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tive discrete-event simulation, performance analysis

1. INTRODUCTION

The architecture of a parallel computer specifies an interface between software and
hardware. Computer architects prefer to study the complex interactions across this
interface by running and measuring real applications. Simulation allows evaluation
of these interactions without building hardware prototypes, speeding the design
process.

Simulation has long been used to evaluate proposed computer hardware for cor-
rectness and performance. However, most simulations have focussed on low-level
implementation details: circuit level, switch level (ideal transistor), or logic (gate)
level. These detailed simulations serve an important function, but are orders-of-
magnitude too slow to evaluate system-level performance. Real applications on
parallel machines run for billions, or even trillions of cycles; even register-transfer-
level simulators are much too slow.

Over the last several years, direct execution has become widely used to accel-
erate architectural simulations [Covington et al. 1988; Brewer et al. 1991; Boothe
1992; Davis et al. 1991; Lin 1992; Uhlig et al. 1994]. Direct execution exploits
the commonality between the instruction set of the simulated target machine and
the underlying host system. For example, a floating-point multiply on the target
is “simulated” by executing a floating-point multiply on the host. Such a system
need only simulate the differences between the target system and the host, achieving
impressive performance when the two systems are very similar.

Simulations of parallel computers have exploited direct execution in several ways
[Boothe 1992; Davis et al. 1991; Cmelik and Keppel 1994; Rosenblum et al. 1995].
Most commonly, a parallel target system is simulated on a uniprocessor host. For
example, the Tango system spawns an event generation process for each processor in
a target shared-memory system. These processes directly execute all computation
instructions, but must send most memory references to a central simulation process.
Tango can be parallelized to a limited extent by running the event generation
processes in parallel, but the central memory-system simulation process quickly
becomes a bottleneck.

More recent simulators [Reinhardt et al. 1993; Brewer et al. 1991; Rosenblum
et al. 1995; Fujimoto 1983] extend direct execution to simulate a parallel target
machine on top of parallel host. The first of these—the Wisconsin Wind Tunnel
(WWT)—runs on a a Thinking Machines CM-5 [Hillis and Tucker 1993]. WWT
differs from the other simulators in two ways. First, it directly executes all load
and store instructions that hit in the target system’s cache. Second, it integrates
direct-execution with a conservative fixed-window parallel discrete-event simulation
algorithm to not only parallelize event generation, but also the memory system
simulation [Lubachevsky 1989; Ayani 1989; Nicol 1992; Fujimoto 1990; Misra 1986].

Parallel simulators like WWT are much faster than comparable uniprocessor
simulators, providing the quick turn-around-time that can be so important to the
design cycle. However, parallel simulation is not necessarily cost-effective for eval-
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uating alternative parallel machines. Computer architects frequently run many
independent simulations—for different applications, memory systems, and system
sizes—and compare the results. Because these simulations are independent and run
as a batch, parallelism can be achieved much more simply by running them simulta-
neously on different workstations. And since workstations have better (i.e., lower)
cost/performance ratios than parallel computers, this simpler “coarse-grain” par-
allelism appears more cost-effective than finer-grain parallel simulators like WWT.
This cost/performance differential is only exacerbated by the reality that parallel
simulators rarely achieve perfect speedups.

However, in the central result of this paper, we show that parallel computer simu-
lations are, in fact, more cost-effective than uniprocessor simulations, for sufficiently
large target systems. The key intuition behind this result is that large simulations
require large memory sizes, which dominate the cost of a uniprocessor; parallel com-
puters allow multiple processors to simultaneously access this large memory. Using
cost models based on commercial products and general technology trends and a per-
formance model based on WWT, we show that (1) for bus-based shared-memory
multiprocessors, parallel simulation becomes more cost-effective when target sys-
tems reach 16 or 32 nodes, and (2) for massively parallel systems, with their large
price premium, parallel simulation becomes more cost-effective when the target
system size reaches 32.

This paper also develops an analytic model of WWT’s performance which incor-
porates three major factors: event processing time, context switch overhead, and
host cache and TLB interference. We show that the variability in event process-
ing times can be accurately modeled using Kruskal and Weiss’s model for fork-join
parallel programs [Kruskal and Weiss 1985]. The frequency of context switches,
incurred when switching between target nodes, is accurately modeled by the max-
imum of binomial random variables. We extend Thiébaut and Stone’s footprint
model to predict the interference of multiple targets in the host cache and TLB
[Thiébaut and Stone 1987]. Our model improves upon Thiébaut and Stone’s by
allowing for (1) multiple (more than two) interfering processes and (2) sharing of
address space among the processes. Finally, we show that the model accurately
estimates the measured speedup of WWT, with maximum error of 8% in three
applications and 16% for all five applications.

The next section reviews the design of the Wisconsin Wind Tunnel. Section 3
develops the analytic performance model, and Section 4 compares its predictions
to the measured speedups. Section 5 describes how the performance model is ex-
tended to estimate cost/performance for many target and host systems. Section 6
presents and discusses the results from this cost/performance model, and Section 7
summarizes our contributions.

2. SIMULATION METHODOLOGY
2.1 The Wisconsin Wind Tunnel

The Wisconsin Wind Tunnel (WWT) is a simulator for evaluating parallel com-
puter systems—specifically cache-coherent shared-memory computers [Reinhardt
et al. 1993]. WWT uses the execution of shared-memory applications to drive a
distributed discrete-event simulation of proposed hardware. Events generated by
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the simulation, such as cache misses and coherence messages, are used to sched-
ule the application, permitting accurate calculation of the target system execution
time.

WWT uses direct execution to exploit similarities between the target system
(under study) and the host system (on which it executes). Because WWT exe-
cutes on a message-passing machine (a Thinking Machines CM-5), it must simulate
the shared memory abstraction using a fine-grain extension of Li’s shared virtual
memory [Li and Hudak 1989]. Shared virtual memory uses the standard address
translation hardware to control memory access on each node. When a node first
accesses a shared data page, it allocates a local copy and maps it into the shared
address space on that node; subsequent accesses reference the copy. Multiple read-
only copies are supported using the page protection facilities. Program accesses
that require a data transfer to acquire a valid or exclusive copy are signaled as page
faults.

WWT’s fine-grain extension uses the CM-5’s error-correcting code (ECC) bits to
synthesize tag bits on each 32-byte block in physical memory [Reinhardt et al. 1993].
Using the three tag values—invalid, read-only, and writable—in combination with
the address translation hardware, WW'T implements a distributed shared memory
that maintains coherence at a finer granularity than a virtual memory page.

WWT uses logical clocks to correctly calculate the logical execution time of a
target system, modeling latencies, dependencies, and queuing. WW'T manages
interprocessor interactions by dividing program execution into lock-step quanta
(also called fixed windows [Fujimoto 1990], bounded lag [Lubachevsky 1989] or
time buckets [Steinman 1992]) to ensure all events originating on a remote node
that affect a node in the current quantum are known at the quantum’s beginning.
WWT implements this using the CM-5’s “network done” barrier, which guarantees
that all messages are received before the quantum completes [Leiserson et al. 1993].
WWT combines this distributed simulation algorithm with direct execution by
ordering all events on a node for the current quantum and directly executing the
process up to its next event.

3. WWT PERFORMANCE MODEL

One approach to evaluating cost/performance of parallel simulation is to simply
measure the performance of simulation runs on several different system sizes and
directly compute the cost/performance ratio. Unfortunately, while this technique
provides exact results for the measured systems, it 1s difficult to extrapolate them
to larger or smaller systems. Furthermore, simple measurements provide little or
no insight into why a system performs as it does, making it difficult to understand
the generality of the results.

In this study, we construct a performance model of the Wisconsin Wind Tunnel
that accurately predicts the simulation speedup. We do this by estimating the time
to simulate N target nodes on p host nodes; as we vary p, the number of target
nodes per host node, K = N/p, changes. We then compute speedup as the ratio
of the time to simulate N target nodes on a single (p = 1) host node over the
time to simulate V target nodes on p host nodes. We calibrate the model, for each
application, by extracting parameters from a small number of fully-parallel (K = 1)
simulation runs. Section 4 discusses the calibration and accuracy of the model, and
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Section 5 describes how we extrapolate the model to estimate cost-performance for
many different simulations.

Our model predicts the mean running time of a quantum. The running time of
quantum ? begins at the end of the ¢ — 1st quantum synchronization barrier and
terminates at the end of ¢th quantum barrier, as illustrated in Figure 1. When
simulating a single target node per host node (K = 1), two major factors dominate
the quantum running time: processing time—the time to process simulation events
including direct execution of the target program—and the quantum overhead—
which consists of a barrier synchronization and the overhead of scheduling the target
nodes. (The barrier synchronization uses the CM-5’s “network done” operation to
guarantee that all messages are received before the quantum completes, to ensure
causality in the next quantum.) As illustrated in the left-hand side of Figure 1, the
running time is simply the (fixed) quantum overhead plus the maximum processing
time of any of the host nodes (e.g., host node 1 is on the critical path).

When there are multiple target nodes per host node (K > 1), the running time
includes the sum of the processing times of each target node on the critical path.
In addition, the simulation incurs both direct and indirect overheads from context
switching. The direct overheads include the time to save and restore integer and
floating-point registers. The indirect overheads occur because multiple target nodes
compete for space in the host’s cache memory and translation lookaside buffer
(TLB), causing extra misses. The right-hand side of Figure 1 illustrates the case
where two target nodes are simulated on each of two host nodes.

Finally, when all target nodes are simulated on a single host node (K = N),
there can be no load imbalance so there is no waiting time. The quantum synchro-
nization barrier becomes unnecessary and could be omitted; however, the overhead
is insignificant compared to the K = N processing times.

An ideal performance model for parallel simulation would accurately predict per-
formance simply as a function of the number of host nodes, p, and the number of
target nodes per host node, K. However, such a simple model cannot account for
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variations between target applications, target architectures, or host systems.

To accurately model WW'T’s performance, we found it necessary to break down
the running time on the critical path into four components: the sum of the process-
ing times (Section 3.1), the direct overheads (Section 3.2), the indirect overheads
(Section 3.3), and the quantum synchronization time. Each of these submodels
establishes a theoretical foundation to model the underlying physical behavior of
these four primary performance factors. Our models for the components require
a total of 14 parameters to be measured for each target application (and target
architecture). Several of the parameters are simple event frequency measures, such
as the mean number of active target nodes in a quantum. Others are timing mea-
surements, such as the mean event processing time. Accurate, low-overhead timing
measurements were made possible by the cycle counter in the CM-5’s network in-
terface unit. All parameters are simple to gather and can be extracted from four
runs of the fully-parallel simulation, as described in Section 4.

We also experimented with simpler models that require fewer parameters, includ-
ing an asymptotic approximation described in Section 6. However, these simpler
models were unable to consistently capture the performance across the range of
workloads, applications, and processors.

In the remainder of this section, we describe how we model each of the major con-
tributors to simulation time: event processing time, direct context switch overhead,
and host cache and TLB interference.

3.1 Modeling Processing Times

A potentially serious problem with conservative fixed-window simulation algorithms
is that most host nodes will be idle while they wait for the slowest node to reach the
barrier. In WWTT, variations in event processing time are caused both by variation
in the number of events that must be processed and in the time to process different
types of events.

Within each quantum, a target node may process zero or more events. The
(hopefully) common case is that a target node uses direct-execution to “simulate”
local computation, including memory references that hit in its local cache. However,
other events can occur, such as local cache misses and coherence messages from
remote nodes. A target node may also have no events to process if, for example,
the target program is waiting for a lock, barrier, or cache miss.

We have modeled this variability using a model that Kruskal and Weiss proposed
for estimating the completion time of fork-join programs on MIMD parallel proces-
sors [Kruskal and Weiss 1985]. The model is asymptotically exact (as p and K go to
infinity, with K growing faster than log, p) if the processing times are independent
and identically distributed (i.i.d.) and the distribution function is increasing failure
rate. However, they demonstrate that the model is remarkably robust even when
these assumptions are violated.

In WWT, processing times are neither independent nor identically distributed.
For example, when the target program uses barrier synchronization, target nodes
that reach the barrier first will wait for the rest; since the barrier may span multiple
quanta (due to target system load imbalances), the event processing times will be
zero for all the waiting target nodes and hence are not independent. Moreover, a
parallel program typically exhibits several distinct phases of execution, where the



Modeling Cost/Performance of a Parallel Computer Simulator . 7

behavior of the program changes across phases, resulting in processing times that
are not identically distributed over time. We have found that the lack of indepen-
dence has little effect, perhaps since well-written parallel programs spend little time
waiting for barriers, but that the phase behavior of programs is significant.

Kruskal and Weiss’s model uses two parameters to characterize the workload: the
mean p and variance o2 of the processing times. We modify their model slightly,
by using standard analysis-of-variance techniques to separate the variance within a
quantum, o?, , ., from the variance of the entire population, o? [Jain 1991]. This
modification approximates the more technically correct, but computationally ex-
pensive, alternative of computing u and o2 separately for each quantum. Our model
for the mean processing time in a quantum, Tpyocessing, 18 simply:

Tprocessing([(vp) = [\7,” + Cintra V 2K loge P (1)

The first term in the equation is simply the expected sum of the processing times
on any host node.! The second term accounts for the quantum running time being
determined by the slowest host node.

3.2 Modeling Direct Overhead

Because WW'T uses a separate address space for each target node, it incurs a
full context switch whenever it must simulate a different target node. The direct
context switch overhead includes the time to save and restore both integer and
floating-point registers. Since the CM-5’s SPARC processor uses register windows,
the time to restore integer registers must include factors for the mean number of
underflow traps per context switch (Nyin) and the mean underflow trap service
time (Tyin)-

WWT includes several optimizations to eliminate unnecessary state saving on
context switches. For example, because the simulator does not use any floating-
point operations, WW'T only restores the floating-point registers if the target CPU
needs to execute. This reduces the overhead in the case that a target only needs to
process non-target CPU events, e.g., directory messages.

WWT only schedules for simulation those target processes that are active—
i.e., either have a running target CPU or a pending event—in a given quantum.
Therefore, the number of context switches on the critical path i1s equal to the number
of target nodes scheduled for simulation. To estimate how many of these fall on the
critical path, we assume that the critical path has at least as many active target
nodes as any other host node. Thus we can model the number of context switches
as the expected maximum of p binomial random variables, each being the sum of K
flips of a coin with probability equal to the probability that a given target process is
active. Similarly, we predict the number of floating-point register saves and restores
on the critical path using a “coin” whose probability is the fraction of target nodes
in a quantum that directly execute CPU events.

Let N sy denote the mean number target nodes that are active in a quantum.
The probability of a target node being active would then be % Similarly, the
probability of floating-point register saves and restores for a target process would

INote that the mean p includes the zero processing times that arise when a target node is blocked
for some synchronization or protocol event
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be %, where Ny, denotes the mean number of target nodes with a running CPU

in a quantum. Let B(K, P) denote the binomial random variable equal to the sum
of K flips of a coin with the probability P. The expected value of the maximum of
p such 1.1.d. binomial random variables is:

K
Elmazl_, Bi(K, P)) = Y.(1 = (P{B(K, P) < 2})") 2)
=0
Note that since this expectation has no known closed-form solution, our overall
performance model is computational, not closed form.
Denoting the mean service time for a context switch as 7,4, and floating-point
register saves and restores as T,, our model for the direct overhead is:

NCI‘S’LU
N

N
+E[maz?_, B;(K, %)]Tfp (3)

This simple model proves to be extremely accurate.

Tairect (KJ?) = E[ma:ﬂ?:lBi ([{7 )] (Tcxsw + NwinTwin)

3.3 Modeling Indirect Overhead

When multiple target nodes are simulated on the same host node, they compete
for space in the host’s cache memory and TLB. The interference that results has
a first-order effect on simulation performance. Other researchers have seen similar
effects in more generalized multiprogrammed, multithreaded and multiprocessor
environments. Thiébaut and Stone [Thiébaut and Stone 1987] propose a model
for predicting cache behavior for a multiprogrammed (multiple active processes)
system. Agarwal et al. [Agarwal et al. 1989] enhance the model to estimate the
performance of multithreaded processors, where context switches occur at (finer)
cache miss intervals. Similarly, Mendelson et al. [Mendelson et al. 1990a] model
interference due to coherence traffic among multiple processes in a multiprocessor
system and the time-varying behavior of live and dead lines [Mendelson et al. 1990b].

We use a generalization of Thiébaut and Stone’s footprint model to predict inter-
ference in the cache and TLB—i.e., a cache with a small number of sets—among
multiple target processes on the same host node. Thiébaut and Stone’s model esti-
mates interference of two processes with disjoint address spaces in a cache. Because
in WWT target processes share the text (instruction) segment of the simulator’s
address space, our model improves upon Thiébaut and Stone’s by allowing sharing
among address spaces of the interfering processes.? We further extend the model
to allow for multiple (more than two) processes interfering in the cache.

In the following, we first describe our models for fully-associative and direct-
mapped caches with two interfering processes. Then, we propose a technique for
approximating interference among more than two processes. Because, our ultimate
goal is to estimate the running time on the critical path of the simulation, we
describe a technique for characterizing the behavior of processes on the critical

2To the best of our knowledge, our model is the first to allow for sharing of address spaces.
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path. Finally, we introduce a technique for extracting the required parameters for
the models from a fully-parallel simulation run.

3.3.1 Model Assumptions and Terminology. Thiébaut and Stone’s model esti-
mates the interference of two processes in the cache given their footprints. The
footprint of a process is the set of unique (cache) blocks a process references in its
address space. Assuming an infinite cache, the footprint corresponds to the set of
blocks a process leaves in the cache upon a context switch. In a finite cache, some
footprint blocks compete with others for placement. We define the projection of a
process to be those footprint blocks which a process leaves in a finite cache.? We
define interference to be the change in size of the projection of one process caused
by another.*

In our models, process address spaces consist of two segments: a per process
private segment, which is accessed exclusively by a given process, and a shared
segment, which is accessed by all processes. Therefore, a process may interfere
with another in two ways. As in Thiébaut and Stone’s model, a process may reduce
the projection of another by referencing blocks that replace blocks from the second
process. In addition, in WWT a process may also increase the projection of another
process by referencing blocks from the shared footprint, in effect prefetching blocks
that may be used by the other process. Our models estimate the interference to
be the difference of the above two effects; 1.e., the number of blocks of one process
replaced by a second process minus the number of shared blocks left in the cache
by the second process.

Our models make the following assumptions:

—all sets are equally likely to be referenced,
—references within sets are independent and identically distributed,

—shared blocks in the projection of one process, are subsequently referenced by
another,

—processes have similar shared footprints, and only differ in private footprints.

In the rest of this section, we first introduce models for estimating the interference
of two processes in the TLB and cache; our host TLB is a fully-associative cache
and our host cache is unified—i.e., it holds both instructions and data—and 1is
direct-mapped. Second, we show how by using these models we can estimate the
interference of multiple processes. Third, we show how to approximate the size of
process footprints on the critical path. Finally, we present a technique for extracting
the model parameters from a fully-parallel simulation run.

3.3.2 Interference in a Fully-associative Cache. This section describes a model
for estimating the interference of two processes in a fully-associative cache. A fully-
associative cache is one in which a single set contains all the block frames. Our
model assumes that blocks from a process’s footprint can occupy any of the frames.
Given two processes accessing the cache consecutively, our model estimates how
many blocks of the first process are replaced by the second process, and how many

3Thiébaut and Stone called this the “footprint in a finite cache”.
4Thiébaut and Stone called this the “cache-reload transient”.
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shared blocks the second process leaves behind—to be subsequently accessed by the
first process.

Much like Thiébaut and Stone, we first find the probability that the first process
leaves a given number of blocks in the cache. We then find the joint probability
that a second process replaces some of these blocks and leaves a given number of
shared blocks behind. Finally, the interference is simply the expected value of the
joint probability. Assume a fully-associative cache with N block frames. Given two
processes A and B, let Fg denote the shared footprint and F4 and Fp denote the
private footprints of the processes respectively. Assume A runs first and leaves a
projection in the cache, and B subsequently runs and interferes with A’s projection.

Let X denote the random variable representing the size of A’s projection in the
cache. We need to determine the probability of A’s projection being of a given size.
We know that A’s footprint is of size Fis + F)4 and there are N block frames in the
cache. Assuming that a footprint block can be placed in any frame, partitioning
A’s footprint among the frames is analogous to fitting Fs + F4 customers in N
queues [Lazowska et al. 1984]. Therefore, there are (Fs‘l'%*_"'lN_l) ways A can leave
a projection in the cache. Similarly, in order for the projection to be of a given size,
e.g., k, we will have to find the number of ways exactly k block frames in the cache
are touched at least once. The latter is analogous to fitting Fig + F4 customers in
k non-empty queues, 1.e., (FSZfﬁ_l). Moreover, there are (J:) ways to choose k
block frames in the cache. It then follows that:

N\ [(Fs+Fa—1
P{X =k} = <<;S)‘EFA ]i_Nl_ 1)) (4)

N -1

Assume A has left £ blocks behind in the cache. When B runs, some of A’s
blocks will be replaced thereby reducing the size of A’s projection. But, B will
leave behind a number of shared blocks which are subsequently used by A, in effect
increasing the size of A’s projection. We will have to estimate how many blocks
of A will be replaced by B and how many shared blocks B will leave behind in
the cache. Let Z denote the random variable counting the number of A’s blocks
replaced by B, and S denote the random variable counting the shared blocks left
behind by B. The quantity of interest would then be P{Z =i, S = j|X = k}.

Much like A, the number of ways B can leave a projection in the cache 1s
(F5+FB+N_1). Unlike A, we will have to distinguish the different orderings of

N-1
shared and private blocks in B’s footprint. Each projection may have (FS;fB)

possible orderings of shared and private blocks which will make the total number
. N Fs+Fg\ (Fs+Fg+N—1

of possible projections ( *;’S B)( +NB_+1 )

Now, we will find the number of ways B can replace ¢ blocks of A and leave j

shared blocks behind. Let w be the size B’s projection. There are (l:) ways to

replace 7 blocks of A, (g:f) ways to choose frames in the rest of the cache, and

(IJ”) ways to choose j frames containing shared blocks. Therefore, the number of
ways we can choose w block frames, 7 of which belong to A and j of which contain
shared blocks is (1:) (JZ}:IZ) (1;’) Given our selection of w block frames, the number of
ways we can partition B’s footprint in these frames—touching all of them at least
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once—is (FS Ziﬁ_l) Since j of the frames contain shared blocks and w — j of them
contain private blocks, the rest of the footprint can be ordered in (Fsg,'ffj_w) ways.

Hence:

P{Z=iS=j|X=k}=

> OCIOCRE e

w=max(i,j) (5)
<F5—|—FB) <F5—|—FB+N—1)

Fg N-—1
and
N
P{Z=iS=j}=> P{X=k}P{Z=i5=j|X =k} (6)
k=0

Let Irrp(Fs, Fa, Fp) denote the expected value of B’s interference with A in
the TLB, then:

N N
Irpp(Fs,Fa,Fg) =Y > (i—j)P{Z =15 =j} (7)
=0 j=0

3.3.3 Interference in a Direct-mapped Cache. In this section we describe a model
for estimating the interference of two processes in a direct-mapped cache. A direct-
mapped cache is one in which each set contains only a single block frame. Our model
assumes that footprint blocks are equallly likely to land in any of the cache sets.
Consequently, we estimate the interference in a single set, and multiply the result
by the number of sets to find the interference in the cache. We can treat each set
of a direct-mapped cache as a fully-associative cache and estimate the interference
using the model in Section 3.3.2. Unlike a fully-associative cache, however, not all
of a process’s footprint land in one set of a direct-mapped cache. Therefore, we
need to account for the fraction of a process’s footprint that lands in a specific set
of the cache. Moreover, because a direct-mapped cache contains only a single block
frame in each set, we can develop somewhat simpler models than those described
in Section 3.3.2.

Assume there are two processes A and B accessing the cache with a shared
footprint of size Fg and private footprints of sizes F'y and Fp respectively. A first
runs and leaves a projection in the cache, and B subsequently runs and interferes
with A’s projection. Assume a direct-mapped cache with N sets. Since references
to sets are assumed independent and identically distributed, each reference is a
Bernoulli experiment with probability p = % of landing in a specific set (success),
and probability ¢ = 1 — p of landing in any other set (failure). The size of A’s
projection in a set will then follow a tail binomial distribution:

Fs+Fa if k=0

— )
P{X - k} - { 1— qu+FA if k=1 (8)

We now need to find whether B leaves a projection in the set and if so whether
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the projection contains a shared block. Since, some of B’s footprint does not land in
the set of interest, we first find the probability that a given portion of B’s footprint
lands in the set. Let Y denote the random variable representing the number of
blocks in B’s footprint landing in the set. Because B’s references are also Bernoulli
experiments, Y follows a binomial distribution:

Fs+ F
P{Yzl}=< SJ; B)p’qFS+FB" (9)

Assume for now that B’s footprint in the set is of size [ > 1 blocks. We would
like to find the probability that the last reference to the set is a shared block. Let

m denote the number of shared blocks in B’s footprint landing in the set. There

are (l:f) ways to choose shared blocks and (:ﬁl) ways to choose private blocks and

(l) ways to order the private and shared blocks in B’s footprint. Therefore, the

m

total number of orderings of B’s footprint in the set is (FS) ( Fs )(nll) Similarly, if

m/ \l—m

the last block is shared, the rest of the blocks in the footprint can be ordered in

(I:f) (lljﬁl) (nll__ll) ways. Let S denote the random variable counting the number of

shared blocks in B’s projection. Therefore, for [ > 1 the probability is:

min(l,Fs) Fs Fy I—1
( | ) - m/\l—-m/\m-—1
P{S=1Y =1} = =
0
m/)\l—m/\m
m=1
(10)
P{S:0|Y:l} = 1—P{S:1|Y:l}
Summing over all possible values of [, we obtain:
Fs4Fp
PIS=jY>1}= 3 P{S=jIy =1}P{y =1} (11)

=1
We now proceed to find the probability that B replaces i € {0, 1} blocks from A
and leaves j € {0, 1} shared blocks in the set. Let Z denote the random variable
counting the number of blocks in A’s projection replaced by B. Then,

e P{Y=0}+P{X=0}P{S=5Y >1} ifi=0 .
P{Z_Z’S_j}_{P{X:I}P{S:j,YZ1} iz (12
B’s interference with A in the cache is then:
ICaChG(FSaFA7FB) = N(P{Z: 115: 0}_P{Z: 075: 1}) (13)

3.3.4 Interference among Multiple Processes. The models we have developed in
Sections 3.3.2 and 3.3.3 estimate interference of exactly two processes in the cache
and TLB. In WWT, there may be multiple (more than two) target processes sim-
ulating on a single host node. In the following, we apply a simple extension to
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Thiébaut and Stone’s footprint model to allow for estimating interference among
more than two processes.

We approximate the effect of multiple processes with given footprints by a single
large process with a footprint equal to the sum of the footprints from the constituent
processes. For instance, assume three processes A, B and C with footprints of size
Fy, Fp and F¢ respectively. Assume A, B and C run and access the cache in that
order. In order to estimate how B and C interfere with A, we approximate their
combined effect with a single process having a footprint of size Fp + F¢. Because
our models assume that all processes have similar shared footprints, we only sum
the private footprints in our approximation of multiple processes.

3.3.5 Interference on the Critical Path. Our goal is to predict the running time
of a quantum. As discussed in Section 3, the latter includes the sum of the running
times of each target process on the critical path. Although our measurements from
a fully-parallel simulation run may reveal the size of all process footprints, they
fail to indicate which target processes lie on the critical path of a given configura-
tion of target nodes per host node. In the following, we describe a technique for
characterizing the size of process footprints on the critical path.

One way to characterize the size of process footprints is to simply use the mean
footprint size. Target processes on the critical path, however, tend to have longer
running times and as such their footprints are typically larger than an average
process. Assuming that the process with the largest footprint always lies on the
critical path, we characterize critical path processes as one process with the largest
footprint and the rest of the processes having average size footprints.

Let Fs denote the size of the shared footprint. Let Fyy4 and F,., denote the
average and maximum size of the private footprints respectively. Let K denote the
number of target processes per host node. We characterize critical path processes as
K —1 processes with Fg,, size private footprints and a single process with Fi, 4, size
private footprint. We now need to estimate the interference among the processes.
Let I denote the interference in either cache or TLB. The interference of K — 1
processes with average footprints and the process with maximum footprint is simply
I(Fs, Frnaz, (K — 1)Fayg). The interference of all processes—i.e., K — 2 processes
with average footprints and the process with maximum footprint—with each of the
average processes is I(Fs, Faug, (K — 2)Favg + Fmaz). Let M denote the overall
interference in terms of the number of block misses, then:

M(K) = I(Fs, Faz, (K = 1) Fayg) + (K = 1)I(Fs, Fayg, (K —2) Fayg+ Finaz) (14)

Let Teachemiss and TrrBmiss denote the mean service time for a cache and TLB
miss respectively. Let M 4che and My p denote the number of interference misses
in the cache and TLB as predicted by Equations 7, 13, 14. The model for the
indirect overhead, TeqcpexerB, Will then be:

Tcache&TLB (I\y) = Mcache(l()Tcachemiss + MTLB (I{)TTLBmiss (15)

3.3.6 Parameter Extraction. In this section we describe a technique for extracting
the size of process footprints from a fully-parallel simulation run. There are a
myriad of software [Larus and Schnarr 1995; Eggers et al. 1990] and hardware
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[Agarwal et al. 1986] techniques for address trace generation. These techniques are
typically very general and proved to be an overkill for our purposes; we need to
find the number—and not the identity—of unique blocks in the reference stream of
a process. Instead, we opted for a simpler technique that measures the projection
rather than the footprint itself.

We first individually measure the running time of every target process. We then
repeat the measurement while flushing the cache (TLB) before running a target
process. The difference in measurements are solely due to the initial misses to
each block frame in the cache (TLB). We use prior knowledge of the average cache
(TLB) miss penalty to calculate the number of misses. The latter is the size of the
projection of a process in the cache (TLB). Given the size of the projection, we use
a reverse mapping of the projection probability functions (Equations 4 and 8) to
estimate the size of the footprints. We then estimate the interference using these
desired footprints. Note that using derived, rather than measured, footprints may
reduce the model’s error. In order to isolate private footprints from shared foot-
prints, we repeat the above measurements, this time only flushing the simulator’s
instruction space.

3.4 Running Time of a Quantum

Putting the three submodels from Equations 1, 3 and 15 together, along with the
fixed quantum overhead.

Finally, Tyuantumoverhead, allows us to estimate the mean running time of a quan-
tum:

T(I{, P) = Tprocessing(l(;p) + Tdirect([{a P) + Tcache&:TLB (I{)
+Tquantumoverhead (16)

where p is the number of host processors, and K = N/p is the number of target
nodes per host node.

4. VALIDATING THE MODEL FOR T(K, P)

We validate the model by simulating a 32-node cache-coherent shared-memory
multiprocessor with a 4-way set-associative 32-Kbyte cache kept coherent using
the Diry SW coherence [Hill et al. 1993; Wood et al. 1993] and a 64-entry fully-
associative TLB. The network latency (and hence quantum length) is 100 cycles.
The target system executes in one of two phases. A serial phase in which shared
memory is allocated and mapped on all nodes, and a parallel phase in which a
single thread of execution is initiated on every node. Since we are interested in the
behavior of the simulator when all target nodes have started executing threads, we
only focus on the portion of the simulation corresponding to the parallel execution
of code on the target nodes.

Table 1 depicts the model parameters we extract from the simulation. With a
single run of a fully-parallel simulation, we extract the parameters associated with
estimating the processing times and the direct overhead (first eight parameters
in the table). As discussed in Section 3.3.6, we estimate mean footprint sizes by
measuring the corresponding projection size. Measuring the projection of a process
in the cache (TLB) requires a separate run, in which the cache (TLB) is flushed
before simulating a target process in every quantum. Furthermore, we require
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Table 1. FExtracted Model Parameters
| Name || Description

2
Tintra

|| Variance in target processing time

Mean Time in Cycles

,u Processing

Texsw Context switch

Twin Register window underflow

Tty Floating-point registers save/restore

Mean Frequency

Nezsw Context switch

Nuwin Register window underflow

N¢p Floating-point registers save/restore
Mean Size in each of Cache & TLB

Fg Shared footprint

Favg Average footprint

Fraz Maximum footprint

Table 2. Application Programs

Name Input Data Set Million Cycles
appbt 12 X 12 x 12, 15 iter 124
barnes 1024 bodies, 10 iter 95
sparse 256 x 256 dense 86
tomcatv 256 x 256, 10 iter 28
water 256 mols, 10 iter 49

separate runs in order to measure the projection of shared and private footprints.
Therefore, with a total four additional runs of fully-parallel simulations, we can
measure the parameters for the indirect overhead.

Table 2 depicts the benchmarks used to run on the simulated system. Appbt is a
computational fluid dynamics program that solves systems of tridiagonal equations
[Bailey et al. 1991]. Sparse solves AX = B in parallel for a sparse matrix A.
Tomeatv is a parallel version of the SPEC benchmark [SPEC 1990]. Barnes and
Water are from the SPLASH benchmarks [Singh et al. 1992]. The data sets used
in this study are much smaller than one would normally run. However, in order to
measure speedup, the data set had to be small enough so that we could simulate
all 32 nodes of the target system on a single CM-5 node (with 32 megabytes of
memory). Because the small data sets limit the available parallelism in the target
programs—resulting in poor target speedups—we expect the results in this paper
to be conservative. Simulations of larger data sets achieve better speedups than we
observe here.

We first compare our estimate of processing time, Tprocessing( K, p), against the
measured sum of processing times on the critical path. The left-hand side of Figure 2
illustrates these times as speedup: the sum of all N = 32 processing times divided
by (&) Tprocessing(K,p) and (b) the measured sum of K processing times on the
critical path with p host nodes. We can make two observations from these graphs.
First, the model is quite accurate for appbt, barnes, and tomcatv, but consistently
underestimates the speedup for sparse and water, with a maximum observed error
of -24% for sparse on a 4-node host system. The model is more accurate at the
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extremes: it is exact, by definition, when p = 1, and the error is less than 16% for
p = 32. The second, more fundamental observation, is that the inherent simulation
parallelism is low, only providing speedups ranging from 4 to 9 on 32 host nodes.
This is at least partially due to the low target system speedups these programs
achieve for the small data sets used in this study.

Despite the relatively low “inherent” parallelism in event processing times, the
Wisconsin Wind Tunnel actually achieves acceptable overall speedups, as illus-
trated in the right-hand side of Figure 2. The figure plots the overall speedups
(a) as predicted by the model—i.e., T'(32,1)/T (K, p)—with a breakdown into the
contribution of major components and (b) as measured. Base represents the sum
of processing times in conjunction with floating point register save and restore,
and quantum overheads—the contribution of the latter two is relatively small. The
central observation is that overhead increases the simulation parallelism by up to
a factor of two. This result i1s consistent with additional measurements which in-
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dicate that overhead accounts for 44% to 68% of the computation in a sequential
WWT simulation. These overheads not only decrease as the host nodes increase,
but, to the first order, they are perfectly parallelizable. Therefore, parallel simu-
lation benefits both from processing simulation events in parallel and distributing
the overhead across multiple host nodes.

The figure also illustrates that cache and TLB interference causes significant
overhead; measurements indicate that it accounts for up to 30% of the running
time when K > 4. When more than 4 target nodes compete for the same cache
and TLB, our model and measurements show that almost none of a target process’s
private footprint remains in the cache (TLB) when it is rescheduled, and thus most
private memory references miss. Parallelizing the simulation reduces the number
of target nodes per host node, and hence reduces the number of cache misses on
the critical path of the computation.

Although the absolute error in total speedup is roughly the same as the error
due to Tprocessing(H, p), the relative error is roughly half as big because overhead
accounts for half the simulation time and we model overhead accurately. For four
of the benchmarks the maximum error in the model is less than 12%. For sparse
the maximum error is -16% for a 16-node host system.

5. MODELING COST/PERFORMANCE

The model introduced in Section 3 accurately predicts simulation performance for a
target system with N nodes. Section 5.1 describes how we extend the model to es-
timate simulation performance for both larger and smaller values of N. Section 5.2
introduces our cost models for uniprocessor, bus-based shared-memory multipro-
cessor, and massively-parallel processor systems. Section 5.3 combines the cost and
performance models to estimate cost/performance.

5.1 Scaling the Performance Model

The performance model developed in Section 3 extracts parameters from a fully-
parallel (p = N) simulation of a specific target system, and uses them to predict the
performance of that same simulation running on different numbers of host nodes.
The model, however, says nothing about the simulation performance of larger or
smaller target systems. To extend the model, we must make several assumptions
about how the target and simulation systems scale.

We assume memory-constrained scaling [Jaswinder P. Singh and Gupta 1993]
when we vary the size of the target system. In memory-constrained scaling, the data
set size grows linearly with respect to the number of (target) nodes. This scaling
model has two key properties. First, application parallelism generally increases
at least linearly with data set size, so target system speedup should not limit
simulation speedup. Second, this model tends to have only a minor effect on the
computation/communication ratio, so that simulation processing times should have
roughly the same distribution independent of N. Consequently, we can still use the
mean and variance measured for a 32-node system to characterize this distribution.
The Kruskal and Weiss model, used to compute Tprocessing (K, p), will account for
the increased (decreased) variability of larger (smaller) target system sizes.

We further assume that the overhead of multiplexing target nodes on a host
node is independent of the number of host nodes, and use our earlier estimates to
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approximate the overhead for different target system sizes. For K < 32, we use our
earlier estimates of the context switch frequency, and cache and TLB interference.
We estimate the context switch frequency for K > 32, by linearly extrapolating
the binomial model; since the tail of this curve is very close to linear, we do not
expect this to introduce a significant error. We approximate the cache and TLB
interference for K > 32, by simply using the estimated interference for K = 32;
since both cache and TLB begin thrashing for more than 4 target nodes per host
node, there will be essentially no reuse (i.e., hits) for large K.

5.2 Modeling the Cost of Host Systems

In this section, we introduce cost models for uniprocessors (Uni), small-scale bus-
based shared-memory multiprocessors (Bus), and large-scale parallel supercomput-
ers (MPP). The cost models are based on commercial products and allow us to vary
the number of host processors, p, and the number of target nodes per host node,
K. We assume that each host node requires 32 megabytes per target node. This is
significantly more than needed for the small data sets used in this study; however,
these data sets were chosen so that we could simulate 32 target nodes within 32
megabytes of memory (i.e., on one CM-5 node). Real data sets are much larger;
for example, the official NAS input to appbt is 125 times larger than the data set
presented here [Bailey et al. 1991].

Our uniprocessor cost model is based on the Silicon Graphics CHALLENGE
M, a rack-mounted uniprocessor workstation server. We use a server configuration
because desktop and deskside units do not provide the necessary memory expansion
capability [Reidenbach 1993]. For a target system of size K, we model the cost of
a uniprocessor simulation platform as:

CUnz(I\r) = BaseCUni + Cproce.ssor + I(Cmemory (17)

where BaseCy,; denotes the base cost of the frame (box, power supply, etc.),
Chprocessor denotes the cost of a processor board excluding memory, and Ciremory
denotes the cost of a 32-megabyte memory module.

Bus-based shared-memory multiprocessors consist of a frame containing a vari-
able number of processor and memory boards connected by a backplane bus. This
cost model is based on the Silicon Graphics CHALLENGE XL system.® The cost
of a bus-based host system with p processors simulating a target system of size Kp
(for all 2 < p < 40) is:

CBUS([(ap) = BaseCBus + pcprocessor + ]{pcmemory (18)

where BaseCg, 1s the base cost for the frame.

Current implementations of massively parallel processors consist of a collection
of workstation-like processing nodes connected together by a high-bandwidth in-
terconnection network. Our cost model for these systems does not include a fixed
base cost because they are generally expanded by adding entire cabinets, rather
than individual processor boards. Rather than try and capture the complex step
function of the actual cost, we simply approximate it as a linear function of p; this

5The same cost model, with different parameter values, also accurately predicts the Sun Ultra-
Server systems [Roessler 1996].
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Fig. 3. Modeling the Cost of Host Systems

approximation should not introduce significant error since we only consider values
of p that are powers of two. Modeling the network cost as a multiplier, X, etwork,
of the processor cost, the overall cost (for all p > 2) is:

CMPP(I{:p) = P(l + Xnetwork)cprocessor + I{pcmemory (19)

For the purposes of this study, we use 1993 Silicon Graphics list prices for
our uniprocessor and shared-memory multiprocessor cost estimates: Cprocessor =
$20000, Crremory = $3200 (32 megabytes), BaseCyni = $3200, and BaseCpys =
$76800 [Reidenbach 1993]. We assume X, ctwork = 2, which reflects the fact that
current generation MPP nodes cost approximately three times a comparable unipro-
cessor. Ultimately, we expect competition to reduce X, et ork to values of 0.1 ~ 0.5.

Although these prices are valid for only a single point in the past, we believe that
the general conclusions will hold for the future. This is because although memory
cost per bit is dropping [Seminconductor Industry Association 1994], memory sizes
continue to increase [Przybylski 1994] and memory cost appears to be an increasing
fraction of total uniprocessor system cost.

Figure 3 plots the cost models as a function of the number of host nodes for a
32-node target system. The minimum cost of a parallel host is approximately two
times the cost of a uniprocessor host system. The figure also depicts the prices of
Silicon Graphics CHALLENGE XL bus-based multiprocessor servers [Reidenbach
1993]. The cost curve for the massively parallel processors has a much steeper slope
as compared to the curve of the bus-based multiprocessors due to the high cost of
the interconnection network per node.

5.3 Modeling Cost/Performance

Since speedup is a measure of parallel simulation performance, cost/performance is
simply the cost of the host system divided by the simulation speedup it achieves.
For a uniprocessor system, the cost/performance is simply Cyrpi, because speedup
is 1 by definition. Cost/performance for parallel simulation of a Kp-node target
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system is:

T(K,p)
T(Kp,1)
where Machine is either Bus or M PP.

CPMachine([{a P) = CMachine([{a P) (20)

6. ANALYZING COST/PERFORMANCE

Given a model for parallel simulation cost/performance, there are two questions
that we would like to address. First, is parallel simulation simply faster than
sequential simulation, or 1s 1t also more cost-effective? Second, if we have parallel
simulation, what value of K achieves the best cost/performance?

We address the second question first, by analyzing the asymptotic behavior of
K pnin using a simplified form of the cost/performance model. We know that such
a minimum value exists, because the cost function is increasing linear in p and the
speedup is a bounded convex function in p. Therefore, for a fixed target system
size, the cost/performance function is concave with a minimum at K = K,,;,. We
simplify the model slightly to clarify the asymptotic analysis. We approximate the
running time of a quantum as aK + by/K log, p, where the first term accounts
for factors contributing linearly to the running time such as the mean processing
time of target nodes and the per-target node overhead on the critical path, and
the second term accounts for the variation in the sum of processing times on the
critical path. We also approximate the cost function as p(Cprocessor + K Cmemory)-
The cost/performance function will then be:

Cpasymptotic(l(7p) = Cmemory (I\r + M)(l + é V loge p%) (21)
Cmemory a \/K

For a given target system size (i.e., fixed N), the above function has a minimum

at K, which is an increasing function of Cprocessor /Cmemory, b/a and y/log, p.

Since the variation of the latter is negligible in the range of feasible values of p, a

key contribution of this model is that K,,;, 1s, to the first order, independent of p.

The term b/a is reciprocally proportional to the amount of parallelism available
in the simulation. Small values of b/a can result from either (a) processing times
that have a small coefficient of variation, and thus cause little load imbalance, or (b)
small mean processing times which cause the—perfectly parallelizable—overhead
to dominate. In either case, high parallelism results in small values of K,,;,. This
result is intuitive, since higher parallelism gives rise to larger speedups which in
turn offset the cost of adding more host nodes.

The model also predicts that a decrease in the cost of memory with respect to
the cost of a processor board results in a larger value of K,,;,. The intuition behind
this result is that, for a given target system size, decreasing memory cost increases
relative processor cost, and shifts the balance toward more memory intensive sim-

ulations.

Unfortunately, analyzing the simplified model does not help us answer the first
question of when is parallel simulation better than sequential simulation. Instead,
we graphically examine the full model.

Figure 4 plots C'Ppys(K,p), CPypp(K,p), and Cyni(Kp) for the simulation
of appbt and barnes. These two applications are reasonably representative of the
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five benchmarks: appbt and sparse exhibit relative low speedups, while barnes,
The graphs use the

tomcatv, and water exhibit considerably higher speedups.
same cost parameters as those in Figure 3. Moreover, a bullet at coordinates (K, p)

indicates the minimum cost/performance for the simulation of a target system of

size Kp.

The upper half of Figure 4 plots C'Ppys(K,p) and Cyni(Kp) for Kp < 32.
The graphs show that although uniprocessor simulation is more cost-effective for
small target systems, up to 8 or 16 nodes, parallel simulation offers superior
cost/performance as the target system grows beyond approximately 16 nodes. More
important than the exact numbers, the trend clearly shows that parallel simulation
becomes increasingly cost-effective as the target system grows.

The second interesting prediction of this model is the lack of continuity in p. That
is, parallel simulation does not gradually become more effective, but rather once the
speedup is sufficient to overcome the large base cost, the optimum cost /performance
occurs when the simulation is either fully parallel (barnes) or nearly so (appbt).

The lower half of Figure 4 plots C Pyrpp (K, p) and Cypni(Kp) for Kp < 128. The
figure illustrates that uniprocessor simulation is more cost-effective than parallel
simulation for target systems of up to 16 nodes. The large jump in cost/performance
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as p increases from 1 to 2 nodes is due to the significant premium charged by MPP
vendors. For host systems of up to 16 nodes, the simulation speedup is not large
enough to offset this premium and therefore uniprocessor simulation offers better
cost/performance. Minimum cost/performance for larger systems lies consistently
at 4 and 8 target nodes per host node for the two benchmarks independent of the
number of host nodes. Moreover, the larger parallelism available in the simulation
of barnes results in optimum cost/performance at a smaller value of K. These
results are in accord with the predictions of our model for the asymptotic behavior
of [\rmm

Decreasing memory cost not only shifts K,,;, towards larger values—confirming
our analysis of the simplified model—but increases the target system size at which
parallel simulation becomes more cost-effective than sequential simulation. For
example, decreasing the memory cost (or, equivalently, the simulation’s memory
requirement) by a factor of four increases the break-even point for parallel simula-
tion to 128 target nodes.

Decreasing the processor cost (and/or the cost of the network for M PP’s) has
a complementary effect, not only decreasing K,,;,, but reducing the break-even
target system size. Similarly, increasing the parallel simulation speedups, as we
expect for larger data sets, will also tend to make parallel simulation increasingly
cost-effective.

7. SUMMARY AND CONCLUSIONS

This paper examines the cost/performance of simulating a hypothetical target par-
allel computer using a commercial host parallel computer. We address the fun-
damental question of whether parallel simulation is simply faster than sequential
simulation, or whether it is also more cost-effective. We answer this by developing a
performance model of the Wisconsin Wind Tunnel (WWT) that incorporates three
major factors: event processing time, context switch overhead, and host cache and
TLB interference. For the performance model, we show that:

—the variability in event processing times can be accurately modeled using Kruskal
and Weiss’s model for fork-join parallel programs;

—the frequency of context switches, incurred when switching between target nodes,
is accurately modeled by the maximum of binomial random variables;

—an extension of Thiébaut and Stone’s footprint model accurately predicts the
interference of multiple targets in the host cache and TLB;

—the performance model’s predictions of simulation speedup are within 10% on
average and are always within 20% for these workloads.

We then combine the performance model with simple cost models and show—in
the central result of this paper—that parallel computer simulations can be, in fact,
more cost-effective than uniprocessor simulations. The key intuition behind this
result is that large simulations require large memory sizes, which dominate the cost
of a uniprocessor; parallel computers allow multiple processors to simultaneously
access this large memory. Furthermore, we show that K,,;,, the number of target
nodes simulated per host node for optimum cost/performance, is essentially inde-
pendent of p, the number of host processors. For two specific cost models and the
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WWT performance model, we show that (1) for bus-based shared-memory mul-
tiprocessors, parallel simulation becomes more cost-effective when target systems
reach 16 or 32 nodes, and (2) for massively parallel systems, with their large price
premium, parallel simulation becomes more cost-effective when the target system
size reaches 32. More generally, since memory cost is an increasing fraction of over-
all uniprocessor system cost, we expect this result to qualitatively hold for future
parallel systems.
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