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Abstract

Previous proposals for soft-error tolerance have called
for redundantly executing a program as two concurrent
threads on a superscalar microarchitecture. In a balanced
superscalar design, the extra workload from redundant
execution induces a severe performance penalty due to
increased contention for resources throughout the
datapath.  This paper identifies and analyzes four key
factors that affect the performance of redundant execution,
namely 1) issue bandwidth and functional unit contention,
2) issue queue and reorder buffer capacity contention, 3)
decode and retirement bandwidth contention, and 4)
coupling between redundant threads' dynamic resource
requirements.  Based on this analysis, we propose the
SHREC microarchitecture for asymmetric and staggered
redundant execution.  This microarchitecture addresses the
four factors in an integrated design without requiring
prohibitive additional hardware resources.  In comparison
to conventional single-threaded execution on a state-of-
the-art superscalar microarchitecture with comparable
cost, SHREC reduces the average performance penalty to
within 4% on integer and 15% on floating-point SPEC2K
benchmarks by sharing resources more efficiently between
the redundant threads.

1. Introduction

A soft error occurs when the voltage level of a digital
signal is temporarily disturbed by an unintended mecha-
nism such as radiation, thermal, or electrical noise. Previ-
ously, soft errors have been a phenomenon associated with
memory circuits. The diminishing capacitance and noise
margin anticipated for future deep-submicron VLSI has
raised concerns regarding the susceptibility of logic and
flip-flop circuits. Recent studies have speculated that by the
next decade, logic and flip-flop circuits could become as
susceptible to soft errors as today's unprotected memory
circuits [6,8,18]. In light of increasing soft-error concerns,
recent research has studied the soft-error vulnerability of

the microarchitecture as a whole [11]. A number of studies
have investigated ways to protect the execution pipeline by
means of concurrent error detection; this protection
requires 1) instructions to be executed redundantly and
independently and 2) the redundant outcomes to be com-
pared for correctness. Among recent studies, a popular
approach has been to leverage the inherent redundancy in
today’s high-performance superscalar pipelines to support
concurrent error detection [10,13,14,15,16,20]. 

Performance Penalty. A minimally modified superscalar
datapath can support concurrent error detection by execut-
ing an application as two independent, redundant threads.
A drawback of this approach is that the doubled workload
from redundant execution incurs a significant IPC penalty
on superscalar datapaths tuned for single thread perfor-
mance. Understandably, an application that achieves high
utilization and high IPC as a single thread on a given
superscalar datapath will saturate the available resources
and lose performance when running as two redundant
threads on the same datapath. More interestingly, however,
applications with low IPC as a single thread can still per-
form poorly as two redundant threads, despite the appar-
ently ample resources to support both low-IPC threads. In
this paper, we explain the performance bottlenecks that
contribute to this paradoxical behavior and offer a microar-
chitecture design that improves redundant execution per-
formance in these cases.

Performance Factors. We study four factors in supersca-
lar datapath design that affect the performance of redun-
dant execution. The first three factors represent the
different resources that support high performance execu-
tion. The factors are 1) issue and functional unit band-
width, 2) issue queue (ISQ) and reorder buffer (ROB)
capacity, and 3) decode and retirement bandwidth. Our
analysis indicates that the bottleneck imposed by forcing
two redundant threads to share issue and functional unit
bandwidth has a first-order effect on performance. How-
ever, in the cases where issue bandwidth is not clearly satu-
rated, sharing the ISQ and ROB between two threads—



effectively halving the out-of-order window size—also
imposes a significant performance bottleneck, particularly
in floating-point applications. Decode and retirement band-
width may be a performance limiting factor for microarchi-
tectures that fetch or decode instructions redundantly. The
fourth factor in this study is a design choice of whether to
allow the progress of two redundant threads to stagger elas-
tically. Staggered re-execution has been previously shown
effective [9,15,16,20]. Our analysis further shows that the
effects from allowing stagger and relieving the ISQ and
ROB contention are independent and can be combined to
achieve better performance than either factor alone.

SHREC Microarchitecture. SHREC (SHared REsource
Checker) is an efficient concurrent error detection microar-
chitecture that requires only limited modifications to a con-
ventional superscalar microarchitecture. SHREC employs
asymmetric redundant execution to relieve the sharing
pressure on ISQ and ROB capacity without physically
enlarging those structures. It is also naturally amenable to
permitting an elastic stagger between redundant executions
of the same instruction. Our evaluation shows that asym-
metric redundant execution and stagger together enable
SHREC to more efficiently utilize available issue band-
width and functional units, thus reducing the performance
impact of sharing between two redundant threads. Assum-
ing a comparable state-of-the-art baseline superscalar
microarchitecture, SHREC reduces the average perfor-
mance penalty of redundant execution to within 4% on
integer and 15% on floating-point applications. This per-
formance is in comparison to prior proposals that experi-
ence an IPC loss of 15% on integer and 32% on floating-
point applications. 

Related Work. In asymmetric redundant execution, an
instruction is only checked after the second execution
using input operands already available from the first execu-
tion. This idea has been proposed previously by Austin in
the DIVA microarchitecture [2]. In DIVA, the initial execu-
tion and the redundant instruction checking do not share
issue and functional unit bandwidth; a second dedicated set
of functional units is added to the checker. In this study, we
assume the resource configuration of the underlying super-
scalar microarchitecture is fixed by technology and market
forces and cannot be easily increased. Therefore, the initial
execution and redundant checking in SHREC share the
same set of functional units. An important issue addressed
in our study is whether functional units can be shared effi-
ciently. 

Previously, Mendelson and Suri proposed the O3RS
approach for redundant execution of register update unit-
based (RUU) superscalar microarchitectures [10]. Redun-
dant execution of the same instruction is initiated from the
same RUU entry (from the same ISQ and ROB entries in

the context of recent superscalar microarchitectures). This
is another way to resolve the sharing pressure on ISQ and
ROB capacity. However, the O3RS approach is not amena-
ble to supporting stagger between redundant executions
because the ISQ and ROB occupancy times would be nec-
essarily increased (entries are held until the second execu-
tion). Without stagger, O3RS cannot fully capture the
performance opportunity available to SHREC. Conversely,
staggered execution has been shown to be effective in
improving performance in several SMT-based concurrent
error detection designs, but these proposals do not address
the bottleneck imposed by sharing ISQ and ROB capacity.
In Section 3, we present more detailed analysis and com-
parison of designs that only support staggered re-execution
or only resolve the ISQ and ROB bottleneck.

Contributions. This paper offers two key contributions:
• We investigate and explain the performance behavior of

redundant execution on superscalar microarchitectures.
• We propose the SHREC soft-error tolerant superscalar

microarchitecture, which maximizes the performance
of redundant execution with minimized changes to a
conventional baseline superscalar microarchitecture.

Paper Outline. This paper is organized as follows.
Section 2 provides background and defines assumptions
regarding our baseline superscalar microarchitecture and
redundant execution superscalar microarchitecture.
Section 3 presents a factorial analysis of key design
choices impacting the performance of redundant execution
on superscalar microarchitectures. Section 4 describes and
evaluates SHREC. We offer our conclusions in Section 5.

2. Baseline Microarchitectures

In this section, we first define our assumptions about the
baseline superscalar microarchitecture. Next, we explain
previous soft-error tolerance proposals that extend super-
scalar microarchitectures to redundantly execute a program
as two concurrent threads. Finally, we establish the perfor-
mance penalty associated with the prior proposals. 

2.1.  SS1: Baseline Superscalar Microarchitecture

The starting point of all soft-error tolerant designs in
this paper is a balanced superscalar speculative out-of-
order microarchitecture. In this paper, we assume a con-
ventional wide-issue design where:

1. architectural register names are renamed onto a physi-
cal register file

2. an issue queue (ISQ) provides an out-of-order window 
for dataflow-ordered instruction scheduling to a mix 
of functional units (FUs)



3. a reorder buffer (ROB) tracks program order and exe-
cution status for all in-flight instructions

4. a load/store queue (LSQ) holds speculative memory 
updates and manages out-of-order memory operations

Figure 1(a) shows the layout of the baseline microarchi-
tecture with the key datapath elements and their intercon-
nections. Table 1 lists the salient parameters assumed for
this paper. We refer to this reference microarchitecture con-
figuration as SS1. SS1 nominally is an 8-way superscalar
design. The settings in Table 1 are extrapolated from the
Alpha EV8 [7].1 Overall, SS1 should reflect an aggressive
superscalar design that pushes today’s state-of-the-art.
Consequently, we assume the parameters in Table 1 cannot
be increased further without substantial cost. For instance,
the functional units in the EV8 occupy a substantial
amount of die area, similar in size to 1MB of L2 cache
storage [12]. 

We assume all memory arrays in SS1 (such as register
files, caches and TLBs) are protected against soft errors by
error correcting codes (ECC). The storage overhead to pro-
tect a 64-bit value with single error correction, double error
detection ECC is roughly 13%. We assume the instruction
fetch stages are protected by circuit-level soft-error toler-

ance techniques; these in-order stages can be more deeply
pipelined to overcome the associated performance over-
head. We assume circuit-level techniques are also responsi-
ble for protecting non-performance critical portions of the
datapath (e.g., memory management state machines). The
main focus of this paper is on providing soft-error protec-
tion for the out-of-order pipeline. Neither ECC nor circuit-
level techniques are applicable within the out-of-order
pipeline due to the pipeline’s structural complexity and
extreme sensitivity to the critical path delay. 

2.2.  SS2: Symmetric Redundant Execution

Register renaming and dataflow-driven execution in an
out-of-order pipeline enable fine-grain simultaneous exe-
cution of two independent instruction streams—this is the
key premise behind the simultaneous multithreading
approach [19]. Figure 1(b) illustrates a simple approach to
execute a program redundantly as two data-independent
threads for concurrent error detection [14]. The key
changes from SS1 are concentrated in the decode and
retirement stages. In Figure 1(b), the instruction fetch
stream is duplicated into an M-thread (main thread) and an
R-thread (redundant thread) at the decode stage. Register
renaming allows the M- and R-threads to execute indepen-
dently between the decode and the retirement stages. This
portion of the pipeline operates identically to SS1, with the
exception of memory instructions. Load and store
addresses are calculated redundantly. The memory access
required by a load instruction is only performed by the M-
thread. The returned load value is buffered in a load-value
queue [15] for later consumption by the corresponding load
instruction in the R-thread. This structure ensures that two
executions of the same load instruction result in the same
load value. In the retirement stage, the redundantly com-
puted results of the duplicated instructions are checked
against each other in program order. If an error is detected,
program execution can be restarted at the faulty instruction
by triggering a soft-exception. We refer to this 2-way sym-
metric redundant superscalar pipeline as SS2. 

Although SS2 is based on a superscalar datapath, the
SS2 discussion in this paper is also applicable to SMT-
based designs that fully re-execute a program as two data
independent threads (e.g., AR-SMT [16], SRT [15], Slip-

1.  Although EV8 is an SMT, it is emphasized that EV8 is tuned for sin-
gle-threaded superscalar execution.

(a) (b)

FIGURE 1. The (a) SS1 baseline superscalar and (b) SS2 redundant execution microarchitectures.
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TABLE 1. Baseline SS1 parameters.

OoO Core
128-entry ISQ, 512-entry ROB, 64-entry 
LSQ, 8-wide decode, issue, and retirement

Memory
System 

64K 2-way L1 I/D caches, 64-byte line 
size, 3-cycle hit, unified 2M 4-way L2, 12-
cycle hit, 200-cycle memory access, 32 8-
target MSHRs, 4 memory ports 

Functional 
Units 

(latency)

8 IALU (1), 2 IMUL/IDIV (3/19), 2 FALU 
(2), 2 FMUL/FDIV (4/12), all pipelined 
except IDIV and FDIV

Branch 
Predictor

Combining predictor with 64K gshare, 
16K/64K 1st/2nd level PAs, 64K meta 
table, 2K 4-way BTB, 7 cycle branch 
misprediction recovery latency



stream [13]). A key commonality between them is the
resource pressure from concurrently supporting two
threads. We assume SS2 has the same level of resources as
SS1 (Table 1). For every instruction executed in SS1, not
only must the instruction use functional units twice in SS2,
but the instruction must also consume twice the bandwidth
throughout the SS2 pipeline (i.e., decode, issue, writeback
and retirement). Furthermore, each instruction also occu-
pies two separate entries in SS2’s ISQ and ROB, effec-
tively halving the out-of-order execution window size.

2.3.  SS2 Performance Penalty 

Figure 2 reports the IPC of SPEC2K benchmarks from
executing their corresponding SimPoints [17] on cycle-
accurate performance simulators of SS1 and SS2.
Throughout this paper, we report performance results
based on 11 integer and 14 floating-point SPEC2K bench-
marks1 running their first reference input. To estimate IPC
for each benchmark, we simulate an out-of-order core and
measure IPC for up to eight 100-million-instruction Sim-
Point regions (as published in [17]) that are supposed to be
representative of the benchmark’s complete execution
trace. We follow SimPoint’s prescribed procedure to
weight and combine the IPCs of individual SimPoint
regions to estimate the entire application’s average IPC.
Average IPCs over multiple benchmarks are computed as
harmonic means. 

The performance simulators used in this paper are
derived from the sim-outorder/Alpha performance simula-
tor in Simplescalar 3.0 [4].   For this study, we modify sim-
outorder’s stock RUU-based model to support the issue

queue-based SS1 datapath shown in Figure 1, MSHRs and
memory bus contention. Unless otherwise noted, the con-
figuration in Table 1 is used consistently in this paper.

Graphs (a) and (b) in Figure 2 separately report the IPCs
of integer and floating-point benchmarks. In each graph,
the benchmarks are sorted according to their SS1 IPC. The
benchmarks are further divided into high-IPC versus low-
IPC subsets; each graph is summarized in terms of the
overall average IPC as well as separate averages of the
high-IPC and low-IPC subsets. Overall, the SS2 IPC is
15% lower than SS1 for integer benchmarks and 32%
lower for floating-point benchmarks. The difference in IPC
is more significant for the high-IPC benchmarks. For
benchmarks with high IPC on SS1, SS2 IPC suffers notice-
ably because the doubled workload of redundant execution
saturates the already highly utilized 8-wide superscalar
datapath. In this scenario, the SS2 performance penalty
cannot be reduced without increasing the issue bandwidth
and functional units. 

It is interesting to note that significant performance loss
is also experienced by SS2 for benchmarks with an SS1
IPC well below four—half the issue width. There are sev-
eral reasons why this can happen. First, a low-IPC bench-
mark may nonetheless demand high utilization of the SS1
pipeline if a large number of mispredicted wrong-path
instructions are part of the overall execution. Similarly, a
low IPC benchmark may require the full capacity of the
ISQ and ROB to extract available instruction level parallel-
ism (ILP). Several of the low- and moderate-IPC floating-
point benchmarks also experience significant floating-
point functional unit contention. A benchmark with a low
average IPC can include short program phases with high
IPC; SS2 bottlenecks during these instantaneously high
IPC regions can further lower the average IPC. In all of
these scenarios, it is possible to reduce the performance
penalty of re-execution through more efficient scheduling

1.  We exclude the integer benchmark mcf from our study because it is 
insensitive to all design parameters in this paper; its IPC is within 1% of 
0.17 for all experiments.
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FIGURE 2. Performance impact of redundant execution on SS2.
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and management of re-execution. In the next section, we
present an analysis to help clarify the performance behav-
ior of SS2 and the effects of the different resource bottle-
necks. 

3. Factorial Design Analysis

The performance difference between SS2 and SS1 is not
caused by any single bottleneck. The contributing bottle-
necks vary from benchmark to benchmark, and even
between different phases of the same benchmark. The
analysis in this section establishes the importance of indi-
vidual bottlenecks in SS2, as well as their interactions. 

3.1.  SS2 Performance Factors

We reduce the factors contributing to performance bot-
tlenecks in SS2 into three resource-related factors and one
mechanism-related factor:

• X: issue width and functional unit bandwidth
• C: ISQ and ROB capacity 
• B: decode and retirement bandwidth
• S: staggering redundant threads (mechanism related)

X-factor: The X-factor represents the issue and functional
unit bandwidth, a limit on raw/peak instruction execution
throughput of a superscalar pipeline. We combine issue and
functional unit bandwidth into a single factor because they
must be scaled together in a balanced design. A fundamen-
tal property of the X-factor is that if an application on aver-
age consumes more than one-half of the issue and
functional unit bandwidth in SS1, it is impossible for the
same application to achieve the same level of performance
in SS2. However, what happens to an application that on
average consumes less than one half of the issue and func-
tional unit bandwidth in SS1 is not immediately apparent,
since whether the available issue and functional unit band-
width can be used effectively in SS2 depends on the other
factors.

C-factor: The C-factor represents the ISQ and ROB capac-
ity. The C-factor governs a pipeline’s ability to exploit
instruction-level parallelism by executing instructions out-
of-order. Again, we combine the ISQ and ROB capacity
into a single factor because they are scaled together in
commercial designs.1 In SS2, the out-of-order window size
is effectively halved. Applications that depend on a large
out-of-order window to expose ILP lose performance on

SS2, independent of the X-factor. On the other hand, appli-
cations that are insensitive to the out-of-order window size
perform predictably on SS2, as governed by the X-factor.

B-factor: The B-factor represents the various bandwidth
limits at the interface to the ISQ and ROB. These include
the decode bandwidth, the completion bandwidth and the
retirement bandwidth. In SS2, these bandwidth limits
impose a bottleneck because they must be shared between
the redundant M- and R-threads. We expect the B-factor to
have the least observed impact on SS2 performance,
because in a balanced design the X and C factors are gener-
ally tuned to become limiting factors before saturating the
other bandwidth limits.

S-factor: Besides the three resource-related factors, we
introduce a fourth factor, stagger (S-factor), that improves
the performance of SS2 but is not applicable to SS1. Sev-
eral previous proposals for redundant execution on SMT
advocate maintaining a small stagger (128~256 instruc-
tions) between the progress of the leading M-thread and the
trailing R-thread [15,16]. In SMT-based designs, the stag-
ger serves to hide cache-miss latencies from the R-thread
and to allow the M-thread to provide branch prediction
information to the trailing thread. Allowing some elasticity
between the progress of the two threads also allows better
resource scheduling. By giving static scheduling priority to
the M-thread, the resulting effect is that the R-thread
makes use of the slack resources left over by the M-thread
rather than competing with the M-thread for resources. The
reported benefit of allowing stagger is typically around a
10% increase in the IPC of redundant execution [15]. 

3.2.  SS2 Design Space

The X, C, and B factors are potential bottlenecks that
cause SS2 to lose performance relative to SS1. The bottle-
neck associated with a factor is removed if the resources
associated with that factor are doubled from the assumed
configuration in Table 1. To understand the different con-
tributing factors to SS2’s performance, we evaluate sixteen
SS2 configurations, based on enumerating all possible
combinations of settings for X, S, C and B. In each config-
uration, the factors X, C, and B are either kept the same as
Table 1 or doubled and an elastic stagger of up to 256
instructions is either enabled or disabled.

The resulting IPC improvements relative to SS2 for the
sixteen possible configurations are summarized in Table 2.
We order the factors in columns 1 through 4 by their over-
all impact on performance. In each configuration, we
report the percentage improvement relative to SS2 for the
integer and floating-point SPEC2K benchmarks and sepa-
rately for the high and low-IPC integer and floating-point
benchmarks. 

1.  A recent study has suggested, however, that there may be advantages 
to scaling the ROB capacity disproportionally [1].



Several general trends can be observed from Table 2.
First, a comparison of the upper and lower halves of the
table shows that the X-factor has a large performance
impact on all benchmark classes. Comparing the neighbor-
ing quarters of the table shows that stagger also improves
the performance of all benchmarks. Only the floating-point
benchmarks are highly sensitive to the C-factor. Finally,
from comparing neighboring rows, the B-factor has a mini-
mal effect on all benchmarks. 

3.3.  2-k Factorial Analysis

To examine the SS2 design space more systematically,
we apply 2-k factorial analysis to the CPI1 of the sixteen
configurations to disentangle the performance impact of
each factor and the impact from interactions between mul-
tiple factors. (Refer to [3] for a detailed explanation of 2-k
factorial analysis.) The result of the 2-k factorial analysis is
a quantitative measure of the average effect of changing
each of the four factors individually. In addition, factorial
analysis also gives the effect due to interactions between
changing any two factors, three factors, or all four factors
together. Table 3 summarizes the significant effects (> 3%)
for high and low-IPC integer and floating-point bench-

marks. For rows showing an individual factor, the value
under the “Effect” column signifies the average percentage
CPI decrease (i.e., performance increase) between all con-
figurations with the factor enabled versus all configura-
tions with the factor disabled.

For example, the significant factors to increase perfor-
mance on high-IPC floating-point benchmarks are X, C
and S. The interactions between the three factors (not
shown) are insignificant. Their effects sum nearly linearly

1.  This is because CPI is additive when normalized with respect to the 
instruction count, while IPC is not.

TABLE 2. Percentage increase in IPC relative to SS2 for all combinations of factors. The notes column identifies 
mappings to designs referenced in this paper.

Factor Integer 
% Increase

Floating-point 
% Increase

Notes

X S C B All High Low All High Low
- - - - 0 0 0 0 0 0 SS2 
- - - B 3 4 2 0 1 0
- - C - 3 1 4 28 9 34
- - C B 5 4 6 28 11 35 [10]
- S - - 9 13 6 11 9 12 [15]
- S - B 10 15 7 11 10 11
- S C - 12 14 11 33 15 40
- S C B 13 16 11 34 16 40
X - - - 15 25 9 12 36 6
X - - B 15 26 9 12 38 6
X - C - 19 28 14 46 58 43 [2]
X - C B 20 30 14 48 61 44
X S - - 16 27 9 19 46 13
X S - B 17 29 10 21 51 15
X S C - 20 30 14 49 62 45
X S C B 22 33 15 52 71 47

SS2+C+B O3RS ≈
SS2+S SRT≈

SS2+S+C+B SHREC≈

SS2+X+C SS1 DIVA≈ ≈

TABLE 3. The main factors and interactions that 
increase performance in redundant execution.

Factor Effect 

Integer:
High

X 17.1
S 7.1

X+S -5.2

Integer:
Low

X 5.2
C 4.3
S 3.1

Floating-point:
High

X 33.5
C 9.9
S 6.4

Floating-point:
Low

C 27.0
S 6.2
X 4.6

S+C -3.9



when more than one factor is enabled. In another example,
the two most significant factors for high-IPC integer
benchmarks are X and S. In this case, X and S have a sig-
nificant and negative interaction. In other words, the effect
of implementing both X and S is that the added perfor-
mance improvement will be less than the simple sum of the
two effects. 

Although the X-factor has significant effects for all
classes of benchmarks, we do not explore the X-factor fur-
ther, since we cannot increase the issue bandwidth or func-
tional units. We will show, however, that the S-factor
improves performance by helping alleviate the issue band-
width and functional unit pressure. One should note that
from Table 2, doubling the issue bandwidth and functional
units alone (SS2+X) cannot improve SS2’s performance to
SS1 levels. We also do not discuss the B-factor since it is
not a significant factor in any benchmark class. We concen-
trate on the C and S factors next.

3.4.  Capacity of ISQ and ROB

The 2-k factorial analysis suggests that the capacity of
the ISQ and ROB (C-factor) in SS2 can have a major
impact on the performance of low-IPC floating-point
benchmarks. Although one cannot physically double the
capacity of the ISQ and ROB due to complexity and area
constraints, microarchitectural techniques exist to achieve
the same effect in the context of redundant execution. 

Mendelson and Suri proposed the O3RS approach for
redundant execution in a superscalar microarchitecture
[10]. A unique feature of O3RS is that an instruction occu-
pies just one entry of the ISQ and ROB after decode.1 An
instruction is issued twice from the same ISQ entry before
it is removed; similarly, one ROB entry keeps track of the
two redundant executions of the same instruction. In other

words, given the resources in Table 1, O3RS would per-
form similarly to SS2 with twice the ISQ and ROB capac-
ity. Figure 3 compares the IPC of SPEC2K benchmarks on
SS1, SS2 and SS2 with twice the ISQ and ROB capacity
(SS2+C). As suggested by the factorial analysis, the IPCs
of SS2 and SS2+C are comparable on integer benchmarks,
and SS2+C shows a 28% improvement over SS2 for float-
ing-point benchmarks.2 The previous 32% floating-point
performance gap between SS2 and SS1 has been reduced
to 25% by the C-factor.

A limitation of the O3RS approach is that it cannot be
easily modified to support stagger. In O3RS, redundant
instructions should issue from the ISQ in rapid succession
to not increase the effective occupancy of the ISQ. Increas-
ing this interval to support stagger has the effect of reduc-
ing the out-of-order window, offsetting O3RS’s original
benefit from the C-factor. 

3.5.  Staggered Re-execution

Figure 4 compares the IPC of SPEC2K benchmarks on
SS1, SS2, and SS2 with stagger (SS2+S). In accordance
with previous stagger studies, SS2+S results in a noticeable
IPC improvement over SS2, 9% on integer and 11% on
floating-point benchmarks. However, notice in Table 2 that
also relieving the C-factor (i.e., SS2+S+C) can yield
another 3% improvement on integer benchmarks and 22%
on floating-point benchmarks beyond SS2+S.

1.  The original O3RS is based on an RUU. Here, we describe the spirit of 
the proposal in the context of an ISQ and ROB.

2.  It is important to note that the effect given by the factorial analysis is 
an average over all settings of other factors; the actual change in perfor-
mance from changing one variable may be higher or lower, depending on 
the state of the other factors.
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FIGURE 3. The effect of relieving ISQ and ROB contention in SS2 (C-factor).
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We conclude this section with an analysis of the impact
of varying the degree of elastic stagger. The allowed
degree of stagger impacts performance because it limits the
granularity of IPC variation that can be effectively hidden.
For example, if the maximum degree of stagger is longer
than an L2 miss latency, it is likely that the R-thread can
continue to make forward progress on backlogged instruc-
tions while the M-thread is stalled on a L2 miss. However,
if the maximum degree of stagger is much shorter than an
L2 miss latency, the R-thread will also stall due to data
dependencies on the same L2 miss.

We evaluate SS2+S+C over different maximum stag-
gers of 0, 256, 1K, and 1M instructions. The trends of IPC
versus degree of stagger are reported in Figure 5 for the
high/low-IPC integer and floating-point benchmarks.
Figure 5 shows that, with the exception of high-IPC float-
ing-point benchmarks, a moderate stagger of up to 256
instructions is sufficient to capture nearly all the benefits.
Low-IPC applications, in particular, have the potential to

be latency-bound. With an IPC of 1.5, an application would
need a stagger of up to 300 instructions to completely over-
lap a 200-cycle main memory access. Enabling 1K or 1M
stagger—longer than the longest system latency—has little
additional benefit. Very large stagger could be effective if a
program exhibited IPC variations across large program
phases, but the associated hardware cost is indefensible for
the incremental performance benefit.

4. SHREC 

In this section, we present the details of SHREC and
evaluate its performance. The SHREC design reduces the
performance penalty of redundant execution through more
efficient scheduling and management. First, a key feature
of the SHREC design is that R-thread instructions are pro-
cessed differently from M-thread instructions. The R-
thread instructions are only checked using input operands
produced by the M-thread. This asymmetric handling of re-
execution restores the full capacity at the ISQ and ROB to
the M-thread. R-thread instruction checking is efficiently
handled by a separate, simple in-order scheduler. Thus,
bottlenecks associated with the ISQ and ROB are avoided
without physically enlarging those structures. Second, the
progress of the threads can stagger elastically, up to the
size of the ROB. This added scheduling flexibility allows
the R-thread to fill in the slack issue bandwidth and func-
tional units left idle by the M-thread, rather than constantly
competing with the M-thread. Delaying R-thread execution
from the corresponding M-thread instruction also hides
both cache miss latency and branch misprediction latency
from the corresponding R-thread instruction. Thus, the
issue bandwidth and functional unit bottlenecks can be
ameliorated by means of more efficient utilization, rather
than providing additional issue bandwidth or functional
units. 
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FIGURE 5. Applications are not sensitive to degrees 
of stagger over 256 instructions.
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4.1.  Asymmetric Re-execution on Dedicated FUs

To aid our discussion of SHREC, we first review DIVA,
a prior proposal for asymmetric re-execution [2]. The pre-
viously proposed DIVA microarchitecture augments a con-
ventional superscalar pipeline (e.g., SS1) with a highly
abbreviated checker pipeline [2, 5, 21]. Figure 6(a) depicts
the datapath of the DIVA microarchitecture. In DIVA,
before the completed instructions in the main out-of-order
pipeline can retire, the instructions must first proceed in
program-order through the checker pipeline, accompanied
by their previously computed results. The checker pipeline
re-computes each instruction individually; a mismatch
between the original result and the re-computed result trig-
gers an exception in the main out-of-order pipeline. 

To minimize the throughput mismatch, the DIVA
checker pipeline is assumed to have the same issue band-
width and functional unit mix as the main out-of-order
pipeline. Since the instructions in the checker pipeline are
not constrained by data dependencies, the checker issue
logic is in-order and the functional units can be deeply
pipelined. In other words, the checker pipeline, although
greatly simplified, can match the throughput of the main
out-of-order pipeline. 

DIVA’s performance should closely follow SS1, since
DIVA’s main out-of-order pipeline supports only the initial
execution of an instruction stream on essentially the same
hardware as SS1. However, DIVA’s good performance is,
to a large degree, also bolstered by a second set of func-
tional units at a significant cost over SS1, as discussed in
Section 2.1.

4.2.  Asymmetric Re-execution on Shared FUs

As illustrated in Figure 6(b), a SHREC pipeline is com-
prised of a primary out-of-order pipeline (essentially SS1)
and an in-order checker pipeline (shaded in gray). The out-
of-order pipeline and the checker pipeline in SHREC share
access to a common pool of functional units. In other
words, SHREC adopts DIVA’s asymmetric execution
scheme to relieve capacity and bandwidth contention at the
ISQ and ROB, but shares functional units to reduce the
hardware cost. This design point is important because soft-
error tolerance may not be needed under all circumstances
(e.g., Doom vs. TurboTax). In DIVA, soft-error tolerance
comes at a fixed hardware overhead. SHREC’s soft-error
tolerance comes with a performance overhead but can be
disabled to regain performance in non-critical applications.

The SHREC pipeline is similar to the DIVA pipeline
except in the design surrounding the functional units and
issue bandwidth of the checker pipeline. Based on the
assumed SS1 configuration in Table 1, the derived SHREC
microarchitecture can issue only up to eight instructions
per cycle to the original set of functional units, whether
from the out-of-order or the checker pipelines. The out-of-
order pipeline has static priority for the instruction issue
bandwidth and functional unit selection; only unused issue
bandwidth and functional units are available to the in-order
issue window of the checker pipeline. 

Naturally, the out-of-order issue logic in SHREC is
more complicated than in SS1. However, by 1) keeping the
number of issue slots the same, 2) assigning fixed priority
to the out-of-order pipeline, and 3) issuing from only a
small in-order window of instructions from the checker
pipeline, the increase in complexity can be kept to a mini-
mum. SS1 originally supports a 128-entry ISQ. The equiv-
alent SHREC checker pipeline is allowed an eight-entry in-
order issue window, and the SHREC ISQ is reduced com-
mensurately to 120 entries. Thus, the total number of
entries feeding into the issue selection logic remains 128,
as in SS1. No additional ports are added to the out-of-order
issue queue, since the in-order issue window is a logically
and physically separate structure. 

4.3.  Microarchitecture Operation

SHREC’s operation is similar to DIVA and can leverage
many of the same optimizations proposed for DIVA [5,
21]. Below, we describe the basic operations of the SHREC
pipeline.

Out-of-order Pipeline: The main SHREC pipeline is a
conventional superscalar out-of-order design. An instruc-
tion stream proceeds through the out-of-order pipeline nor-
mally, except completed instructions must be re-executed
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by the checker pipeline before they can retire from the
ROB. The main pipeline needs to be augmented by a result
buffer that records the result of each instruction. These val-
ues are later re-executed by the checker. This result buffer
operates in tandem with the ROB, but has its own read and
write ports, thus it does not increase ROB complexity or
port requirements.

Checker Pipeline: As in DIVA, we assume information
about an instruction’s initial execution in the out-of-order
pipeline is conveyed to the checker pipeline without error
via the result buffer (protected by ECC and circuit-level
techniques). The checker pipeline considers at most eight
consecutive completed instructions in the ROB for re-exe-
cution in program order, subject to the availability of sur-
plus issue slots and functional units not scheduled by the
main pipeline. When issued, the checker fetches operands
from the same physical registers that provided operands to
the initial execution. Since the total number of instructions
issued per cycle is never more than in SS1, additional reg-
ister file ports are not needed.

Verification and Retirement: Following re-execution,
instructions are considered for program-order retirement.
The checker-computed result is immediately compared
against the original result computed by the out-of-order
pipeline. If the values agree, the instruction retires from the
ROB. Otherwise, a soft-exception restarts execution at the
corrupted instruction.

4.4.  SHREC Performance

Figure 7 compares the IPC of SPEC2K benchmarks on
SS2, SHREC, SS2+S+C+B, and SS1 models. Overall,
SHREC reduces the performance penalty relative to SS1 to
4% on integer and 15% on floating-point benchmarks. This
penalty is in comparison to SS2’s performance penalty of
15% on integer and 32% on floating-point benchmarks.

The SHREC result generally agrees with the performance
of the idealized SS2+S+C+B model (included in Figure 7
for comparison). The small difference between SHREC
and SS2+S+C+B is caused by SHREC’s in-order issue
restriction on the R-thread; SS2+S+C+B still supports out-
of-order issue for the R-thread.

SHREC is especially effective in reducing the perfor-
mance penalty for benchmarks with low to moderate IPC
on SS1. SHREC matches the SS1 IPC for low-IPC integer
benchmarks and comes to within 8% for low-IPC floating-
point benchmarks. In this scenario, SHREC’s main out-of-
order pipeline operates identically to SS1 because there is
ample issue bandwidth and functional units to support
equal progress by both the main pipeline and the checker
pipeline. The same cannot be claimed for SS2 because,
even with ample issue bandwidth and functional units, the
contention for other resources still reduces IPC. 

On high-IPC benchmarks, SHREC loses performance
relative to SS1 because SHREC can only sustain half of the
peak performance of SS1 (when the issue bandwidth and/
or functional units are saturated). In these scenarios, exem-
plified by the high-IPC floating-point benchmarks,
SHREC and SS2 perform comparably since both suffer
from the same bottlenecks in issue bandwidth and func-
tional units. In apsi, sixtrack, and art, SHREC is even
slightly slower than SS2. This slowdown is attributed to
the SHREC checker pipeline’s in-order issue, which intro-
duces more stalls than SS2 when there is contention for the
floating-point units.

In many benchmarks, performance improvement oppor-
tunities also exist when the program exerts fluctuating
pressure on issue slots and functional units. IPC fluctuation
can be caused by stall events such as cache misses, pipeline
refills after branch mispredictions, long latency operations,
or inherent IPC variations. During high-IPC cycles, the
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SHREC out-of-order pipeline momentarily keeps pace
with SS1, while the checker pipeline is starved from issue.
If the out-of-order pipeline has sustained high-IPC (i.e., in
high-IPC benchmarks) the out-of-order pipeline will even-
tually stall because the ROB backs up with instructions
awaiting checking. Ideally, high-IPC program phases are
interspersed with sufficiently frequent low-IPC phases
such that the checker pipeline catches up. In these fluctuat-
ing IPC scenarios, SHREC will be more efficient than SS2.

Although SHREC does not increase issue bandwidth or
the functional unit count, it reduces the pressure of sharing
issue bandwidth and functional units through more effi-
cient utilization. Here, we present additional data to show
that SHREC’s utilization efficiency is scalable when addi-
tional issue bandwidth and functional units are allowed.
Figure 8 plots IPC versus the X-factor (available issue
bandwidth and functional units) for high/low integer and
floating-point benchmarks. ‘2X’ means twice the issue
bandwidth and functional units as specified in Table 1.
Between 0.5X and 2X, SHREC matches or outperforms
SS2, except under high contention for floating-point units.
The integer benchmarks operate in a mode where they
become ILP-bound with additional functional units. At that
point, the benefit of SHREC’s efficient scheduling dimin-
ishes; the IPC of SS2 and SHREC converge for both high
and low-IPC integer benchmarks. The floating-point
benchmarks tend to have high ILP, but experience func-
tional unit bottlenecks. As the number of functional units
increases, this bottleneck diminishes and the effect of more
efficient SHREC scheduling increases. The performance of
SHREC and SS2 should eventually converge, however, as
even more functional units are introduced.

5. Conclusion

Recent proposals for soft-error tolerance in superscalar
microarchitectures suffer a significant performance loss by

requiring the instruction stream to be executed redun-
dantly.  In a balanced superscalar design, supporting a sec-
ond redundant thread incurs a severe performance loss due
to contention for bandwidth and capacity in the datapath,
(e.g., issue bandwidth and the number of functional units,
issue queue, reorder buffer size, and decode/retirement
bandwidth).   Relaxing any single resource bottleneck can-
not fully restore the lost performance. 

The proposed SHREC microarchitecture effectively
relieves all of the above bottlenecks, except issue band-
width and the number of functional units. In SHREC, the
main thread executes normally, as on a conventional super-
scalar datapath. The redundant thread's instructions, how-
ever, are only checked using input operands already
computed by the main thread. The redundant thread does
not compete with the main thread for out-of-order schedul-
ing resources because checking can be efficiently managed
by a separate, simple in-order scheduler. Furthermore, the
progress of the main and redundant threads can stagger
elastically up to the size of the reorder buffer. This added
scheduling flexibility allows better utilization of issue
bandwidth and functional units, reducing the performance
pressure from sharing. The above techniques enable
SHREC-style re-execution to share resources more effi-
ciently and to achieve higher IPC over previous shared-
resource concurrent re-execution proposals.
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