Appears in Proceedings of the 39" Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-39)

Reunion: Complexity-Effective Multicore Redundancy

Jared C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe
Computer Architecture Laboratory (CALCM)
Carnegie Mellon University, Pittsburgh, PA 15213
http://www.ece.cmu.edu/~truss

Abstract

To protect processor logic from soft errors,
multicore redundant architectures execute two copies
of a program on separate cores of a chip
multiprocessor ~ (CMP). Maintaining identical
instruction streams is challenging because redundant
cores operate independently, yet must still receive the
same inputs (e.g., load values and shared-memory
invalidations). Past proposals strictly replicate load
values across two cores, requiring significant changes
to the highly-optimized core.

We make the key observation that, in the common
case, both cores load identical values without special
hardware. When the cores do receive different load
values (e.g., due to a data race), the same mechanisms
employed for soft error detection and recovery can
correct the difference. This observation permits
designs that relax input replication, while still
providing correct redundant execution. In this paper,
we present Reunion, an execution model that provides
relaxed input replication and preserves the existing
memory interface, coherence protocols, and
consistency models. We evaluate a CMP-based
implementation of the Reunion execution model with
full-system, cycle-accurate simulation. We show that
the performance overhead of relaxed input replication
is only 5% and 6% for commercial and scientific
workloads, respectively.

1. Introduction

Chip multiprocessors (CMPs) have emerged as a
promising approach to give computer architects scal-
able performance and reasonable power consumption
within a single chip [3,11,16]. However, increasing
levels of integration, diminishing node capacitance,
and reduced noise margins have led researchers to fore-
cast an exponential increase in the soft-error rate for
unprotected logic and flip-flop circuits [10,19]. Recent
work [9,14,22] advocates leveraging the inherent repli-

cation of processor cores in a CMP for soft-error toler-
ant redundant execution by pairing cores and checking
their execution results.

Because CMP designs maintain the familiar
shared-memory programming model, multicore redun-
dant architectures must provide correct and efficient
execution of multithreaded programs and operating
systems. Furthermore, redundant execution must not
introduce significant complexity over a non-redundant
design. Ideally, a single design can provide a dual-use
capability by supporting both redundant and non-
redundant execution.

Redundant designs must solve two key problems:
maintaining identical instruction streams and detecting
divergent execution. Mainframes, which have provided
fault tolerance for decades, solve these problems by
tightly lockstepping two executions [4,20]. Lockstep
ensures both processors observe identical load values,
cache invalidations, and external interrupts. While con-
ceptually simple, lockstep becomes an increasing bur-
den as device scaling continues [5,12].

Researchers have proposed several alternatives to
lockstep within the context of CMPs. Both Mukherjee
et al. [14] and Gomaa et al. [9] use a custom load-value
queue (LVQ) to guarantee that redundant executions
always see an identical view of memory. A leading
core directly issues loads to the memory system, while
a trailing core consumes a record of load values from
the LVQ. Although the LVQ produces an identical
view of memory for both executions, integrating this
strict input replication into an out-of-order core
requires significant changes to existing highly-opti-
mized microarchitectures [14].

Strict input replication forbids using existing
cache hierarchies for the redundant execution and
requires changes to critical components of the proces-
sor core and cache hierarchy. In contrast, relaxed input
replication permits redundant executions to indepen-
dently issue memory operations to existing cache hier-
archies. We observe that, even for shared-memory
parallel programs, relaxed input replication produces

the correct result in virtually all cases. In the case when
load values differ between the redundant cores, called
input incoherence, mechanisms for soft error detection
and recovery can correct the difference [17].

In this paper, we propose the Reunion execution
model, which exploits relaxed input replication for
soft-error tolerant redundant execution across cores.
While Reunion allows redundant cores to issue mem-
ory operations independently, we prove that Reunion
designs can maintain correct execution with existing
coherence protocols and memory consistency models.
Reunion provides detection and recovery from input
incoherence using a combination of light-weight error
detection [21] and existing precise exception roll-
back—the same mechanisms needed for soft-error tol-
erance.

We make the following contributions:
® Input incoherence detection. We observe that
light-weight detection mechanisms for soft errors can
also detect input incoherence. This observation enables
a single recovery strategy for both soft errors and input
incoherence.
® Reunion execution model. We present formal
requirements for correct redundant execution using
relaxed input replication in a multiprocessor. These
requirements do not change the existing coherence pro-
tocol or memory consistency model.
® Serializing check overhead. We observe that
checking execution at instruction retirement incurs
stalls on serializing events, such as traps, memory bar-
riers, and non-idempotent instructions. Architectures
that encounter frequent serializing events will suffer a
substantial performance loss with any checking
microarchitecture.

We evaluate Reunion in a cycle-accurate full-sys-
tem CMP simulator. We show that the Reunion execu-
tion model has an average 9% and 8% performance
impact on commercial and scientific workloads,
respectively, with a 5-6% performance overhead from
relaxed input replication.

Paper Outline. In Section 2 we present back-
ground on soft error detection and redundant execu-
tion. Section 3 presents the Reunion execution model.
We discuss a CMP implementation in Section 4 and its
evaluate performance in Section 5. We conclude in
Section 6.

2. Background

2.1. Fault Model

Our fault model targets soft errors that cause silent
data corruption, such as transient bit flips from cosmic

rays or alpha particles. We assume that the processor’s
datapath is vulnerable to soft errors from fetch to
retirement, but that the less-vulnerable control
logic [19] is protected by circuit-level techniques.
Designers already protect cache arrays and critical
communication buses with information redundancy
(e.g., ECC) [20]. However, the complex layout and
timing-critical nature of high-performance processor
datapaths precludes these codes within the pipeline.
Unretired speculative state, such as speculative register
files and the issue queue, can remain unprotected.
However, we require retired architectural state arrays
to have ECC protection (e.g., the architectural register
file and non-speculative store buffer).

In this work, we investigate microarchitectures
that detect and recover from virtually all soft errors, but
in very infrequent cases, can leave them undetected or
uncorrected. Architects design microprocessors to
meet soft error budgets [13] and our design can be
engineered to meet the desired budget.

2.2. Redundant Execution

The “sphere of replication” defines three general
design requirements for all systems with redundant
execution [17]. First, all computation within the sphere
must be replicated. Second, all inputs entering the
sphere must be replicated for each execution. Finally,
all outputs leaving the sphere must be checked to pre-
vent errors from propagating outside the sphere.

We now discuss the two dominant forms of redun-
dant execution in microprocessors in the industry and
research communities: lockstep and multithreading.

Lockstep. Classical lockstep redundant execu-
tion—where identical processing elements are tightly-
coupled on a cycle-by-cycle basis—has long existed in
mainframes such as HP NonStop [4] and IBM
zSeries [20]. However, lockstep in general-purpose
execution encounters significant roadblocks in future
process technologies. First, individual cores are likely
to operate in separate clock domains for dynamic fre-
quency control, while execution must still match pre-
cisely in time despite asynchronous inputs and physical
distances between the cores [5,12]. Second, increasing
within-die device- and circuit-level variability [6] leads
to deviations from precise lockstep because, even in
the absence of errors, cores will no longer have identi-
cal timing properties or execution resources. Third,
lockstep requires precise determinism and identical ini-
tialization across all processor components, including
in units that do not affect architecturally-correct execu-
tion (e.g., branch predictors [15]). As a result, redun-

MA=0 | MAJ=T — time
T
| branch
| taken, Code
ivergent!
O Ri<MA] beq R1, target Y RN
P , I | | not taken beq R1, target
0 | I |
| R1=M[A] beq R1, target target:
|
i -
P, 1
M[A]=1

Figure 1. Input incoherence: redundant cores P
and Py’ observe different values for memory
location M[A] from an intervening store.

dant execution models that avoid lockstep are highly
desirable.

Multithreading. Recent proposals investigate
using independent redundant threads within a simulta-
neous multithreaded (SMT) core [17,23] or across
cores in a CMP [9,14,22]. Unlike lockstep, the threads
execute independently and are bound by architectural
requirements rather than microarchitectural timing
constraints. Threads synchronize as outputs from the
core (e.g., store values or register updates) are com-
pared but remain coupled within a short distance to
limit the storage needed for input replication and out-
put comparison.

2.3. Input Incoherence

Multithreading introduces a problem for redundant
execution because the threads independently execute
and issue redundant memory requests. When executing
shared-memory parallel programs, the threads can
observe different values for the same dynamic load—
which we term input incoherence—due to data races.
Figure 1 illustrates this situation: these races arise
between one execution's read of a cache block and the
redundant partner's corresponding read. Writes from
competing cores will cause input incoherence. This
occurs in ordinary code such as spin-lock routines.

To avoid input incoherence, several prior propos-
als [9,14,17,23] enforce strict input replication across
the redundant threads, where a leading execution
defines the load values observed by both executions.
Strict input replication can be achieved by either lock-
ing cache blocks or recording load values.

The active load address buffer (ALAB) [17] tracks
cache blocks loaded by the leading thread and prevents
their replacement until the trailing thread retires its cor-
responding load. The ALAB adds multiported storage
arrays to track accessed cache blocks, logic to defer
invalidations and replacements, and deadlock detection
and retry mechanisms. The ALAB must be accessed on
each load and external coherence request and requires

significant changes to the out-of-order core’s memory
interface and pipeline control logic.

The LVQ is a FIFO structure, originally proposed
as a simpler alternative to the ALAB, that records load
values in program order from a leading execution and
replays them for the trailing execution [17]. The LVQ
requires modifications to the existing, heavily-opti-
mized processor/cache interface. The trailing thread
must bypass the cache and store buffer interface in
favor of the LVQ, which adds bypass paths on the load
critical path. Furthermore, the trailing thread only
reads values in program order, which is a major policy
change in front-end and out-of-order scheduling logic.
The alternative—an out-of-order issue LVQ—elimi-
nates the scheduling restriction, but has a similar com-
plexity and area overhead as a multiported store
buffer [14]. Finally, the LVQ also reduces error cover-
age of memory operations: there is no way to verify
that load bypassing and forwarding completed cor-
rectly because the trailing execution relies upon lead-
ing thread load values.

Alternatively, in relaxed input replication, redun-
dant threads independently send load requests to
caches and store buffers, as in a non-redundant design.
This avoids the added complexity of strict input repli-
cation and also provides detection for soft errors in
load forwarding and bypass logic. However, this means
that redundant executions are susceptible to input inco-
herence.

There are two general methods for tolerating input
incoherence in relaxed input replication: robust for-
ward recovery and rollback recovery. Prior work
entrusts a robust checker to resolve input incoherence.
For example, DIVA checkers with dedicated caches [§]
and slipstreamed re-execution [25] both allow the lead-
ing thread’s load values to differ from the trailing
threads’. However, these proposals do not address the
possibility of data races in shared-memory multipro-
cessors and require complex additions to support
robust redundant execution. Alternatively, the naive
rollback solution—simply retrying upon error detec-
tion—uses existing hardware support, but offers no
forward progress guarantee. Because incoherent cache
state or races may persist in the memory system, the
same incoherent situation can occur again during re-
execution. The Reunion execution model addresses
this problem.

2.4. Output Comparison

The sphere of replication’s boundary determines
where outputs are compared. Two main choices have
been studied in CMPs: (1) comparing outputs before

the architectural register file (ARF), and (2) comparing
before the L1 cache [9,14]. In both cases, stores and
uncached load addresses require comparison. For
detection before the ARF, each instruction result must
also be compared. We limit our study to systems with
comparison before the ARF because existing precise
exception support can then be used to recover before
outputs become visible to other processors.

Output comparison impacts retirement. Serializing
instructions, such as traps, memory barriers, and non-
idempotent instructions, stall further execution until
the serializing instruction has been compared. Both
executions must complete and compare the serializing
instruction before continuing.

Comparison bandwidth is another design factor in
superscalar processors because multiple instructions
may need comparison each cycle. Prior work proposes
techniques to reduce bandwidth requirements. Gomaa
et al. compare only instructions that end dependence
chains in a lossless detection scheme [9]. They report
bandwidth savings of roughly twenty percent over
directly comparing each instruction result.

Smolens et al. [21] propose compressing architec-
tural state updates into a signature called a fingerprint.
Fingerprints lower comparison bandwidth by orders of
magnitude with a negligible loss in error coverage. We
extend this work to include two-stage compression that
can match the retirement bandwidth of a wide super-
scalar (where the amount of data retired per cycle is
larger than feasible hash circuits can consume).

3. Reunion Execution Model

This section presents a formal set of requirements
for the Reunion execution model. The requirements
provide redundant execution and relaxed input replica-
tion and allows reasoning about correctness indepen-
dent of implementation. Figure 2 illustrates the
concepts in this section.

3.1. System Definition

Definition 1 (Logical processor pair). A logical pro-
cessor pair consists of two processor cores that execute
the same instruction stream. To provide a single output
from the sphere of replication, the logical processor
pair presents itself as a single entity to the system.

We differentiate the two cores as follows:
Definition 2 (Vocal and mute cores). Each logical pro-
cessor pair consists of one vocal and one mute core.
The vocal core exposes updated values to the system
and strictly abides by the coherence and memory con-

[Vocal H Mute] [Vocal H Mute]
| | | [|
v | v | al] [ful]
| | | | | |

coherent
synch. replies
requests
coherent \ phantom
request, \request Shared L2

1
1

u] [| |_I1 || |_I1 |
| [|
VocalHMute [Vocal H Mute]

Figure 2. The Reunion architecture.

sistency requirements specified by the baseline system.
The mute core never exposes updates to the system.

Vocal and mute cores use their existing private
cache hierarchies and on-chip coherence protocol as in
a non-redundant design. Definition 2 permits the mute
core to write values into its private cache hierarchy,
provided these values are not communicated to other
caches or main memory.

Reunion uses redundant execution to detect and
recover from soft errors that occur in program execu-
tion. We formally define safe execution as follows:
Definition 3 (Safe execution). Program execution is
“safe” if and only if (1) all updates to architecturally-
defined state are free of soft error effects, (2) all mem-
ory accesses are coherent with the global memory
image, and (3) the execution abides by the baseline
memory consistency model. Execution that is not safe
is deemed “unsafe”.

The state that results from safe execution is:
Definition 4 (Safe state). The architectural state
defined by the vocal core at a specific point in time is
considered “safe state” if and only if it is free of soft
errors; otherwise, the architectural state is deemed
“unsafe state”.

3.2. Execution Model

Definition 2 requires that only the vocal abide by
coherence and consistency requirements. Ideally, the
mute core always loads coherent data values. However,
precisely tracking coherent state for both vocal and
mute would be prohibitively complex (e.g., the coher-
ence protocol would have to track two owners for
exclusive/modified blocks).

Instead, Reunion maintains coherence for cache
blocks in vocal caches, while allowing incoherence in
mute caches. The mechanism for reading cache blocks
into the mute cache hierarchy is the phantom request, a
non-coherent memory request:

Definition 5 (Phantom request). A phantom request
returns a value for the requested block without chang-
ing coherence state in the memory system.

The phantom request does not guarantee that the
mute core will be coherent with the vocal, potentially
leading to input incoherence within a logical processor
pair:

Definition 6 (Input incoherence). Input incoherence
results when the same dynamic load on vocal and mute
cores returns different values.

Reunion requires vocal and mute to compare exe-
cution results as follows:

Definition 7 (Output comparison). Vocal and mute
cores must compare all prior execution results before a
value becomes visible to other logical processor pairs.

Lemma 1. In the absence of soft errors, input incoher-
ence cannot result in unsafe execution.

Proof: If no soft error occurred during program execu-
tion, condition (1) of safe execution (Definition 3) is
satisfied. If input incoherence occurred, the register
updates and memory writes on the vocal still satisfy
conditions (2) and (3). Therefore, safe execution
results.

Only undetected soft errors can result in unsafe
state. Both input incoherence and soft errors can lead
to divergent execution that must be detected and cor-
rected. However, Lemma 1 proves that input incoher-
ence alone cannot result in unsafe state.

3.3. Recovery

Definition 8 (Rollback recovery). When output com-
parison matches, the vocal's architectural state defines
a new safe state that reflects updates from the com-
pared instruction results; otherwise, rollback recovery
restores architectural state to prior safe state.

Because only the vocal core's architectural state

defines new safe state, Reunion requires a mechanism
to initialize the mute core's architectural registers to
match the vocal core.
Definition 9 (Mute register initialization). The vocal
and mute cores provide a mechanism to initialize the
mute core's architectural register file with values iden-
tical to the vocal’s.

In the presence of input incoherence, naive retry
cannot guarantee forward progress because the condi-
tion causing input incoherence can persist. Incoherent
cache blocks in the mute’s hierarchy can cause input
incoherence until replaced by coherent values. Reunion
addresses this problem with the synchronizing request:
Definition 10 (Synchronizing request). The synchro-
nizing request returns a single coherent value to both
cores in the logical processor pair.

We combine mute register initialization and the

synchronizing request to create the re-execution proto-
col and then prove that the protocol guarantees forward
progress following rollback recovery.
Definition 11 (Re-execution protocol). After rollback
recovery, the mute architectural register file is initial-
ized to the values from the vocal. The logical processor
pair then executes subsequent instructions non-specu-
latively (single-step), up to and including the first load
or atomic memory operation. This operation is issued
by both cores using the synchronizing request. After
successful output comparison following this instruc-
tion, the logical pair resumes normal execution.

Lemma 2. (Forward Progress). The Reunion re-execu-
tion protocol always results in forward progress.

Proof: Rollback recovery is triggered either by a soft
error, which does not persist, or input incoherence,
which may persist. In the first case, re-execution elimi-
nates the error and results in successful output compar-
ison. In the second case, the mute register initialization
and synchronizing request guarantee safe execution
and safe state to the first load.

An implementation must provide the required
behaviors of the execution model, but the system
designer has latitude to optimize. In Section 4, a fast
re-execution protocol implementation handles com-
mon case re-execution, while a slower version imple-
ments the rarely needed register file copy.

4. Reunion Microarchitecture

In this section, we first describe our baseline CMP
and processor microarchitecture. We then discuss the
changes required to implement the Reunion execution
model in a shared cache controller and processor core.

4.1. Baseline CMP

Cache Hierarchy. We assume a baseline CMP
with caches similar to Piranha [3]. A shared cache
backs multiple write-back L1 caches private to each
processor core. The shared cache controller accepts
memory requests from all cores, coordinates on-chip
coherence for blocks in private caches, and initiates
off-chip transactions. The Reunion execution model
can also be implemented at a snoopy cache interface
for microarchitectures with private caches, such as
Montecito [11].

Processor Microarchitecture. We assume the
simplified out-of-order processor pipeline illustrated in
Figure 3(a). Instructions are fetched and decoded in-
order, then issued, executed, and written back out-of-
order. In-order retirement stages inspect instructions

for branch mis-speculation and exceptions, and write
instruction results to the architectural register file, as in
Pentium-M [18]. Stores initially occupy a speculative
region of the store buffer. At retirement, the stores tran-
sition to a non-speculative region of the store buffer
and drain to the L1 cache.

This paper assumes single-threaded processor
cores. Reunion can benefit from the efficient use of
otherwise idle resources in SMT; however, cores must
run only vocal or mute threads to prevent vocal con-
texts from consuming incoherent cache blocks.

4.2. Shared Cache Controller

The shared cache controller is responsible for
implementing the vocal and mute semantics, phantom
requests, and synchronizing requests. As in non-redun-
dant designs, the shared cache controller maintains
coherence state (e.g., ownership and sharers lists) for
all vocal cores.

Because coherence is not necessary in mute
caches, sharers lists never include mute caches and
mute caches can never become exclusive or modified
block owners. The coherence protocol behaves as if
mute cores were absent from the system. To prevent
values generated by mutes from being exposed to the
system, the shared cache controller ignores all eviction
and writeback requests originating from mute cores.

Phantom requests. All non-synchronizing
requests from the mute to the shared cache controller
are transformed into phantom requests. The phantom
request produces a reply, although the value need not
be coherent, or even valid. Phantom replies grant write
permission within the mute hierarchy.

The phantom request allows several “strengths”,
depending on how diligently it searches for coherent
data. The weakest phantom request strength, null,
returns arbitrary data on any request (i.e., any L1 miss).
While trivial to implement, null has severe perfor-
mance implications. A shared phantom request checks
for hits in the shared cache and only returns arbitrary
values on misses. Finally, the global phantom request
achieves the best approximation of coherence. This
request not only checks the shared cache, but also pri-
vate vocal caches and issues read requests to main
memory for off-chip misses. In terms of complexity,
this is a small departure from existing read requests.
Unless otherwise noted, this paper assumes global
phantom requests.

Synchronizing requests. The shared cache con-
troller enforces coherence between vocal and mute
cores only on synchronizing requests. Synchronizing
requests flush the block from private caches (returning

Fetch Decode/ Execute Retire: Retire:
rename Mis-spec detect | Arch writeback
(a)
Send
fingerprin
Fetch Decode/ B Retire: Check: Compare Retire:
rename Mis-spec detect fingerprint Arch writeback

(b) Receive /
fingerprint

Figure 3. (a) Baseline pipeline and (b) a pipeline
with fingerprint checks before retirement.

the vocal’s copy to the shared cache, while discarding
the mute’s). When both requests have been received at
L2, the shared cache controller initiates a coherent
write transaction for the cache block on behalf of the
pair. This obtains sufficient permission to complete
instructions with both load and store semantics. After
obtaining the coherent value, the shared cache control-
ler atomically replies to both the vocal and mute cores.
The synchronizing request dominates recovery latency
and is comparable to a shared cache hit.

4.3. Processor Pipeline

We now describe the processor pipeline changes
for the Reunion execution model, output comparison
and recovery.

Safe state. The vocal processor core maintains
safe state in the ARF, non-speculative store buffer and
memory. Safe state can always be reached by the vocal
by (1) retiring all instructions that have completed out-
put comparison without error to the architectural regis-
ter file and the non-speculative store buffer and (2)
flushing all uncompared instructions from the pipeline
(e.g., precise exception rollback).

Output comparison. Instruction outputs must be
compared before retiring to architectural state. The key
addition is an in-order retirement stage called check.
Check first generates a fingerprint—a hash of instruc-
tion results—from the entering instructions [21].
Check then compares its fingerprint with the partner
core’s fingerprint to detect differences. A matching fin-
gerprint comparison retires the instruction and writes
the instruction results to safe state in the architectural
register file. A mismatch invokes recovery. Instructions
cannot enter check speculatively; they must be guaran-
teed to retire if the instruction results match.

Logically, the fingerprint captures all register
updates, branch targets, store addresses, and store val-
ues. The number of instructions summarized by each
fingerprint is a design parameter called the fingerprint
interval; longer comparison intervals need proportion-
ally less comparison bandwidth. At the end of each fin-
gerprint interval, each core sends its fingerprint to the

Recovered Recovered

No| Copy vocal ARF
to mute, retry

Error Rollback +
Detected Sync Read

Figure 4. The re-execution protocol.

partner core for comparison. We find empirically that
the performance difference between intervals of one
and fifty instructions is insignificant in our workloads,
despite increased resource occupancy, because useful
computation continues to the end of the interval.

We combine the time required to generate, trans-
fer, and compare the fingerprint into a parameter called
the comparison latency. Because the vocal and mute
cores “swap” fingerprints, the comparison latency is
the one-way latency between cores. This latency over-
laps with useful computation, at the cost of additional
resource occupancy. The observed comparison latency,
however, may be extended because the two cores are
only loosely coupled in time. While the vocal and mute
execute the same program, their relative progress may
drift slightly in time, due to contention accessing
shared resources (e.g., the L2 cache) and different pri-
vate cache contents.

Fingerprint generation. In wide superscalar pro-
cessors, fingerprint generation bandwidth is a concern.
The total state updates per cycle can exceed 256 bits of
state, which exceeds what parallel CRC circuits can
consume in a single clock. We solve this problem by
leveraging a two-stage compression technique used in
circuit testing [7], which places space-compressing
parity trees before a time-compressing circuit, such as
a parallel CRC [2] or multiple-input shift register
(MISR) [7]. Parity trees reduce the raw M bits of state
down to N bits of compressed state in a single clock
cycle, which then feed the time-compressing circuit in
the next cycle. Parity trees necessarily reduce the fin-
gerprint’s error detection coverage. Assuming all com-
binations of bit flips are equally likely, it can be shown
that this two-stage technique doubles the aliasing prob-
ability. Therefore, the probability of aliasing is at most

21 \where N is the width of a CRC circuit. The
analysis in [21] shows that a 16-bit CRC already
exceeds industry system error coverage goals by an
order of magnitude.

Re-execution. Upon detection of differences
between the vocal and mute, the logical processor pair
starts the re-execution protocol illustrated in Figure 4.
To optimize for the common case, the protocol is
divided into two phases. The first handles detected soft
errors and detected input incoherence errors. The sec-
ond phase addresses the extremely rare case where

results of undetected input incoherence retire to archi-
tectural registers.

Both vocal and mute cores invoke rollback-recov-
ery using precise exception support and, in the com-
mon case, restore to identical safe states in their
architectural register files. Both cores then non-specu-
latively single-step execution up to the first memory
read. Each core then issues a synchronizing memory
request—eliminating input incoherence for the
requested cache block—and compares a fingerprint for
all instructions in the interval. Following comparison,
the re-execution protocol has made forward progress
by at least one instruction. The cores then continue nor-
mal speculative, out-of-order execution.

If the first phase fails output comparison, the sec-
ond phase starts. The vocal copies its architectural reg-
ister file to the mute and the pair proceeds with re-
execution, as in the first phase. Because the vocal core
always maintains safe state in the absence of soft
errors, this will correctly recover from all incoherence
errors. If the cause was a soft error missed by finger-
print aliasing, the protocol cannot recover safe state
and therefore must trigger a failure (e.g., detected,
uncorrectable error interrupt). The re-execution proto-
col can be implemented in microcode.

External interrupts. External interrupts must be
scheduled and handled at the same point in program
execution on both cores. Fingerprint comparison pro-
vides a mechanism for synchronizing the two cores on
a single instruction. Reunion handles external inter-
rupts by replicating the request to both the vocal and
mute cores. The vocal core chooses a fingerprint inter-
val at which to service the interrupt. Both processors
service the interrupt after comparing and retiring the
preceding instructions.

Hardware cost. Fingerprint comparison requires
queues to store outstanding fingerprints, a channel to
send fingerprints to the partner core, hash circuitry, and
a comparator. The fingerprint queues can be sized to
balance latency, area, and power. The check stage
delays writing results into the architectural register file.
The results can be stored in a circular buffer during the
check stage or read again at retirement.

4.4. Serializing Check Overhead

Instructions with serializing semantics—such as
traps, memory barriers, atomic memory operations,
and non-idempotent memory accesses—impose a per-
formance penalty in all redundant execution microar-
chitectures. Serializing instructions must stall pipeline
retirement for a full comparison latency, because (1) all
older instructions must be compared and retired before

Table 1. Simulated baseline CMP parameters.
Processor Cores 4 logical processors, UltraSPARC III ISA
4 GHz 12-stage pipeline; out-of-order
4-wide dispatch / retirement
256-entry RUU; 64-entry store buffer

L1 Cache 64KB split I/D, 2-way, 2-cycle load to use,
2 rd, 1 wr ports, 64-byte lines, 32 MSHRs

Shared L2 Cache 16MB unified, 4 banks, 8-way,
35-cycle hit latency, 64-byte lines,
crossbar to L1s, 64 MSHRs

ITLB 128 entry, 2-way; 8K page
DTLB 512 entry 2-way; 8K page
Memory 3 GB, 60 ns access latency, 64 banks

the serializing instruction can execute and (2) no
younger instructions can execute until the serializing
instruction retires.

Upon encountering a serializing instruction, the
fingerprint interval immediately ends to allow older
instructions to retire. The fingerprint is updated to
include state that must be checked before executing the
serializing instruction (e.g., uncacheable load
addresses). Once the older instructions retire, the seri-
alizing instruction completes its execution and check.
This comparison exposes timing differences between
the cores (due to loosely-coupled execution) and the
entire comparison latency. Normal execution continues
once the serializing instruction retires.

5. Evaluation

We evaluate Reunion using FLEXUS, which pro-
vides cycle-accurate, full-system simulation of a chip
multiprocessor [24]. FLEXUS extends Virtutech Simics
with cycle-accurate models of an out-of-order proces-
sor and memory system.

We simulate a CMP with four logical processors:
four cores for non-redundant models and eight cores
for redundant models. We assume on-chip cache band-
width scales in proportion with the number of cores.
Our CMP model uses a cache hierarchy derived from
Piranha [3]. For Reunion, the vocal and mute L1 cache
tags and data are independently modeled. We list sys-
tem parameters in Table 1.

Table 2 lists our commercial and scientific appli-
cation suite. All workloads run on Solaris 8. We
include the TPC-C v3.0 OLTP workload on two com-
mercial database management systems, /BM DB2 v8
Enterprise Server Edition, and Oracle 10g Enterprise
Database Server. We tune the database to maximize
performance of our non-redundant system model.

We select three representative queries from the
TPC-H decision support system (DSS) workload,

Table 2. Application parameters.

Commercial Workloads
DB2 OLTP 100 warehouses (10GB), 64 clients, 450MB BP

Oracle OLTP 100 warehouses (10GB), 16 clients, 1.4GB SGA

DB2 DSS Qry 1 (scan); Qry 2 (join); Qry 17 (balanced)
100 warehouses (10GB), 450MB BP

Apache Web 16K connections, fastCGI, worker thread model
Zeus Web 16K connections, fastCGI

Scientific Workloads
em3d 768K nodes, degree 2, span 5, 15% remote

moldyn 19,652 molecules, boxsize 17, 2.56M max iters.
ocean 258x258 grid, 9600s relax, 20K res., errtol 1e-7
sparse 4096x4096 matrix

showing scan-dominated, join-dominated, and mixed
behavior. We evaluate web server performance with
the SPECweb99 benchmark on Apache HTTP Server
v2.0 and Zeus Web Server v4.3. We report the server
performance of web servers saturated by separate cli-
ents over a high-bandwidth link. We also include four
parallel shared-memory scientific applications that
exhibit a range of memory access patterns.

We use a sampling approach that draws many brief
measurements over 10 to 30 seconds of simulated time
for OLTP and web applications, the complete query
execution for DSS, and a single iteration for scientific
applications. We target 95% confidence intervals of
+5% error on change in performance using matched-
pair comparison [24]. We launch measurements from
checkpoints with warmed caches and branch predic-
tors, then run for 100,000 cycles to warm pipeline and
queue state prior to 50,000 cycles of measurement. We
collect the aggregate user instructions committed per
cycle as our performance metric, which is proportional
to overall system throughput. We compare fingerprints
on every instruction. We do not inject soft errors; how-
ever, input incoherence events, output comparison, and
recovery are modeled in detail.

5.1. Baseline Performance

We evaluate the baseline performance of redun-
dant execution in a CMP for a representative system
using strict input replication (“Strict”) and Reunion.

Strict models a system with strict input replica-
tion, fingerprint comparison across cores for error
detection, and recovery within the ROB (as described
for Reunion in Section 4.3). Strict serves as an oracle
performance model for all strict input replication
designs with recovery. It imposes no performance pen-
alty for input replication (e.g., lockstepped processor
cores or an LVQ with no resource hazards). However,
we model the penalties from buffering instructions dur-

| Strict
1.0

[JReunion

Normalized IPC

DB2 |Oracle| DB2

Q1

Apache| Zeus

Web OLTP

LR

DB2 | DB2 | em3d \moldyn| ocean |sparse
Q2 Q17
DSS Scientific

Figure 5. Baseline performance of redundant execution with strict input replication and Reunion normalized
to a non-redundant baseline, with a 10-cycle comparison latency.

ing check. The Reunion model demonstrates the per-
formance of relaxed input replication and fingerprint
comparison and recovery. To support recovery within
the speculative window, both systems check instruction
results before irrevocably retiring them to the architec-
tural register file and non-speculative store buffer.
Figure 5 shows the baseline performance of both
models normalized to the performance of a non-redun-
dant baseline CMP, with a ten-cycle comparison
latency between cores. As compared to the non-redun-
dant baseline, the strict model has a 5% and 2% aver-
age performance penalty for commercial and scientific
workloads, respectively, while Reunion shows 10%
and 8% average respective performance penalties. The
low performance overhead of Reunion demonstrates
that relaxed input replication is a viable redundant exe-
cution model. In the following sections, we explore the
performance of these execution models in more detail.

5.2. Checking Overhead

We first examine the performance of Strict to
understand the performance penalties of checking
redundant executions across cores in a CMP. First, seri-
alizing instructions cause the entire pipeline to stall for
the check because no further instructions can execute
until these instructions complete. The check fundamen-
tally extends this stall penalty: as the comparison
latency increases, the retirement stalls must also
increase. Second, pipeline occupancy increases from
instructions in check occupying additional ROB capac-
ity in the speculative window. For workloads that bene-
fit from large instruction windows, this decreases
opportunities to exploit memory-level parallelism
(MLP) or perform speculative execution.

Figure 6(a) shows the average performance impact
from checking in Strict for each workload class over a
range of on-chip comparison latencies, normalized to a

non-redundant baseline. At a zero-cycle comparison
latency, the workloads do not show a statistically sig-
nificant performance difference from non-redundant
execution. The performance penalty increases linearly
with increasing comparison latency. Both commercial
and scientific workloads exhibit similar sensitivity to
the comparison latency; however, the mechanisms are
different.

In commercial workloads, the dominant perfor-
mance effect comes from frequent serializing instruc-
tions. With increased comparison intervals, the number
of these events remains constant, but the stall penalty
increases. At forty cycles, the average performance
penalty from checking is 17%.

In contrast, the scientific workloads suffer from
increased reorder buffer occupancy because they can
saturate this resource, which decreases MLP. At a com-
parison latency of forty cycles, the average perfor-
mance penalty is 11%. While space constraints limit
more detailed analysis, larger speculation windows
(e.g., thousands of instructions, as in checkpointing
architectures [1]) completely eliminate the resource
occupancy bottleneck, but cannot relieve stalls from
serializing instructions.

5.3. Reunion Performance

We first evaluate the performance penalty of
relaxed input replication under Reunion, then explore
Reunion’s sensitivity to comparison latencies. Unlike
the strict input replication model, vocal and mute exe-
cution in Reunion is only loosely coupled across the
cores. For non-serializing instructions, these differ-
ences can be absorbed by buffering in the check stage.
However, serializing instructions expose the loose cou-
pling because neither core can make further progress
until the slower core arrives at and compares the
instruction. This introduces additional retirement stalls

O
o
g 0.6 1
N
= 04 oLt
S — -Web
zZ
0.2 - - 4- DSS
—=— Scientific
0.0 ‘ ‘ ‘ ‘
0 10 20 30 40

Comparison Latency (cycles)

(a)

Normalized IPC

04 - —— OLTP
— -Web
0.2 - -4- DSS
—— Scientific
0.0 \ ‘ ‘ ‘
0 10 20 30 40

Comparison Latency (cycles)

(b)

Figure 6. Performance sensitivity to the comparison interval of (a) strict input replication and (b) Reunion.

that affect both cores, on top of the comparison over-
heads discussed above. Figure 6(b) shows the perfor-
mance of Reunion for a range of comparison latencies.
Reunion’s performance is determined by checking
overheads, loose coupling, and input incoherence.

The first observation from Figure 6(b) is that,
unlike Strict, Reunion has a performance penalty from
loose coupling and relaxed input replication at a zero-
cycle comparison latency. For commercial workloads,
the serializing events expose the loose coupling,
because one core must wait for its partner to catch up
before comparing fingerprints. For scientific work-
loads, contention at the shared cache increases the
effective memory latency, decreasing performance.
This result shows that the baseline performance pen-
alty of Reunion’s relaxed input replication is small—
on average, 5% and 6% for commercial and scientific
workloads, respectively.

The second observation in Figure 6(b) is that at
non-zero comparison latencies, performance converges
towards the limits set by the strict input replication
model. As the comparison latency grows, the compari-
son overhead and resource occupancies dominate the
performance, because more time is spent waiting on
the comparison than resolving loose coupling delays.
At a forty-cycle comparison latency, the average per-
formance penalty is 22% and 13% for commercial and
scientific workloads, respectively, which closely fol-
lows the Strict model’s trend. This result shows that the
primary performance impact with larger comparison
latencies comes from fundamental limits of checking
and recovery, instead of relaxed input replication.

5.4. Input Incoherence

We now provide empirical evidence to demon-
strate that input incoherence events in Reunion are

uncommon. Table 3 shows the frequency of input inco-
herence events per million retired instructions in
Reunion for all three phantom request strengths, with a
ten-cycle comparison latency. As a point of compari-
son, we juxtapose the input incoherence events with
another common system event with a comparable per-
formance penalty: the translation lookaside buffer
(TLB) miss.

We first consider Reunion with global phantom
requests. Recall that global phantom requests initiate
on- and off-chip non-coherent reads on behalf of the
mute. As shown, our workloads encounter input inco-
herence events infrequently with global phantom
requests, while data and instruction TLB misses gener-
ally occur orders of magnitude more frequently. From
this data we conclude that input incoherence events
are, in fact, uncommon in our workloads. Furthermore,
even with relaxed input replication, the penalty of
recovery is overshadowed by other system events.

Next, we investigate whether choices for weaker
phantom requests from Section 4.2 are effective. The
data for shared and null phantom requests in Table 3
show that input incoherence events are three to four

Table 3. Input incoherence events for each
phantom request strength, TLB miss frequency.

Per 1M instructions
Input Incoherence

Workload Global Shared Null TLB Misses
Apache 0.9 3,818 8,620 1,973
Zeus 02 1,818 5,456 1,654
DB2 OLTP 0.7 5340 16,197 2,492
Oracle OLTP 0.6 4,578 17,140 3,297
DB2DSS Q1 211 1,909 4,004 206
DB2 DSS Q2 07 4852 7,991 1,040
DB2 DSS Q17 1.5 4,863 10,466 1,089

Avg. Scientific 0.4 17,406 22,607 239

EGlobal MWShared [INull

1.0 - 8
£0.58 - =
2 0.6 - N
T [g
g 047 5 —— US Ill Hardware TLB
502 1 Z 0.2 7 -8a- US Ill Software-managed TLB
2 0.

O O — 00 T T T T

' \Apache| Zeus | DB2 |Oracle| DB2 em3d |moldyn| ocean |sparse 0 10 20 30 40
Scientific Comparison Latency (cycles)

(@)

(b)

Figure 7. (a) Reunion performance with different phantom request strengths and (b) Reunion average
performance for commercial workloads with hardware and software-managed TLBs.

orders of magnitude more frequent than with global
phantom request strengths and in both cases are more
frequent than TLB misses. These high frequencies
indicate that recovery from input incoherence can
become a bottleneck with weaker phantom requests.

Figure 7(a) compares the performance of the three
phantom request strengths with a 10-cycle comparison
latency, normalized to the non-redundant baseline.
Both shared and null phantom requests incur a severe
performance impact from frequent recoveries. Shared
phantom requests capture most mute L1 misses
because of the high shared-cache hit rate. One notable
exception is em3d, whose working set exceeds the
shared cache and therefore frequently reads arbitrary
data instead of initiating off-chip reads. The null phan-
tom request policy has a severe performance impact for
all workloads because each L1 read miss is followed
by input incoherence rollbacks.

The analysis of input incoherence in this section
shows that global phantom requests are effective in
reducing input incoherence events to negligible levels
in our workloads. Furthermore, the weaker phantom
request strengths increase the frequency of input inco-
herence to levels that cause a severe performance
impact.

5.5. Serialization Overhead

Finally, we identify the importance of architectur-
ally-defined serializing instructions to redundant exe-
cution performance. In the system we evaluate,
serializing instructions are traps, memory barriers, and
non-idempotent memory requests. Many of these
events are inherent in the workloads, such as memory
barriers needed to protect critical sections, while oth-
ers, such as system traps, are specified by the instruc-
tion set architecture.

The results presented up to this point in the paper
have eliminated the dominant source of system-spe-

cific traps in our baseline UltraSPARC III architecture:
the software-managed TLB miss handler. In commer-
cial workloads, the “fast TLB miss handler” is invoked
frequently (see Table 3), due to their large instruction
and data footprints. The handler function includes two
traps, for entry and exit, and executes three non-idem-
potent memory requests to the memory management
unit (MMU).

Figure 7(b) contrasts the average performance of
commercial workloads with a hardware-managed TLB
model and the architecturally-defined UltraSPARC II1
software-managed TLB handler. As the comparison
interval increases, the contribution of the serializing
checks is readily apparent—increasing the perfor-
mance impact to 28% at a forty-cycle comparison
latency. While this result is from Reunion, a compara-
ble impact also occurs with strict input replication.

Strong memory consistency models can also affect
checking performance. In contrast with Sun TSO, the
Sequential Consistency (SC) memory consistency
model places memory barrier semantics on every store
(5-10% of the dynamic instructions in our workloads).
Hence, every store serializes retirement. We observe an
average performance loss of over 60% at 40 cycles due
to store serialization with SC.

The results in this section underscore the impor-
tance of considering serializing instructions, especially
architecture-specific ones, in the performance of
redundant execution microarchitectures.

6. Conclusion

Designs for redundant execution in multiproces-
sors must address input replication and output compar-
ison. Strict input replication requires significant
changes to the pipeline. We observe that the input inco-
herence targeted by strict input replication is infre-
quent. We propose the Reunion execution model,
which uses relaxed input replication, backed by light-

weight error recovery within the processor’s specula-
tive window. The model preserves the existing memory
system, including the coherence protocol and memory
consistency model. We show that the overhead of
relaxed input replication in Reunion is only 5% and 6%
for commercial and scientific workloads, respectively.

Acknowledgements

We thank Stephen Somogyi for his help with
workload checkpoints, members of the SimFlex
research group at Carnegie Mellon and the anonymous
reviewers for their helpful feedback. This work is sup-
ported by NSF CAREER award CCF-0347568, NSF
award ACI-0325802, Sloan and DoD/NDSEG fellow-
ships, the Center for Circuit and System Solutions
(C2S2), MARCO, CyLab, and by grants and equip-
ment from Intel Corporation.

References

[1] H. Akkary etal. Checkpoint processing and recovery:
Towards scalable large instruction window processors. In
Proc. of the 36th Annual IEEE/ACM Intl. Symp. on
Microarchitecture, Dec 2003.

[2] G. Albertengo and R. Sisto. Parallel CRC generation.
IEEE Micro, 10(5):63-71, Oct. 1990.

[3] L. Barroso et al. Piranha: A scalable architecture base on
single-chip multiprocessing. In Proc. of the 27th Annual Intl.
Symp. on Computer Architecture, June 2000.

[4] J. Bartlett etal. Fault tolerance in tandem computer
systems. Technical Report TR-86.7, HP Labs, 1986.

[5] D. Bernick et al. Nonstop advanced architecture. In Proc.
Intl. Conf. Dependable Systems and Networks, Jun. 2005.

[6] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. /[EEE Micro, 25(6):10-16, Nov-Dec 2005.

[7] K. Chakabarty and J. P. Hayes. Test response compaction
using multiplexed parity trees. IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, 15(11), Nov 1996.

[8] S. Chatterjee et al. Efficient checker processor design. In
Proc. of the 33rd Annual IEEE/ACM Intl. Symp. on
Microarchitecture, Dec 2000, 87-97.

[9] M. Gomaa etal. Transient-fault recovery for chip
multiprocessors. In Proc. of the 30th Annual Intl. Symp. on
Computer Architecture, Jun. 2003.

[10] T. Juhnke and H. Klar. Calculation of the soft error rate
of submicron CMOS logic circuits. IEEE Journal of Solid

State Circuits, 30(7):830-834, Jul. 1995.

[11] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-
thread Itanium processor. I[EEE Micro, 25(2), Mar. 2005.

[12] P.J. Meaney et al. IBM z990 soft error detection and
recovery. [EEE Trans. device and materials reliability,
5(3):419-427, Sept. 2005.

[13]S.S. Mukherjee etal. The soft error problem: An
architectural perspective. In Proc. of the Eleventh IEEE Symp.
on High-Performance Computer Architecture, Feb 2005.

[14] S. S. Mukherjee et al. Detailed design and evaluation of
redundant multithreading alternatives. In Proc. of the 29th
Annual Intl. Symp. on Computer Architecture, May 2002.

[15]S.S. Mukherjee etal. A systematic methodology to
compute the architectural vulnerability factors for a high-
performance microprocessor. In Proc. of the 36th Annual
IEEE/ACM Intl. Symp. on Microarchitecture, Dec 2003.

[16] K. Olukotun etal. The case for a single-chip
multiprocessor. In Proc. of the Seventh Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, Oct. 1996.

[17] S. K. Reinhardt and S.S. Mukherjee. Transient fault
detection via simultaneous multithreading. In Proc. of the
27th Annual Intl. Symp. on Computer Architecture, Jun. 2000.

[18] J. P. Shen and M. H. Lipasti. Modern processor design:
Sfundamentals of superscalar processors. McGraw Hill, 2005.

[19] P. Shivakumar et al. Modeling the effect of technology
trends on the soft error rate of combinational logic. In Proc. of
the 2002 Intl. Conf. on Dependable Systems and Networks,
Jun. 2002.

[20] T. Slegel et al. IBM’s S/390 G5 microprocessor design.
IEEE Micro, 19(2):12-23, Mar-Apr. 1999.

[21]J. C. Smolens et al. Fingerprinting: Bounding soft-error
detection latency and bandwidth. In Proc. of the Eleventh Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, Oct. 2004, 224-234,

[22] K. Sundaramoorthy etal. Slipstream processors:
improving both performance and fault tolerance. In Proc. of’
the Ninth Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.

[23] T. N. Vijaykumar et al. Transient-fault recovery using
simultaneous multithreading. In Proc. of the 29th Annual Intl.
Symp. on Computer Architecture, May 2002.

[24] T.F. Wenisch etal. SimFlex: statistical sampling of
computer system simulation. /EEE Micro, 26(4):18-31, Jul.-
Aug. 2006.

[25] H. Zhou. A case for fault tolerance and performance
enhancement using chip multi-processors. In /EEE Computer
Architecture Letters, Jan. 2006.

	Abstract
	1. Introduction
	2. Background
	2.1. Fault Model
	2.2. Redundant Execution
	2.3. Input Incoherence
	Figure 1. Input incoherence: redundant cores P0 and P0’ observe different values for memory location M[A] from an intervening store.

	2.4. Output Comparison

	3. Reunion Execution Model
	3.1. System Definition
	Figure 2. The Reunion architecture.

	3.2. Execution Model
	3.3. Recovery

	4. Reunion Microarchitecture
	4.1. Baseline CMP
	4.2. Shared Cache Controller
	4.3. Processor Pipeline
	Figure 3. (a) Baseline pipeline and (b) a pipeline with fingerprint checks before retirement.
	Figure 4. The re-execution protocol.

	4.4. Serializing Check Overhead

	5. Evaluation
	Table 1. Simulated baseline CMP parameters.
	Table 2. Application parameters.
	5.1. Baseline Performance
	Figure 5. Baseline performance of redundant execution with strict input replication and Reunion normalized to a non-redundant baseline, with a 10-cycle comparison latency.

	5.2. Checking Overhead
	Figure 6. Performance sensitivity to the comparison interval of (a) strict input replication and (b) Reunion.

	5.3. Reunion Performance
	5.4. Input Incoherence
	Table 3. Input incoherence events for each phantom request strength, TLB miss frequency.
	Figure 7. (a) Reunion performance with different phantom request strengths and (b) Reunion average performance for commercial workloads with hardware and software-managed TLBs.

	5.5. Serialization Overhead

	6. Conclusion
	Acknowledgements
	References

