures total application throughput [32].

4.2 Prefetching Potential vs. Predictor Table Size
This section studies the change in SMS performance potential
as a function of predictor table size. The results show that, to

Figure 4. SMS performance potential.

0%

20%

40%

60%

80%

100%

120%

140%

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

In
fin

ite
1K

-1
6a

1K
-1

1a
16

-1
1a

8-
11

a

Apache Zeus DB2 Oracle Qry 1 Qry 2 Qry 16 Qry 17

L1
 R

ea
d

M
is

se
s

Covered Uncovered Overpredictions

Table 1. Base processor configuration
 Branch Predictor Fetch Unit

8k GShare +
16K bi-modal + 16K selector

2 branches per cycle

Up to 8 instr. per cycle
64-entry Fetch Buffer

Scheduler
256-entry/64-entry LSQ

ISA & Pipeline Issue/Decode/Commit
UltraSPARC III ISA, 4GHz

8-stage pipeline
 out-of-order execution

any 8 instr./cycle
Main Memory

3 GB, 400 cycles
L1D/L1I UL2

64kB 4-way set-associative
 64B blocks

LRU replacement
2 cycle latency

8MB, 16-way set-associative
8 banks, 64B blocks
 LRU replacement

 6/12 cycle tag/data latency

exploit the full potential of the prefetcher, the predictor tables
have to be large. This result motivates predictor virtualization.

Figure 4 shows SMS’ performance potential for different
predictor table configurations. The performance potential is
plotted as the percentage of L1 read misses that are eliminated
by the prefetcher, i.e., covered misses. The misses that are not
eliminated by SMS are presented in the graph as uncovered.
The overpredictions represent the prefetched data blocks that
are evicted or invalidated before they are used.

The first bar in the graph corresponds to infinite predictor
tables. In this case, the predictor table stores all the spatial
patterns discovered. The second configuration (1K-16a) is the
configuration that was found the best in the original SMS study
for a 16 node, shared-memory architecture [27]. In this
configuration, the predictor is organized as a 16-way set-
associative table with 1K sets. Decreasing the number of sets
beyond 1K results in lower coverage. We experimented with
different configurations for the predictor and we found that
reducing the table associativity from 16 to 11 (1K-11a) does
not decrease the performance potential noticeably. The smaller
associativity conveniently allows us to pack an entire predictor
table set in a contiguous memory block of equal size to the
cache block size (64 bytes). We also show results for smaller
11-way set-associative tables that have only 16 and 8 sets,
respectively (16-11a and 8-11a).

SMS’ behavior varies across applications when the predictor
size is decreased. For example, for Oracle coverage drops from
44% with 1K sets down to less than 4% with eight sets. Other
workloads, such as some TPC-H queries are less sensitive to
the predictor size. For example, for Query 1, the coverage
decreases from 73% with the infinite tables to 62% with a 16-
set tables. Subsection 4.4 demonstrates that even this relatively
small decrease in coverage can lead to important performance
loss.

In the interest of space, Figure 5 presents all intermediate table
sizes (i.e., from 1K entries to eight entries) for three
representative workloads. While the curve describing the
decrease in covered misses is different for each of them, all
benchmarks experience a significant drop in coverage when
varying the number of dedicated entries in the predictor table.

Overall, the results show that reducing predictor sizes leads to
a significant drop in performance potential for most workloads.
Thus, naively restricting the size of the predictor table is not a
viable solution for decreasing the on-chip resources dedicated
to the predictor.

Table 3 lists the storage requirements per configuration. In its
original proposal, the predictor needs more than 80 kilobytes
of on-chip space to achieve its potential (1K-16a

configuration). Each core uses its predictor, hence the space
dedicated on chip is multiplied by the numbers of cores on
chip. While the small predictors require approximately one
kilobyte of space, their performance potential is much lower
for most workloads. PV aims at achieving the best area vs.
performance potential trade-off.

We choose to virtualize the table with 1K sets and associativity
of 11, since its performance is close to that of the infinite table.
The difference in coverage between the 1K-11a and the infinite
tables is at most 3% across all applications. Each PVTable has
1K sets, and each set is mapped to a 64 byte block, for a total
of 64KB main memory storage per core.

4.3 Impact of the Predictor Virtualization on the
Memory System

The performance of the virtualized predictor depends on two
factors: 1) the interaction with the rest of the memory system,
and 2) the timeliness of the prefetcher after virtualization. In
this subsection, we study the impact of prefetcher
virtualization on the number of the L2 requests and on the off-
chip memory traffic. The timeliness of the prefetcher is
reflected in the results presented in Subsection 4.4.

Figure 6 reports the increase in L2 memory requests due to
virtualization as a function of the number of PVCache sets. For
an eight set PVCache, the increase in memory requests varies
between 25% and 44%, with an average of 33%. Increasing the
number of dedicated sets for the PVCache does not lead to
noticeably different results. This implies that before an entry
gets evicted from the PVCache it is either used only once or
exhibits very short term temporal locality. Only for two

Table 2. Workloads
Online Transaction Processing (TPC-C)

Oracle 100 warehouses (10GB), 16 clients, 1.4 GB SGA
DB2 100 warehouses (10GB), 64 clients, 450 MB buffer pool

Decision Support (TPC-H on DB2)
Qry 1 Scan-dominated, 450 MB buffer pool
Qry 2 Join-dominated, 450 MB buffer pool

Qry 16 Join-dominated, 450 MB buffer pool
Qry 17 Balanced scan-join, 450 MB buffer pool

Web Server
Apache 16K connections, FastCGI, worker threading model

Zeus 16K connections, FastCGI

Figure 5. SMS potential - representative behavior.

Table 3. Storage for different predictor configurations

Configuration Tags Patterns Total
1K-16 22KB 64KB 86KB

1K-11 15.125KB 44KB 59.125KB

16-11 374B 880B 1.225KB

8-11 198B 440B 0.623KB

0%

20%

40%

60%

80%

100%

120%

140%

In
fin

ite
1K

-1
6a

1K
-1

1a
51

2-
11

a
25

6-
11

a
12

8-
11

a
64

-1
1a

32
-1

1a
16

-1
1a

8-
11

a
In

fin
ite

1K
-1

6a
1K

-1
1a

51
2-

11
a

25
6-

11
a

12
8-

11
a

64
-1

1a
32

-1
1a

16
-1

1a
8-

11
a

In
fin

ite
1K

-1
6a

1K
-1

1a
51

2-
11

a
25

6-
11

a
12

8-
11

a
64

-1
1a

32
-1

1a
16

-1
1a

8-
11

a

Apache Oracle Qry 17

L1
 R

ea
d

M
is

se
s

Covered Uncovered Overpredictions

benchmarks, Query 1 and Query 16, increasing the number of
sets to 32 (results not shown due to space limitations) leads to
a decrease in the additional memory traffic of more than 5%.
While the increase in L2 memory requests is significant,
Subsection 4.4 demonstrates that it has a minimal impact on
performance.

Figure 7 shows the percentage increase in the number of L2
cache misses and write backs for virtualized predictors with
eight and 16 sets in the PVCache, respectively, compared to
the non-virtualized SMS prefetcher. For five out of the eight
simulated workloads, the increase in number of misses is less
than 1%. For the rest, the increase in L2 cache misses is less
than 3%. The percentage increase in the number of L2 cache
misses does not change when the number of dedicated entries
is increased to 16 or even 32 entries (results not shown due to
space limitations). The L2 write backs experience minimal
increases as well, with a maximum of 3.2% increase for Zeus.

The increase in off-chip bandwidth due to virtualization is
3.3% on average, with a maximum of 6.5% for Zeus.

Overall, there is little benefit from increasing the number of
dedicated on-chip resources from eight sets to 16 or even 32,
therefore, we decide to use only eight sets for the PVCache in
our final design.

Figure 8 further splits the increase of L2 misses and writebacks
into application data and predictor data for a configuration
with eight dedicated entries in the PVCache. These results
demonstrate two important points. First, the predictor entries
that are naturally cached in the L2 do not lead to cache
pollution. L2 application data misses increase by less than
2.5% for all studied benchmarks, with an overall average
increase of 1%. The L2 cache space is better used to store
predictor information rather than exclusively storing
application data. Second, most of the memory requests
generated by the PVProxy are satisfied by the L2 cache. Across
all applications, more than 98% of the PVProxy memory
requests are filled in L2 (results not shown due to space
limitations). The predictor entries are hot enough to be kept in
the L2 cache. This considerably reduces the latency of the
virtualized predictor compared to the case where its entries
would be delivered from main memory most of the time.

4.4 Performance of the Virtualized Predictor
 This subsection presents cycle-accurate performance results
for the virtualized predictor compared to the non-virtualized
counterparts. Figure 9 presents the percentage speedup for four
configurations. The first three bars represent the percentage
speedup increase of the non-virtualized prefetcher with
different predictor table sizes: 1K sets, 16 sets and eight sets
respectively, all with a set-associativity of 11. The last bar in
the graph shows the speedup for the virtualized predictor with
just eight dedicated on-chip sets. The baseline uses no
prefetching. On average, the smaller dedicated prefetchers
achieve only half of the performance of the 1K sets prefetcher.

Figure 6. Percentage increase of L2 memory requests due to
virtualization.

Figure 7. Impact of the virtualization on the off-chip
bandwidth split in L2 misses and L2 write backs.

0%

10%

20%

30%

40%

50%

Apa
ch

e
Zeu

s
DB2

Orac
le

Qry
1

Qry
2

Qry
16

Qry
17

In
cr

ea
se

 L
2

R
eq

ue
st

s

PV-8 PV-16

0%

1%

2%

3%

4%

5%

6%

PV
-8

PV
-1

6

PV
-8

PV
-1

6

PV
-8

PV
-1

6

PV
-8

PV
-1

6

PV
-8

PV
-1

6

PV
-8

PV
-1

6

PV
-8

PV
-1

6

PV
-8

PV
-1

6

Apache Zeus DB2 Oracle Qry1 Qry2 Qry16 Qry17

O
ff

-c
hi

p
B

an
dw

id
th

 In
cr

ea
se

L2 Misses L2 Writebacks Figure 8. Percentage increase of off-chip memory traffic split
in application and predictor data for PV-8 configuration.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Ap
ac

he
Ze

us
D

B2
O

ra
cl

e
Q

ry
1

Q
ry

2
Q

ry
16

Q
ry

17

Ap
ac

he
Ze

us
D

B2
O

ra
cl

e
Q

ry
1

Q
ry

2
Q

ry
16

Q
ry

17

L2 Misses L2 Writebacks

O
ff

-c
hi

p
B

an
dw

id
th

 In
cr

ea
se

Application Data PV Data

For Apache, the small predictor tables are entirely inefficient,
leading to no speedup compared to the baseline.

Overall, the virtualized prefetcher achieves similar
performance to the non-virtualized one. On average, the
original prefetcher improves performance by 19%, while the
virtualized improves performance by 18%. In the worst case,
for Oracle, the improvement of the non-virtualized prefetcher
is 6.7%, while it is 4.2% with the virtualized prefetcher. For
the same benchmark, the small, non-virtualized prefetchers
improve performance only by 2%.

4.5 Sensitivity to the L2 Cache Size and Latency
Predictor virtualization is motivated by the diminishing returns
in application performance improvements with increased cache
sizes. Thus, we expect that the space occupied by the PV data
becomes less of a concern for larger caches. Accordingly, we
studied the original prefetcher and the virtualized design in
functional simulation, while varying the L2 cache size from
512KB to 2MB per core, for a total of 2MB to 8MB. Figure 10
shows the increase in off-chip bandwidth split between L2
misses and L2 write backs. As expected, PV interferes less
with the application as the L2 cache capacity increases. The
interference is minimal in the case of an L2 cache size of 2MB
per core, for a total of 8MB.

We also verify that PV remains effective even with a longer L2
latency. For this experiment, we measured performance with
the L2 tag and data latencies increased to eight and 16 cycles
respectively (previous runs assumed latencies of six and 12
cycles). The first bar in Figure 11 represents the speedup with
the original data prefetcher, while the second bar shows
speedup with virtualization. On average, the difference is less
than 1.5%.

4.6 PVProxy Space Requirements
The space required by virtualization can be broken down as
follows: space for the PVCache - 473 bytes, tags that uniquely
identify the sets within the PVTable that are stored in the
PVCache - 11 bytes, dirty bits - 1 byte, MSHRs - 84 bytes. We
also include an Evict Buffer with 4 entries (256 bytes) and a
16-entry pattern buffer (64 bytes) that stores the patterns while
the corresponding sets are brought from the lower cache. The
total space required by the PVProxy adds up to 889 bytes per
core. The corresponding non-virtualized prefetcher requires

59.125KB of on-chip storage per core. The dedicated on-chip
space is reduced by virtualization by a factor of 68, while
preserving performance.

5. Related work

Using the memory hierarchy to store information other than
instructions of data is not a new concept. Techniques such as
LimitLESS directories [5], SC++lite [11] and VTM [21], spill
machine state to the memory hierarchy. One fundamental
difference between these schemes and PV is the nature of the
information spilled to the memory hierarchy. In PV this
information is advisory in nature and it can be silently
discarded without affecting correctness.

Reconfigurable caches, introduced by Ranganathan et al. [22],
replace conventional caches with a reconfigurable design that
allows the on-chip SRAM storage to be divided in different
partitions. These partitions can be used as conventional caches

Figure 9. Performance of the virtualized predictor.

0%

10%

20%

30%

40%

50%

60%

70%

Apa
ch

e
Zeu

s
DB2

Orac
le

Qry
1

Qry
2

Qry
16

Qry
17

Sp
ee

du
p

SMS - 1K SMS - 16 SMS - 8 SMS - PV8

Figure 10. Off-chip bandwidth increase for different L2 cache
sizes split into L2 misses and write backs.

Figure 11. Performance of the virtualized prefetcher with
increased L2 latency.

0%

10%

20%

30%

40%

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

2M
B

4M
B

8M
B

Apache
Zeus

 DB2 Oracle
Qry1

Qry2

 Qry16 Qry17

O
ff

-c
hi

p
B

an
dw

id
th

 In
cr

ea
se

Write-backs

L2 Misses

0%

10%

20%

30%

40%

50%

60%

Apa
ch

e
Zeu

s
DB2

Orac
le

Qry
1

Qry
2

Qry
16

Qry
17

Sp
ee

du
p

SMS - 1K SMS - PV8

or as lookup structures for hardware optimizations. Although
the cache latency does not increase due to additional logic, the
cache design needs to be modified. The partitioning is done at
a coarse granularity, and the sizes and the number of partitions
are fixed at design time. In Predictor Virtualization the on-chip
SRAM is transparently used for storing predictor information.
Moreover, the allocation of cache space for storing predictor
information is done on demand, at very fine granularity (i.e.,
cache block).

Developed independently, LT-cords [10] uses main memory to
store prefetching metadata that could not be practically stored
on-chip (e.g., tens to hundreds of megabytes). LT-cords makes
no attempt to minimize the dedicated on-chip resources. LT-
cords relies on large dedicated on-chip predictors (e.g.,
200KB). PV shares some of the goals of LT-cords in that it
seeks to enable the implementation of otherwise impractical,
due to storage requirements, predictors. However, PV is a
general framework for emulating otherwise impractical to
implement predictors, and for reducing the on-chip storage
required in as much as possible for other predictors.

The AMD Opteron processor uses the L2 ECC bits to store
branch history information upon eviction of an instruction
cache line to L2 [15]. This can be viewed as a form of
predictor virtualization. However, this approach is not
transparent to the memory hierarchy.

6. Conclusion

This paper introduced predictor virtualization, a technique
meant to break the on-chip limitations for predictor storage in
dynamic hardware optimizations. PV can be used either to
reduce the cost of existing predictors or to enable the
implementation of otherwise impractical predictors. PV uses
the existing conventional cache hierarchy to transparently store
predictor entries, instead of dedicating valuable on-chip
resources.

Using full-system, cycle-accurate simulation and a set of eight
commercial applications, this work demonstrated the benefits
of PV by virtualizing a state-of-the-art data prefetcher. The
virtualized prefetcher preserves the performance
improvements of the original design, while reducing the on-
chip space requirements by two orders of magnitude. The
virtualized predictor needs less than 900 bytes of on-chip
storage to achieve the same performance as the original
prefetcher that requires approximately 60KB of dedicated
space.

Moving forward we expect that there are other existing
predictors, such as for example, branch target prediction, that
will naturally benefit from predictor virtualization. These are
predictors that naturally exhibit both temporal and spatial
locality in the predictor access stream. There are other
predictors, such as branch direction predictors, that may not
benefit as-is by virtualization. However, we expect that it will
be possible to virtualize these predictors by revisiting their
design with virtualization in mind. In addition, virtualization
may provide a natural way for sharing predictor state across
processes, making predictor state semi-persistent, and
exposing predictors to software via regular memory
operations. Finally, future work can investigate the several
options that exist on how to manage metadata in the memory
hierarchy, whether to spill this metadata to main memory, and
whether this metadata should be exposed to the operating
system and applications.

Acknowledgements
We thank the anonymous reviewers for their time and
insightful comments. Jason Zebchuk, Myrto Papadopoulou and
Livio Soares provided useful feedback on earlier drafts of this
paper. Ioana Burcea is supported by an NSERC Canada
Graduate Scholarship D3. This work was supported in part by
an NSERC Discovery Grant, an Intel research grant, an Intel
equipment donation, and a Canada Foundation for Innovation
equipment grant.

References
[1] Almog, Y., Rosner, R., Schwartz, N., and Schmorak, A.

Specialized Dynamic Optimizations for High-Performance
Energy-Efficient Microarchitecture. In Proc. of the Intl’
Symposium on Code Generation and Optimization, 2004.

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art
of virtualization. In Proc. of the 19th Symposium on
Operating Systems Principles, 2003.

[3] Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk,
A., Qadeer, S., Sano, B., Smith, S., Stets, R., and Verghese,
B. Piranha: a scalable architecture based on single-chipu
multiprocessing. In Proc. Intl’ Symposium on Computer
Architecture, 2000.

[4] Cantin, J. F., Lipasti, M. H., and Smith, J. E. Stealth
prefetching. In Proc. of the 12th Intl’ Conference on
Architectural Support For Programming Languages and
Operating Systems, 2006.

[5] Chaiken, D., Kubiatowicz, J., and Agarwal, A. LimitLESS
directories: A scalable cache coherence scheme. In Proc. of
the Intl’ Conference on Architectural Support For
Programming Languages and Operating Systems, 1991.

[6] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. Live migration of
virtual machines. In Proc. of the 2nd Symposium on
Networked Systems Design & Implementation, 2005.

[7] Cooksey, R., Jourdan, S., and Grunwald, D. A stateless,
content-directed data prefetching mechanism. In Proc. of the
10th Intl’ Conference on Architectural Support For
Programming Languages and Operating Systems, 2002.

[8] Collins, J., Sair, S., Calder, B., and Tullsen, D. M. Pointer
cache assisted prefetching. In Proc. of the 35th Intl’
Symposium on Microarchitecture, 2002.

[9] Ekman, M., and Stenström, P. Enhancing multiprocessor
architecture simulation speed using matched-pair comparison.
Proc. Intl’ Symp. on the Performance Analysis of Systems
and Software, 2005.

[10] Ferdman, M., and Falsafi, B. Last-Touch Correlated Data
Streaming. In Proc. of the Intl’ Symposium on Performance
Analysis of Systems and Software, 2007.

[11] Gniady, C. and Falsafi, B. Speculative sequential consistency
with little custom storage. In Proc. of the Intl’ Conference on
Parallel Architectures and Compilation Techniques, 2002.

[12] Hardavellas, N., Somogyi, S., Wenisch, T. F., Wunderlich, R.
E., Chen, S., Kim, J., Falsafi, B, Hoe, J. C., and Nowatzyk,
A. G. SimFlex: A fast, accurate, flexible full-system

simulation framework for performance evaluation of server
architecture. SIGMETRICS Performance Evaluation Review,
2004.

[13] Hu, Z., Martonosi, M., and Kaxiras, S. Timekeeping in the
Memory System: Predicting and Optimizing Memory
Behavior. In Proc.of the 29th Intl’ Symposium on Computer
Architecture, 2002.

[14] Jerger, N., Hill, E., and Lipasti, M. Friendly Fire:
Understanding the Effects of Multiprocessor Prefetching. In
Proc. of the International Symposium on Performance
Analysis of Systems and Software, 2006.

[15] Keltcher, C.N., McGrath, K.J., Ahmed, A., Conway, P. The
AMD Opteron processor for multiprocessor servers. IEEE
Micro, 23(2): 66-76, 2003.

[16] Lipasti, M. H. and Shen, J. P. Exceeding the dataflow limit
via value prediction. In Proc. of the 29th Intl’ Symposium on
Microarchitecture, pages 226-237, 1996.

[17] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P. Value
locality and load value prediction. In Proc. of the Seventh
Intl’ Conference on Architectural Support For Programming
Languages and Operating Systems, 1996.

[18] Nesbit, K. J., and Smith, J. E. Data Cache Prefetching Using a
Global History Buffer. In the Proc. of the 10th Intl’
Symposium on High Performance Computer Architecture,
2004.

[19] Patel, S.J., and Lumetta, S.S. rePLay: A hardware framework
for dynamic optimization. Transactions on Computers, 50(6):
590-608, 2001.

[20] Qureshi, M.K., Lynch, D.N., Mutlu, O., Patt, Y. N., A Case
for MLP-Aware Cache Replacement, In Proc. of the 33rd
Intl’ Symposium on Computer Architecture, 2006.

[21] Rajwar, R., Herlihy, M., and Lai, K. Virtualizing
Transactional Memory. In Proc. of the 32nd Intl’ Symposium
on Computer Architecture, 2005.

[22] Ranganathan, P., Adve, S., and Jouppi, N. P. Reconfigurable
caches and their application to media processing. In Proc. of
the 27th Intl’ Symposium on Computer Architecture 2000.

[23] Rosner, R., Almog, Y., Moffie, M., Schwartz, N., and
Mendelson, A. Power awareness through selective

dynamically optimized traces. In Proc. of the 31th Intl’
Symposium on Computer Architecture, 2004.

[24] Sazeides, Y. and Smith, J. E.The predictability of data values.
In Proc. of the 30th Intl’ Symposium on
Microarchitecture,1997

[25] Sherwood, T., Sair, S., and Calder, B. Predictor-directed
stream buffers. In Proc. of the 33rd Intl’ Symposium on
Microarchitecture, 2000

[26] Sodani, A. and Sohi, G. S. Dynamic instruction reuse. In
Proc. of the 24th Intl’ Symposium on Computer Architecture,
1997

[27] Somogyi, S., Wenisch, T. F., Ailamaki, A., Falsafi, B.,
Moshovos, A. Spatial Memory Streaming. In Proc. Intl’
Symposium on Computer Architecture, 2006.

[28] Tendler, J., Dodson, S., and Fields, S. IBM eServer Power4
System Microarchitecture, Technical White Paper, IBM
Server Group, 2001

[29] VMWare - http://www.vmware.com
[30] Wang, K. and Franklin, M. Highly accurate data value

prediction using hybrid predictors. In the Proc. of the 30th
Intl’ Symposium on Microarchitecture, 1997.

[31] Wang, Z., Burger, D., McKinley, K. S., Reinhardt, S. K., and
Weems, C. C. Guided region prefetching: a cooperative
hardware/software approach. In Proc. of the 30th Intl’
Symposium on Computer Architecture, 2003

[32] Wenisch, T. F., Somogyi, S., Hardavellas, N., Kim, J.,
Ailamaki, A., and Falsafi, B. Temporal Streaming of Shared
Memory. In Proc. of the 32nd Intl’ Symposium on Computer
Architecture, 2005.

[33] Wenisch, T.F., Wunderlich, R. E., Ferdman, M., Ailamaki,
A., Falsafi, B., and Hoe, J. C. SimFlex: statistical sampling of
computer system simuation. IEEE Micro, 26(4): 18-31, 2006.

[34] Wunderlich, R. E., Wenisch, T. F., Falsafi, B., Hoe, J. C.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proc. of the 30th Intl’
Symposium on Computer Architecture, 2003.

[35] Zhang, W., Calder, B., and Tullsen, D. M. An Event-Driven
Multithreaded Dynamic Optimization Framework. In Proc. of
the 14th Intl’ Conference on Parallel Architectures and
Compilation Techniques, 2005.

