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Abstract

Effective data prefetching requires accurate mecha-
nisms to predict both “which” cache blocks to prefetch and
“when” to prefetch them. This paper proposes the Dead-
Block Predictors (DBPs), trace-based predictors that accu-
rately identify “when” an L1 data cache block becomes
evictable or “dead”. Predicting a dead block significantly
enhances prefetching lookahead and opportunity, and
enables placing data directly into L1, obviating the need
for auxiliary prefetch buffers. This paper also proposes
Dead-Block Correlating Prefetchers (DBCPs), that use
address correlation to predict “which” subsequent block to
prefetch when a block becomes evictable. A DBCP enables
effective data prefetching in a wide spectrum of pointer-
intensive, integer, and floating-point applications.

We use cycle-accurate simulation of an out-of-order
superscalar processor and memory-intensive benchmarks
to show that: (1) dead-block prediction enhances prefetch-
ing lookahead at least by an order of magnitude as com-
pared to previous techniques, (2) a DBP can predict dead
blocks on average with a coverage of 90% only mispredict-
ing 4% of the time, (3) a DBCP offers an address prediction
coverage of 86% only mispredicting 3% of the time, and (4)
DBCPs improve performance by 62% on average and
282% at best in the benchmarks we studied.

1 Introduction

Increasing processor clock speeds along with microar-
chitectural innovation have led to a tremendous gap
between processor and memory performance. Architects
have primarily relied on deeper cache hierarchies, where
each level trades off faster lookup speed for larger capacity,
to reduce this performance gap. Conventional cache hierar-
chies employ a demand-fetch memory access model, in
which data are fetched into higher levels upon processor
requests. Unfortunately, the limited capacity in higher
cache levels and the simple data placement mechanisms
used in conventional hierarchies often result in high miss
rates and reduce performance. While superscalar engines
with non-blocking caches [19] allow overlapping the miss
latency among the higher cache levels, limited available
instruction-level parallelism and long access latencies to
lower cache levels often expose the miss latency in many
important classes of applications.

Many architects have additionally relied on the prefetch
memory access model to mitigate the shortcomings of the
demand-fetch model. Prefetching helps fetch data in
advance to hide the memory latency by predicting future
memory requests. While prefetching can be initiated in
either hardware [17,5,10,3,15,4,6] or software [9,8,14,12],
many researchers and vendors opt for hardware implemen-
tations for transparency and due to availability of runtime
information which can significantly improve prefetching’s
effectiveness. Most previous proposals for hardware
prefetchers target specific memory access patterns — such
as strided accesses [15,4,6] and accesses to linked data
structures [17]. While effective for the targeted access pat-
terns, these prefetchers have limited general applicability
across a wide spectrum of applications.

There are a number of prefetcher proposals in the litera-
ture that target generalized memory access patterns [5,3] —
including strided accesses, and indirect accesses to linked
data structures and arrays. These proposals primarily rely
on miss address correlation [1] as a technique to predict
and prefetch memory addresses. These prefetchers, which
we refer to as Miss Correlating Prefetchers (MCPs), record
a history of prior L1 cache miss addresses, and correlate the
history to a subsequent miss to trigger a prefetch.

Unfortunately, MCPs suffer from several key shortcom-
ings. First, L1 cache misses are often clustered, especially
in out-of-order engines with high-bandwidth L1 caches,
significantly limiting the lookahead and opportunity for
timely prefetching. Second, rather than predicting block
evictability, these prefetchers place the (prefetched) data in
small associative buffers, and look them up either in paral-
lel with L1 thereby increasing L1’s critical access path or
upon an L1 miss thereby increasing the prefetch hit latency.
Finally, miss address correlation has not been shown to
offer both high prediction accuracy (i.e., correct predictions
as a fraction of all predictions) and high coverage (i.e., cor-



rect predictions as a fraction of all misses) [5].
This paper proposes the Dead-Block Predictors (DBPs)

and the Dead-Block Correlating Prefetchers (DBCPs). A
DBP is a novel hardware mechanism that predicts “when” a
block in a data cache becomes evictable. In a recent paper
[7], we proposed trace-based predictors that record a trace
of shared memory references to predict a last reference to a
cache block prior to an invalidation in a multiprocessor.
Similarly, a DBP records a trace of memory references that
accurately predict the last reference to a block in an L1 data
cache, prior to the block’s eviction. A DBCP uses address
correlation in conjunction with dead-block traces to predict
a subsequent address upon a dead-block prediction. Accu-
rate predicton of a block’s evictability enables timely
prefetching of data directly into an L1 data cache.

We use a cycle-accurate simulation of an aggressive out-
of-order superscalar processor and a spectrum of memory-
intensive benchmarks to show the following:

• For critical cache misses (that are not fully overlapped
by computation and incur stalls), on average 92% of the
intervals between a last reference to a block until its
eviction from L1 are larger than L2 latency, indicating
excellent lookahead opportunity for DBCP. In contrast,
on average only 38% of the intervals between two sub-
sequent cache misses are larger than L2 latency, indicat-
ing a much lower opportunity for MCPs.

• A DBP predicts a block’s evictability on average for
90% of the time and only mispredicts 4% of the time.

• We show for the first time that correlating two prior
addresses significantly enhances MCPs’ accuracy and
coverage.

• Using a 2M on-chip implementation, a DBCP offers
timely prefetching and on average speeds up applica-
tions by 62% and at best by 282%. In contrast, ideal
MCP implementations assuming unlimited storage
increase performance on average only by 17% and at
best by 51%.

The rest of the paper is organized as follows. Section 2
describes previous work on miss correlating prefetchers. In
Section 3, we present the design details of our predictors
and prefetchers. In Section 4, we present the methodology
and results. Finally, we discuss the related work in
Section 5 and conclude the paper in Section 6.

2 Miss correlating prefetchers

There is a myriad of proposals for hardware and soft-
ware data prefetching. We will briefly describe these previ-
ous proposals in the related work in Section 5. In this
section, we will focus on Miss Correlating Prefetchers
(MCPs) [3], the most effective of current hardware
prefetchers applicable to generalized memory access pat-
terns. Prefetching relies on two key mechanisms to success-

fully fetch and place data prior to a processor reference: (1)
an accurate memory address predictor to predict “which”
data to prefetch, and (2) and an accurate predictor of
“when” to prefetch the data. MCPs rely on correlating
cache miss addresses to predict both which data to prefetch
and when to prefetch it.

Figure 1 depicts the anatomy of an MCP. An MCP uses
a miss address predictor and a prefetch buffer. Much as
two-level branch predictors, the miss address predictor con-
sists of two storage levels. A history register maintains an
encoding of the most recent miss addresses. A correlation
table, organized as a cache, records a prediction for a subse-
quent address given a history encoding. Upon prediction,
MCP prefetches a block and places it in the prefetch buffer
for lookup by the processor. The lookup occurs either in
parallel with L1, increasing L1’s critical access path, or
upon an L1 miss incurring high prefetch hit latency.

A recent study [5] evaluated MCPs in detail and con-
cluded that miss address correlation alone results in low
prediction accuracy and coverage independently of the
number of addresses recorded in the history. They proposed
Markov prefetchers that recorded and prefetched up to four
subsequent missing addresses for every history entry. We
present results in this paper that indicate that encoding two
previous addresses results in high prediction accuracy and
coverage in the spectrum of pointer-intensive, integer, and
floating-point applications we studied.

Despite a high address prediction accuracy and cover-
age, prefetching using MCPs is often not timely. Figure 1
depicts an example of MCPs’ shortcomings. A reference to
block B1 results in a cache miss which triggers a prefetch to
cache block C2. Cache blocks C1 and C2 are mapped to the
same block frame in the cache. While the last reference (or
“last touch”) to C1 may occur well in advance of the refer-
ence to C2, the block frame in the cache holds C1 until C2
is moved from the prefetch buffer into the frame upon a
processor reference. In contrast, predicting the last touch to
C1 would allow replacing C1 by C2 in the corresponding
block frame earlier.
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Recent out-of-order superscalar engines further reduce
lookahead in MCPs. These processors rely on non-blocking
L1 caches and often issue multiple accesses in parallel,
reducing the distance between two misses. Furthermore,
these engines issue cache accesses out of program order,
resulting in a re-ordering of miss addresses and address
misprediction. The degree of re-ordering and its impact on
prediction accuracy highly depends on the available paral-
lelism in the application and a processor’s issue-window
size. While using the ordered (i.e., committed) miss address
stream [5] would help increase accuracy, it significantly
reduces the timeliness in prefetching because MCPs have
limited prefetching lookahead.

3 Dead-block correlating prefetchers

In this paper, we propose the Dead-Block Correlating
Prefetchers (DBCPs), that predict a last reference to a block
frame in a data cache, replace the contents of the block
frame upon the last reference, and subsequently predict and
prefetch a new cache block. Cache block frames alternate
between two states: (a) a “live” state which begins with a
miss and is followed by a sequence of hits to the frame, and
(b) a “dead” state which begins after the last hit to the frame
and ends with a subsequent miss. The key observation
behind a DBCP is that the time during which a frame is
“dead” is quite long [20,11] and well more than the time
needed to fetch a cache block from the bottom of the hierar-
chy. Therefore, by accurately predicting both when a frame
becomes “dead” and what cache block the processor will
reference next, an DBCP can eliminate the miss and
improve performance.

A DBCP uses a two-level predictor to predict both a
cache block replacement and a subsequent address to
prefetch for the corresponding block frame. In a recent
paper [7], we proposed Last-Touch Predictors (LTPs) to
predict memory invalidations for shared data in a multipro-
cessor. In this paper, we derive predictors from LTPs that
predict the last reference to a cache block prior to its evic-
tion (i.e., when the block “dies”) in the L1 cache and corre-
late a subsequent address to prefetch with every last touch.

Much like MCPs, DBCPs rely on repetitive memory
access behavior in programs to prefetch effectively. Unlike
MCPs, DBCPs primarily capitalize on repetitive instruction
sequences — rather than memory address sequences — to
predict memory access behavior. Figure 2 depicts prefetch-
ing using a DBCP for our example of memory references.
The predictor encodes the trace of memory references to
A2 from the time it is fetched (by the reference at PCi) into
L1. Upon a last reference to A2 by PCk, the DBCP predicts
that A2 is “dead”, replaces A2 and prefetches A3. Because
the last reference to A2 often arrives much earlier than a
subsequent reference to A3 (at PCl), DBCP hides the

latency for fetching A3. In the rest of the section, we will
describe in detail DBCP’s prediction/prefetching mecha-
nisms and their implementation.

3.1 A dead-block predictor

The first predictor we derive is a Dead-Block Predictor
(DBP) for L1 data caches. Figure 3 (top) depicts the anat-
omy of a trace-based DBP. A history table duplicates the L1
tag array and stores a trace encoding associated with every
tag. We use truncated addition (as before [7]) to maintain a
fixed-size encoding for every instruction trace. In practice,
truncated addition allows a compact encoding (i.e., ~12
bits) while offering high prediction accuracy and coverage.
We also studied using xor (used in other predictors [13])
and found that repetition of PCs (due to iterative control
flow) prevents xor from accurately encoding a trace. While
other encoding functions are possible, a more detailed study
of encoding is beyond the scope of this paper.

A dead-block table maintains encoded traces, called sig-
natures, that end with a dead block. Upon a new history
encoding, a DBP looks up in the dead-block table to match
the trace against a signature. When learning, an L1 replace-
ment places the block’s history encoding as a signature in
the dead-block table. To reduce misprediction frequency, a
DBP uses two-bit saturating counters for every signature to
estimate prediction confidence.

Due to control flow irregularities in applications, multi-
ple cache blocks may have dead-block signatures that are
proper subsequences of each other resulting in subtrace
aliasing [7]. To prevent aliasing, DBP maintains dead-
block signatures per cache block address. Because, the
number of signatures highly varies across blocks (as data
structure usage varies across application phases), we use a
simple hash function to distribute the signatures across the
table. Results in Section 4 indicate that xor works well as a
hash function in practice.

The figure depicts prediction in DBP using our example
of memory references. The trace in the history table for
block A2 is {PCi,PCj}. A memory reference to A2 from

FIGURE 2. A Dead-Block Correlating Prefetcher.
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PCk updates the corresponding history table entry and
looks it up in the dead-block table. Because the table indi-
cates a match, the DBP predicts that block A2 is dead.

3.2 A dead-block correlating address predictor

We derive a Dead-Block Correlating address Predictor,
from DBPs, that correlates the trace leading to a dead block
to a subsequent memory address. In this paper, we use the
abbreviation DBCP to refer to both the address predictor
and the prefetcher we propose. In its minimal form, a
DBCP is a DBP where each dead-block entry also includes
a (prediction for) subsequent address. The dead-block table
simply keeps track of the address referenced the last time a
recorded trace resulted in a dead block. In general, a DBCP
can also include prior address information in the dead-
block traces for improved address prediction accuracy and
coverage at the cost of higher storage overhead. In
Section 4.3, however, we show that in practice, unlike
MCPs, DBCPs exhibit high address prediction accuracy
and coverage without prior address correlation.

Figure 3 (bottom) depicts the anatomy of a DBCP. A
history table entry encodes a list of prior memory addresses
(mapped to the block frame) along with the current PC
trace. A dead-block correlation table records history entries
that result in a dead block, and includes a prediction for a
subsequent memory address. For instance, in our example

in the figure, the predictor maintains a history of a prior
memory address, A1, previously mapped to the same block
frame as A2, with the trace {PCi,PCj}. Upon a reference to
A2 by PCk, the dead-block correlation table predicts that
A2 is dead and predicts A3 for prefetching.

A key difference between MCPs and DBCPs is that
MCPs correlate and predict the miss address stream across
block frames whereas DBCPs correlate and predict the miss
address stream in a given block frame. Intuitively, neither
address stream is fundamentally more predictable than the
other because MCPs’ cache address stream is just an inter-
leaving of DBCP’s block frame address stream. In practice,
we present results in Section 4.3 that indicate that the best
achievable address prediction accuracy and coverage for
MCP and DBCP are comparable.

3.3 Predictor & prefetcher implementation

Unlike previous MCP studies [5,3] that evaluated the
prefetcher’s effectiveness for single-issue in-order proces-
sors, we incorporate and evaluate our prefetchers in a wide-
issue out-of-order superscalar engine (Figure 4). Because
cache block deadtimes are typically large (e.g., hundreds to
thousands of cycles), a DBCP can tolerate high latencies in
dead-block and prefetch address prediction without sacri-
ficing timeliness. Moreover, the execution order of instruc-
tions and the instruction issue width have little impact on a
DBCP’s effectiveness because of the large prediction/
prefetch lookahead. Therefore, unlike MCPs, DBCPs can
monitor and record the program ordered (i.e., committed)
memory reference stream. Because the history table main-
tains a copy of the L1 tags, the ordered memory reference
stream in the history table also produces an ordered L1 miss
address stream.

As in any table-based predictor, a key design parameter
affecting a DBCP’s accuracy is the size and organization of
the correlation table. Due to DBCP’s large tolerance for
latency, the table can be built as a highly associative struc-
ture to minimize the number of conflicts among the signa-
tures and increase accuracy and coverage. Moreover, the
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FIGURE 3. A dead-block predictor (top) and a
dead-block correlating address predictor
(bottom).
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table can be built either on chip to reduce interference with
off-chip traffic, or off chip to optimize for size at the cost of
a higher required bandwidth. Alternatively, the table can be
built as a hierarchy with the on-chip storage holding the
signatures for all the cache blocks in L1 backed up by main
memory. Prefetching a block into L1 would simultaneously
initiate bringing the block’s dead-block signatures into the
on-chip table. In this paper, we evaluate standalone (fast)
on-chip and (slow) off-chip table implementations.

A DBCP can use reference filters to reduce storage and
lookup bandwidth requirements for the tables. In out-of-
order engines with non-blocking caches, cache misses in L1
that hit in L2 (e.g., conflict misses that are temporally
close) are often overlapped and do not introduce memory
stalls on the execution path. In this paper, we augment the
processor’s re-order buffer with a single bit that indicates
whether a load/store instruction at the head of the buffer
stalls (i.e., takes two or more cycles to retire). Such a load/
store instruction incurs a critical miss. The correlation table
only allocates entries for these critical misses. All signa-
tures that do not result in a critical miss are therefore fil-
tered and are not placed in the correlation table. In general,
a DBCP can benefit from more elaborate hardware or soft-
ware techniques to accurately identify the instructions
responsible for a high fraction of memory stalls.

4 Results

We use SimpleScalar 3.0 to simulate an aggressive out-
of-order processor with a cache hierarchy. Table 1 depicts
the configuration parameters for the base system. We have
augmented the simulator to accurately model contention at
the L1/L2 and memory buses accurately. The buses always
give priority to processor requests over prefetch requests.

To gauge the full potential of the predictors and the
effectiveness of the entropy they encode independently of
storage, we assume correlation tables with an unlimited

number of entries in our predictor studies (Sections 4.2 and
4.3). For performance evaluation (Section 4.4), we consider
practical implementations of DBCP with cache-like corre-
lation tables. We consider an on-chip configuration with
2M (including tag and data) 8-way set-associative table
with 18-cycle access latency (including ~64K entries), and
an off-chip configuration with 7.6M (including tag and
data) 16-way set-associative table with 70-cycle access
latency (containing ~460K entries). Both configurations
use a 1K-entry (as many entries as the tag array in the 32K-
L1 D) history table and 12-bit signatures. The off-chip con-
figuration eliminates all capacity and conflict misses in the
correlation table and is the maximum size needed by all the
applications we studied.

The correlation table entries consist of a 19-bit data (17-
bit next cache block address equal to an L1 block tag and a
two-bit saturating counter) and a 27-bit tag and index
(including the current address and the dead-block signa-
ture). We use 27 bits from the L1 cache block’s tag and
index and xor it with the 12-bit signature from the history
table. We use this resulting 27 bits as tag and index for the
correlation table. We have found that this placement func-
tion in practice eliminates conflicts in the tables.

All prefetchers use a request queue with 128 entries.
When the request queue is full, new entries in the queue
replace the old (unissued) ones at the queue head. The
MCPs also use a 128-entry (fully-associative) prefetch
buffer with a 1-cycle access latency in parallel with L1. As
in the request queue, new entries in the buffer remove old
(unreferenced) entries. Prefetch requests are only issued at
most one per cycle when the L1/L2 bus is free.

Table 2 describes the benchmarks we studied, their
inputs, and the corresponding L1 and L2 miss ratios. These
benchmarks include five pointer-intensive applications
(i.e., bh, em3d, health, mst, and treeadd) from the Olden

Processor Caches
Clock rate 2 GHZ L1 I/D 32K, 32-byte block
Issue/retire 8 instructions/cycle direct-mapped d-cache
Branch predictor 8K/8K hybrid 4-way i-cache, 1-cycle
Reorder buffer 128 entries L1 D ports 4
Load/store queue 128 entries L1 D MSHRs unlimited

Prefetcher L2 I/D each 1M 64-byte block
Prefetch MSHRs 16 4-way, 12-cycle
Prefetch requests 128 entries (FIFO) L2 D ports 1
MCP buffer 128 entries L2 D MSHRs unlimited
MCP correlation unlimited, 12-cycle L1/L2 bus 32-byte wide, 2GHz
DBCP history 1K entries Memory
DBCP on-chip 2M 8-way, 18-cycle Latency 70 processor cycles
DBCP off-chip
Table ports

7.6M 16-way, 70-cycle
4

Bus 64-byte wide, 400 MHz

TABLE 1. System configuration.

Benchmarks Inputs & parameters L1 miss
rate (%)

L2 miss
rate (%)

bh 8192 bodies 2 70
em3d 2000 nodes, arity 2, 50 iter. 18 1
health 5 levels, 500 iter. 19 22
mst 1024 nodes 9 53
treeadd 1.6M nodes, 16 levels, 100 iter. 4 2
compress train.in 4 4
perl prime.pl 1 0
gcc 166.i -o 166.s 11 22
mcf inp.in 24 49
ammp ammp.in 14 74
art reference input 46 40
equake inp.in 6 49
mgrid mgrid.in 4 25
swim swim.in 5 30

TABLE 2. Benchmarks and input parameters.



suite [2], and four integer and five floating-point applica-
tions from the SPEC2K (i.e., gcc, mcf, ammp, art, and
equake) and SPEC95 (i.e., compress, perl, mgrid, and
swim). All tested SPEC benchmarks use reference inputs
except for compress. In the interest of reduced simulation
time, we simulated the benchmarks for three billions cycles
(six billion cycles for equake) after skipping an initializa-
tion period of one billion cycles. Compress requires simu-
lating the entire input to benefit from repetitive memory
access behavior. Instead we simulated its train input.

The benchmarks in this study all exhibit a large fraction
of memory stall cycles in their execution with varying
degrees of memory parallelism and overlap.1 On one end of
the spectrum, some of the Olden benchmarks primarily
exhibit a high degree dependent memory accesses, expos-
ing all the miss latencies on the critical path. On the other
end, the floating-point benchmarks exhibit a high degree of
memory parallelism, but are primarily limited by the pro-
cessor’s inability to hide long L2 miss latencies.

4.1 Lookahead opportunity

In this section, we compare the lookahead opportunity
for DBCPs and MCPs. Figure 5 (left), illustrates the cumu-
lative distribution of distances (in cycles) between a last

reference to a cache block prior to the block’s eviction due
to a subsequent miss to another block. The graphs illustrate
the deadtimes for critical misses, those misses which stall
the reorder buffer because their latencies cannot be fully
overlapped. The graphs indicate that except in perl, 80% of
the deadtimes in all applications are 500 cycles are more,
several times larger than the memory latency. Perl exhibits
a high fraction of conflict misses that are clustered in time,
reducing the fraction of deadtimes over 500 cycles to 50%.
These results corroborate previous findings on cache block
deadtimes [20,11], and show that the deadtimes offer excel-
lent prefetch lookahead for DBCPs.

The results on block deadtimes have several implica-
tions. First, because deadtimes are on average several times
longer than memory latency, as the gap between processor
and memory speeds increases, lookahead opportunity
remains high allowing effective data prefetching. Second,
prediction and prefetching techniques relying on block
deadtimes may trade off speed for higher accuracy; the
latency of off-chip storage (or slow but large on-chip stor-
age) for dead-block tables is not as critical if larger storage
helps improve prediction accuracy and coverage.

Figure 5 (right) illustrates the cumulative distribution of
distance between two critical misses in the cache. As we
can see, in 9 out of 14 applications, 20%-80% of the miss
intervals are smaller than L2 latency, allowing insufficient
lookahead to prefetch and overlap these misses. Moreover,
in 10 of the applications, 50% or more of the miss intervals
are smaller than memory latency preventing a prefetcher
from overlapping L2 misses. These results indicate that
cache misses are highly clustered, therefore even if MCPs
offer high address prediction accuracy and coverage, they
may be limited significantly by prefetching lookahead.

The results on cache miss intervals also have several
implications. First, as the gap between processors and
memory speeds increases, lookahead opportunity using
miss intervals relative to memory latency decreases. Sec-
ond, aggressive wide-issue engines exacerbate the negative
impact of miss clustering by issuing a larger number of
memory references every cycle, thereby reducing the loo-
kahead. Third, due to limited lookahead, MCPs require fast
address prediction and prefetching mechanisms and cannot
trade off accuracy for speed. Unlike DBCPs which can use
the program ordered reference streams, MCPs must use the
speculative reference stream which may be re-ordered and
may reduce prediction accuracy and coverage.

4.2 Dead-block prediction accuracy & coverage

Figure 6 (bars labeled “A”) presents the prediction accu-
racy and coverage of a DBP for a 32K L1 direct-mapped
cache. The graphs plot the fraction of correct dead-block
predictions (hits), the fraction of incorrect predictions

1. We evaluated DBP’s and DBCP’s prediction accuracy/coverage for all
of SPEC95 and those SPEC2K benchmarks compiled for SimpleScalar.
While the benchmarks we omit exhibit as high a prediction accuracy/cov-
erage as those presented in this paper, they incur a small number of mem-
ory stalls and do not benefit from prefetching.

2 4 8 16 32 64

FIGURE 5. Lookahead analysis: cumulative
distribution of distance in processor cycles from a
last touch to a subsequent miss (left), and
between two consecutive misses (right).
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(misses), and the fraction of dead blocks not predicted due
to predictor training. The graphs indicate that on average a
DBP predicts 90% of dead blocks and mispredicts (i.e., pre-
maturely predicts live blocks as dead) only 4% of the dead
blocks. We also evaluated DBPs for set-associative caches
an LRU replacement policy and various sizes and found
similar prediction accuracy and coverage. However, we
omit these results in this paper in the interest of brevity.

These results indicate that the potential for trace-based
predictors to predict memory system events is beyond just
predicting memory invalidation and sharing for scientific
applications in multiprocessors [7]. The results corroborate
the intuition that because memory instructions drive the
movement of data in the cache hierarchy, repetitive code
fragments and the resulting instruction traces can help pre-
dict the movement.

Prediction coverage in mst is only 47% because mst’s
primary heap-based data structure is constantly modified,
resulting in many of the dead-block signatures to be obso-
lete upon creation. The two-bit saturating counters in DBP
filter these signatures, preventing them from triggering a
prediction. In health, DBP exhibits a subtrace aliasing
problem because of the irregular control flow in the appli-
cation’s main two-level nested loop, giving rise to a large
number of mispredicted dead blocks. Compress has a pre-
diction accuracy and coverage of 80% because of low pre-
dictability in accesses to specific segments of the main data
structure which is a compression hash table.

Figure 6 also compares the prediction accuracy and cov-
erage of DBP against simple LRU stacks (bars labeled “B”
and “C”) proposed by Peir, et al. [16] to predict evictability
of L1 blocks. The LRU stacks simply maintain a list of
least-recently used addresses. The key idea is that an appli-
cation’s working set has a finite number of cache blocks.
The stacks estimate the maximum size of the working set.
When an address falls out of the stack, the stack predicts
that the corresponding block is dead. Unfortunately,

because working set sizes in a cache may largely vary both
within and across applications [18], LRU stacks fail to pre-
dict dead blocks accurately. The graphs corroborate previ-
ous findings [16] on stacks and indicate that a 64-entry
stack achieves a coverage of 77% while prematurely pre-
dicting dead blocks by over 100% (not shown). A 256-entry
stack predicts dead blocks more conservatively and reduces
the fraction of mispredicted dead blocks to 5%, only
slightly over DBP’s. However, the 256-entry stack’s cover-
age is much lower than DBP, and is on average 60%. More-
over, the stack fails to cover any dead blocks for perl and
ammp due to conflict misses.

4.3 Address prediction accuracy & coverage

While dead-block prediction offers high accuracy and
coverage, the success of a prefetcher also relies on accurate
address prediction. In general, either MCP or DBCP can
use an arbitrary history depth — i.e., record a history of an
arbitrary number of previous addresses to predict a next
address. Larger history depth in MCP and DBCP increases
accuracy by reducing subtrace aliasing — i.e., identical
address sequences leading to different subsequent addresses
— at the cost of higher storage. Too large a history depth,
however, also reduces coverage by increasing the learning
time for predictions that do not benefit from larger depth.
Figure 7 illustrates prediction accuracy and coverage for
MCP and DBCP with depths of one and two. We experi-
mented with varying the depth and found little improve-
ment in accuracy and a decrease in coverage with a higher
depth.

MCP-1 and MCP-2 in the graphs correspond to MCPs
with a history depth and one and two respectively. The
graphs show that there is a significant improvement in pre-
diction coverage from, 52% to 80%, for MCPs when the
depth increases from one to two. Moreover, the fraction of
mispredicted addresses on average drops from 47% to 13%,
increasing the prediction accuracy. Previous studies evalu-

FIGURE 6. Accuracy and coverage of DBP, and 64-
and 256-entry LRU stacks.
The graphs only present bars with up to 20% of mispredicted dead blocks.
High misprediction values are not plotted to enhance clarity of the cover-
age numbers. The misprediction not plotted vary from 24% to 115%.
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ating MCPs for technical and commercial workloads [5]
reported no added advantage to more history than a single
address. Our results clearly indicate that for the wide spec-
trum of applications we study, the addition of another prior
address enhances the predictor’s effectiveness. Moreover,
the previous study evaluated MCPs using a program-
ordered stream of miss addresses from a single-issue in-
order engine. The numbers we evaluate are for the
addresses generated by our wide-issue out-of-order engine.
We found that while the prediction coverage is slightly
higher for the ordered stream, the ordered stream has mini-
mal lookahead opportunity.

The key intuition behind why a larger history depth
increases an MCP’s accuracy and coverage is that while
data structures are often referenced in multiple distinct pro-
gram contexts or phases [7] (e.g., a given sequence proce-
dure invocations), they are not always used in conjunction
with the same other data structures in every phase. More-
over, a group of data structures referenced together are not
always referenced in the same order. An increase in history
depth helps correlate a reference (with a given address) to a
program phase and consequently to a subsequent address.

In DBCP, dead-block signatures can precisely pinpoint
which program phase a reference is from and therefore
what subsequent address is following the given reference in
that phase. DBCP-1 and DBCP-2 correspond to a DBCP
with a history depth of one and two prior addresses respec-
tively. The graphs show that DBCP-1 achieves a high cov-
erage of 82% and with only 4% misprediction. However,
the addition of a small number of extra bits increases cover-
age and decreases the fraction of mispredicted addresses in
DBCP-2 to 86% and 3% respectively. We experimented
with varying the number of bits used from the second prior
address and found four bits to offer the best coverage while
minimizing storage.

There is a single application in which the addition of bits
from a second prior address helps significantly improve the
predictor’s coverage. In em3d, the entire program runs in a
single phase, generating common dead-block signatures.
Because the program marches down a bipartite graph in
which one graph node shares both multiple incoming edges
and outgoing edges with other nodes, a dead-block signa-
ture and the node’s address alone cannot distinguish the
subsequent addresses along the different edges.

On average, MCP-2 and DBCP-2 achieve roughly the
same prediction accuracy and coverage, with DBCP-2 hav-
ing only a slight advantage over MCP-2. On a closer look,
we also found that the number of entries the predictors
maintain are roughly the same. Therefore, DBCP-2’s pri-
mary advantage is in prefetching lookahead opportunity.
However, DBCP-2 effectively encodes the information as
to when to prefetch and what to prefetch simultaneously,
obviating the need for decoupling the predictors, and opti-

mizing for storage.
Figure 8 compares DBCP-2 with a Markov predictor —

i.e., an MCP-1 predictor that predicts four LRU addresses
rather than a single address. Markov predictors increase
coverage at the cost of a much higher fraction of mispre-
dicted addresses (only a single address out of the four pre-
dicted can be correct). On average, Markov achieves a
coverage of 81% (slightly less than DBCP-2) but increases
the fraction of mispredicted addresses to 229%. The
mispredicted addresses may significantly increase traffic in
the memory hierarchy and place a large demand on band-
width. Fortunately, not all of the mispredicted addresses go
to waste. By predicting multiple subsequent addresses and
prefetching them into a prefetch buffer, Markov actually
somewhat offsets the negative impact of miss address re-
ordering due to either re-ordering of references to data
structures across program phases or re-ordering of miss
addresses in the out-of-order engine.

In equake and mgrid, the number of different miss
addresses after the current miss is often larger than four,
because these applications reference different sets of arrays
in different program phases (e.g., different procedures).
Hence, Markov is unable to capture a large fraction of the
misses in these applications. Because DBCP-2 identifies
where the program is executing, it exhibits high prediction
accuracy and coverage in these applications. DBCP-2 per-
forms worse than Markov in health and mst because these
two benchmarks have dynamically alternating sequences of
memory references to their main data structures. Conse-
quently, DBCP-2 spends much time in correlating these ref-
erences, resulting in a low prediction coverage. In contrast,
Markov captures these changes in groups of four, and
yields a higher prediction coverage.

4.4 Prefetching performance

In this section, we evaluate the prefetcher’s effective-
ness in improving performance. We compare DBCP against

FIGURE 8. Accuracy and coverage of Markov and
DBCP-2.
The graphs only present bars with up to 40% of mispredicted L1 misses.
The numbers on top indicate the maximum values for each bar.
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MCP implementations (i.e., both MCP-2 and Markov). To
gauge MCPs’ best performance independently of storage
size, we assume correlation tables for MCPs that are large
enough to fit all of the generated address encoding with a
fast lookup latency of 12 cycles, equal to L2’s latency (we
also evaluated Markov with an ideal lookup latency of one
cycle and observed less than 5% improvement in speed-
ups). Because Markov can potentially benefit from extra
bandwidth, we also present Markov numbers with unlim-
ited bandwidth to L2 and memory.

Table 3 compares a DBCP against an “ideal” L1 with no
capacity/conflict misses. The comparison to “ideal” L1
helps determine what fraction of the memory stalls the
prefetchers can eliminate. The table presents speedups over
a demand-fetched system. Our first observation is that all
prefetchers improve performance over the demand-fetched
system even though our base system is quite aggressive. On
average, DBCP eliminates 62% of the memory stalls in L1
and achieves a 62% speedup. In contrast, MCP and Markov
only eliminate 22% and 30% of the memory stalls and
achieve a speedup of only 14% and 17% respectively.
While Markov benefits from extra L2 and memory band-
width, the improvement is only on average an additional
4%, not enough to break even with DBCP.

Figure 9 breaks down the fraction of memory stalls
removed and incurred in a prefetching system relative to a
demand-fetched system. The incurred stalls are either stalls

originally present in the demand-fetched system or extra
stalls due to incorrect or late prefetching. The removed
stalls are either hits in the L1 (for the case of DBCP) or
prefetch buffer due to a successful (accurate and timely)
prefetch, or hits in the prefetch buffer due to an earlier
mispredicted prefetch.

The figure indicates that DBCP is timely in most appli-
cations. DBCP prefetches late in art, compress, gcc, and
mcf due to the bursty prefetch requests. These applications
would benefit from multiple L2 cache ports and a higher
bandwidth memory system. The request queue in these
applications often becomes full and drops requests. Never-
theless, DBCP eliminates a significant fraction of the mem-
ory stalls in these applications even with a single L2 port.

DBCP is extremely effective in Olden benchmarks
which exhibit a high degree of data dependence through
memory in linked data structures; DBCP virtually elimi-
nates the dependence bottleneck in two applications and
significantly reduces memory stalls in another two. Despite
low prediction accuracy and coverage in mst, DBCP still
speeds up execution by 18%. Mispredictions somewhat off-
set the gains from prefetching in health and compress, due
to cache pollution. Mcf and ammp have large footprints
which do not fit in L2. DBCP, however, accurately predicts
the references and successfully fetches the data into L1,
reducing the memory stalls. Equake generates a large num-
ber of correlation signatures due to a large working set of
data. While DBCP only allocates signatures for critical
misses, there are still more signatures than can fit in a 2M
on-chip table. The off-chip table, however, fits all the signa-
tures and significantly improves speedup in equake.

Ideal L1 MCP-2 Markov Markov
inf b/w

DBCP-2
on chip

DBCP-2
off chip

bh 61 28 38 38 59 59
em3d 60 6 6 13 35 42
health 135 26 47 50 88 89
mst 123 11 24 28 18 18
treeadd 36 17 16 16 33 33
compress 18 4 5 6 7 6
perl 10 5 8 8 5 5
gcc 46 2 9 11 24 27
mcf 185 15 38 53 125 131
ammp 303 62 63 69 282 283
art 155 4 1 3 52 54
equake 50 2 10 11 2 27
mgrid 56 4 21 30 27 48
swim 94 7 25 33 31 51

TABLE 3. Performance comparison of the
prefetchers against an ideal demand-fetched
system.
The table depicts percent speedup over our base demand-fetched sys-
tem. Ideal L1 numbers correspond to an L1 with no capacity/conflict
misses. MCP and DBCP use address history depth of 2 (i.e., MCP-2 and
DBCP-2). The table also depicts Markov numbers with unlimited band-
width to L2 and memory (Markov inf b/w). The DBCP numbers corre-
spond to an on-chip implementation with 2M 8-way storage and 18-cycle
latency and off-chip storage with 7.6M 16-way storage and 70-cycle
latency. The numbers appear in italic are those which Markov outper-
forms DBCP. All results are normalized against the base system (no
prefetch) using 12-cycle 1M L2.

FIGURE 9. Breakdown of all memory stalls
relative to a demand-fetched system.
The DBCP numbers correspond to an off-chip table implementation.
Incurred stalls are stalls that the prefetchers are unable to remove. These
stalls are due to prefetcher training and late (not timely) prefetching. The
extra prefetching stalls are extra memory stalls incurred because of
prefetching. These stalls are bandwidth loss due to misprediction and
cache pollution (in DBCP) because of incorrect prefetching into L1.
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In contrast, MCPs are timely for many of the Olden
benchmarks. The benchmarks exhibit a high degree of data
dependence and large cache miss intervals (Figure 5)
allowing for prefetching lookahead. In SPEC benchmarks,
the misses are bursty and often independent allowing little
prefetching lookahead. Markov always improves perfor-
mance over MCP-2 even though the predictors achieve
comparable coverage (Section 4.3). Markov’s effective cov-
erage is higher than MCP-2 because some of the mispre-
dicted prefetches placed in the buffer actually hit for
subsequent misses. The bandwidth loss in MCPs is not sig-
nificant because most prefetches are either late but accurate
or early but inaccurate. In the former case, prefetches do
not increase traffic as misses are merged with outstanding
prefetch requests. In the latter case, inaccurate prefetches
which are buffered are useful for subsequent misses.

Besides equake, MCPs only improve performance over
DBCP in mst and perl. In mst, Markov improves prediction
coverage over DBCP (as discussed in Section 4.3) and
removes relatively more stalls. Perl primarily incurs L1
conflict misses satisfied by L2 and therefore neither
prefetcher is timely for perl. However, hits in the prefetch
buffer due to mispredicted prefetches significantly improve
performance in Markov over DBCP.

Table 4 compares the on-chip 2M DBCP with a base 1M
L2 (with a 12-cycle hit latency) against an 3.1M 6-way L2
with approximately equal storage cost including the tag
overhead. We evaluate both an aggressive large L2 imple-
mentation with the same 12-cycle hit latency as the base
L2, and a slower but more realistic L2 hit latency of 18
cycles. The table indicates that the addition of an on-chip
DBCP is much more cost-effective than increasing L2’s
size. Half of the applications do not benefit from a larger
L2. A larger L2 slightly outperforms DBCP only in two
applications, health and gcc, in which the larger L2 cap-
tures a significant fraction of their working sets. Moreover,

in a realistic 3.1M L2 implementation with a longer access
latency, seven of the applications actually exhibit slow-
down because the out-of-order engine fails to overlap the
long L2 latency.

5 Related work

There are a number of hardware-based data prefetching
techniques, many of which customize hardware for specific
memory reference patterns. Chen and Baer proposed stride
prefetchers [4] that correlate non-unit data address strides
with a memory instruction PC in a small table and prefetch
based on the stride. Jouppi proposed stream buffers [6] to
detect unit stride cache miss address sequences and corre-
lated them with a “starting” address to prefetch them
sequentially. Palacharla and Kessler [15] extended stream
buffers to non-unit stride stream. Mehrorta and Harrison
[10] proposed the indirect reference buffers to identify data
address dependence in recursive or linked data structures.
Roth, et al. [17], proposed prefetchers that capture memory
reference dependence in linked data structures and associ-
ate them with instruction PCs to initiate a prefetch. Charney
and Reeves [3] were first to use address correlation in hard-
ware on the L1 miss stream to prefetch. Joseph and Grun-
wald [5] proposed Markov prefetchers that are miss
correlating prefetchers associating multiple subsequent
addresses with each correlation.

Many software prefetchers rely on accurate compile-
time analysis of memory access patterns to detect both what
memory addresses are subsequently referenced and when
the data can be placed in the cache. Mowry, et al. [12],
show that for numerical and scientific applications, soft-
ware prefetchers can successfully hide the memory access
latency. Luk and Mowry [9], Lipasti, et al. [8], and Ozawa,
et al. [14], also evaluate the effectiveness of heuristics-
based techniques which insert compile-time prefetch
instructions in pointer-intensive applications and applica-
tions with recursive data structures.

6 Conclusions

In this paper, we proposed and evaluated Dead-Block
Correlating Prefetchers (DBCPs). These prefetchers, use a
novel mechanism, Dead-Block Predictors (DBPs), to pre-
dict when L1 data cache blocks become evictable. Previous
techniques for data prefetching primarily relied on correlat-
ing the L1 data miss address stream to predict and trigger a
prefetch. Predicting a dead block, however, significantly
enhances prefetching lookahead over previous techniques.
DBCPs predict and prefetch a subsequent block address
upon predicting a block’s eviction. DBCPs enable effective
data prefetching in a wide spectrum of pointer-intensive,
integer, and floating-point applications with arbitrary mem-
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ory access patterns.
We used cycle-accurate simulation of an aggressive

wide-issue out-of-order superscalar processor and memory-
intensive benchmarks to show that: (1) dead-block predic-
tion enhances prefetch lookahead by at least an order of
magnitude over previous techniques, (2) a DBP can predict
dead blocks on average with a coverage of 90% with only
4% misprediction, (3) a DBCP offers an address prediction
coverage of 86% with only 3% misprediction, and (4)
DBCPs offer timely prefetching of data directly into L1 and
help improve performance by 62% on average and 282% at
best. In contrast, the best current proposal for prefetching
generalized memory access patterns achieves a speedup of
only 17% and at best 51%.
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