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Abstract

This paper examines the cost/performance of simulat-
ing a hypothetical target parallel computer using a com-
mercial host parallel computer. We address the question
of whether parallel simulation is simply faster than se-
quential simulation, or if it is also more cost-effective.
To answer this, we develop a performance model of
the Wisconsin Wind Tunnel (WWT), a system that
simulates cache-coherent shared-memory machines on a
message-passing Thinking Machines CM-5. The perfor-
mance model uses Kruskal and Weiss’s fork-join model
to account for the effect of event processing time vari-
ability on WW'T’s conservative fixed-window simulation
algorithm. A generalization of Thiebaut and Stone’s
footprint model accurately predicts the effect of cache
interference on the CM-5. The model is calibrated us-
ing parameters extracted from a fully-parallel simula-
tion (p = N), and validated by measuring the speedup
as the number of processors (p) ranges from one to the
number of target nodes (N). Together with simple cost
models, the performance model indicates that for target
system sizes of 32 nodes and larger, parallel simulation
is more cost-effective than sequential simulation. The
key intuition behind this result is that large simulations
require large memories, which dominate the cost of a
uniprocessor; parallel computers allow multiple proces-
sors to simultaneously access this large memory.

This work is supported in part by NSF PYI Award CCR-
9157366, NSF Grant MIP-9225097, and donations from Thinking
Machines Corp., Xerox Corp., and Digital Equipment Corp. Our
Thinking Machines CM-5 was purchased through NSF Grant No.
CDA-9024618 with matching funding from the Univ. of Wisconsin
Graduate School.

1 Introduction

The architecture of a parallel computer specifies an in-
terface between software and hardware. Computer ar-
chitects prefer to study the complex interactions across
this interface by running and measuring real applica-
tions. Simulation allows evaluation of these interactions
without building hardware prototypes, speeding the de-
sign process.

Simulation has long been used to evaluate proposed
computer hardware for correctness and performance.
However, most simulations have focussed on low-level
implementation details: circuit level, switch level (ideal
transistor), or logic (gate) level. These detailed sim-
ulations serve an important function, but are orders-
of-magnitude too slow to evaluate system-level perfor-
mance. Real applications on parallel machines run for
billions, or even trillions of cycles; even register-transfer-
level simulators are much too slow.

Over the last several years, direct execution has be-
come widely used to accelerate architectural simulations
[6, 4, 3, 7, 14]. Direct execution exploits the common-
ality between the instruction set of the simulated target
machine and the underlying host system. For example,
a floating-point multiply on the target is “simulated” by
executing a floating-point multiply on the host. Such a
system need only simulate the differences between the
target system and the host, achieving impressive per-
formance when the two systems are very similar.

Simulations of parallel computers have exploited di-
rect execution in several ways [3, 7, 5]. Most commonly,
a parallel target system is simulated on a uniprocessor
host. For example, the Tango system spawns an event
generation process for each processor in a target shared-
memory system. These processes directly execute all
computation instructions, but must send most mem-
ory references to a central simulation process. Tango
can be parallelized to a limited extent by running the
event generation processes in parallel, but the central
memory-system simulation process quickly becomes a
bottleneck.

A recent simulator—the Wisconsin Wind Tunnel (WWT)—



extends direct execution to simulate a parallel target
machine on top of parallel host (a Thinking Machines
CM-5) [19]. WWT differs from earlier simulators in two
ways. First, it directly executes all load and store in-
structions that hit in the target system’s cache. Second,
it integrates direct-execution with a conservative fixed-
window parallel discrete-event simulation algorithm to
not only parallelize event generation, but also the mem-
ory system simulation [15, 1, 17, 8, 16].

Parallel simulators like WWT are much faster than
comparable uniprocessor simulators, providing the quick
turn-around-time that can be so important to the de-
sign cycle. However, parallel simulation is not necessar-
ily cost-effective for evaluating alternative parallel ma-
chines. Computer architects frequently run many inde-
pendent simulations—for different applications, mem-
ory systems, and system sizes—and compare the results.
Because these simulations are independent and run as
a batch, parallelism can be achieved much more simply
by running them simultaneously on different worksta-
tions. And since workstations have better (i.e., lower)
cost/performance ratios than parallel computers, this
simpler “coarse-grain” parallelism appears more cost-
effective than finer-grain parallel simulators like WWT.
This cost/performance differential is only exacerbated
by the reality that parallel simulators rarely achieve per-
fect speedups.

However, in the central result of this paper, we show
that parallel computer simulations are, in fact, more
cost-effective than uniprocessor simulations, for suffi-
ciently large target systems. The key intuition behind
this result is that large simulations require large memory
sizes, which dominate the cost of a uniprocessor; parallel
computers allow multiple processors to simultaneously
access this large memory. Using cost models based on
current commercial products and a performance model
based on WWT, we show that (1) for bus-based shared-
memory multiprocessors, parallel simulation becomes
more cost-effective when target systems reach 16 or 32
nodes, and (2) for massively parallel systems, with their
large price premium, parallel simulation becomes more
cost-effective when the target system size reaches 32.

This paper also develops an analytic model of WWT’s

performance which incorporates three major factors: event

processing time, context switch overhead, and host cache
and TLB interference. We show that the variability
in event processing times can be accurately modeled
using Kruskal and Weiss’s model for fork-join parallel
programs [11]. The frequency of context switches, in-
curred when switching between target nodes, is accu-
rately modeled by the maximum of binomial random
variables. We extend Thiebaut and Stone’s footprint
model to predict the interference of multiple targets in
the host cache and TLB [25]. Finally, we show that
the model accurately estimates the measured speedup

of WWT, with maximum error of 8% in three applica-
tions and 16% for all five applications.

The next section reviews the design of the Wiscon-
sin Wind Tunnel. Section 3 develops the analytic per-
formance model, and Section 4 compares its predic-
tions to the measured speedups. Section 5 describes
how the performance model is extended to estimate
cost/performance for many target and host systems.
Section 6 presents and discusses the results from this
cost/performance model, and Section 7 summarizes our
contributions.

2 Simulation Methodology

2.1 The Wisconsin Wind Tunnel

The Wisconsin Wind Tunnel (WWT) is a simulator
for evaluating parallel computer systems—specifically
cache-coherent shared-memory computers [19]. WWT
uses the execution of shared-memory applications to
drive a distributed discrete-event simulation of proposed
hardware. Events generated by the simulation, such as
cache misses and coherence messages, are used to sched-
ule the application, permitting accurate calculation of
the target system execution time.

WWT uses direct execution to exploit similarities
between the target system (under study) and the host
system (on which it executes). Because WWT executes
on a message-passing machine (a Thinking Machines
CM-5), it must simulate the shared memory abstrac-
tion using a fine-grain extension of Li’s shared virtual
memory [13]. Shared virtual memory uses the standard
address translation hardware to control memory access
on each node. When a node first accesses a shared
data page, it allocates a local copy and maps it into
the shared address space on that node; subsequent ac-
cesses reference the copy. Multiple read-only copies are
supported using the page protection facilities. Program
accesses that require a data transfer to acquire a valid
or exclusive copy are signaled as page faults.

WWT’s fine-grain extension uses the CM-5’s error-
correcting code (ECC) bits to synthesize tag bits on
each 32-byte block in physical memory. Using the three
tag values—invalid, read-only, and writable—in combi-
nation with the address translation hardware, WW'T
implements a distributed shared memory that maintains
coherence at a finer granularity than a virtual memory
page.

WWT uses logical clocks to correctly calculate the
logical execution time of a target system, modeling la-
tencies, dependencies, and queuing. WWT manages
interprocessor interactions by dividing program execu-
tion into lock-step quanta (also called fixed windows
[8], bounded lag [15] or time buckets [24]) to ensure all
events originating on a remote node that affect a node



in the current quantum are known at the quantum’s be-
ginning. WWT implements this using the CM-5’s “net-
work done” barrier, which guarantees that all messages
are received before the quantum completes [12]. WWT
combines this distributed simulation algorithm with di-
rect execution by ordering all events on a node for the
current quantum and directly executing the process up
to its next event.

3 WWT Performance Model

One approach to evaluating cost/performance of par-
allel simulation is to simply measure the performance
of simulation runs on several different system sizes and
directly compute the cost/performance ratio. Unfor-
tunately, while this technique provides exact results for
the measured systems, it is difficult to extrapolate them
to larger or smaller systems. Furthermore, simple mea-
surements provide little or no insight into why a system
performs as it does, making it difficult to understand
the generality of the results.

In this study, we construct a performance model of
the Wisconsin Wind Tunnel that accurately predicts the
simulation speedup. We do this by estimating the time
to simulate N target nodes on p host nodes; as we vary
p, the number of target nodes per host node, K = N/p,
changes. We then compute speedup as the ratio of the
time to simulate N target nodes on a single (p = 1) host
node over the time to simulate NV target nodes on p host
nodes. We calibrate the model, for each application,
by extracting parameters from a small number of fully-
parallel (K = 1) simulation runs. Section 4 discusses
the accuracy of the model, and Section 5 describes how
we extrapolate the model to estimate cost-performance
for many different simulations.

Our model predicts the mean running time of a
quantum. The running time of quantum 4 begins at the
end of the ¢ — 1st quantum synchronization barrier and
terminates at the end of ith quantum barrier, as illus-
trated in Figure 1. When simulating a single target node
per host node (K = 1), two major factors dominate the
quantum running time: processing time—the time to
process simulation events including direct execution of
the target program—and the quantum overhead—which
consists of a barrier synchronization and the overhead
of scheduling the target nodes. As illustrated in the
left-hand side of Figure 1, the running time is simply
the (fixed) quantum overhead plus the maximum pro-
cessing time of any of the host nodes (e.g., host node 1
is on the critical path).

When there are multiple target nodes per host node
(K > 1), the running time includes the sum of the pro-
cessing times of each target node on the critical path. In
addition, the simulation incurs both direct and indirect
overheads from context switching. The direct overheads

include the time to save and restore integer and floating-
point registers. The indirect overheads occur because
multiple target nodes compete for space in the host’s
cache memory and translation lookaside buffer (TLB),
causing extra misses. The right-hand side of Figure 1 il-
lustrates the case where two target nodes are simulated
on each of two host nodes.

Finally, when all target nodes are simulated on a sin-
gle host node (K = N), there can be no load imbalance
so there is no waiting time. The quantum synchroniza-
tion barrier becomes unnecessary and could be omitted;
however, the overhead is insignificant compared to the
K = N processing times.
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Figure 1: Running Time of a Quantum

An ideal performance model for parallel simulation
would accurately predict performance simply as a func-
tion of the number of host nodes, p, and the number of
target nodes per host node, K. However, such a sim-
ple model cannot account for variations between target
applications, target architectures, or host systems.

To accurately model WWT’s performance, we found
it necessary to measure 12 parameters for each target
application (and target architecture). Several of the
parameters are simple event frequency measures, such
as the mean number of active target nodes in a quan-
tum. Others are timing measurements, such as the
mean event processing time. Accurate, low-overhead
timing measurements were made possible by the cycle
counter in the CM-5’s network interface unit. All pa-
rameters can be extracted from four runs of the fully-
parallel simulation.

In the remainder of this section, we describe how we
model each of the major contributers to simulation time:
event processing time, direct context switch overhead,
and host cache and TLB interference.

3.1 Modeling Processing Times

A potentially serious problem with conservative fixed-
window simulation algorithms is that most host nodes
will be idle while they wait for the slowest node to reach



the barrier. In WWT, variations in event processing
time are caused both by variation in the number of
events that must be processed and in the time to process
different types of events.

Within each quantum, a target node may process
zero or more events. The (hopefully) common case is
that a target node uses direct-execution to “simulate”
local computation, including memory references that hit
in its local cache. However, other events can occur,
such as local cache misses and coherence messages from
remote nodes. A target node may also have no events
to process if, for example, the target program is waiting
for a lock, barrier, or cache miss.

We have modeled this variability using a model that
Kruskal and Weiss proposed for estimating the com-
pletion time of fork-join programs on MIMD parallel
processors [11]. The model is asymptotically exact (as
p and K go to infinity, with K growing faster than
log p) if the processing times are independent and iden-
tically distributed (i.i.d.) and the distribution function
is increasing failure rate. However, they demonstrate
that the model is remarkably robust even when these
assumptions are violated.

In WWT, processing times are neither independent
nor identically distributed. For example, when the tar-
get program uses barrier synchronization, target nodes
that reach the barrier first will wait for the rest; since
the barrier may span multiple quanta (due to target sys-
tem load imbalances), the event processing times will be
zero for all the waiting target nodes and hence are not
independent. Moreover, a parallel program typically ex-
hibits several distinct phases of execution, where the be-
havior of the program changes across phases, resulting
in processing times that are not identically distributed
over time. We have found that the lack of independence
has little effect, perhaps since well-written parallel pro-
grams spend little time waiting for barriers, but that
the phase behavior of programs is significant.

Kruskal and Weiss’s model uses two parameters to
characterize the workload: the mean p and variance o2
of the processing times. We modify their model slightly,
by using standard analysis-of-variance techniques to sep-
arate the variance within a quantum, o2 ,,., from the
variance of the entire population, o2 [10]. This modi-
fication approximates the more technically correct, but
computationally expensive, alternative of computing
and o2 separately for each quantum. Our model for
the mean processing time in a quantum, Ty ocessing, iS
simply:

Tprocessing (K7 p) = K/J + Tinter\/ 2K logp (1)

The first term in the equation is simply the expected
sum of the processing times on any host node. The sec-
ond term accounts for the quantum running time being
determined by the slowest host node.

3.2 Modeling Direct Overhead

Because WWT uses a separate address space for each
target node, it incurs a full context switch whenever
it must simulate a different target node. The direct
context switch overhead includes the time to save and
restore both integer and floating-point registers. Since
the CM-5’s SPARC processor uses register windows, the
time to restore integer registers must include factors
for the mean number of underflow traps per context
switch (Nyin) and the mean underflow trap service time
(Twzn)

WWT includes several optimizations to eliminate
unnecessary state saving on context switches. For ex-
ample, because the simulator does not use any floating-
point operations, WW'T only restores the floating-point
registers if the target CPU needs to execute. This re-
duces the overhead in the case that a target only needs
to process non-target CPU events, e.g., directory mes-
sages.

We approximate the mean number of context switches
(Nezsw) in a quantum by the mean number of target
nodes scheduled for simulation. To estimate how many
of these fall on the critical path, we compute the max-
imum of p binomial random variables, each being the
sum of K flips of a coin with probability Negzsw/N.
Similarly, we predict the mean number of floating-point
register saves and restores (Npp) using a “coin” whose
probability is the fraction of target nodes in a quantum
that directly execute CPU events. This simple model is
extremely accurate for both Nz and Npp.

Denoting the mean service time for a context switch
as Tiesw, and floating-point registers saves and restores
as Trp, our model for the direct overhead is:

Tdirect(Ka p) = chsw (Ka p) (Tca:sw + NwinTwin)
+Nrp(K,p)Trp (2)

3.3 Modeling Indirect Overhead

When multiple target nodes are simulated on the same
host node, they compete for space in the host’s cache
memory and TLB. The interference that results has a
first-order effect on simulation performance. Other re-
searchers have seen similar effects for more general par-
allel programs; for example, Singh, et al. recently pre-
sented significant superlinear speedups that result from
cache and TLB performance improvements as the num-
ber of processors increases [21].

We use a generalization of Thiebaut and Stone’s
footprint model [25] to predict cache and TLB inter-
ference (Tiache&TLB), as the number of target nodes
per host node increases. The footprint of a process is
defined to be the set of blocks that a process leaves in
an infinite cache. In a finite cache, some of the blocks
in the footprint will not fit, and are replaced. We de-



Name Input Data Set Million Cycles
appbt 12 x 12 x 12, 15 iter 124
barnes 1024 bodies, 10 iter 95
sparse 256 x 256 dense 86
tomcatv | 256 x 256, 10 iter 28
water 256 mols, 10 iter 49

Table 1: Application Programs

The table displays the application programs used in this paper.
Appbt is a computational fluid dynamics program that solves sys-
tems of tridiagonal equations [2]. Sparse solves AX = B in par-
allel for a sparse matrix A. T'omcatv is a parallel version of the
SPEC benchmark [23]. Barnes and Water are from the SPLASH
benchmarks [22].

fine the projection of a process to be the set of blocks
a process leaves in a finite cache that it may reference
again'. Given the size of the footprints of two processes,
Thiebaut and Stone’s model estimates the projection of
each process and uses it to determine the interference.
We have extended the model to allow for sharing be-
tween processes, estimate the interference between more
than two processes, and take as input the size of the pro-
jections of the processes, rather than of the footprints.

We estimate the average cache (TLB) projection of
a target node by measuring the average processing time
both with and without flushing the cache (TLB) at the
beginning of every quantum. The difference between
these times is due to refetching the blocks in the tar-
get’s projection; by dividing this difference by the CM-
5’s cache (TLB) miss penalty, we can determine the
expected size of the projection of a target node. To ac-
curately estimate interference on the critical path, we
found it necessary to not only measure the average pro-
jection, but also measure the average of the largest pro-
jection in a quantum.

3.4 Running Time of a Quantum

Putting these three submodels together, along with
the fixed quantum overhead, Tyyantumoverhead, llOws us
to estimate the mean running time of a quantum:

T(K; p) = Tprocessing (K, p) + Tdirect (K, p) + (3)
Tcache&TLB(Ka p) + Tquantumoverhead

where p is the number of host processors, and K = N/p
is the number of target nodes per host node.

IThiebaut and Stone called this the “footprint in a finite
cache.”

4 Validating the Model

We validate the model by simulating a 32-node cache-
coherent shared-memory multiprocessor with a 4-way
set-associative 32-Kbyte cache kept coherent using the
Dir,SW coherence [9, 26]. The network latency (and
hence quantum length) is 100 cycles. The target system
executes in one of two phases. A serial phase in which
shared memory is allocated and mapped on all nodes,
and a parallel phase in which a single thread of execu-
tion is initiated on every node. Since we are interested
in the behavior of the simulator when all target nodes
have started executing threads, we only focus on the
portion of the simulation corresponding to the parallel
execution of code on the target nodes.

Table 1 depicts the benchmarks used to run on the
simulated system. The data sets used in this study are
much smaller than one would normally run. However,
in order to measure speedup, the data set had to be
small enough so that we could simulate all 32 nodes
of the target system on a single CM-5 node (with 32
megabytes of memory). Because the small data sets
limit the available parallelism in the target programs—
resulting in poor target speedups—we expect the results
in this paper to be conservative. Simulations of larger
data sets achieve better speedups than we observe here.

We first compare our estimate of processing time,
Tprocessing (K, D), against the measured sum of process-
ing times on the critical path. The left-hand side of
Figure 2 plots these times as speedup: the sum of all N
processing times divided by (a) Tprocessing (K, p) and (b)
the measured sum of K processing times on the critical
path with p host nodes. We can make two observations
from these graphs. First, the model is quite accurate for
appbt, barnes, and tomcatv, but consistently underesti-
mates the speedup for sparse and water, with a maxi-
mum observed error of -24% for sparse on a 4-node host
system. The model is more accurate at the extremes: it
is exact, by definition, when p = 1, and the error is less
than 16% for p = 32. The second, more fundamental
observation, is that the inherent simulation parallelism
is low, only providing speedups ranging from 4 to 9 on
32 host nodes. This is at least partially due to the low
target system speedups these programs achieve for the
small data sets used in this study.

Despite the relatively low “inherent” parallelism in
event processing times, the Wisconsin Wind Tunnel ac-
tually achieves acceptable overall speedups, as illustrated
in the right-hand side of Figure 2. These plots show the
overall simulation speedups, plus a breakdown into the
contributions of the various overheads. The central ob-
servation is that overhead increases the simulation par-
allelism by up to a factor of two. This result is consis-
tent with additional measurements which indicate that
overhead accounts for 44% to 68% of the computation
in a sequential WWT simulation. These overheads not
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Figure 2: Speedup of Parallel Simulation

The figures plot Tprocessing (KD, 1)/ Tprocessing (K, p) (left) and
T(Kp,1)/T(K,p) (right) for Kp = 32 against measured speedups.
The figures to right also plot the the breakdown of the major com-
ponents contributing to the overall speedup. Quantum overhead
is not parallelizable and therefore reduces the overall speedup.
The contribution of quantum overhead and floating point regis-
ters save and restore to the speedup is not substantial and there-
fore is displayed in conjunction with the sum of processing times
as Base.

only decrease as the host nodes increase, but, to the
first order, they are perfectly parallelizable. Therefore,
parallel simulation benefits both from processing simu-
lation events in parallel and distributing the overhead
across multiple host nodes.

The figure also illustrates that cache and TLB inter-
ference causes significant overhead; measurements indi-
cate that it accounts for up to 30% of the running time
when K > 4. When more than 4 target nodes compete
for the same cache and TLB, our model and measure-
ments show that a target node will incur misses on most
memory references. Parallelizing the simulation reduces
the number of target nodes per host node, and hence re-
duces the number of cache misses on the critical path
of the computation.

Although the absolute error in total speedup is roughly

the same as the error due to Tprocessing (K, p), the rel-
ative error is roughly half as big because overhead ac-
counts for half the simulation time and we model over-
head accurately. For four of the benchmarks the max-
imum error in the model is less than 12%. For sparse
the maximum error is -16% for a 16-node host system.

5 Modeling Cost/Performance

The model introduced in Section 3 accurately predicts
simulation performance for a target system with N nodes.
Section 5.1 describes how we extend the model to esti-
mate simulation performance for both larger and smaller
values of N. Section 5.2 introduces our cost models for
uniprocessor, bus-based shared-memory multiprocessor,
and massively-parallel processor systems. Section 5.3
combines the cost and performance models to estimate
cost/performance.

5.1 Scaling the Performance Model

The performance model developed in Section 3 extracts
parameters from a fully-parallel (p = N) simulation of
a specific target system, and uses them to predict the
performance of that same simulation running on differ-
ent numbers of host nodes. The model, however, says
nothing about the simulation performance of larger or
smaller target systems. To extend the model, we must
make several assumptions about how the target and sim-
ulation systems scale.

We assume memory-constrained scaling [20] when
we vary the size of the target system. In memory-
constrained scaling, the data set size grows linearly with
respect to the number of (target) nodes. This scaling
model has two key properties. First, application paral-
lelism generally increases at least linearly with data set
size, so target system speedup should not limit simu-
lation speedup. Second, this model tends to have only
a minor effect on the computation/communication ra-
tio, so that simulation processing times should have
roughly the same distribution independent of N. Con-
sequently, we can still use the mean and variance mea-
sured for a 32-node system to characterize this distri-
bution. The Kruskal and Weiss model, used to com-
pute Tprocessing (K, p), will account for the increased
(decreased) variability of larger (smaller) target system
sizes.

We further assume that the overhead of multiplexing
target nodes on a host node is independent of the num-
ber of host nodes, and use our earlier estimates to ap-
proximate the overhead for different target system sizes.
For K < 32, we use our earlier estimates of the context
switch frequency, and cache and TLB interference. We
estimate the context switch frequency for K > 32, by
linearly extrapolating the binomial model; since the tail



of this curve is very close to linear, we do not expect
this to introduce a significant error. We approximate
the cache and TLB interference for K > 32, by simply
using the estimated interference for K = 32; since both
cache and TLB begin thrashing for more than 4 target
nodes per host node, there will be essentially no reuse
(i.e., hits) for large K.

5.2 Modeling the Cost of Host Systems

In this section, we introduce cost models for uniproces-
sors (Uni), small-scale bus-based shared-memory multi-
processors (Bus), and large-scale parallel supercomput-
ers (MPP). The cost models are based on current prod-
ucts and allow us to vary the number of host processors,
p, and the number of target nodes per host node, K. We
assume that each host node requires 32 megabytes per
target node. This is significantly more than needed for
the small data sets used in this study; however, these
data sets were chosen so that we could simulate 32 tar-
get nodes within 32 megabytes of memory (i.e., on one
CM-5 node). Real data sets are much larger; for exam-
ple, the official NAS input to appbt is 125 times larger
than the data set presented here [2].

Our uniprocessor cost model is based on the Silicon
Graphics CHALLENGE M, a rack-mounted uniproces-
sor workstation server. We use a server configuration
because desktop and deskside units do not provide the
necessary memory expansion capability [18]. For a tar-
get system of size K, we model the cost of a uniprocessor
simulation platform as:

CUnz(K) = Ba/seCUni + Cprocessor + Kcmemory (4)

where BaseCy,; denotes the base cost of the frame
(box, power supply, etc.), Cprocessor denotes the cost
of a processor board excluding memory, and Crmemory
denotes the cost of a 32-megabyte memory module.

Bus-based shared-memory multiprocessors consist of
a frame containing a variable number of processor and
memory boards connected by a backplane bus. This
cost model is based on the Silicon Graphics CHAL-
LENGE XL system. The cost of a bus-based host sys-
tem with p processors simulating a target system of size
Kp (for all 2 <p <40)is:

CBus (K; p) = BaseCBus + pcprocessor + Kpcmemory

()

where BaseCpg,s is the base cost for the frame.
Current implementations of massively parallel pro-
cessors consist of a collection of workstation-like pro-
cessing nodes connected together by a high-bandwidth
interconnection network. Our cost model for these sys-
tems does not include a fixed base cost because they
are generally expanded by adding entire cabinets, rather
than individual processor boards. Rather than try and

capture the complex step function of the actual cost, we
simply approximate it as a linear function of p; this ap-
proximation should not introduce significant error since
we only consider values of p that are powers of two.
Modeling the network cost as a multiplier, X,etwork, Of
the processor cost, the overall cost (for all p > 2) is:

CMPP (K7 p) = p(l + Xnetwork)cprocessor + Kpcmemory
(6)

For the purposes of this study, we use current Silicon
Graphics list prices for our uniprocessor and shared-
memory multiprocessor cost estimates: Cprocessor =
$20000, Crmemory = $3200 (32 megabytes), BaseCyn; =

$3200, and BaseCpys = $76800 [18]. We assume X,erwork =

2, which is a reasonable estimate of network cost for cur-
rent generation MPP systems. Ultimately, we expect
competition to reduce X, etwork t0 values of 0.1 ~ 0.5.
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Figure 3: Modeling the Cost of Host Systems

Figure 3 plots the cost models as a function of the
number of host nodes for a 32-node target system. The
minimum cost of a parallel host is approximately two
times the cost of a uniprocessor host system. The fig-
ure also depicts the prices of Silicon Graphics CHAL-
LENGE XL bus-based multiprocessor servers [18]. The
cost curve for the massively parallel processors has a
much steeper slope as compared to the curve of the
bus-based multiprocessors due to the high cost of the
interconnection network per node.

5.3 Modeling Cost/Performance

Since speedup is a measure of parallel simulation perfor-
mance, cost/performance is simply the cost of the host
system divided by the simulation speedup it achieves.
For a uniprocessor system, the cost/performance is sim-
ply Cuni, because speedup is 1 by definition. For paral-

lel simulation of a K p-node target system, the cost/performance



is:

M CMa,chine (K7 p) (7)

CPMachine(K7p) T(Kp 1)

where Machine is either Bus or M PP.

6 Analyzing Cost/Performance

Given a model for parallel simulation cost/performance,
there are two questions that we would like to address.
First, is parallel simulation simply faster than sequential
simulation, or is it also more cost-effective? Second, if
we have parallel simulation, what value of K achieves
the best cost/performance?

We address the second question first, by analyzing
the asymptotic behavior of K,,;, using a simplified form
of the cost/performance model. We know that such a
minimum value exists, because the cost function is in-
creasing linear in p and the speedup is a bounded convex
function in p. Therefore, for a fixed target system size,
the cost/performance function is concave with a min-
imum at K = K,,;n. We simplify the model slightly
to clarify the asymptotic analysis. We approximate the
running time of a quantum as aK + by/K logp, where
the first term accounts for factors contributing linearly
to the running time such as the mean processing time
of target nodes and the per-target node overhead on
the critical path, and the second term accounts for the
variation in the sum of processing times on the crit-
ical path. We also approximate the cost function as
P(Cprocessor + K Cmemory)- The cost/performance func-
tion will then be:

C TOocCessorT
CPasymptotic(K: p) = Cmemory(K + pi)

Cmemory
1+ 2 iogp—=)  ®
aV PR

For a given target system size (i.e., fixed N), the above
function has a minimum at K,,;, which is an increasing
function of Cprocessor/Cmemory, b/a and /logp. Since
the variation of the latter is negligible in the range of
feasible values of p, a key contribution of this model is
that K, is, to the first order, independent of p.

The term b/a is reciprocally proportional to the amount

of parallelism available in the simulation. Small values
of b/a can result from either (a) processing times that
have a small coefficient of variation, and thus cause lit-
tle load imbalance, or (b) small mean processing times
which cause the—perfectly parallelizable—overhead to
dominate. In either case, high parallelism results in
small values of K,,;»,. This result is intuitive, since
higher parallelism gives rise to larger speedups which
in turn offset the cost of adding more host nodes.

The model also predicts that a decrease in the cost

of memory with respect to the cost of a processor board
results in a larger value of K,,;,. The intuition behind
this result is that, for a given target system size, de-
creasing memory cost increases relative processor cost,
and shifts the balance toward more memory intensive
simulations.

Unfortunately, analyzing the simplified model does
not help us answer the first question of when is par-
allel simulation better than sequential simulation. In-
stead, we graphically examine the full model. The up-
per half of Figure 4 plots CPp,s(K,p) and Cyni:(Kp)
for the simulation of appbt and barnes. These two ap-
plications are reasonably representative of the 5 bench-
marks: appbt and sparse exhibit relative low speedups,
while barnes, tomcatv, and water exhibit considerably
higher speedups. Figure 4 shows that although unipro-
cessor simulation is more cost-effective for small target
systems, up to 8 or 16 nodes, parallel simulation offers
superior cost/performance as the target system grows
beyond approximately 16 nodes. More important than
the exact numbers, the trend clearly shows that paral-
lel simulation becomes increasingly cost-effective as the
target system grows.

The second interesting prediction of this model is the
lack of continuity in p. That is, parallel simulation does
not gradually become more effective, but rather once the
speedup is sufficient to overcome the large base cost, the
optimum cost/performance occurs when the simulation
is either fully parallel (barnes) or nearly so (appbt).

The lower half of Figure 4 plots CPypp(K,p) and
Cuni(Kp) for appbt and barnes and Kp < 128. The
figure illustrates that uniprocessor simulation is more
cost-effective than parallel simulation for target systems
of up to 16 nodes. The large jump in cost/performance
as p increases from 1 to 2 nodes is due to the significant
premium charged by MPP vendors. For host systems
of up to 16 nodes, the simulation speedup is not large
enough to offset this premium and therefore uniproces-
sor simulation offers better cost/performance. Mini-
mum cost/performance for larger systems lies consis-
tently at 4 and 8 target nodes per host node for the two
benchmarks independent of the number of host nodes.
Moreover, the larger parallelism available in the simula-
tion of barnes results in optimum cost/performance at a
smaller value of K. These results are in accord with the
predictions of our model for the asymptotic behavior of
Kpin.

Decreasing memory cost not only shifts K,,;, to-
wards larger values—confirming our analysis of the sim-
plified model—but increases the target system size at
which parallel simulation becomes more cost-effective
than sequential simulation. For example, decreasing the
memory cost (or, equivalently, the simulation’s memory
requirement) by a factor of four increases the break-even
point for parallel simulation to 128 target nodes.
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Figure 4: Cost/Performance of Parallel Simulation

The figures plot CPpg,s(K,p) (top) and CPrypp(K,p) (bottom) against Cyrr; (Kp) for two benchmarks. appbt and barnes are represen-
tatives of classes of parallel simulation which exhibit low and high speedups respectively. The cost parameters are the same as those in
figure Figure 3. A bullet at coordinates (K, p) indicates the minimum cost/performance for the simulation of a target system of size Kp.

Decreasing the processor cost (and/or the cost of the e the variability in event processing times can be ac-
network for M PP’s) has a complementary effect, not curately modeled using Kruskal and Weiss’s model
only decreasing K ,;n, but reducing the break-even tar-
get system size. Similarly, increasing the parallel simu-
lation speedups, as we expect for larger data sets, will
also tend to make parallel simulation increasingly cost-

for fork-join parallel programs;

e the frequency of context switches, incurred when
switching between target nodes, is accurately mod-
eled by the maximum of binomial random vari-

ables;

e an extension of Thiebaut and Stone’s footprint
model accurately predicts the interference of mul-
tiple targets in the host cache and TLB;

e the performance model’s predictions of simulation
speedup are within 10% on average and are always
within 20% for these workloads.

We then combine the performance model with sim-

effective.

7 Summary and Conclusions

This paper examines the cost/performance of simulat-

ing a hypothetical target parallel computer using a com-
mercial host parallel computer. We address the funda-

mental question of whether parallel simulation is simply

faster than sequential simulation, or whether it is also
more cost-effective. We answer this by developing a per-
formance model of the Wisconsin Wind Tunnel (WWT)
that incorporates three major factors: event processing
time, context switch overhead, and host cache and TLB
interference. For the performance model, we show that:

ple cost models and show—in the central result of this
paper—that parallel computer simulations are, in fact,
more cost-effective than uniprocessor simulations. The
key intuition behind this result is that large simula-
tions require large memory sizes, which dominate the



cost of a uniprocessor; parallel computers allow multi-
ple processors to simultaneously access this large mem-
ory. Furthermore, we show that K,,;,, the number
of target nodes simulated per host node for optimum
cost/performance, is essentially independent of p, the
number of host processors. Using cost models based on
current commercial products and a performance model
based on WWT, we show that (1) for bus-based shared-
memory multiprocessors, parallel simulation becomes
more cost-effective when target systems reach 16 or 32
nodes, and (2) for massively parallel systems, with their
large price premium, parallel simulation becomes more
cost-effective when the target system size reaches 32.
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