Speculative Sequential Consistency with Little Custom Sorage

Chris Gniady and Babak Fal safi
Computer Architecture Laboratory
Carnegie Méellon University
{ babak,gniady} @cmu.edu, http://mww.ece.cmu.edu/~puma2

Abstract

This paper proposes SC++lite, a sequentially-consis-
tent system that relaxes memory order speculatively to
bridge the performance gap among memory consistency
models. Prior proposals to speculatively relax memory
order require large custom on-chip storage to maintain a
history of speculative processor and memory state while
memory order is relaxed. SC++lite uses the memory hier-
archy to store the speculative history, providing a scalable
path for speculative SC systems across a wide range of
applications and system latencies. We use cycle-accurate
simulation of shared-memory multiprocessors to show that
SC++lite can fully relax memory order while virtually
obviating the need for custom on-chip storage. Moreover,
while demand for storage increases significantly with
larger memory latencies, SC++lite's ability to relax mem-
ory order remains insensitive to memory latency. An
SC+ +lite system can improve performance over a base SC
system by 28% with only 2KB of custom storage in a sys-
tem with 16 processors. In contrast, speculative SC sys-
tems with custom storage require 51KB of storage to
improve performance by 31% over a base SC system.

1 Introduction

Sequential Consistency (SC) is the most intuitive pro-
gramming interface for shared-memory multiprocessors. A
system implementing SC appears to execute memory oper-
ations one at atime and in program order [8]. A program
written for an SC system requires and relies on a specified
memory behavior to execute correctly. Implementing
memory accesses according to the SC model constraints,
however, would adversely impact performance because
memory accesses in shared-memory multi processors often
incur prohibitively long latencies (tens of timeslonger than
in uniprocessor systems). Researchers and vendors have
aternatively relied on relaxed memory consistency models
that augment the shared-address space programming inter-
face with directives enabling software to inform hardware
when memory ordering is necessary [1]. By otherwise
allowing hardware to relax and overlap multiple memory
accesses, systems implementing relaxed consistency mod-
elsachieve high performance.

Recent research indicates that through hardware support
for speculative execution, an SC-compliant system,
referred to as SC++, can speculatively relax memory order
to achieve the performance of a Release Consistent (RC)
system, the consistency model previously enabling the
highest performance [6]. The intuition behind this result is
that an SC system must only appear to execute memory
accesses in order. SC hardware on one processor can relax

memory order from that processor aslong as other proces-

sorsdo not observe the relaxed order [3,6,7,10]. Much asin

speculative instruction execution in modern processors, an

SC++ system requiresto buffer the history of processor and

memory state while speculatively relaxing memory order.

Using this history, the hardware must roll back to an SC-

compliant state if one processor attempts to access memory

that has been accessed out-of -program-order by another.

While the results in [6] serve as a proof of concept that
SC systems can achieve the performance of RC systems,
SC++ requires a custom on-chip queue (to store the proces-
sor/memory state history) proportiona in size to the maxi-
mum memory access latency incurred in the system.
Unfortunately, memory latencies drastically vary within
and across applications, resulting in infrequent but large
bursts of history, and requiring alarge custom queuethat is
mostly underutilized. Moreover, memory latencies also
largely vary across systems depending on the memory sub-
system and interconnect speeds, the system size, and the
contention induced due to the workload. Because multipro-
cessor servers are typically built using commodity micro-
processors, providing the right size custom queue to satisfy
the reguirements of a wide spectrum of applications and
systemswould be prohibitively difficult.

This paper proposes SC+ +lite, a speculative SC system
that virtually eliminates the custom storage needed to sup-
port SC++. SC++lite spills the processor/memory history
information generated by SC++ into each processor’s|ocal
memory hierarchy, offering a scalable storage across a
wide spectrum of applications, system sizes and latencies.
We use cycle-accurate simulation of distributed shared-
memory (DSM) multiprocessors running scientific and
engineering applications to compare SC++lite’'s perfor-
mance and storage requirements against SC++’s.

The contributions of this paper are:

* Detailed history characterization: We present a
detailed characterization of SC++ history information
and corroborate that: (1) queue requirements vary
between 16 to 8192 entries for applications and sys-
tems we studied, and (2) the history information is
quite bursty, on average leaving the queue empty 85%
of the application execution time.

* Speculative SC with little custom storage: Our
results indicate that SC++lite on average performs 28%
better than abase SC system with only 2KB of storage.
In contrast, SC++ requires 51KB to achieve a 31%
average speedup over a base SC system. Moreover,
SC++lite’'s performance relative to SC++ remains

unchanged with afour timesincrease in memory laten-

cies, while SC++'s storage requirements double to

101KB.

* Sensitivity to L /L 2 bandwidth & L 2 size: We show
that on average there islittle interference with an appli-
cation's L2 footprint and processor’'s L1/L2 traffic
even when using small L1 caches due to the bursty
nature of history. Applicationswith high L2 bandwidth
requirements benefit from an additional L2 port in
SC++lite.

The rest of the paper is organized as follows. In
Section 2, we describe the current high-performance SC
systems. In Section 3, we present adesign for SC++lite. In
Section 4 we present the experimental methodology. In
Section 5, we present the results. Finally, we conclude the
paper in Section 6.

2 Background: High-Perfor mance SC

Sequential consistency (SC) provides the most intuitive
programming interface by requiring that all memory opera-
tions appear to execute in program order and atomically
[8]. In conventional SC implementations, the processor
would faithfully implement SC’s ordering constraints, per-
forming memory operations atomically and in program
order one memory operation at a time, blocking on cache
misses. Such amemory system would preclude non-block-
ing caches and overlapping accesses among multiple mem-
ory operations.

Figure 1 illustrates an example of amemory bottleneck
in an SC system. The figureillustratesinstruction flow and
ordering of memory accesses in an out-of-order processor
pipeline (e.g., MIPS R10000 [12]). The figure also illus-
trates the common case of a program segment in which
memory accessesto distinct addresses are independent, and
do not require program ordering. In the example shown,
while al memory accesses are independent and the cache
blocks containing address B are present, anaive SC system
would wait for the store to address A (waiting for either a
missing cache block or a write permission to a read-only
cache block) to complete, before executing the load to
address B and its corresponding computation. Unfortu-
nately, store latency inaDSM istypically hundreds of pro-
cessor cycles because each remote accessincludes multiple
network transactions and may require invalidating several
sharers of a cache block. Therefore, the store to address A
in this example potentially blocks the flow of instructions
for hundreds of processor cycles.

Modern SC systems implement a spectrum of optimiza-
tions to reduce the negative impact of a pending store on
performance. Early acknowledgment of invalidation mes-
sages (e.g., in AlphaServer GS320 [5]) helps partially hide
the store latency in systems with ordered network mes-
sages. Non-blocking caches allow for overlapping multiple
fetch operations (including write permission for stores) in
arbitrary order into L1 [3] while satisfying the SC con-
straints by performing L1 accesses atomically and in pro-
gram order. Store buffering [4] allows pending stores and
subsequent computation up to a load instruction to retire
from the reorder buffer. Such optimizations, however, only

Instruction Stream Out-of-order Memory Accesses
stA remote miss stA pending
. -~— “
IdB hit § St s
alu S S
stB it & 3 ||alu |load/store queue
alu sB L1
alu o0 <l
, . A=A k7]
ldC hit S |lau |
stD remote miss 3 N invalidation/
IdE remote miss g u replacement
alu S 1dC notissued
alu =

FIGURE 1. Example execution in SC.

partially reduce the exposed store latency and can not elim-
inate the performance gap between SC and relaxed mem-
ory systems such as Rel ease Consistency (RC) [6,10].

A key technique (e.g., adopted by MIPS R10000) to fur-
ther hide a pending store latency in an out-of-order proces-
sor core is speculative load execution [3]. In our example,
the processor using speculativeload execution would allow
for the load to address B to hitin the memory hierarchy, and
the corresponding computation to complete while astore to
address A is pending. Relaxing the memory order specula-
tively does not violate SC’s constraints as long as no other
processor in the system observes the reordering — i.e., no
other processor modifies the speculatively accessed data.
To guarantee SC semantics, all requests for replacement or
invalidation (from other processors) of cache blocks that
are speculatively accessed roll execution back to the
offending instruction. Unfortunately, the limited size of the
reorder buffer prevents the system from realizing the full
potential of relaxing memory order [6,10]. The reorder
buffer is primarily designed to tolerate branch resolution
latency whichisinthe order of tens of processor cyclesand
can not tolerate DSM store latencies that are one or more
ordersof magnitudelarger.

2.1 Speculative SC with RC Performance

In arecent paper Gniady, et al, [6] identified the require-
mentsfor an SC system to fully achieve the performance of
an RC system to be: (1) allowing arbitrary re-ordering of
(load/store) memory accessesto distinct memory locations,
(2) providing sufficient buffering to maintain a history of
all instructions executed while an in-program-order storeis
pending, (3) providing fast mechanisms to ook up remote
processor requests for speculatively-accessed memory
blocks and detect potential model violation, and (4) exhib-
iting infrequent rollbacksin workl oads.

Gniady, et d. [6] aso proposed aspeculative SC system,
SC++, that satisfies the above requirements. Figure 2
depicts how SC++ speculatively relaxes memory order.
Upon a pending store, SC++ speculatively retires instruc-
tions and records the modified processor and memory state
in a speculative history queue (implemented much like a
history buffer [11]). In the example shown, SC++ retires

ﬁ speculative history queue
Olo| s m | s |@m
B|lo|l© % 5 | © |2 >
» » ¥
< = A . Tee--- R
g é Id E | pending o
S8y el
0n =
28 ||V | loadistore queue L1 Dlc|B
alu
«> oIS block lookup
& || A table
3 <
5 |
§ invalidation/
= replacement

FIGURE 2. Example execution in SC++.

the instructions up to the missing load to address E and
storesthem in the history queue.

Upon acknowledgment for the completion of the first
in-program-order pending store, al entries up to the next
pending store on the list are discarded; an acknowledgment
indicates that the memory accesses maintained in the his-
tory while the store was pending were not observed by
other processors and the SC constraints are satisfied. To
alow for locating the portion of the history to be discarded,
each load/store queue entry for a pending store also
includes a pointer to the location of the instruction in the
speculative history queue. The pointer also enables locat-
ing the entry within the queue to record the old memory
value corresponding to the store address when a cache
block for a missing store arrives. In the example shown,
when the acknowledgment for the store to address A
arrives, al entries up to the store to address D are dis-
carded. An acknowledgment for a later in-program-order
pending store (e.g., the store to address D) while an earlier
store (e.g., the store to address A) is pending simply
removes the corresponding entry from the load/store queue
but does not discard any history.

A block lookup table provides a quick mechanism to
verify speculation. The lookup table maintains a list of
cache blocksthat are speculatively accessed by instructions
in the queue. In our example in the figure, the table keeps
track of all speculatively-accessed blocks at addresses B, C,
and D while the store to A is pending. A hit in the lookup
table upon an invalidation/replacement request from L2
indicatesapotentia for violating SC semanticsand triggers
a rollback to guarantee SC's ordering constraints. Upon
rollback, SC++ locates the earliest instruction accessing
the block in the queue, and rolls back execution to this
offending instruction. To guarantee forward progress, exe-
cution restarts after all pending stores are acknowledged
and the queue and table are empty.

Each lookup table entry also keeps a pointer to the last
(in-program-order) instruction accessing the block. The
pointer helps clear the table entries for blocks without any
corresponding instructions in the history queue. Upon dis-
carding entries in the history queue, all table entries point-
ing to the discarded history entries are also cleared,

speculative block buffer

S € history in L2
§ g q [aRESR-1 > Y
g8 B |2 | ®| baseregister |5 |m|s|m
IS —_— [4> |5 |c |2
Al cache block =
Id E | pending tail register
alu s
—|= L1 17 16 |13
alu 0(:0 o (<C L2
5|2 |6 [P D|C|B
----- load/store block lookup
..... queue table
reorder buffer invalidation/replacement

FIGURE 3. Example execution in SC++lite.

indicating that speculation for the corresponding cache
block addresses has been verified. In our exampl e, the com-
pletion of the store to address A results in discarding the
history entries corresponding to addresses B C, and D and
clearing the corresponding table entries.

Gniady, et a. [6] showed that SC++ performs aswell as
an RC system for well-synchronized and scalable parallel
programs. However, an SC++ system may require a pro-
hibitively large history queue depending on the system
size, memory and interconnect speeds, and application
memory access characteristics. In this paper, we show that
to reach within 2% of its best performance, an SC++ sys-
tem with 16 processors must i ncorporate queues with up to
51KB of storage per processor for the applications and
interconnect speeds we studied. We also show that the
speculative history isquite bursty, leaving the queue empty
for over 65% of processor cycles in al applications we
studied. The variation in history size precludes selecting a
custom queue size that fits the demands of alarge spectrum
of applicationsand systems.

3 SC++Lite: SC++ with Minimal Storage

This paper proposes SC+ +lite, a speculative implemen-
tation of SC that spills the speculative history into the
memory hierarchy. The key advantage of SC++liteis that
the history can grow as large as the memory hierarchy can
accommodate. SC++lite offers a scalable path for specula
tion because larger systems with longer latencies aso
incorporate larger caches that increase the capacity for
speculative history. Moreover, SC++lite provides specul a-
tion with minimal impact on either an application’s foot-
print in the memory hierarchy or bandwidth into the
caches, because the history istypically bursty and accumu-
lates infrequently [6]. Finally, SC++lite allocates history
storage dynamically (through the caches), eliminating the
need for large underutilized custom storage.

Figure 3 depicts the anatomy of SC++lite. SC++lite
maintai ns the speculative history in the memory hierarchy.
The queueis alocated in main memory and assigned physi-
cal addresses at boot time. A Speculative Block Buffer
(SBB) accumulates the instructions retiring from the reor-
der buffer and stores them as cache blocksin L2. The num-

ber of entriesin SBB is proportional to the pipeline’sissue
width. A tail register indicates the location of the queue’s
tail in physical memory. While memory locations of queue
entries can be recorded as full physical addresses, in prac-
tice the queue will only at most occupy a small fraction of
the main memory. To reduce the storage overhead for
gueue pointers (i.e., the tail pointer, and pointers from the
load/store queue and the lookup table), all pointers only
record anumber of thelow order address bits. A baseregis-
ter records the high order address bits and is concatenated
to al queue pointersto form afull physical address.

Asin SC++, SC++lite uses the lookup table to quickly
look up speculatively-accessed blocks and detect a poten-
tial ordering violation. Much as the history queue, the
lookup table size requirements grow with system size and
workload. However, because of the high degree of locality
in cache block addresses and the small size of lookup table
entries, a lookup table with 256 entries (~1.3KB) sufficed
for all application and system sizes we studied. Alterna-
tively, a scalable lookup table implementation could use
state bits in the cache hierarchy to eliminate the auxiliary
table. In this paper, however, we focus on eliminating the
custom history queue which accounts for the substantial
storage overhead in speculative SC systems. In the rest of
this section, we describe SC++lite’'s queue insertion, dele-
tion, lookup, and rollback operations. We also present L2
optimizationsthat help enhance performancein SC++lite.

3.1 Spilling/Discarding History

SBB behaves like a miniature version of the history
queue as long as the accumulated history fits in it. Upon
packing acomplete cache block, the SC++litelogic queues
arequest for an L2 port (see Section 3.3). Upon receiving a
free port, SBB ships the packed history for storageinto L2,
and shifts the contents of the buffer forward. The logic
updates the queue’ stail address upon insertion. The history
storedin L2 can spill all theway down to the lowest |evel of
thememory hierarchy.

As in SC++, an acknowledgment for the first in-pro-
gram-order pending store requires discarding of the corre-
sponding history. Discarding history requires updating the
queue's head address and the lookup table. As in SC++,
SC++lite records the position of every pending storein the
load/store queue. Unlike SC++, the recorded locations are
physical addresses in memory. Upon acknowledgment of
thefirst in-program-order pending store, the corresponding
entry is removed from the load/store queue and the next
pending store entry in the load/store queue points to the
head of the history queue. It isalso necessary to identify the
cache blocks containing the discarded history in the mem-
ory hierarchy. Section 3.3 discusses the necessary L2
mechanismsto remove these blocks.

Similarly, the lookup table records the position in mem-
ory of the last instruction that has speculatively accessed a
given cache block. Upon updating the queue’'s head
address, al lookup table entries with locations outside the
new queue address range are cleared. In the example
shown, the store to address A points to the physical address

10 in memory. Upon acknowledgment of the store, all his-
tory up to the store to address D is discarded and the
queue’s head address in memory becomes 17. Similarly,
the lookup table entries corresponding to blocks B, C, and
D are cleared because the history corresponding to the last
instruction accessing them isdiscarded.

3.2 Misspeculation & Rollback

Gniady, et al., [6] showed that in well-synchronized and
scalable applications, misspecul ations are extremely infre-
quent. The intuition behind such an observation is that a
misspeculation only happens as a result of a true data race
among processors on a specific address. In well-synchro-
nized applications, data races typically only occur on syn-
chronization addresses (e.g., a lock guarding entry into a
critical section) which account for a small fraction of all
memory accesses. Moreover, frequent data races on syn-
chronization addresses result in high contention for critical
sections and are not characteristics of scalable parallé
applications. As such, while a speculative SC system must
implement rollback correctly, rollback speed and efficiency
is not a key design concern and does not significantly
impact overall system performance.

As in SC++, when a replacement/invalidation message
probes and hits in the lookup table, there is a potential for
violation of SC’s ordering semantics and the system must
roll processor/memory state back to the offending instruc-
tion (i.e., the earliest in-program-order speculative instruc-
tion accessing the block). Rollbacks in SC++lite are
potentially much slower than those in SC++ because the
history must be retrieved from the memory hierarchy as
compared to acustom hardware queuein SC++. Our results
indicate that because rollbacks are very infrequent,
SC++lite can achieve SC++'s performance even with a
higher rollback latency and overhead.

3.3 L2 Optimizations

SC++lite can benefit from a few optimizations in L2.
Upon store acknowledgment, invalidating the cache blocks
containing the discarded history would be prohibitively
expensive and would require multiple probes to the cache
hierarchy. Because the head and tail pointers can always
distinguish the valid history entries upon rollback, it is pos-
sible to leave the discarded history as valid/dirty cache
blocks in the cache hierarchy. However, these blocks may
generate unnecessary writeback traffic from L2 if replaced
by the application’s L2 footprint. Our results indicate that
speculative history is quite bursty resulting in an insignifi-
cant probability of conflictin L2 with an application’sfoot-
print. Nevertheless, to entirely eliminate inadvertent L2
writeback of discarded history, we propose that the L2 con-
troller check the queue head and tail pointers prior to writ-
ing back cache blocks.

L2 treats SBB write requests as L1 writebacks with the
following exception. It is assumed that L2 does not main-
tain inclusion with respect to queue addresses so that write
requests from SBB aways write allocate and store the
entire block as provided by SBB. Asin L1 writebacks, an

CPU 1GHz, 8-issue per cycle

reorder buffer 128 insts.

Load/store queue 128 insts.

L1 cache 32K B, direct-mapped

L2 cache 512K B, 8-way,
pipelined, 64 GB/s

L1 fill latency 10 cycles

L2 local fill latency 100 cycles

L2 remotefill latency || 200 cycles

Cachelinesize 64 bytes

TABLE 1. System configuration.

SBB request in L2 may generate an L2 writeback of adirty
block to lower levels. Upon an SBB write request, L2
writebacks of history blocks interfering with the SBB
reguest will either proceed asis or will be optimized away
by the L2 controller optimization discussed above.

The key to correct speculation in speculative SC sys-
tems is to hold on to all speculatively-accessed data in the
memory hierarchy until speculation is verified [6]. An
attempt to replace a speculatively-accessed block (dueto a
conflict with another block) would result in a rollback.
Therefore, in speculative SC systems, it would be desirable
to avoid selecting specul atively-accessed blocks as candi-
dates for replacement in a set-associative L 2 cache. Unfor-
tunately, conventiona (e.g., LRU) replacement policies do
not take into account the high rollback overheads in specu-
lative SC systems and may offset the gains from specula-
tion when thereis high contentionin L2. Moreover, spilling
speculative history into L2 may increase the contention in
the cache further increasing the probahility for rollback. To
minimize the frequency of rollbacks due to contention in
L2, the LRU mechanisms check thelookup tableto identify
blocks that are speculatively accessed prior to selecting a
candidate for replacement. Speculatively-accessed blocks
are selected for replacement only when all the blocks in a
given set are speculatively-accessed blocks.

Finally, SC++lite allows speculative history to be writ-
ten back to lower levels of the memory hierarchy, and
therefore rollbacks may require retrieving history from
arbitrary memory levels. However, the history information
during rollback is read-only, can be discarded immediately,
and does not require allocation in higher cache levels. In
SC++lite, speculative history only travels up the hierarchy
upon rollback. Therefore, we propose a modification to the
cache controllers in the memory hierarchy to prevent allo-
cation of history blocks upon afetch based on the physical
addressrange of the queue (assigned at boot time).

4 Experimental M ethodology

We use RSIM [9], a state-of-the-art DSM simulator to
compare the speculative SC systems. We simulate a 16-
node DSM with every node including a MIPS R10000 like
processor [12] with a local memory hierarchy intercon-
nected by a high-bandwidth/low-latency 2-D mesh. The
memory controller on each node implements a 3-hop full-

RC/ | SC++
Application Input Parameters SC /SC
appbt 12x12x12 cubes, 40 iter. || 1.39 | 1.33
barnes 4K particles 110 | 112
em3d 16K nodes, 15% remote || 1.23 | 1.24
fft 64K points 114 |1.14
radix 512K keys 179 | 180
tomcatv 128x128, 50 iter. 114 | 113
unstructured || mesh 2K 150 |1.50
water-ns 343 molecules 121 |133
water-sp 343 molecules 118 |1.18
Average 130 | 131

TABLE 2. Applications, inputs, and speedups.
map directory cache coherence protocol [10]. Table 1
shows the base system parameters used throughout the
experiments unless specified otherwise. The L2 locd fill
latency correspondsto the minimum cachefill latency from
local memory on every node. The L2 remotefill latency is
the average of the minimum cache fill latencies for one
node from all remote nodes. The L2 cache configuration
and bandwidth correspond to thosein Pentium 4 at 2.0 GHz
[2]. All systems implement MIPS R10000’s SC optimiza-
tionsincluding multiple (non-blocking) pending fetchesfor
cache misses, store buffering, and speculative load execu-
tion.

Table 2shows the nine shared-memory applications that
we use in this study. Appbt is a shared-memory implemen-
tation of the NAS benchmark. Em3d is a shared-memory
implementation of the Split-C benchmark. Barnes, fft,
radix, water spatial and nsquared are from the SPLASH-2
benchmark suite. Unstructured is a shared-memory imple-
mentation of a fluid dynamics computation using an
unstructured mesh. Tomcatv is a shared-memory imple-
mentation of the SPEC benchmark.

Table 2 also shows the base RC and SC++ speedups
over SC. The results show that RC improves performance
over an optimized SC implementation in a base system
with aggressive interconnect latencies on average by 30%.
SC++ fully benefits from speculatively relaxing memory
order and on average performs 31% better than SC. SC++
actually outperforms RC in water-ns because the RC sys-
tem conservatively enforces memory order at synchroniza-
tion points even though processors rarely race for critical
sections in these applications. SC++ always relaxes order
for all memory accesses in these applications even at syn-
chronization points, improving performance over RC.

5 Results

In this section, we will first characterize history in spec-
ulative SC systems and show that speculative history size
varies largely across applications and system latencies and
is bursty. Next, we show that our proposed SC++lite sys
tem performs aswell as an SC++ system whilerequiring an
order of magnitude less custom storage. Next, we show that
SBB causes, on average, little to no interference with L1/

100%

©

(&)

S 90% -

S

S

S 80% |

ol —m—barnes

3 —A—em3d

2 70% | it

— —¥—radix

o —}—tomcatv

.S 60% | —=—unstruct.

5 water-ns

® —O6— water-sp

L 500 —eo— Average
0 T T T T

O N > DO D N> O
N O VS0 Y » O O
WSS

Number of Entries

FIGURE 4. Sensitivity to queue size.
This figure plots the performance of SC++ given finite queue
sizes as a fraction of SC++'s best performance given an infinite
queue.

L2 traffic allowing SC++liteto efficiently exploit the mem-
ory hierarchy as storage for history. Finaly, we show that
SC++lite significantly improves performance in all appli-
cationseven under ahigh contentionin L2.

51 History Characterigtics

Figure 4 shows the impact of fixing the history queue
size on SC++’s performance. The figure plots performance
under SC++ with afinite queue size as afraction of perfor-
mance under an ideal SC++ implementation with an infi-
nite queue. The figure indicates that there is a large
variability in demand for queue size, ranging from an appli-
cation that performswell with 16 queue entries (i.e., water-
sp) to one (i.e., radix) that requires 8192 queue entries to
reach maximum performance. The applications need about
4096 queue entries to reach, on average, the maximum per-
formance. These results indicate a single queue size may
not suffice to accommodate a wide spectrum of applica-
tions.

Therequired queue size for each application depends on
the amount of exposed store latency in the processor pipe-
line. Water-sp primarily exhibits L2 store hits, and there-
fore generates little speculative history. In radix, however,
loads and stores to remote memory are clustered respec-
tively, and therefore thereislittle load latency or computa-

100%

80%

60%

40%

20%

Cumulative Distribution

0% -

O N XA O AN D O SV
N O A 0 Y QO
N‘L%\Q%ngq')y

History Size

FIGURE 5. Queue utilization.
Thisfigure plots the cumulative distribution of accumulated spec-
ulétive history.

tion overlapping the store latencies. As such, much of the
storelatenciesto remote memory are exposed.

Figure 5 show the history queue utilization and Table 3
depictsthe fraction of the execution time when the queueis
empty. The table indicates that speculative history is quite
bursty and, on average, 85% of the time the queueis empty.
Em3d, radix and water-ns utilize the queue the most
because there is a significant number of stores with
exposed latencies in these applications. Tomcatv, and bar-
nes use the queue infrequently. However, when a store is
pending, there are large bursts of history falling within
2048 to 4096 entries to overlap the store latency. A
dynamic allocation approach will be able to allocate
resources only when needed, resulting in abetter utilization
of storage. Moreover, these resultsindicate the potential for
storing the history in the memory hierarchy with littleinter-
ference.

The distribution of generated history size also largely
varies among applications. Figure 5 illustrates the cumul a-
tive distribution of history sizes when the queue is used.
The history size is a function of both application and sys-
tem characteristics. The key application characteristics that
affects history sizeisthe amount of a pending store latency
overlapped after the store retires from the reorder buffer.
Because a fetch for a store can be initiated as soon as the
store enters the reorder buffer (using non-blocking caches),
afraction of the store latency can be overlapped before the

Application appbt | barnes | em3d | fft | radix | tomcatv | unstructured | water-ns | water-sp | Avg.
Fraction of
executiontime || 85% | 95% | 68% | 83% 97% 77% 74% 99% 85

TABLE 3. Fraction of execution time without any history.

100% +o

90% -

80% -

70% -

Fraction of Best Performance

60% - —=— unstruct.

water-ns

—o— water-sp

—e— Average

50% T ‘ ‘ ‘g
,\/Q)

U S S VR SR R S
BV R PN ® o° .9
MEIDIRNEIN PSR

Number of Entries

FIGURE 6. Queue size for 4x remote fill latency.
This figure plots the performance of SC++ given finite queue
sizes as a fraction of SC++'s best performance given an infinite
queue for systems with 4x L2 fill latencies.

store instruction leaves the reorder buffer. The extent to
which the store latency, within the reorder buffer, can be
overlapped depends primarily on any pending loads (miss-
ing in the cache) appearing prior to the store instruction in
program order. Once a pending store retires from the reor-
der buffer, speculative history accumulates until a pending
load reaches the top of the reorder buffer. In summary, the
history size is a function of the distance in the program
between a pending store and aprior or later pending load.

The main system characteristics are the pipeline retire-
ment rate and the incurred memory latencies in the system.
Therefore, if the application has a pending store and the
pipelineis ableto retire at afull rate, the resulting number
of entriesin the history will be the store latency multiplied
by the retirement rate. This basic idea can be applied to
classify the behavior of applicationsin Figure 5. To thefirst
order of approximation, the knees in queue utilization
around 64 to 128 entries are due to the L1 fill latencies, and
the knees around 2048 entries are due to the L2 remote fill
latencies that are affected by communication patterns and
gueuing. In case of unstructured, history size falls in the
range of 128 to 512 entries that does not directly corre-
spond to any system characteristics and shows us clearly
the amount of remote store latencies that were partially
overlapped by the subsequent or preceding loads. Bar nes,
tomcatv, and water-ns are able to overlap the L1 fill laten-
cies resulting only in history generated due to remote store
mi sses.

Figure 6 and Figure 7 illustrate the impact of longer L2
remote fill latencies on the performance sensitivity to
gueue size. Quadrupling the remote fill latency results in
approximately doubling of the execution time in the appli-
cations. Therefore, we can expect the queue size require-

100%
)
(&)
c
<
£
S 90% -|
o
o
I
)
m
S 80% |
c
.g —— Base
% —&— 4xremote fill
i —a— 16xremote fill

70%
N

V> D 0D N D oS
B O UV S N » O O
WS S

Number of Entries

FIGURE 7. Sensitivity to remote fill latency.
This figure plots performance of SC++ with finite queue sizes as
afraction of performance with an infinite queue for systems with
base, 4x, and 16x L2 remotefill latencies.
mentsto doublein order to overlap thelonger latencies and
match the performance. In Figure 7, we see a right shift
showing doubling in average queue size requirements to
match the same performance range as compared to the base
system. The latter resultsin an average queue size require-
ment of 8192 entries. In the interest of space, we omit the
cumulative distribution graph of queue utilization for the
larger remote fill latencies. The graphs, however, follow
the shape of those in Figure 5. Not surprisingly, the L1 fill
latency region remains unaffected. However, the longer L2
remotefill latency resultsin aright shift of utilization knees
intheremote latency range. We al so include the averagefor
16x latency network in Figure 7, but we see that the history
reguirements do not grow significantly sincethereisalimit
to the amount of exposed store latency and it is dictated by
aapplication characteristics.

5.2 SC++L ite Performance

Figure 8 compares the performance of SC++lite against
SC++. The graph plots speedups with respect to our base
SC system (Section 4). We compare the performance and
storage requirements of an SC++ system with 4096 custom
gueue entries, because most of our applications achieve
their maximum performance given this custom queue size
(Figure 4). SC++lite numbers assume a 32-entry SBB. The
graphs indicate that SC++tlite’'s performance matches
closely the performance of SC++. On average, SC++
improves performance over SC by 31%, while SC++lite
improves performance by 28% with little custom storage.

Figure9 compares the performance of SC++lite and
SC++ with the quadrupled L2 remote fill latency. The
SC++ numbers assume a 8192-entry custom queue. On
average, SC++ achieves a speedup of 37% over SC, while

[l SC++ [0 SC++lite

Speedup

FIGURE 8. Base system performance.
This figure compares the performance of SC++lite against SC++,
normalized to SC. SC++ uses 2K-entry custom history queue and
SC++lite uses a 32-entry SBB.

SC++liteis ableto achieve a 35% speedup over SC with no
changesto its base hardware configuration. The key factor
contributing to the performance gap, between SC++liteand
SC++, islimited L2 bandwidth. The gap can be eliminated
by providing an additional L2 port, which we will study in
Section 5.4.

5.3 History Sorage Requirements

Table 4 compares the storage requirements for SC++
and SC++lite. The extra storage required in speculative SC
systems comes from three sources: the history queue (in
case of SC++) or the SBB (in case of SC++lite), the lookup
table, and the pointersto the history queue embedded in the
load/store queue. The entries in the history queue and the
SBB areidentical and are 100 bitsin size. The entry sizeis
dominated by storeinstructions which have the largest stor-
age requirements. The storage for a store instruction
includes 64 bits of modified data to record the old memory
value, 32 bits of store address, 1 bit to distinguish store
from other instructions, 2 bits to encode the store size, and
1 bit to distinguish between pending and compl eted store.

Each lookup table entry includes 26 bits of block
address and a dirty bit used in optimizing and eliminating
rollbacks upon downgrade rather invalidation requests.
The number of pointer bitsin thelookup table and the load/
store queue vary depending on the queue sizes. Our base
SC++ and our SC++ system with 4x remote fill latency use
4K - and 8K-entry custom queues and therefore require 12
bitsand 13 bits for queue pointers respectively. We aggres-
sively assume amemory queue of 64K entriesfor SC++lite
and therefore require 16 bitsfor pointers.

Table 4 indicates that the total custom storage for SC++,
in the base system and the system with 4x L2 remote fill

1.9 - @ SC++ O SC++lite
1.8 -
1.7
1.6 -
o
3 15 -
o
o 1.4 -
7))
1.3 -
1.2
1.1
1.0 A
Y 2 D L F QD @ K
L & & & & & & &
Al 2 & & F K
O & QT
&

FIGURE 9. 4x L2 remote fill latency.
This figure shows the performance of SC++lite against SC++,
normalized to SC for 4x L2 remotefill latency. SC++ uses a4K-
entry custom history queue and SC++lite uses a 32-entry SBB.

latencies are 51KB and 101KB respectively. SC++lite,
however, reduces the custom storage requirement by an
order of magnitude and only requires 2KB custom storage
for al studied L2 remotefill latencies.

5.4 L2 Bandwidth Requirements

Figure 10 compares the performance of SC++lite under
varying L2 bandwidth, affecting the SBB spill rate. In the
base system, which corresponds to the 64 GB/s bandwidth
available in Pentium 4, the SBB can spill, on average, five
history entries per cycle. Decreasing the L2 bandwidth to
32 GB/s, resultsin the SBB being abletoretire, on average,
only 2.5 history entries per cycle, effectively reducing the
graduation rate. Doubling the L2 ports results in the SBB
being able to spill ten history entries per cycle and elimi-
natesthe L 2 bottleneck seen by the SBB.

The performance gap between SC++ and SC+tlite
becomes significant, in some applications, for bandwidth
of 32 GB/s. The SBB can only send on average 2.5 instruc-
tionsper cycleinto L2 which is 31% of the history through-

SC++ | SC++4x || SC++lite
Structure (KB) | fill (KB)|| (KB)
Custom history storage 50.0 100.0 04
(history queue or SBB)
L ookup table 12 12 13
History pointersin 0.2 0.2 0.3
|oad/store queue
Total 51.4 101.4 20

TABLE 4. Custom storage requirements.

1.2

W32 GB/s m64 GB/s @128 GB/s m4KB L1
1.0 - I S
o i
o L
G
go.sf
o
o 06 |
o
o
(O]
N 04
©
E
S 02 -
0.0 | MELLT WY WOCLT WO T BOCL| WO MO R R
¥ 2 o L dF QD> & R
g &L & & L&
LANINC S & &
xS \S\\' & K\
&

FIGURE 10. Effect of L2 Bandwidth.
In this figure we compare execution times of SC++ and
SC++lite with different L2 bandwidth, normalized to the SC++
with corresponding L2 bandwidth. We aso present the impact
of 4K L1 on the competition for 64 GB/s bandwidth.

put in SC++. For the base 64GB/s system, SC++liteis 2%
slower, on average, than SC++ and it reaches maximum of
9% for radix. In the system with 32 GB/s bandwidth, the
SC++liteis, on average, 16% slower than SC++, and 50%
slower in case of radix. Even with 32 GB/s bandwidth the
SC++lite is on average 19% faster than SC. Increasing the
L2 bandwidth to 128 GB/s eliminates the performance gap
between SC++ and SC++lite. Thisincrease in the L 2 band-
width does not result in performance gains for SC++, and
therefore an additional L2 port cannot be justified, given
the studied applications. Future processors will provide
128 GB/s or higher bandwidth and therefore the SC++lite
will result in the best performance and resource utilization.
Figure 10 also shows the impact of 4KB L1 on the per-
formance of SC++lite. By reducing the L1 size to 4KB, the
competition for the L2 bandwidth between the SBB and L1
requests increases. Since the L1 misses are handled before
the SBB requests, the available L2 bandwidth for the SBB
is reduced. As a result, the performance gap between
SC++lite and SC++ increases, but only by 1%, on average,
as compared to the base system. The insensitivity to the L1
cache size can be explained by dependence between the L1/
L2 traffic and the amount of generated history. When the
L1/L2trafficislow the processor hitsin L1 and thereforeis
generating history at afull rate in a presence of a pending
store, but in this case the SBB has the entire L2 bandwidth
available. On the other hand, when the L1/L 2 trafficisvery
high the available L2 bandwidth for the SBB is lower, but
sincethe processorismissingin L1, it stallsfor theL1 read

1.9 .
@ SC++ [SC++lite
1.8
1.7 4
1.6
o
3 15
o
o 14
n
1.3
1.2 4
1.1 4
1.0
> 2 & R F QD @ K
£ &L & & &
LN 2 S ¥ F &
O
N

FIGURE 11. Interference in L2.
This figure studies the competition for L2 space between data
and history. We reduce L2 to 64KB and compare execution time
of SC++ and SC++lite, normalized to SC.

misses and as a result the amount of generated history is
small.

55 Interferencein L2

Figure 11 presents the impact of L2 contention on the
performance of SC++lite. On average, SC++ improves per-
formance over SC by 36%, while SC++lite improves per-
formance by 32%. SC++lite stores a significant amount of
history in L2 and therefore the potential of replacing the
datathat is currently or subsequently needed by the proces-
sor increases for the 64KB L2. The history size is not
directly dependent onthe L2 size, aslong asthe application
isableto fit itsworking sets. In this case, the same history
that resides in a 512KB L2 has to fit in the 64KB L2.
Section 5.1 showsthat history can grow and reach up to 4K
entries, which requires 50KB of storage. 50KB corre-
spondsto 10% of the 512K B L 2, therefore the performance
impact is limited, but in the case of the 64KB L2, the his-
tory can potentially occupy the entire cache, which can
result in acompetition for storage and resulting rollbacks.

The history-data competition for storage in L2 causes
rollbacks that are not necessary, according to the SC
requirements. They are required because SC++lite as well
as SC++ isnot able to monitor the blocks for mis-specula-
tions after the replacement. After the rollback, the proces-
sor incurs stalls due to read miss on the replaced data. A
significant performance gap is present in appbt and radix.
In case of radix, the performance gap is still due to limited
L2 bandwidth. Appbt, on the other hand, is still exposing
significant store latency which results in a large history
replacing useful data. A smaller cache can aso reduce the

performance difference between SC++ and SC++lite, as
observed in the remaining applications, by increasing the
stall time due to load misses, which also reduces amount of
generated history.

SC++lite is able to perform well even for relatively
small caches. Moreover, the history is created and retired
relatively fast as compared to cache operations, resultingin
limited writebacks. The time that history is current corre-
sponds to the time in which the system will service the
pending store that created the history. Once the store com-
pletes, the history can be discarded. This short duration of
history in L2 resultsin no significant history writebacks to
memory and therefore will not create performance bottle-
necksin the memory subsystem.

6 Conclusions

This paper proposed SC++lite, a system that uses lim-
ited custom hardware to speculatively relax memory order
while maintaining Sequential Consistency’s (SC’'s) mem-
ory order semantics. SC is attractive from a programming
perspective because it obviates the need for programmers
to annotate memory accesses in programs and enforce
memory order through software. Prior research has shown
that relaxing memory order speculatively can alow SC
systems to achieve the performance of systems that relax
order through software annotation. Unlike previous pro-
posalsfor specul ative implementations of SC, SC++liteisa
low-overhead implementation that fully realizes the bene-
fits of speculation across a wide range of applications and
system latencies while requiring little custom storage.
SC++lite uses the memory hierarchy on each processor to
store ahistory of the modified processor/memory state dur-
ing speculation.

We used cycle-accurate simulation of shared-memory
multiprocessors running scientific and engineering appli-
cations to compare SC++lite's performance and storage
requirements against SC++. We presented a detailed char-
acterization of SC++ history information and corroborate
that: (1) queue requirements drastically vary between 16 to
8192 entries for applications and systems we studied, and
(2) the history information is quite bursty, on average leav-
ing the queue empty 85% of the application execution time.
Our results indicated that SC++lite on average performs
28% better than SC with only 2KB of storage. In contrast,
SC++ requires 26KB to achieve a 31% average speedup
over abase SC system. Moreover, SC++lite's performance
relative to SC++ remained unchanged with a four times
increase in memory latencies, while SC++ storage reguire-
ments almost double to 51KB. Due to the bursty nature of
the history, our resultsindicated little interference with pro-
cessor’'sL1/L 2 traffic even when using small L1 caches.

Acknowledgments

We would like to thank the anonymous referees for their
feedback on the submitted draft of this manuscript. This
work was partially funded through an NSF CAREER

award, an NSF Instrumentation award, and grants from
Intel and IBM.

References

[1] S. V.Adveand K. Gharachorloo. Shared memory consisten-
cy models: A tutorial. IEEE Computer, 29(12):66-76, Dec.
1996.

[2] I.Corporation. The Intel Pentium 4 processor. In Product
Overview at www.intel.convdes gn/Pentiumd/prodbref/in-
dex.htm, 2002.

[3] K. Gharachorloo, A. Gupta, and J Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. In Proceedings of the 1991 I nternational Conference
on Parallel Processing (Vol. | Architecture), pages |-355—
364, Aug. 1991.

[4] K. Gharachorloo, D.Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scaable shared-memory. In Proceedings of the
17th Annual Inter national Symposiumon Computer Architec-
ture, pages15-26, June 1990.

[5] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Ar-
chitecture and design of aphaserver GS320. In Proceedings
of the Nineth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Nov. 2000.

[6] C. Gniady, B. Fasafi, and T. N. Vijaykumar. Is SC + ILP =
RC?In Proceedings of the 26th Annual Inter national Sympo-
siumon Computer Architecture, pages162-171, May 1999.

[7] M. D. Hill. Multiprocessors should support simple memory
consistency models. |[EEE Computer, 31(8), Aug. 1998.

[8] L.Lamport.How to makeamultiprocessor computer that cor-
rectly executesmultiprocessprograms. | EEE Transactionson
Computers, C-28(9):690-691, Sept. 1979.

[9] V.S. Pa,P Ranganathan, and S. V. Adve. RSIM: An execu-
tion-driven simulator for ILP-based shared-memory multi-
processors and uniprocessors. In Third Workshop on
Computer Architecture Education, Feb. 1997.

[10] P. Ranganathan, V. S. Pai, and S. V. Adve. Using speculative
retirement and larger instruction windows to narrow the per-
formance gap between memory consistency models. In Pro-
ceedings of the Nineth ACM Symposium on Parallel
Algorithmsand Architectures(SPAA), June 1997.

[11] J. E. Smith and A. R. Plezkun. Implementing precise inter-
ruptsin pipelined processors. | EEE Transactions on Comput-
ers, C-37(5):562-573, May 1988.

[12] K. C. Yeager. The MIPS R10000 superscalar microprocessor.
IEEE Micro, 16(2), April 1996.

