
Understanding the Performance of Concurrent Error Detecting Superscalar
Microarchitectures

Jared C. Smolens, Jangwoo Kim, James C. Hoe, and Babak Falsafi
Computer Architecture Laboratory (CALCM)

Carnegie Mellon University, Pittsburgh, PA 15213
{jsmolens, jangwook, jhoe, babak}@ece.cmu.edu

http://www.ece.cmu.edu/~truss

(Invited Paper)
Abstract—Superscalar out-of-order microarchitectures can be
modified to support redundant execution of a program as two
concurrent threads for soft-error detection. However, the extra
workload from redundant execution incurs a performance penalty
due to increased contention for resources throughout the datapath.
We present four key parameters that affect performance of these
designs, namely 1) issue and functional unit bandwidth, 2) issue
queue and reorder buffer capacity, 3) decode and retirement
bandwidth, and 4) coupling between redundant threads'
instantaneous resource requirements. We then survey existing work
in concurrent error detecting superscalar microarchitectures and
evaluate these proposals with respect to the four factors.

Keywords—Microarchitecture reliability, performance, soft errors

1. INTRODUCTION

A soft error occurs when the voltage level of a digital
signal is temporarily disturbed by an unintended mechanism
such as radiation, thermal, or electrical noise. Previously, soft
errors have been a phenomenon associated with memory
circuits, however the diminishing capacitance and noise
margins anticipated for future deep-submicron VLSI has
raised concerns regarding the susceptibility of logic and flip-
flop circuits. Recent studies have speculated that by the next
decade, logic and flip-flop circuits could become as
susceptible to soft errors as today's unprotected memory
circuits [5,8,18]. In light of increasing soft-error concerns,
recent research has studied the soft-error vulnerability of the
microarchitecture as a whole [11].

Existing designs for soft error detection in the processor
use compare execution across replicated lock stepped
pipelines within a single core [19], multiple cores in chip
multiprocessors [7,10], or multiple processor dies [2,20].
Alternatively, many researchers advocate solutions within the
superscalar out-of-order pipelines of modern microprocessors
by exploiting idle or underutilized pipeline resources

[9,12,13,14,15,16,21,22]. A minimally modified superscalar
datapath can support concurrent error detection by executing
an application as two independent, redundant threads. This
protection requires 1) instructions to be executed redundantly
and independently and 2) the redundant outcomes to be
compared for correctness. A drawback of this approach is that
the doubled workload from redundant execution incurs a
significant performance penalty—on the order of 30%—using
superscalar datapaths tuned for single threaded execution.
Understandably, an application that executes a high number of
instructions per cycle (IPC) as a single thread should lose
performance when running as two redundant threads on the
same datapath. What is less understood is why applications
with low IPC as a single thread can still perform poorly as two
redundant threads, despite the apparently ample execution
resources to support both threads.

In this paper, we first explain the performance bottlenecks
of prior designs in a unified framework. We use 2-k factorial
analysis to study four superscalar datapath design factors that
affect the performance of redundant execution. The first three
factors represent the different resources that support high
performance execution: 1) issue and functional unit
bandwidth, 2) issue queue (ISQ) and reorder buffer (ROB)
capacity, and 3) decode and retirement bandwidth. The fourth
factor is the design choice of whether to allow the progress of
two redundant threads to stagger elastically. We then apply the
four performance factors to a survey of six representative
microarchitectures within the concurrent error detecting
superscalar design space. We classify each microarchitecture
according to the four performance factors and summarize the
hardware costs.

2. BACKGROUND

In this section, we first define our superscalar
microarchitecture model assumptions for the baseline of our
study. Next, we explain the extensions to superscalar
microarchitectures to execute a program redundantly as two
concurrent threads. Finally, we establish the baseline
performance penalty of redundant execution.

This invited paper is based upon Efficient Resource Scheduling in Concurrent
Error Detecting Superscalar Microarchitectures, previously published in the
37th Annual IEEE/ACM International Symposium on Microarchitecture.
This work was supported by NSF CAREER award CCF-0347568, NSF award
ACI-0325802, and by Intel Corporation.

2.1. SS1: Baseline Superscalar Microarchitecture

The starting point of all soft-error tolerant designs in this
paper is a balanced superscalar speculative out-of- order
microarchitecture. We assume a conventional wide-issue
design where

1. architectural register names are renamed onto a large
physical register file

2. an issue queue provides an out-of-order window for
dataflow-ordered instruction scheduling over a mix of
functional units (FUs)

3. a reorder buffer tracks ordering and execution status for
all in-flight instructions

4. a load/store queue (LSQ) holds speculative memory
updates and manages out-of-order memory operations

Figure 1(a) shows the baseline microarchitecture with the
key datapath elements and their interconnections. Table 1 lists
the salient parameters assumed for this paper. The settings in
Table 1 are extrapolated from the Alpha EV8 [6]. We refer to
this microarchitecture as SS1.

Throughout this paper, we report performance results
based on weighted SimPoint regions [17] for 11 integer and
14 floating-point SPEC2K benchmarks running their first

reference input (we exclude the integer benchmark mcf from
our study because it is insensitive to all design parameters in
this paper). Average IPCs over multiple benchmarks are
computed as harmonic means. The performance simulators
used in this paper are derived from the sim-outorder/Alpha
performance simulator in Simplescalar 3.0 [4]. For this
study, we modify sim-outorder’s stock RUU-based model to
support the issue queue-based SS1 datapath, MSHRs and
memory bus contention.

2.2. SS2: Symmetric Redundant Execution

Register renaming and dataflow-driven execution in an
out-of-order pipeline make possible fine-grain simultaneous
execution of independent instruction streams. Figure 1(b)
illustrates SS2, a simple approach to execute a program
redundantly over the same out-of-order support logic with two
data-independent threads [14]. The instruction fetch stream is
replicated into an M-thread (main thread) and an R-thread
(redundant thread) at the dispatch stage. Register renaming
allows the M and R-threads to execute independently in the
out-of-order pipeline. Load and store addresses are calculated
redundantly, while the memory access required by a load
instruction is only performed by the M-thread. A load-value
queue [15] retains the returned load value for later
consumption by the corresponding load instruction in the R-
thread. A single store is retired to the data cache. The
redundantly-computed results from each thread are checked
against each other, in program order, in the commit stage. If
an error is detected, program execution can be restarted at the
faulty instruction by a triggering a soft-exception. It is
important to note that SS2 remains an ‘I’-way issue pipeline,
i.e., the ISQ can only issue ‘I’ instructions per cycle, whether
from the M-thread or the R-thread. Furthermore, SS2 holds
redundant instruction instances in dedicated ISQ and ROB
entries, as on SS1.

We assume storage arrays, such as register files, caches and
TLBs, are protected against soft-errors by error correcting
codes (ECC). We assume the in-order instruction fetch stages
can be deeply pipelined to permit their construction on slower,
but electrically more robust, circuits. In addition, we assume
the less performance-critical finite state machine sequencers
(e.g., for state recovery or TLB replacement) can be protected
via circuit-level techniques that trade speed for soft-error

(a) (b)

Fig. 1. The (a) SS1 baseline superscalar and (b) SS2 redundant execution microarchitectures.

R
etirem

ent

ROB

FU
s

Phys RegFile

ISQ

Fetch

R
enam

e/
D

ecode

Exception

R
etirem

ent

ROB
FU

s

Phys RegFile

ISQ

R
enam

e/
D

ecode

Fetch

Table 1. Baseline SS1 parameters.

OoO Core
128-entry ISQ, 512-entry ROB, 64-entry
LSQ, 8-way decode, issue, and retirement

Memory
System

64K 2-way L1 I/D caches, 64-byte line
size, 3-cycle hit, unified 2M 4-way L2, 12-
cycle hit, 200-cycle memory access, 32 8-
target MSHRs, 4 memory ports

Functional
Units

(latency)

8 IALU (1), 2 IMUL/IDIV (3/19), 2 FALU
(2), 2 FMUL/FDIV (4/12), all pipelined
except IDIV and FDIV

Branch
Predictor

Combining predictor with 64K gshare,
16K/64K 1st/2nd level PAs, 64K meta
table, 2K 4-way BTB, 7 cycle branch
misprediction recovery latency

tolerance. The primary remaining concern is, therefore, in
protecting the out-of-order execution pipeline that comprises
the functional units, ISQ, LSQ, ROB, etc. Neither
information-level nor circuit-level techniques mentioned
above are applicable to the out-of-order pipeline due to the
pipeline’s extreme performance sensitivity and structural
complexity.

2.3. SS2 Performance Penalty

Graphs (a) and (b) in Figure 2 establish the baseline SS2
performance penalty, as compared with SS1, on integer and
floating-point benchmarks, respectively. In each graph, the
benchmarks are sorted according to their SS1 IPC. The
benchmarks are further divided into high-IPC versus low-IPC
subsets. Overall, the SS2 IPC is 15% lower than SS1 for
integer benchmarks and 32% lower for floating-point
benchmarks. As expected, the difference in IPC is more
significant for high-IPC benchmarks, however, a clear
performance loss, 10% for integer and 31% for floating-point,
is also experienced by SS2, even for benchmarks with an SS1
IPC well below four (half the pipeline’s issue width).

3. FACTORIAL DESIGN ANALYSIS

The analysis in this section establishes the importance of
individual bottlenecks in SS2, as well as their interactions.
The performance difference between SS2 and SS1 cannot be
explained any single bottleneck. The contributing bottlenecks
vary from benchmark to benchmark, and even between
different phases of the same benchmark. We reduce the factors
contributing to performance bottlenecks in SS2 into three
resource-related factors and one mechanism-related factor
which can be independently applied to the SS2 design:

• X: issue width and functional unit bandwidth
• C: ISQ and ROB capacity
• B: decode and retirement bandwidth

• S: staggering redundant threads (mechanism related)

X-factor: The X-factor represents the issue and functional
unit bandwidth, a limit on raw/peak instruction execution
throughput of a superscalar pipeline. We combine issue and
functional unit bandwidth into a single factor because they
must be scaled together in a balanced design. A fundamental
property of the X-factor is that if an application on average
consumes more than one-half of the issue and functional unit
bandwidth in SS1, the same application cannot achieve the
equal performance in SS2. In designs which directly address
the X-factor, the functional unit count and issue bandwidth
double, with corresponding increases in die area from more
functional units, increased bypass paths, and additional issue
logic complexity.
C-factor: The C-factor represents the ISQ and ROB capacity.
The C-factor governs a pipeline’s ability to exploit
instruction-level parallelism (ILP) by executing instructions
out-of-order. Again, we combine the ISQ and ROB capacity
into a single factor because they are scaled together in
commercial designs. Sharing the ISQ and ROB between two
threads has the same effect as halving the out-of-order
window size. ISQ and ROB capacity are important to the low-
IPC benchmarks because these benchmarks may require the
full capacity of the ISQ and ROB to extract maximally the
available instruction level parallelism. Although it would be
expensive to achieve “SS2+C” by physically doubling the
capacity of the ISQ and ROB, we discuss microarchitectural
techniques to achieve the same effect in the context of
redundant execution.
B-factor: The B-factor represents the various bandwidth
limits at the interface to the ISQ and ROB. These include the
decode bandwidth, the completion bandwidth and the
retirement bandwidth. In SS2, these bandwidth limits impose
a bottleneck because they must be shared between the
redundant M- and R-threads. We expect the B-factor to have

0

1

2

3

4

5

6

eq
ua

ke
fm

a3
d

luc
as

fac
ere

c
sw

im
mgri

d
ap

plu

art
-11

0
am

mp

wup
wise

ga
lge

l

six
tra

ck
mes

a
ap

si

Ave
rag

e

Ave
rag

e (
Lo

w on
ly)

Ave
rag

e (
High

 on
ly)

IP
C

SS2
SS1

HighLow

Fig. 2. Performance impact of redundant execution on SS2.

(b) Floating-point(a) Integer

0

1

2

3

4

5

6

ga
p

vp
r-r

ou
te

pa
rse

r
tw

olf

bz
ip2

-so
urc

e

pe
rlb

mk-d
iff

gz
ip-

gra
ph

ic

gc
c-1

66
cra

fty

eo
n-r

us
hm

eie
r

vo
rte

x-o
ne

Ave
rag

e

Ave
rag

e (
Lo

w on
ly)

Ave
rag

e (
High

 on
ly)

IP
C

HighLow

the least observed impact on SS2 performance, because in a
balanced design the X and C factors are generally tuned to
become limiting factors before saturating the other bandwidth
limits. In designs that relax the B-factor, the effective decode
and retirement bandwidth available to each thread is doubled.
S-factor: Besides the three resource-related factors, we
introduce a fourth factor, stagger (S-factor), that improves the
performance of SS2 but is not applicable to SS1. Several
previous proposals for redundant execution on SMT advocate
maintaining a small stagger (128~256 instructions) between
the progress of the leading M-thread and the trailing R-thread
[15,16]. The stagger serves to hide cache-miss latencies from
the R-thread and to allow the M-thread to provide branch
prediction information to the trailing thread. Some elasticity
between the progress of the two threads also permits better
resource scheduling. A benchmark with a low average IPC
can include short program phases with high IPC; SS2
bottlenecks during these instantaneous high-IPC regions rob
the application of performance which cannot be made up for
during later low-IPC regions. Staggering the instantaneous
high-IPC regions of the two redundant threads avoids this
bottleneck. The reported benefit of allowing stagger is
typically around a 10% increase in the IPC of redundant
execution [15].

3.1. 2-k Factorial Analysis

To examine the SS2 design space systematically, we apply
2-k factorial analysis to the CPI1 (cycles per instruction) of
the sixteen configurations. The 2-k factorial analysis
disentangles the performance impact of each factor and
identifies the interactions between multiple factors. (Refer to
[3] for a detailed explanation of 2-k factorial analysis.) The
result of the 2-k factorial analysis is a quantitative measure of
the average effect of changing each of the four factors
individually. In addition, factorial analysis gives the effect due
to interactions when changing any two factors, three factors,
or all four factors together. Table 2 summarizes the significant
effects (> 3%) for high and low-IPC integer and floating-point
benchmarks. For rows showing an individual factor, the value
under the “Effect” column shows the average percentage CPI
decrease (performance increase) between all configurations
with the factor enabled versus all configurations with the
factor disabled.

The significant factors to increase performance on high-
IPC floating-point benchmarks are X, C and S. In other words,
their effects sum nearly linearly when more than one factor is
enabled. In another example, the two most significant factors
for high-IPC integer benchmarks are X and S. In this case, X
and S have a significant and negative interaction. In other

words, the effect of implementing both X and S is that the
added performance improvement will be less than the simple
sum of the two effects and some of the performance gain from
X could instead be obtained by adding S. The interactions
between the three factors (not shown) are insignificant.

4. CONCURRENT ERROR DETECTION DESIGN SPACE

In this section, we survey prior representative concurrent
error detecting superscalar microarchitecture proposals and
classify their performance with respect to a baseline non-
redundant baseline microarchitecture using the four
performance factors defined in Section 3. Table 3 summarizes
the microarchitectures in terms of the performance factors and
presents the performance of an SS2 model that includes those
factors, relative to the baseline SS2. We refrain from
estimating the performance of DIE [12], because it only
partially addresses the X-factor.

4.1. SS2: Dual-Use

A straightforward design for concurrent error detection is
the Dual-Use microarchitecture (this corresponds to the SS2
design point discussed earlier) [14]. This design replicating
instructions at fetch, decode, rename, and executing the
instructions as two symmetric data-independent threads, and
comparing each replicated instruction before retirement, as
described in Section 2.2. This design splits the fetch, decode
and retirement bandwidth between two threads. Furthermore,
the two threads must split the queue capacities and share issue
bandwidth. Since both threads are considered equally for out-
of-order issue, the microarchitecture creates no incentives for
stagger between the two threads. The Dual-Use
microarchitecture’s key benefits are that it can be
implemented with little overhead as a new mode on existing
non-redundant microarchitectures and that it supports soft

1. This is because CPI is additive when normalized with respect to the
instruction count (a constant across the microarchitectures), while IPC is not.

Table 2. The main factors and interactions that increase performance
in redundant execution.

Factor Effect
(% CPI change)

Integer:
High

X 17.1
S 7.1
X+S -5.2

Integer:
Low

X 5.2
C 4.3
S 3.1

Floating-point:
High

X 33.5
C 9.9
S 6.4

Floating-point:
Low

C 27.0
S 6.2
X 4.6
S+C -3.9

error recovery through the existing exception rollback
hardware.

4.2. SS2+S: SRT

The Simultaneous and Redundantly Threaded (SRT)
proposal relaxes the lockstep fetch, decode, and retirement
requirements of SS2 in a simultaneous multithreaded (SMT)
processor [15]. SRT fetches redundant threads with a
modified ICount fetch policy designed to encourage a stagger
between the two threads. The main execution retires
instructions and frees out-of-order execution resources ahead
of the redundant thread, therefore the stagger is limited by
number of values which can be stored for comparison between
the two threads. The second execution is assisted by
transferring all branch outcomes and load values from the first
thread. The two threads split decode and retirement
bandwidth, ROB occupancy, and the issue bandwidth. As a
result, the primary performance improvement over SS2 is
characterized by the stagger between the threads. In addition,
the second execution requires less issue bandwidth, because
the pre-computed branch outcomes allow it to execute non-
speculatively.

4.3. SS2+X+C+B: DIVA

The Dynamic Implementation Verification Architecture
(DIVA) proposal adds a separate, dedicated in-order checking
unit with the retirement phase of a main out-of-order pipeline
[1]. Instructions, with their operands from the first execution,
re-execute in the checker. Since instructions are neither
replicated within the main pipeline nor decoded a second
time, DIVA effectively gives full queue capacity and decode
bandwidth to both threads. The checker independently issues
instructions to a set of dedicated functional units, which also
provides full issue bandwidth to each thread. As a result,
DIVA incurs a small performance penalty from the checker
latency, but adds the hardware cost of a checker unit with its
associated functional units, to the microarchitecture.

4.4. SS2+X: DIE

The Dual Instruction Execution (DIE) proposal [12]
reduces the X-factor losses by eliminating re-execution for
some instructions with common opcodes and operands that
have already been executed and checked. This elimination is
done through an instruction reuse buffer, an added structure
that caches the results of recently executed and checked
instructions with their operands. For instructions that hit in the
reuse buffer during the main thread execution, DIE dissolves
the need for redundant issue. For instructions that miss, DIE
issues the instruction redundantly, as in SS2. DIE trades issue
bandwidth and functional units for the area and complexity
overheads associated with integrating an instruction reuse
buffer into the core.

4.5. SS2+C+B: O3RS

Out-of-order Reliable Superscalar (O3RS) addresses the
capacity and bandwidth bottlenecks in SS2 [9]. The
microarchitecture replicates the decode mechanism for both
threads, but only inserts a single entry for each instruction into
an ECC-protected ROB. Thus, it provides the same capacity
as SS1. Each instruction in the issue queue and ROB issues
twice to the functional units and when both copies have
completed, the instruction becomes eligible for retirement.
Since only one instruction entry retires, the full per-thread
retirement bandwidth is also preserved. However, since both
instruction instances must issue before being removed from
the ISQ, O3RS cannot support a stagger between the threads
without directly increasing the ISQ occupancy.

4.6. SS2+C+B+S: SHREC

SHared REsource Checker (SHREC) [21] processes main
thread instructions in the out-of-order core and checks the
execution in-order checking over a common set of functional
units. SHREC fetches and decodes instructions once with
slower, pipelined soft error-tolerant circuits. However, it
executes instructions once in the main out-of-order pipeline,
as done in a baseline superscalar microarchitecture. When
instructions have completed main execution, they are
reissued, in-order, by a special checker unit during idle main

Table 3. Summary of surveyed microarchitectures and the performance of the corresponding 2-k factorial model as a percentage over baseline SS2
performance for low and high IPC benchmarks.

Name Designation Added Cost
Int Performance (%) FP Performance (%)

Low High Low High
Dual-Use SS2 None 0 0 0 0
SRT SS2+S Result buffer, branch queue 6 13 12 9
DIVA SS2+X+C+B In-order checker w/FUs 14 30 44 61
DIE SS2+X Instruction reuse buffer N/A N/A N/A N/A
O3RS SS2+C+B Result Buffer 6 4 35 11
SHREC SS2+C+B+S Result buffer 11 16 40 16

thread issue slots. As a result, the redundant thread maintains
a variable stagger behind the main execution when there is
instantaneous contention and issues when resources are free.
Furthermore, the threads do not compete for out-of-order
queue capacity, because they share a single ROB entry but the
R-thread does not use the out-of-order issue queue. When the
instruction’s second execution completes, the results are
compared with the main execution and instructions retire in-
order, as usual.

5. CONCLUSION

In a balanced single-thread superscalar design, supporting
a second redundant thread incurs a performance loss due to
contention for bandwidth and capacity in the datapath, (e.g.,
issue bandwidth and the number of functional units, issue
queue, reorder buffer size, and decode/retirement bandwidth).
Relaxing any single resource bottleneck cannot fully restore
the lost performance. On the other hand, it is possible to
reclaim significant performance without requiring additional
issue and functional unit bandwidth. In this paper, we
explored the performance factors in the design space of
concurrent error detecting superscalar processors using a 2-k
factorial analysis. We surveyed several prior proposals in this
design space and classified them over these axes. Overall, an
effective design should address all factors in an economical
and balanced fashion.

REFERENCES

[1] T. M. Austin. DIVA: A reliable substrate for deep submicron
microarchitecture design. In Proceedings of the 32nd International
Symposium on Microarchitecture, November 1999.
[2] Wendy Bartlett and Lisa Spainhower. Commercial fault tolerance: A tale
of two systems. IEEE Transactions on Dependable and Secure Computing,
1(1):87–96, January-March 2004.
[3] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters.
John Wiley and Sons, Inc., 1978.
[4] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report 1342, Computer Sciences Department, University of
Wisconsin–Madison, June 1997.
[5] Neil Cohen, T.S. Sriram, Norm Leland, David Moyer, Steve Butler, and
Robert Flatley. Soft error considerations for deep-submicron CMOS circuit
applications. In IEEE International Electron Devices Meeting: Technical
Digest, pages 315–318, December 1999.
[6] Joel S. Emer. EV8: the post-ultimate alpha. In International Conference on
Parallel Architectures and Compilation Techniques, September 2001.
Keynote address.
[7] Mohamed Gomaa, Chad Scarbrough, T.N. Vijaykumar, and Irith
Pomeranz. Transient-fault recovery for chip multiprocessors. In Proceedings
of the 30th International Symposium on Computer Architecture, June 2003.
[8] T. Juhnke and H. Klar. Calculation of the soft error rate of submicron

CMOS logic circuits. IEEE Journal of Solid State Circuits, 30(7):830–834,
July 1995.
[9] Avi Mendelson and Neeraj Suri. Designing high-performance and reliable
superscalar architectures: The Out of Order Reliable Superscalar O3RS
approach. In Proceedings of the International Conference on Dependable
Systems and Networks, June 2000.
[10] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt.
Detailed design and evaluation of redundant multithreading alternatives. In
Proceedings of the 29th International Symposium on Computer Architecture,
pages 99–110, May 2002.
[11] Shubhendu S. Mukherjee, Christopher T. Weaver, Joel Emer, Steven K.
Reinhardt, and Todd Austin. A systematic methodology to compute the
architectural vulnerability factors for a high-performance microprocessor. In
Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 36), Dec 2003.
[12] Angshuman Parashar, Sudhanva Gurumurthi, and Anand
Sivasubramaniam. A complexity-effective approach to alu bandwidth
enhancement for instruction-level temporal redundancy. In Proceedings of the
31st Annual International Symposium on Computer Architecture, June 2004.
[13] Zach Purser, Karthik Sundaramoorthy, and Eric Rotenberg. Slipstream
processors: Improving both performance and fault tolerance. In Proceedings
of the 33rd International Symposium on Microarchitecture, December 2000.
[14] Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual use of superscalar
datapath for transient-fault detection and recovery. In Proceedings of the 34th
International Symposium on Microarchitecture, December 2001.
[15] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault
detection via simultaneous multithreading. In Proceedings of the 27th
International Symposium on Computer Architecture, June 2000.
[16] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors. In Proceedings of the 29th International
Symposium on Fault-Tolerant Computing, June 1999.
[17] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In Proceedings of
the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems, October 2002.
[18] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug
Burger, and Lorenzo Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 389–398, June 2002.
[19] T.J. Slegel, R.M. Averill III, M.A. Check, B.C. Giamei, B.W. Krumm,
C.A. Krygowski, W.H. Li, J.S. Liptay, J.D. MacDougall, T.J. McPherson, J.A.
Navarro, E.M. Schwarz, K. Shum, and C.F. Webb. IBM’s S/390 G5
microprocessor design. IEEE Micro, 19(2):12–23, March/April 1999.
[20] Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C.
Hoe, and Andreas G. Nowatzyk. Fingerprinting: Bounding soft-error detection
latency and bandwidth. In Proceedings of the Eleventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 224–234, Boston, Massachusetts, October 2004.
[21] Jared C. Smolens, Jangwoo Kim, James C. Hoe, and Babak Falsafi.
Efficient resource sharing in concurrent error detecting superscalar
microarchitectures. In Proceedings of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 37), December 2004.
[22] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault
recovery using simultaneous multithreading. In Proceedings of the 29th
International Symposium on Computer Architecture, May 2002.

	1. Introduction
	2. Background
	2.1. SS1: Baseline Superscalar Microarchitecture
	Fig. 1. The (a) SS1 baseline superscalar and (b) SS2 redundant execution microarchitectures.

	2.2. SS2: Symmetric Redundant Execution
	2.3. SS2 Performance Penalty
	Fig. 2. Performance impact of redundant execution on SS2.

	3. Factorial Design Analysis
	3.1. 2-k Factorial Analysis

	4. Concurrent Error Detection Design Space
	4.1. SS2: Dual-Use
	4.2. SS2+S: SRT
	4.3. SS2+X+C+B: DIVA
	4.4. SS2+X: DIE
	4.5. SS2+C+B: O3RS
	4.6. SS2+C+B+S: SHREC

	5. Conclusion
	REFERENCES

