
Last-Touch Correlated Data Streaming

Michael Ferdman and Babak Falsafi
Computer Architecture Laboratory (CALCM)

Carnegie Mellon University, Pittsburgh, PA 15213
{mferdman,babak}@ece.cmu.edu

1

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

Abstract
Recent research advocates address-correlating predictors to

identi fy cache block addresses for prefetch. Unfor tunately,
address-correlating predictors require correlation data storage
proportional in size to a program's active memory footprint. As a
result, current proposals for this class of predictor are either l im-
ited in coverage due to constrained on-chip storage requirements
or limited in prediction lookahead due to long off-chip correlation
data lookup.

In thi s paper, we propose Last-Touch Correlated Data
Streaming (LT-cords), a practical address-correlating predictor.
The key idea of LT-cords is to record correlation data off chip in
the order they wil l be used and stream them into a practically-
sized on-chip table shortly before they are needed, thereby obviat-
ing the need for scalable on-chip tables and enabling low-latency
lookup. We use cycle-accurate simulation of an 8-way out-of-
order superscalar processor to show that: (1) LT-cords wi th
214KB of on-chip storage can achieve the same coverage as a
last-touch predictor with unlimited storage, without sacrificing
predictor lookahead, and (2) LT-cords improves performance by
60% on average and 385% at best in the benchmarks studied.

1 Introduction
Advances in semiconductor fabrication, along with circuit

and microarchitectural innovation, have led to an unprecedented
performance gap between microprocessors and memory. Today’s
processors attempt to reduce this performance gap by incorporat-
ing a hierarchy of cache memories. Further expansion of these
hierarchies has reached the point of diminishing returns because
accesses to distant (e.g., off-chip) hierarchy levels require hun-
dreds of processor cycles, an order of magnitude higher than the
lowest on-chip level. Today’s wide-issue out-of-order superscalar
processors with non-blocking caches can at best tolerate access
latencies to nearby cache levels, and incur performance penalties
upon long-latency memory accesses.

There is a myriad of techniques proposed to address the
memory-access perf ormance bot tl eneck. A number of
proposals [7,14,16,21,22] advocate microarchitectural enhance-
ments to the speculation window and allow instructions to flow
speculatively beyond long-latency memory accesses. These tech-
niques rely primari ly on accurate control f low and load-value
speculation in the presence of pending memory accesses to avoid
stal l ing. However, these enhancements do not benefit pointer-
chasing applications with little or no memory-level parallelism.

Some researchers and vendors have explored prefetching to
mitigate the processor-memory performance gap. Many proposals
are inherently limited in scope, targeting only specific access pat-
terns, such as strided accesses [1,19], pointer dereference [6,8], or
accesses to linked data structures [17]. Although frequently accu-
rate for the subset of memory accesses they target, these prefetch-
ers have inherentl y l ow coverage overal l . M ore recentl y,
researchers have proposed generalizing stride predictors to target
miss sequences that exhibit recurring patterns of (non-constant)
strides, an approach called delta correlation. The delta-correlating
Global History Buffer (GHB) prefetcher [15] was recently shown
to outperf orm a var i ety of other hardware pref etching
schemes [9]. Although delta correlation subsumes many previous
approaches, i t is not effective for data structures with irregular
access patterns. Furthermore, current delta-correlating prefetchers
cannot track repetitive deltas if several individually-correlated
access sequences are interleaved.

Another proposed class of prefetchers utilizes address corre-
lation [3,4,10,11,15,20] , which promises wider applicabil i ty
across a diverse spectrum of workloads because they target gener-
alized memory access patterns. Rather than detecting patterns in
data layout, these prefetchers correlate data addresses to predict
future misses. Ideally, address-correlating prefetchers are able to
predict sufficiently early to tolerate long off-chip access latency
while predicting a large fraction of cache misses. Unfortunately,
no prior design is able to achieve both long lookahead and high
predictor coverage. To achieve long lookahead, a predictor
requires high-bandwidth on-chip access to correlation data, which
precludes large storage. To achieve high coverage, address-corre-
lating predictors require storage proportional in size to a pro-
gram’s memory footprint, which precludes fast prediction.

A recent proposal, the Dead-Block Correlating Prefetcher
(DBCP) [12], achieves maximal prefetch lookahead through cor-
relation to “ last touch” accesses—the last access to each cache
block prior to eviction. However, capacity constraints of DBCP’s
on-chip correlation table l imi t i ts coverage. Conversely, the
designs of Sol ihin et al . [20] and Wenisch et al. [24] record
address correlation data in of f-chip DRAM. Al though these
mechanisms have abundant correlation data storage, lookup is
performed off chip, drastically increasing prediction latency.

We propose Last-Touch Correl ated Data Streami ng
(LT-cords), the first address-correlating predictor design to com-
bine the prediction timeliness of last-touch on-chip lookup with
the high coverage enabled by off-chip predictor storage. The key
idea of LT-cords is to record correlation data off chip in the order
they will be used, and stream them into a practically-sized on-chip

2

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

table shortly before they are needed. Just as prior predictors rely
on a repetitive sequence of cache misses, LT-cords depends on a
repetitive sequence of predictions. In this paper, we demonstrate
that the order in which DBCP-like prediction data are used (the
last-touch order) closely matches the order these entries are dis-
covered (the blocks’ eviction order).

We use trace-driven and cycle-accurate simulation of an 8-
way out-of-order superscalar processor running SPEC CPU2000
and Olden benchmarks to show:

• Last-touch order is correlated to block eviction order. The
observed sequence of block evictions exactly matches the
sequence of last touch accesses for 21% of evictions. Allow-
ing for local reorderings, over 98% of last touch accesses
match eviction order, enabling a hardware mechanism that
uses block eviction order to approximate last-touch order.

• High coverage and timely prediction with practical on-
chip storage. LT-cords eliminates 69% of L1D misses using
only 214KB of on-chip storage, while increasing off-chip
traffic for pin-bandwidth-hungry applications by at most 15%
and less than 4% on average. In contrast, DBCP requires on
average 80MB of on-chip storage to eliminate the same frac-
tion of L1D misses.

• Speedup. LT-cords achieves a performance improvement of
60%, compared to 123% achieved by a perfect L1D. In con-
trast, the delta-correlating GHB prefetcher achieves only
31% performance improvement. DBCP with 2MB on-chip
storage [12] achieves only 17% performance improvement.
Finally, increasing L2 cache size by a factor of four achieves
only 16% performance improvement.
The rest of this paper is organized as follows. Section 2 pro-

vides background on dead-block correlated prefetching. Section 3
investigates the temporal correlation of last touches and how it
can be exploited to create sequences of last-touch signatures.
Section 4 describes a LT-cords design based on last-touch signa-
ture sequences. Section 5 details our evaluation methodology and
results. We conclude in Section 6.

2 Background: DBCP Prefetching
Lai et al. proposed Dead-Block Correlated Prefetching [12]

to predict the last touch to a cache block prior to that block’s evic-
tion, and replace the block by prefetching a subsequently accessed
block. By triggering the prefetch at the last touch, DBCP provides
maximal lookahead among address-correlating prefetchers.

DBCP correlates each last touch of a cache block to the
address of the block that replaces it. Figure1 depicts an example

of prefetching using a DBCP. We assume a direct-mapped L1D
for this example. Cache blocks A1, A2, and A3 all map to the
same cache index. The predictor tracks all instructions { PCi, PCj,
PCk} accessing block A2 from the miss until A2 is evicted. Upon
a miss to block A3, block A2 is evicted, and the predictor records
the trace that led to the eviction and replacement address as a
fixed-size last-touch signature; the history trace is represented by
a hash of the address history (e.g., { A1, A2}) with the instruction
trace (e.g., { PCi, PCj, PCk}). On subsequent encounters of the
trace { PCi, PCj, PCk} accessing A2, the predictor identifies the
access at PCk as a last touch and initiates a prefetch to retrieve A3
directly into L1D to replace A2.

Because cache blocks remain in the cache for long periods of
time after the last access, DBCP attains increased lookahead as
compared to conventional prefetcher proposals. Figure 2 shows
the cumulative distribution of L1 block dead-times—the number
of cycles between a last touch to a block until its eventual evic-
tion.1 The figure corroborates prior results [12,13,26], showing
that over 85% of al l cache-block dead-times are longer than the
memory access latency. Therefore, prefetch requests issued at last
touch can complete before the next access to the same cache
index, eliminating the entire off-chip miss latency. The figure also
indicates that potential remains in future generation systems, even
if memory latencies increase.

The DBCP mechanism correlates data addresses to last-touch
accesses, enabling DBCP to increase memory-level parallelism
for dependent memory accesses. Modern out-of-order processors
of ten stal l , unable to overlap the latency of dependent L1D
misses [5]. Correlating miss addresses with last-touch instruction
traces enables the predictor to retrieve data-dependent blocks in
paral lel and enhances memory level paral lel ism for pointer-
dependent traversals (e.g., linked lists or trees).

Unlike delta-correlating prefetchers, DBCP does not require
a regular layout to repeat over many memory locations. Instead,
like all address-correlating prefetchers, DBCP learns correlations
between arbitrary address pairs. Moreover, DBCP can exploit
these correlations even if several access sequences are interleaved
when the sequences recur.

FIGURE 1. Example of dead-block correlated prefetching; last
access to A2 triggers a request for its replacement with A3.

ld/st A2 hit
.
.

last touch

ld/st A2 miss

.
prefetched

prefetch A3

PCi:

PCk:

ld/st A2 hitPCj:

ld/st A1 hitPCh:

.

.

lo
ok

ah
ea

d

CPU memory references

ld/st A3 hitPCl:

1. Simulation system parameters listed in Table 1. Presented dead-
times are an average across benchmarks listed in Table 2.

FIGURE 2. Cumulative distribution of dead-times
(cycles between last access to a block and its eviction).

M
em

o
ry

la
te

n
cy

0%

20%

40%

60%

80%

100%

1 4 16 64 25
6

10
24

40
96

>1
63

84

Block Dead-Time (cycles)

C
D

F
 o

f
C

ac
h

e
B

lo
ck

s

3

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

Final ly, DBCP prefetches blocks directly into the cache
rather than into an auxil iary prefetch buffer. Many prefetchers
deliver data into prefetch buffers to avoid cache pollution [19].
However, due to lookup complexity and size restrictions, prefetch
buffers l imit the amount of speculatively fetched data and can
affect the cache’s critical access path. By accurately predicting
dead blocks in L1D, DBCP can place prefetched blocks directly
in the cache without incurring cache pollution.

2.1 Why is DBCP Impractical?
Figure3 depicts the anatomy of DBCP [12]. On every mem-

ory access, DBCP computes a last-touch history trace by combin-
ing the PC and address of that access wi th history table data.
History traces for previously observed replacements are stored in
the on-chip correlation table. If the history trace for an access is
found in the correlation table, a request for the corresponding
replacement block is issued.

Although address-correlating prefetchers l ike DBCP show
great promise, they are impractical to implement because they
requi re on-chip storage proportional in size to the number of
blocks referenced by the application. To prefetch effectively,
DBCP and similar address-correlating predictors must store cor-
relation data across long (e.g., bil lions of instructions) recurring
program phases [18] with little temporal reuse. Because last-touch
signatures are calculated and looked up on every L1D access, the
correlation table must reside on chip to provide high lookup band-
width. Figure 4 plots the average prefetch coverage (fraction of
L1D misses eliminated) of DBCP with a finite-size correlation
table, normalized to coverage of DBCP with an unlimited-size
correlation table; worst-case benchmark (wupwise) is shown in
light gray. To realize its full potential, DBCP needs a 160MB cor-
relation table and in the worst-case achieves negligible coverage
with less than 80MB. Our results corroborate prior work showing
that DBCP with practically-sized storage is ineffective [9].

3 LT-cords
I n this paper, we propose Last-Touch Correlated Data

Streaming (LT-cords), a practical address-correlating predictor.
LT-cords exploits the inherent temporal address correlation of
data accesses to enable accurate and timely streaming of data into
the L1D cache. The key innovation of LT-cords is in using off-
chip storage to record long repetitive sequences of consecutively-
used last-touch signatures, while retaining only a single “head”
signature per sequence on chip, thus drastically reducing the on-

chip storage requirements of the predictor. When an access
sequence recurs, LT-cords streams the corresponding sequence of
last-touch signatures from off chip into a practically-sized on-chip
table. Large last-touch prediction lookahead enables timely signa-
ture retrieval from off-chip, while contiguous packing of signa-
tures in off-chip memory enables bandwidth-efficient retrieval.

3.1 LT-cords Example
To illustrate the operation of LT-cords, we consider an appli-

cation that executes an outer loop many times to perform compu-
tation on a large data set. Thousands of L1D cache misses are
encountered during the execution of each loop iteration. Because
data structures remain mostly static throughout program execu-
tion, similar access sequences repeat during each loop iteration.
Hence, each iteration repeats the same sequence of cache misses.

When LT-cords f irst encounters a particular cache miss
sequence during an early loop i teration, i t learns the enti re
sequence of last-touch signatures that corresponds to these
misses. LT-cords stores the head signature of the sequence on
chip, and stores the remainder of the sequence in off-chip DRAM.
When the processor issues a memory reference matching the on-
chip head signature (corresponding to the start of another loop
i teration), LT-cords retrieves the beginning of the signature
sequence from off-chip memory into an on-chip table that func-
tions l ike the correlation table in DBCP. As in DBCP, signatures
that recur in the program trigger prefetches into the L1 cache. In
addition, as signatures in the on-chip table are used, LT-cords
replaces them with the subsequent signatures from off-chip mem-
ory. In this fashion, LT-cords keeps just the necessary portion of
the signature sequence on chip.

3.2 Order Disparity
At the time of prediction, LT-cords requires last-touch signa-

tures to be made available on chip in the order that the signatures
are to be used by the predictor. However, the mechanism that dis-
covers last-touch signatures and records sequences off chip must
do so in cache-miss order. Although the last touch and cache miss
order are generally similar, localized reordering is abundant in
typical access patterns (see Section 5.1). For example, consider
the sequence of references to addresses { A1,B1,B2,A2} made to
cache indices A and B in a direct-mapped cache. Accesses A1 and
B1 are last touches prior to those blocks being evicted from the
cache, and A2 and B2 are the corresponding misses that cause the

A2

A1,A2,PCi,PCj,PCk

FIGURE 3. Previously-proposed DBCP hardware.

ld/st A2 @ PCk

prefetch A3
A3

L1

CPU

on-chip correlation table

A3

evict A2

A1,PCi,PCj

history table

11⊗
0%

20%

40%

60%

80%

100%

16
0K

B

32
0K

B

64
0K

B

1M
B

2M
B

5M
B

10
M

B

20
M

B

40
M

B

80
M

B

16
0M

B

32
0M

B

On-Chip Correlation Table Size

average

w orst-case

%
 o

f
A

ch
ie

va
b

le
 C

o
ve

ra
g

e

FIGURE 4. Sensitivity of DBCP to on-chip correlation table size,
normalized to DBCP with unlimited storage.

4

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

two evictions. Although the cache miss to address B2 happens
before the miss to A2, the corresponding last touches, A1 and B1,
occur in the reverse order. Therefore, the sequence discovered by
LT-cords { B2,A2} does not match the last-touch order { A1,B1}
in which predictions must be made. LT-cords must tolerate order
disparity between the recorded sequence and last-touch sequence
to predict successfully.

Control-f low irregularities and data structure modification
can cause last-touch signatures in the middle of previously-
recorded sequences to become stale (no longer valid). Stale signa-
tures in a sequence can prevent LT-cords from accurately tracking
the sequence to its end. Avoiding coverage loss from stale signa-
tures in the middle of a sequence requires a sequence tracking
mechanism that supports skipping stale signatures.

To tolerate reordering and stale signatures, previous temporal
streaming designs [24] temporari ly buffer data in a small fully-
associative structure (e.g., 32 entries). LT-cords requires a similar
mechanism to allow on-chip random access to signatures to toler-
ate order disparity. However, unlike temporal streaming, LT-cords
typically follows several signature sequences in parallel. Further-
more, the disparity between last-touch and cache miss order is
larger than the reorderings typical ly observed in temporal
streams. As such, LT-cords must buffer many signatures on chip
(upwards of 1000 signatures, see Section 5.2) which precludes
using a fully-associative structure. Instead, LT-cords places signa-
tures from simultaneous sequences into a set-associative on-chip
table. In Section 5.4, we present results indicating that, in prac-
tice, tolerating reorder with a moderately-sized (e.g., ~200KB)
signature cache enables accurate tracking of last-touch sequences
recorded in cache miss order.

3.3 Lookahead for Sequence Retrieval
Cache misses are frequently clustered [12], corresponding to

bursts of last touches. During such bursts, last touches may
remain undetected by LT-cords if their corresponding last-touch
signatures have not yet arrived from off-chip memory. To avoid
losing prediction opportunity due to long off-chip access latency,
LT-cords must initiate the retrieval of signatures from off chip suf-
f iciently early to bring the signatures on chip before their corre-
sponding l ast touches take pl ace. Furthermore, because
predictions must take place during signature retrieval, a LT-cords
implementation must maintain enough signatures in the on-chip
table to overlap long off-chip signature retrieval latency.

4 LT-cords Implementation
Figure5 depicts the anatomy of a LT-cords implementation.

LT-cords comprises three on-chip hardware structures and a sec-
tion of main memory for off-chip signature sequence storage. The
on-chip structures include: (1) a history table, organized like the
L1D tag array, that maintains last-touch history trace encodings
and previous tags for each L1D cache index, (2) a sequence tag
array, which tracks the contents of the off-chip sequence storage,
and (3) a signature cache, a small set-associative correlation table
that temporarily holds signatures on chip for prediction. The sig-
nature cache must store enough signatures to tolerate signature
reordering and overlap signature retrieval latency for al l active
sequences. We assume that the sequence storage in main memory
is managed by the operating system. Due to the long training time
of the predictor (potentially billions of instructions), contents of
LT-cords structures must persist across context switches

4.1 Recording Last-Touch Signatures
As in DBCP [12], LT-cords constructs signatures using the

history table. Each history table entry maintains a PC trace of
committed memory instructions that access the corresponding
L1D set. The trace is incrementally constructed from program
counter values of all instructions that access the set and is reset on
every eviction from the set. The history table entry also contains
the tags of the last two blocks evicted from the set. Upon an evic-
tion, LT-cords constructs a last-touch signature from the PC trace
hash, the previous and evicted tags, a 2-bit confidence counter,
and the replacement address. Constructed signatures are stored off
chip in eviction order. To optimize off-chip write bandwidth, LT-
cords buffers a small number of consecutive signatures and trans-
fers them as a single unit.

4.2 Indexing Off-Chip Sequence Storage
The signature sequences that LT-cords exploits are arbitrarily

long. To manage main memory sequence storage, LT-cords
divides sequences into fixed-length fragments, each holding a
sub-sequence of consecutive last-touch signatures. As the applica-
tion follows an access sequence, the signatures from correspond-
ing fragments are streamed from off chip into the signature cache.
To predict when a particular fragment will be needed, LT-cords
associates each fragment with a signature, called the head signa-
ture, that precedes the fragment in the signature sequence. When
the head signature recurs, LT-cords begins retrieving the corre-
sponding fragment. Because of the long latency required to access
off-chip signatures, the head signature must precede the fragment
by several hundred signatures (see Section 3.3).

A1,PCi,PCj

FIGURE 5. The anatomy of a LT-cords implementation.

L1

signature cache

A3

history table

11⊗

sequence tag array

head hist-hash win. pos.

ptr

⊗

main memory

hist-hash

sig1 sig2 sign

CPU

on chip sequence frames

5

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

Together, the sequence tag array and main-memory sequence
storage act as a direct mapped cache of sequence fragments. LT-
cords divides the main-memory sequence storage into frames that
each store a sequence fragment. Fragments map to frames based
on the low-order bits of the head signature. The sequence tag
array stores the head hash of the fragment in each frame.

No explicit sequence start or stop criteria exists; LT-cords
continues to record the sequence of last-touch signatures off chip
as long as cache misses occur. LT-cords appends signatures to a
fragment until the frame becomes full. Then, a new frame is allo-
cated for the subsequent fragment. As in a direct mapped cache,
an existing fragment is overwritten by a new fragment that maps
to the same frame.

4.3 Last-Touch Prediction and Sequences
LT-cords uses the signature cache to predict addresses for

prefetch. As memory accesses commit, signatures stored in the
history table are updated. LT-cords looks for each updated signa-
ture in the on-chip signature cache. Presence of the corresponding
signature with a high confidence count indicates that the memory
access is a last touch. LT-cords retrieves the data at the predicted
address; when it arrives, data are placed into the L1D.

LT-cords must buffer enough signatures in the signature
cache to tolerate reordering (see Section 3.2). However, to effi-
ciently util ize signature cache capacity and allow space for sev-
eral simul taneously active fragments, LT-cords cannot load
fragments in their entirety at once; fragment size is chosen to opti-
mize storage efficiency and greatly exceeds the number of signa-
tures required to tolerate reordering.

Instead, LT-cords keeps a sliding window of signatures from
each active fragment in the signature cache. As signatures are
used, the sliding window is advanced (win. pos. in the sequence
tag array of Figure 5) and new signatures are streamed into the
signature cache. The signature cache is organized as a set-associa-
tive structure with signatures replaced in FIFO order. Along with
the signature, signature cache entries store a pointer to the loca-
tion of the signature in the off-chip sequence storage. When a sig-
nature is accessed, LT-cords uses this pointer to identify the
signature’s frame, advance its corresponding fragment’s sliding
window, and load additional signatures. The location of a frag-

ment’s sl iding window is tracked in the sequence tag array entry
for the f ragment. To uti l ize bandwidth eff iciently, LT-cords
advances the window and transfers signatures in the same size
units used to record sequences (see Section 4.1).

4.4 Updating the Signature Confidence
LT-cords uses 2-bit saturating confidence counters for each

last-touch signature to avoid premature eviction of L1D cache
blocks by signatures that become invalid. The pointer kept along
with each signature in the signature cache provides an exact loca-
tion of the signature in off-chip sequence storage, allowing for a
direct update of the counter value on confidence changes. Confi-
dence updates are not frequent, and incur minimal overhead by
uti lizing otherwise-unused bus cycles. Because most signatures
are valid immediately after creation, confidence counters are ini-
tialized to the value “2” to expedite training.

5 Results
We use SimpleScalar 3.0/Alpha for both trace-driven and

cycle-accurate simulation of an aggressive out-of-order processor
and cache hierarchy. Table 1 specifies the simulated system con-
figuration. We extend SimpleScalar to model MSHR contention
and queuing accurately at both the L1/L2 and L2/memory busses.
We model two channels between the L1 and L2, al lowing for an
L2 request to be issued while an L1 fill is in progress.

Results in Section 5.1 through Section 5.6 are derived from
trace-driven simulation of each benchmark in i ts enti rety.
Speedup and bandwidth (Sections 5.7 and 5.8) are obtained by
cycle-accurate simulation using SMARTS statistical sampling
and checkpointing [25]. We use trace-driven simulation to create
many evenly spaced checkpoints of the cache hierarchy and pre-
dictor state for each application. We launch cycle-accurate simu-
lation from each checkpoint, and aggregate the results. For each
checkpoint, we measure 10M instruction regions; prior to mea-
surement of each region, we perform 10M instruction warm-up.
Sample sizes are chosen to maintain a 95% confidence interval of
±3% on performance change (except for results with greater than
50% performance improvement, where the confidence interval is
less than one tenth of the performance improvement).

For trace-driven results, we use 32-bit last-touch signatures
to minimize the effects of hash collisions. In cycle-accurate tim-

TABLE 1. System configuration.
Processor Caches

Clock rate 4 GHz L1 D 64KB, 64-byte line
2-way, 2-cycleIssue/retire 8 instructions/cycle

Reorder buffer 256 entries L1 I 64KB, 64-byte line
4-way, 2-cycleLoad/store queue 128 entries

Branch predictor 8K/8K hybrid
12-cycle penalty

L1 D ports 4
L1 D MSHRs 64

Functional Units
(latencies)

8 IALU (1)
2 FALU (2)
2 I-MUL/DIV (3/19)
2 F-MUL/DIV (4/12)
all pipelined except
IDIV and FDIV

L2 (unified) 1MB, 8-way
20-cycle

L2 ports 1
L1/L2 bus 1-cycle request

32 byte per-cycle
TLB 256 entry, 4-way

600-cycle miss
Predictors Memory

DBCP 2MB correlation
table, 18-cycle

Size 1GB (30-bit space)
Latency 200 cycles first 32B

3 cycles each 32BGHB PC/DC, 4-deep
256-entry IT
256-entry GHB

Bus 32-byte wide
1333 MHz

TABLE 2. Benchmarks, base miss rates and IPCs.

L
1 m

is
s %

L
2 m

is
s %

IP
C

L
1 m

is
s %

L
2 m

is
s %

IP
C

ammp 15 24 1.07 gcc 38 3 2.71

applu 34 68 1.53 gzip 5 2 1.55
apsi 6 16 2.69 lucas 44 67 1.25

art 60 63 0.72 mcf 53 67 0.08
bh* 7 94 0.67 mesa 2 25 3.76

bzip2 4 21 1.56 mgrid 18 49 1.56

crafty 0 2 2.24 parser 6 17 1.14
em3d* 67 87 0.50 perlbmk 2 14 1.58

eon 0 0 1.94 sixtrack 1 74 4.29
equake 31 85 0.68 swim 49 59 1.18
facerec 22 42 2.04 treeadd* 5 92 0.24
fma3d 11 62 1.74 twolf 15 12 0.84
galgel 17 16 3.13 vortex 4 16 3.11

gap 2 54 1.07 wupwise 9 72 2.66

6

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

ing simulations, all DBCP and LT-cords requests are placed into a
128-entry circular queue. When the request queue is ful l , new
requests replace old (unissued) ones at the queue head. Requests
are only issued when the L1/L2 bus is free.

Table2 lists our benchmarks and their L1 and L2 miss rates
and IPCs for our baseline processor configuration. We run all
SPEC CPU2000 benchmarks except vpr; SimpleScalar 3.0/Alpha
is unable to correctly execute vpr. The first reference input is used
for all benchmarks except perl, for which the “splitmail” input is
used. We include results for three pointer-intensive Olden [2]
benchmarks (indicated by * in Table 2) because they represent
memory intensive applications with access patterns that are not
amenable to simple address predictors (e.g., stride predictors).

5.1 Temporal Correlation Opportunity
We begin our evaluation by quantifying the temporal correla-

tion of L1D cache misses. We investigate the presence of correla-
tion by determining the degree of reordering between each pair of
consecutive cache misses and the previous occurrence of the same
two misses. We employ a Temporal Correlation Distance metric
similar to that introduced in [24]. Temporal correlation distance
between two consecutive misses is the distance between the previ-
ous occurrence of the same two misses in the sequence of al l
cache misses.1 A temporal correlation distance of +1 implies per-
fect correlation, where the two most recent occurrences of a pair
of consecutive misses appeared in exactly the same order; a dis-
tance of -1 corresponds to a reversal of the two misses compared
to their previous occurrence, as in the sequence { A,B,...,B,A} .

Figure6 (left) shows absolute temporal correlation distances
as a cumulative distribution of all cache misses. The figure indi-
cates that many applications (15 out of 28) exhibit nearly perfect
temporal correlation, with most cache misses repeating in exactly
the same order. Of the remaining applications with imperfect cor-
relation, many present signi ficant opportunity for LT-cords.

Ammp, apsi, galgel, and parser contain approximately 60% per-
fectly correlated misses; mcf, perlbmk, and vortex contain over
40%. Not surprisingly, we note that gzip, bzip2, and twolf, appli-
cations that rely heavi ly on hashed or randomized memory
accesses, exhibit little temporal correlation.

Figure 6 (left) shows strong pair-wise correlation of cache
misses (very high percentage of miss pairs have +1 correlation
distance), suggesting that repetitive sequences of cache misses
exist. However, the temporal correlation distance metric says little
about the length of the existing sequences. We measured the
lengths of sequences with temporal correlation distances up to
±16. Our results show that benchmarks exhibiting strong temporal
correlation have long sequences, ranging from over 2K misses for
apsi to 16M misses for fma3d. For applications that exhibit imper-
fect correlation, Figure 6 (right) presents the cumulative distribu-
tion of correlated misses, grouped by sequence length.

The plot shows that even for a narrow temporal correlation
distance range (±16), a large fraction of correlated cache misses
belong to long sequences; for example, 80% of mcf ’s correlated
cache misses belong to sequences longer than 2K, and over 30%
of ammp’s correlated misses are found in sequences greater than
4K in length. In practice, LT-cords tolerates a greater degree of
reordering than ±16, potentially enabling even greater coverage.

1. We define a cache miss as a point in time when a cache replacement
occurs. In our trace study, we label cache misses with the tuple (miss
PC, miss block address, evicted block address). The previous occur-
rence of a miss is the nearest preceding miss with the same label.

FIGURE 6. Absolute temporal correlation distance of all cache misses; correlation distance of 1 implies perfect repetition (left).
Lengths of sequences of temporally correlated misses in applications that exhibit more than 5% uncorrelated misses (right).

0%

20%

40%

60%

80%

100%

12
8

51
2

2K 8K 32
K

12
8K

51
2K 2M 8M

Sequence Length

C
D

F
 o

f
C

o
rr

el
at

ed
 M

is
se

s

0%

20%

40%

60%

80%

100%

1 3 7 15 31 63 12
7

25
5

| Temp. Correlation Dist. |

C
D

F
 o

f
 M

is
se

s
ammp applu
apsi art
bh bzip2
crafty em3d
eon equake
facerec fma3d
galgel gap
gcc gzip
lucas mcf
mesa mgrid
parser perlbmk
six track swim
treeadd twolf
vortex wupwise

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K

| Last-Touch to Miss Correlation Distance |

average

C
D

F
 o

f
M

is
se

s

FIGURE 7. Last-Touch to Cache Miss correlation, plotted as a
cumulative percentage of all misses up to a given absolute (nega-
tive or positive) correlation distance.

7

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

5.2 Cache Miss vs Last-Touch Ordering
LT-cords stores last-touch signatures in the order they are dis-

covered, the order of cache misses. However, when predicting,
LT-cords fol lows these sequences in last-touch order. Using the
temporal correlation distance metric from Section 5.1, we present
the degree of reordering that LT-cords must tolerate to remain
effective. We report the difference between the sequences of last
touches and corresponding cache misses. Correlation distance of
+1 indicates that cache misses corresponding to consecutive last
touches appear in the same order, with no intervening misses.

Figure 7 shows that, on average, only 21% of cache misses
are perfectly correlated with the last touches that precede them.
Although this is a significant fraction of misses, this result indi-
cates that LT-cords must tolerate reordering to achieve maximum
potential. Figure 7 shows that LT-cords must hold on chip up to
1K signatures per sequence to tolerate reordering in over 98% of
cache misses.

5.3 LT-cords Coverage and Accuracy
In this section, we demonstrate the ability of LT-cords with

realistic on-chip storage to approximate an “ oracle” correlation
table. We configure LT-cords parameters based on the sensitivity
study presented in Section 5.4; LT-cords is compared to a Dead-
Block Correlating Prefetcher with an unlimited-capacity correla-
tion table.

Figure 8 expresses results as percentages of the prediction
opportunity—the total number of all L1D cache misses that would
occur without a predictor. Correct represents el iminated cache
misses, incorrect represents mispredicted replacement addresses,
and train represents the fraction of cache misses not predicted due
to training or low confidence. Cache misses that form prediction
opportunity are either eliminated (correct), or not (incorrect and
train); these percentages add up to 100%. Early represents prema-
ture evictions induced by the predictor, expressed above 100% as
a percentage of the base case misses.

We compare LT-cords to a DBCP with unlimited-capacity
storage to present an upper bound for prediction opportunity.
Figure 8 indicates that, for most of the applications studied, LT-
cords exhibits coverage and accuracy that closely track an oracle
predictor.

The most pronounced differences in coverage are in applica-
tions that have a large fraction of uncorrelated cache misses.
Imperfect correlation in these applications (ammp, apsi, bzip2,
gzip, parser, and twolf) diminishes the abil ity to bring last-touch

signatures on-chip. For example, apsi exhibits sequences of hun-
dreds to thousands of last touches that do not recur. Non-repetitive
signatures pollute sequences, allowing successful tracking of only
short correlated sequences (Figure 6).

5.4 Storage Size Sensitivity
We first examine predictor sensitivity to signature cache size.

We conduct an experiment with an unlimited number of 512-sig-
nature sequence fragments in off-chip memory. To reduce bias
due to signature conflict at small signature cache sizes, we use an
8-way set associative signature cache. Figure 9 depicts normal-
ized LT-cords coverage as a function of signature cache size.

Ideally, only one in-progress sequence is necessary. In prac-
tice, dynamic control flow and data structures result in multiple
parallel sequences. Multiple sequences introduce a larger number
of signatures that the cache must hold and require the cache size
to account for conflicts. Based on results in Figure 9, we estimate
that a signature cache with 32K signatures is sufficient for our
benchmarks, enabling approximately 20 simultaneously active
sequences with up to ±1024 reordering and necessary sequence
retrieval lookahead. At this size, 2-way associativity is sufficient.

Figure 10 presents a breakdown of the necessary off-chip
sequence storage size for the benchmarks with the largest storage
requirements. The results show predictor coverage improvement
up to 32M signatures for many applications. With 32M signa-
tures, we found minimal sensitivity to fragment size up to 8K sig-
natures (on average less than 2% decrease in LT-cords coverage).
We therefore select this sequence fragment size to minimize the
on-chip storage requirements of the sequence tag array.

0%

20%

40%

60%

80%

100%

120%

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex

w
up

w
is

e

%
 o

f
 L

1
M

is
se

s
correct incorrect train early

FIGURE 8. Comparing coverage and accuracy of LT-cords to DBCP with unlimited storage.

AB

A=LT-cords B=Unlimited DBCP

0%

20%

40%

60%

80%

100%

12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

Signature Cache Size (entries)

average

%
 o

f
A

ch
ie

va
b

le
 C

o
ve

ra
g

e

FIGURE 9. Coverage sensitivity to signature cache size.

8

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

The results of these experiments further stress that on-chip
tables are insufficient for last-touch signature storage, even for
applications with small active memory footprints. Applications
such as facerec, mcf, and art, which have the smallest storage
requirements, still require approximately 2M signatures (10MB of
storage, 5 bytes per signature), exceeding reasonable on-chip
structure sizes. For lucas, mgrid, and applu, less than half of the
coverage is attainable with 16M sequence storage, and full predic-
tor potential is only possible with 32M signatures (over 150MB of
storage, comparable to application memory footprint). These
widely-varying and workload-dependent storage requirements
suggest that LT-cords storage is best managed by the operating
system, to al low scaling predictor DRAM usage based on the
application’s needs.

5.5 Multi-Programmed Environments
LT-cords records miss sequences that span billions of instruc-

tions and therefore must be preserved across context switches.
Consequently, both the on-chip and off-chip storage structures
must be shared among multiple contexts. In this section, we inves-
tigate the effect of multiple programs util izing shared LT-cords
structures by simulating a multi-programmed environment. We
alternate execution between pairs of benchmarks, mimicking con-
text-switches. To estimate appropriate duration of execution, we
assume IPC of 1.5 for integer applications, and 3.0 for f loating
point applications, resulting in respective simulated quantums of
60M and 120M instructions with a 4GHz clock. The addresses
accessed by one application in each pair were shifted to simulate
non-overlapping physical address ranges. We present results from
simulating the first 60 context switches.

Figure11 presents LT-cords coverage results for applications
simulated on their own and in a multi-programmed environment
with one other application. The benchmarks were selected as a
representative subset of integer and floating point applications
with comparatively high and low LT-cords coverages.

The results indicate that as long as predictor state is pre-
served across context switches, and off-chip sequence storage has
ample space for recording sequences, the effect of mul tiple,
simultaneously running programs on LT-cords coverage is negli-
gible. On the other hand, pairings of lucas with applu and mgrid
demonstrate the effect of insufficient combined sequence storage.

5.6 Cycle-Accurate Simulation Parameters
Based on our sensitivity analyses, for cycle-accurate timing

results we simulate LT-cords with 160MB of off-chip sequence
storage, a 204KB signature cache, and a 10KB sequence tag array.
The sequence storage is partitioned into 4K frames, each frame
holding a fragment of 8K last-touch signatures. Each last-touch
signature consists of a 23-bit last-touch history trace, a 2-bit con-
fidence counter, and 15-bit prediction address tag. The signature
cache is organized as a 2-way set-associative structure, indexed
by the low-order 14 bits and tagged by the 9 high-order bits of the
last-touch signatures. Each signature cache entry is 42-bits, con-
sisting of the 15-bit prediction address tag, 2-bit conf idence
counter, and 25-bit pointer to itself (addressing 32M signatures) in
off-chip storage.

5.7 Speedup
We first evaluate LT-cords performance against a baseline

processor augmented with a perfect L1D cache. Table3 presents
the percent performance improvement of all benchmarks over the
baseline configuration of Table 1. On average, we see 123% per-
formance improvement opportunity if all accesses hit in L1D. LT-
cords is able to achieve a large fraction of this opportunity, attain-
ing 60% average performance improvement across al l applica-
tions. LT-cords achieves speedups that are roughly proportional to
its coverage for the benchmarks with significant performance
opportunity (e.g., 242% of the possible 338% for swim). How-
ever, in several cases, LT-cords speedup is lower than trace cover-
age suggests. For these benchmarks, a significant fraction of the
speedup opportunity arises from block accesses that hit in L2 that
are partial ly hidden by the out-of-order core. LT-cords correctly
identif ies and initiates fetches for these blocks, but only a small
number of cycles ahead of the demand-fetch.

Table 3 compares LT-cords performance with the program
counter / delta correlation variant of the Global History Buffer
(GHB PC/DC, subsumes stride prefetching), a real istic DBCP
implementation, and a baseline processor with a larger L2 cache.
GHB uses 256-entry index and history tables, as recommended
for SPEC applications [9,15]. The realistic DBCP is implemented
with a 2MB on-chip correlation table as in [12]. For comparison
with a larger L2, we quadruple the size of the L2 cache of the

0%

20%

40%

60%

80%

100%

lu
ca

s

m
gr

id

ap
pl

u

w
up

w
is

e

sw
im

fm
a3

d

am
m

p

pa
rs

er

gc
c

eq
ua

ke

fa
ce

re
c

m
cf ar
t

%
 o

f
P

o
te

n
ti

al
 P

re
d

ic
ti

o
n

s 32M 16M 8M 4M 2M

FIGURE 10. Off-chip sequence storage size (in millions of signa-
tures) needed to achieve given coverage.

0%

20%

40%

60%

80%

100%

120%

st
an

da
lo

ne
w

/ m
cf

w/
 g

zi
p

w
/ s

wi
m

st
an

da
lo

ne
w

/ g
cc

w/
 v

or
te

x
w/

 fm
a3

d

st
an

da
lo

ne
w/

 fm
a3

d
w

/ m
es

a
w

/ g
cc

st
an

da
lo

ne
w

/ s
wi

m
w

/ f
ac

er
ec

w
/ m

cf

st
an

da
lo

ne
w

/ a
pp

lu
w

/ m
gr

id

%
 o

f
L

1
M

is
se

s

correct incorrect train early

gcc mcf sw im fma3d lucas

FIGURE 11. LT-cords coverage in a multi-programmed environ-
ment. The left bar shows standalone application; remaining bars
show the application running with one other application.

9

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

baseline processor to 4MB, conservatively assuming the same
access latency as the base 1MB cache.

We corroborate prior results [9,15] showing that GHB, an
advanced stride/delta correlating predictor, can eliminate a large
fraction of L2 cache misses in many applications, attaining on
average 31% performance improvement across the applications
we studied. Delta correlation is effective when the data layout is
regular and accesses to distinct addresses follow a repeating pat-
tern. For example, many SPECfp appl ications include array
accesses that GHB can capture. Del ta correlation can also be
effective for pointer-intensive data structures if systematic heap
allocation results in a regular layout (e.g., as in treeadd).

LT-cords can also predict the accesses captured by delta cor-
relation if the same addresses are revisited more than once. In
addition, LT-cords can predict repetitive accesses that do not fol-
low a regular pattern, common in pointer-chasing accesses (e.g.,
in bh and em3d). Hence, LT-cords eliminates on average 59% of
off-chip misses, while GHB eliminates 26%. However, delta cor-
relation can outperform address correlation for applications with
regular data layouts, but little data reuse (e.g., gap).

In addition to its off-chip coverage advantage, LT-cords fur-
ther outperforms GHB by reducing the stal ls associated with
dependent chains of L1D misses that hit in L2. Unlike GHB, LT-
cords is able to prefetch di rectly into L1D wi thout pollution
because last-touch prediction ensures that useful data is not
replaced. Furthermore, to achieve substantial coverage, GHB
must be highly aggressive, fetching many blocks that are never
accessed. GHB’s aggressiveness can lead to significant bandwidth
and L2 contention, degrading performance (e.g., as in twolf).

LT-cords also outperforms address-correlating predictors that
use on-chip predictor storage. DBCP coverage is restricted by its
l imited on-chip signature storage, achieving an average perfor-
mance improvement of only 17%. DBCP is able to achieve
speedup on benchmarks with small memory footprints (e.g., bh)
and benchmarks with large memory footprints but small working
sets (e.g. mcf). Although both techniques use the same prediction
signatures, DBCP marginally outperforms LT-cords in mcf and
ammp because DBCP’s on-chip signature lookup is always
timely. However, the majority of applications with substantial

memory system improvement opportunity incur misses to many
distinct addresses and actively utilize most allocated memory. The
signature storage requirements for these applications therefore
scale with the application footprint. LT-cords allows the entire set
of signatures to fit into its off-chip sequence storage, enabling LT-
cords to achieve four times the average DPCP speedup.

Finally, LT-cords offers superior speedup compared to qua-
drupling the base system’s L2 cache size. A 4MB L2 cache cannot
mitigate the impacts of: (1) an application’s working set that is
larger than 4MB, or (2) dependent chains of L1D misses, even if
L2 accesses hit. The larger cache achieves a 16% performance
improvement on average, mainly in applications with small work-
ing sets or non-repeti tive (hash lookup) access patterns (e.g.,
bzip2, twolf). For most applications with substantial memory sys-
tem opportunity, LT-cords is therefore significantly more effective
in reducing the processor’s memory stall cycles than a larger L2.

Many SPEC benchmarks exhibit little sensitivity to memory
system improvements; they are included only for completeness.
These benchmarks do not benefit significantly from any predic-
tion technique. In these cases, LT-cords attains only slight perfor-
mance improvements (3% of possible 10% for sixtrack, 3% of 9%
for mesa, and 9% of 26% for apsi). LT-cords does not adversely
affect performance of these benchmarks.

5.8 Memory Bandwidth Overhead
To be effective, LT-cords must operate with practical mem-

ory bandwidth demands. Intuitively, LT-cords bus overhead is
inversely proportional to the program’s off-chip data traffic. LT-
cords transfers, on average, one signature from off-chip storage
for every L1D miss. When the L2 miss rate is high, LT-cords
overhead constitutes a small fraction of total bus utilization; the 5-
byte LT-cords signature is small relative to the cache block trans-
ferred as a result of the cache miss. Conversely, when L2 miss rate
is low, LT-cords traffic constitutes a significant fraction of bus
bandwidth. However, in this case, LT-cords overhead is unimpor-
tant, because a low L2 miss rate implies an under-utilized bus.

Figure12 presents the bus utilization of both the base system
and LT-cords overhead for al l benchmarks. Bus uti l ization is
expressed as average bytes per instruction to ensure a meaningful
comparison that is independent of the application runtimes. Per-

TABLE 3. Performance comparison. Each value indicates percent performance improvement over the baseline processor configuration.

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

vo
rt

ex

SP
E

C
in

t
m

ea
n

bh em
3d

tr
ee

ad
d

O
ld

en
m

ea
n

Perfect L1 43 3 1 65 29 17 1637 67 31 89 54 73 262 439 266 315
LT-cords 4 1 0 0 22 0 385 15 3 0 3 20 206 247 224 225

GHB 6 0 0 46 5 0 143 22 7 -8 0 15 2 33 179 56
DBCP 0 0 0 0 6 0 465 2 4 0 3 19 153 0 0 36

4MB L2 22 0 0 1 7 0 245 28 5 56 1 23 8 12 0 7

am
m

p

ap
pl

u

ap
si

ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

SP
E

C
fp

m
ea

n

ov
er

al
l

Perfect L1 212 162 26 301 470 141 155 67 211 9 156 10 338 93 139 123
LT-cords 95 39 9 197 267 76 108 31 27 3 88 3 242 40 71 60

GHB 46 40 2 16 113 60 65 16 49 2 114 0 43 51 40 31
DBCP 100 0 0 24 0 58 0 16 0 1 0 7 0 0 12 17

4MB L2 22 4 0 91 2 56 0 47 0 0 1 1 0 0 13 16

10

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

application bus uti lization is broken down into four key compo-
nents. Base data are cache block transfers (including speculative
loads) made by the base system without a predictor. Incorrect pre-
dictions are extraneous cache block transfers initiated by LT-cords
as a result of misprediction. Sequence creation is the LT-cords
memory system uti l ization for wri ting of off -chip signature
sequences and confidence counter updates. Sequence fetch is the
traffic overhead introduced by LT-cords retrieving last-touch sig-
natures from off-chip sequence storage. The memory util ization
results account for bus request and data transfer cycles.

With the exception of four benchmarks, the average memory
bus bandwidth overhead of LT-cords is small: 17% for applica-
tions that exceed 1 byte per instruction off-chip traffic. Ammp,
art, gcc, and mcf experience significant traff ic overhead f rom
incorrect predictions. For these applications, LT-cords incorrectly
predicts up to 12.5% of the replacement addresses. Incorrect pre-
dictions do not directly degrade application performance (no new
cache misses are introduced); however, an increase in memory
system uti l ization is observed. Despite higher bus uti l ization,
these applications experience over 22% performance improve-
ment with LT-cords (385% in the case of mcf), indicating that the
overhead of bringing signatures on chip is outweighed by LT-
cords’ ability to reduce CPU stalls from cache misses.

In many situations, LT-cords can parallelize dependent cache
misses that must be incurred in series in a demand-fetch system.
Consequently, some benchmarks (applu, art, swim) begin to
approach the peak bandwidth available in the system, becoming
memory bandwidth-bound and not latency-bound.

5.9 Power
Although the LT-cords on-chip storage structures are larger

than the L1D and are accessed as frequently, LT-cords implemen-
tation should contribute significantly less to the chip power dissi-
pation than the L1D. First, despite lookup on every L1D access,
the signature cache and sequence tag array read out data less fre-
quently than the L1D cache. LT-cords structures contain signa-
tures only for cache misses. It therefore follows that the majority
of accesses to LT-cords structures require only a tag check and not
a data read operation. By employing a serial lookup policy in the
implementation of the LT-cords structures, less energy must be
spent for performing data reads compared to the L1 data cache.

Next, the actual data width of the LT-cords structures is sub-
stantial ly narrower than the L1D. To exploit spatial locality, a
cache l ine wil l contain on the order of 512 bits, of which only a
single word must be selected and read or written. Conversely,
each sequence tag array entry contains only a single counter and
each signature cache entry is only 42 bits. The narrower datapath
of the LT-cords structures therefore al lows for lower read and
write energy compared to the L1D.

To get a sense for the relative contribution of LT-cords com-
pared to the L1D of our architecture, we used CACTI 4.2 [23] to
estimate the energy of the LT-cords storage structures and an
L1D-like 64KB cache in a 70nm technology. CACTI estimates
18pJ dynamic energy to read a cache block from the data array of
the L1D-like fast cache. Due to considerably narrower width of
the data array and lack of selection logic, signature read energy is
estimated at below 6pJ, despite the larger size of this structure.

The L1D tag and data array accesses must be performed in
parallel to minimize access latency. As a result, total dynamic tag
lookup and data read energy of a fast four-port L1D-like cache is
approximately 73pJ, while using cache structures with serial
lookup for the sequence tag array and signature cache results in a
combined energy of 30pJ and only infrequently, once per L1D
miss, incurs an additional 6.5pJ to read signature data. Conserva-
tively estimating a 20% L1D cache miss rate, the average power
dissipation of LT-cords structures is about 48% of L1D dissipation
if implemented in the same technology.

CACTI estimates combined leakage power of the sequence
tag array and signature cache at 800mW, while the L1D data
cache will only leak approximately 230mW. This drastic differ-
ence arises because CACTI assumes that these structures wil l all
be implemented using similar transistors. Lookup in the LT-cords
structures does not require low latency and is not on the critical
path, enabling a deeply pipelined design using high-Vt and/or
long channel length transistors, which significantly reduce leak-
age compared to the highly latency-sensitive L1D cache.

Finally, LT-cords substantially raises chip performance on
many workloads. By increasing the IPC, LT-cords may allow
meeting target performance at a lower clock rate and lower power
supply voltage, providing a way to offset the power dissipation
overhead of LT-cords.

0

2

4

6

8

10

12

14

16

am
m

p

ap
pl

u

ap
si ar
t

bh

bz
ip

2

cr
af

ty

em
3d

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tr
ee

ad
d

tw
ol

f

vo
rt

ex

w
up

w
is

e

M
em

o
ry

 B
u

s
U

ti
liz

at
io

n
 (

b
yt

es
/in

st
ru

ct
io

n
) base data incorrect predictions sequence creation sequence fetch

FIGURE 12. LT-cords memory system utilization, normalized to bytes/instruction to remove effect of application speedup.

LT-cords overhead

application data traffic

11

In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2007

6 Conclusions
Technological advances in microarchitecture, circuits, and

semiconductor fabrication all contribute to the long-term trend of
a widening performance gap between microprocessors and mem-
ory. Larger on-chip caches can only partially mitigate the effect of
growing memory latency. To facilitate efficient data transfer to the
processor, recent research advocates using last-touch correlating
prefetchers. Unlike delta-correlation-based prediction schemes,
these prefetchers can eliminate most data cache misses despite
interleaved access sequences and irregular memory layouts. How-
ever, existing designs are inefficient and impractical to imple-
ment, requiring prohibitive on-chip storage.

In this paper, we observed that last-touch signatures are tem-
porally correlated and proposed Last-Touch Correlated Data
Streaming (LT-cords), a practical design for accurate and timely
streaming of data to the L1 cache. LT-cords leverages the tempo-
ral correlation of last-touch signatures to obviate the need for
large, high-bandwidth, on-chip storage. LT-cords keeps last-touch
signatures in off-chip DRAM, in the order they are discovered,
and brings them on-chip when needed. Using only 214KB of on-
chip storage and with l i ttle impact on memory bandwidth, LT-
cords achieves coverage and lookahead similar to an “oracle”
DBCP, a last-touch correlating prefetcher with unlimited on-chip
resources. Our results show that LT-cords can eliminate 69% of all
cache misses, achieving an average performance improvement of
60%, four times better than DBCP with 2MB on-chip storage, and
two times better than a GHB PC/DC prefetcher.

Acknowledgements
The authors would like to thank the anonymous reviewers for

their feedback on drafts of this paper. This work was partially sup-
ported by grants and equipment from Intel, a Sloan research fel-
lowship, an NSERC Discovery Grant, an IBM faculty partnership
award, and NSF grant CCR-0509356.

References
[1] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to

reduce data access penalty. In Proc. of Supercomputing ’91, Nov.
1991, 176–186.

[2] M. C. Carlisle, A. Rogers, J. H. Reppy, and L. J. Hendren. Early
experiences with Olden. In Proc. of Sixth Lang. and Compilers for
Parallel Computing. Springer-Verlag, 1994, 1–20.

[3] M. J. Charney and A. P. Reeves. Generalized correlation-based hard-
ware prefetching. Technical Report EE-CEG-95-1, School of Electri-
cal Engineering, Cornell University, Feb. 1995.

[4] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching
for general-purpose programs. In Proc. of SIGPLAN ’02 Conf. on
Program. Lang. Design and Impl. (PLDI), New York, NY, USA,
2002. ACM Press, 199–209.

[5] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations
for exploiting memory-level parallelism. In Proc. of 31st Annual Intl.
Symp. on Comp. Arch. (ISCA-31), June 2004.

[6] J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache
assisted prefetching. In Proc. of 35th Annual IEEE/ACM Intl. Symp.
on Microarch. (MICRO 35), Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press, 62–73.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. J. Hughes, Y. fong Lee,
D. Lavery, and J. P. Shen. Speculative precomputation: Long-range
prefetching of delinquent loads. In Proc. of 28th Annual Intl. Symp.

on Comp. Arch. (ISCA-28), July 2001, 14–25.
[8] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-

directed data prefetching mechanism. In Proc. of Tenth Intl. Conf. on
Arch. Support for Program. Lang. and Op. Syst. (ASPLOS X), New
York, NY, USA, 2002. ACM Press, 279–290.

[9] D. Gracia Perez, G. Mouchard, and O. Temam. Microlib: a case for
the quantitative comparison of micro-architecture mechanisms. In
Proc. of Third Annual Workshop on Duplicating, Deconstructing,
and Debunking (WDDD04), June 2004.

[10] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory
system: predicting and optimizing memory behavior. In Proc. of 29th
Annual Intl. Symp. on Comp. Arch. (ISCA-29), May 2002.

[11] D. Joseph and D. Grunwald. Prefetching using Markov Predictors. In
Proc. of 24th Annual Intl. Symp. on Comp. Arch. (ISCA-24), June
1997, 252–263.

[12] A.-C. Lai and B. Falsafi. Dead-block prediction & dead-block corre-
lating prefetchers. In Proc. of 28th Annual Intl. Symp. on Comp.
Arch. (ISCA-28), July 2001.

[13] A. Mendelson, D. Thi’ebaut, and D. Pradhan. Modeling live and
dead lines in cache memory systems. Technical Report TR-90-CSE-
14, Department of Electrical and Computer Engineering, University
of Massachusetts, 1990.

[14] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execu-
tion: an effective alternative to large instruction windows. IEEE
Micro, 23(6):20–25, November/December 2003.

[15] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global
history buffer. In Proc. of Tenth IEEE Symp. on High-Perf. Comp.
Arch., February 2004.

[16] M. Pericas, A. Cristal, R. Gonzalez, D. A. Jimenez, and M. Valero. A
decoupled kiloinstruction processor. In Proc. of Twelfth IEEE Symp.
on High-Perf. Comp. Arch., 2006, 52–63.

[17] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetch-
ing for linked data structures. In Proc. of Eighth Intl. Conf. on Arch.
Support for Program. Lang. and Op. Syst. (ASPLOS VIII), Oct. 1998.

[18] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally characterizing large scale program behavior. In Proc. of Tenth
Intl. Conf. on Arch. Support for Program. Lang. and Op. Syst. (ASP-
LOS X), Oct. 2002.

[19] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buff-
ers. In Proc. of 33rd Annual IEEE/ACM Intl. Symp. on Microarch.
(MICRO 33), December 2000, 42–53.

[20] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread
for correlation prefetching. In Proc. of 29th Annual Intl. Symp. on
Comp. Arch. (ISCA-29), May 2002.

[21] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton.
Continual flow pipelines. In Proc. of Eleventh Intl. Conf. on Arch.
Support for Program. Lang. and Op. Syst. (ASPLOS XI), Oct. 2004.

[22] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream proces-
sors: improving both performance and fault tolerance. In Proc. of
Ninth Intl. Conf. on Arch. Support for Program. Lang. and Op. Syst.
(ASPLOS IX), Nov. 2000.

[23] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. HP Technical
Report HPL-2006-86, June 2006.

[24] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi. Temporal streaming of shared memory. In Proc. of
33d Annual Intl. Symp. on Comp. Arch. (ISCA-33), June 2005.

[25] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. Simula-
tion sampling with live-points. In Proc. of Intl. Symp. on the Perf.
Analysis of Syst. and Software, June 2006.

[26] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for estimating
trace-sample miss ratios. In Proc. of 1991 ACM SIGMETRICS Conf.
on Measurement and Modeling of Comp. Syst., May 1991, 79–89.

	Abstract
	1 Introduction
	2 Background: DBCP Prefetching
	FIGURE 1. Example of dead-block correlated prefetching; last access to A2 triggers a request for its replacement with A3.
	FIGURE 2. Cumulative distribution of dead-times (cycles between last access to a block and its eviction).
	2.1 Why is DBCP Impractical?
	FIGURE 3. Previously-proposed DBCP hardware.

	3 LT-cords
	FIGURE 4. Sensitivity of DBCP to on-chip correlation table size, normalized to DBCP with unlimited storage.
	3.1 LT-cords Example
	3.2 Order Disparity
	3.3 Lookahead for Sequence Retrieval

	4 LT-cords Implementation
	FIGURE 5. The anatomy of a LT-cords implementation.
	4.1 Recording Last-Touch Signatures
	4.2 Indexing Off-Chip Sequence Storage
	4.3 Last-Touch Prediction and Sequences
	TABLE 1. System configuration.

	4.4 Updating the Signature Confidence

	5 Results
	TABLE 2. Benchmarks, base miss rates and IPCs.
	5.1 Temporal Correlation Opportunity
	FIGURE 6. Absolute temporal correlation distance of all cache misses; correlation distance of 1 implies perfect repetition (left). Lengths of sequences of temporally correlated misses in applications that exhibit more than 5% uncorrelated misses (right).
	FIGURE 7. Last-Touch to Cache Miss correlation, plotted as a cumulative percentage of all misses up to a given absolute (negative or positive) correlation distance.

	5.2 Cache Miss vs Last-Touch Ordering
	5.3 LT-cords Coverage and Accuracy
	FIGURE 8. Comparing coverage and accuracy of LT-cords to DBCP with unlimited storage.

	5.4 Storage Size Sensitivity
	FIGURE 9. Coverage sensitivity to signature cache size.
	FIGURE 10. Off-chip sequence storage size (in millions of signatures) needed to achieve given coverage.

	5.5 Multi-Programmed Environments
	FIGURE 11. LT-cords coverage in a multi-programmed environment. The left bar shows standalone application; remaining bars show the application running with one other application.

	5.6 Cycle-Accurate Simulation Parameters
	5.7 Speedup
	TABLE 3. Performance comparison. Each value indicates percent performance improvement over the baseline processor configuration.

	5.8 Memory Bandwidth Overhead
	FIGURE 12. LT-cords memory system utilization, normalized to bytes/instruction to remove effect of application speedup.

	5.9 Power

	6 Conclusions
	Acknowledgements
	References

